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A ROBUST FINITE ELEMENT METHOD FOR
DARCY-STOKES FLOW

KENT ANDRE MARDAL, XUE-CHENG TAI, AND RAGNAR WINTHER

Abstract. Finite element methods for a family of systems of sin
gular perturbation problems of a saddle point structure are dis
cussed. The system is approximately a linear Stokes problem when
the perturbation parameter is large, while it degenerates to a mixed
formulation of Poisson’s equation as the perturbation parameter
tends to zero. It is established, basically by numerical experiments,
that most of the proposed finite element methods for Stokes prob
lem or the mixed Poisson’s system are not well behaved uniformly
in the perturbation parameter. This is used as the motivation
for introducing a new “robust” finite element which exhibits this
property.

1. Introduction

Let Cl C M 2 be a bounded and connected polygonal domain with
boundary dCI. In this paper we shall consider finite element methods
for the following singular perturbation problem:

u 0 on dCI.

Here e 6 (o,l] is a parameter, while A = diag(A, A) is the Laplace
operator on vector helds. The vector held f and scalar held g represent
the data. The problem (1.1) only admits a solution if the function g
has mean valne zero on Cl and “the pressure” p is only determined up
to addition of a constant.

We note that when e is not too small, and g 0, this problem is
simply a standard Stokes problem, but with an additional non-harmful
lower order term. However, if / = 0 and £ approaches zero then the
model problem formally tends to a mixed formulation of the Poisson
equation with homogeneous Neumann boundary conditions.

When £ = 0 the hrst equation in (1.1) has the form of Darcy’s law for
how in a homogeneous porous medium, where u is a volume averaged
velocity. In fact, the system (1.1) can be regarded as a macroscopic
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model for flow in an “almost porous media," where u and p represents
volume averaged velocity and pressure, respectively. The zero order
velocity term in the hrst equation of (1.1) then typically represents a
Stokes drag. An attempt to derive Darcy’s law from volume averaged
Stokes flow is for example discussed in [l6]. Generalizations of the
system (1-1) have also been proposed in the modelling of maciosegie
gation formation in binary alloy solidification. cf. [l3]. Systems of the
form (1.1) may also arise from time discretizations of the Navier-Stokes
equation, where the parameter e corresponds to the squaie loot of the
time step, cf. [3]- However, the study of such time discretizations is
not the motivation for the present paper.

The purpose of the present paper is to discuss a finite element method
for the model problem (1.1) with convergence properties that aie uni
form with respect to the perturbation parameter e. In §2 we will intro
duce some notations and discuss various piopeities of the model (1.1).
Discretizations of the model problem by the finite element method is
described in §3. In particular, we will State stability conditions which
are uniform with respect to the parameter and show, by numen
cal experiments, that the standard discretizations, proposed either for
& = 1 or £ = 0, do not satisfy these stability conditions. A new noncon
forming hnite element discretization is then proposed in §4. We show
that this new discretization is uniformly stable, and. as a consequence
we establish, in §5, error estimates which are uniform in e under the
assumption that proper regularity estimates hold for the solution. In
§6 we then study the asymptotic smoothness of the solution of (1.1)
as £ tends to zero. Based on these regularity results we show that,
for fixed data f and g, a uniform 0{hl/2 ) error estimate in a suitable
energy norm can be derived.

In the final section of this paper we study an elliptic system which
formally is a generalization of (1.1). This system is given by

(1.2)

where e, S G (o,l]. By introducing p= å 2 (div u- g) this system can
be alternatively written on the mixed form

(1.3)

Note that this system also has meaning when S = 0. and in this case
the system reduces to (1.1).

The symmetric and positive dehnite system (1.2) is discretized by
a straightforward finite element approach utilizing the new noncon
forming velocity space constructed earlier in this paper, i.e. the mixed

(j _ £2 A)u - <5~ 2 grad (divu- g) = f in
ti =Q on

[I - e2 A)u - gradp = f in il,
di\u-62p —cj in il,

u 0 on Dil.
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system (1.3) is not introduced in the discretization. We show, by nu
merical experiments and theory, that under the assumption of suffi
ciently regular Solutions, we obtain error estimates which are uniform
both in 6 and å.

2. Preliminaries

We will use Hm = to denote the Sobolev space of scalar
functions on 12 with m derivatives in L 2 = L2 (12), with norm || • || m .
Furthermore, the notation || • \\ m,K ls used to indicate that the norm i&
defined with respect to a domain K different from 12. The seminorm
derived from the partial derivatives of order equal m is denoted | • | m ,
i.e. | • \ 2m =|| • || 2 t —|| • \\ 2m _ l . The space H™ will denote the
closure in Hrn of Cq°(l2). The dual space of H™ with respect to the L 2
inner product will be denoted by H~m . Furthermore, L'q will denote
the space of L 2 functions with mean value zero. A space written in
boldface denotes a 2-vector valued analog of the corresponding scalar
space. The notation (•,•) is used to denote the L 2 inner product on
scalar, vector, and matrix valued functions.

Below we shall encounter the intersection and sum of Hilbert spaces.
We therefore recall the basic dehnitions of these concepts. If X and Y
are Hilbert spaces, both continuously contained in some larger Hilbert
spaces, then the intersection Xfl Y and the sum + Y are themselves
Hilbert spaces with the norms

and

Furthermore, if nY is dense in both X and Y then {X fl Y)*
X* + Y*. We refer to [4, Chapter 2] for these results.

If q is a scalar held then grad q will denote the gradient of q, while
divu denotes the divergence of a vector held v. We shall also use the
diffential operators

Note that, due to Green’s theorem, these dehnitions lead to the follow
ing “integration by parts formula”

where t is the unit tangent vector in the counter clockwise direction on
dil, and r is the arclength.

z \\xnY - (INI* + ll z lly) 1/2

A\x+y = inf (||x|ii- + l|y || y) 1/2z—x+y
xGX, y(zY

curl q = and rotv = dv x jdx2 - dv2 /dxl

(2.1) / curlg- vdx = / qiotvdx + / q{v  t) dr,
Jn Jn Jan
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The gradient of a vector held a is denoted Dv , i.e. Dv is the 2x2
matrix with elements

Hence, for any u G H 2 and a G Hq we have

where the colon denotes the scalar product of matrix fields. Recall also
the identity

which can be verified by a direct computation. As a consequence, we
obtain the identity

(2.3) {Du, Dv) = (div u, diva) + (rot u, rot v) Vu G H l , vGHq .

In addition to the function spaces introduced above we will also use
the space H{div) = H{div; Q) consisting of all vector helds in L 2 with
divergence in L 2, i.e.

H{div) {ve L 2 : diva G L 2}

Similarly,
H (rot) {v e L 2 \ rot v G L 2}

and the norms of these spaces are denoted by || • || div and || • || rot , respec
tively. Furthermore, Ho {div) is the closed subspace of H{div) consist
ing of functions with vanishing normal component on the boundary,
i.e.

Ho { div) {ve H (div) ;v n = 0 on cT2},
where n is the unit outward normal vector.

Througoufthis paper a£ {-,-) : H l xH l will denote the bilinear
form

A weak formulation of problem (1.1) is given by:
Find {u,p) e Hq x L20 such that

Here we assume that data {f, g) is given in H l x L 2.
The problem (2.4) has a unique solution {u.p) G H(] x L2y This

follows from standard results for Stokes problem, cf. for example [ll].
However, the bound on {u,p) GH] x will degenerate as e tends
to zero. In fact, for the reduced problem (2.4) with e = 0 the space
Hl x L2q is not a proper function space for the solution. However. the
theory developed in [6] can be applied in this case if we seek {u.p)
either in Jfo (div) x L20 or in L 2 x {H l DL20 ), and with data (/, g) in the

[Dv)ij = dvi/dxj 1 < i,j <2.

{Au, v) = ( Du. Dv ) =/Du : Dv dx ,
Jn

(2.2) A = grad div curl rot

ae [u, v) = {u. v) + £ 2 {Du. Dv).

, n A s ae {u,v) + (p,divv) ={f,v) Vv G
2 ‘ ' (divu,g) = (ø,g) V(] G Lj.
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proper dual spaces. These results are in fact consequences of standard
results for the Poisson equation.

The fact that the regularity of the solution is changed when e be
comes zero strongly suggests that e-dependent norms and function
spaces are required in order to obtain stability estimates independent
of 6. Furthermore, since the reduced problem is well posed for two com
pletely different choices of function spaces, this indicates that there are
at least two different choices of e-dependent norms. In present paper
we will study the problem (1.1) with respect to an £-dependent norm
which reduces to the norm in Ho { div) x Lq when e = 0. Our goal is to
derive discretizations which are uniformly stable with respect to e in
this norm. This appears to be the proper choice if we want to study dis
cretizations which also can be generalized to nonmixed approximations
of elliptic problems of the form (1.2).

Remark. When we refer to the reduced system corresponding to (1.1)
we refer to the system (1.1) with e = 0 and the boundary condition
u = 0 replaced by u  n = 0. This system has a weak formulation given
by (2.4), but with the solution space H(\ replaced by Ho {div).  

The space Ho {div) ne  Hq, with norm ||| • ||| e given by

is equal to H(\ as a set for £ > 0, but equal to Ho {div) for e= 0. The
system (2.4) can alternatively be written as the system

where the coefficient operator Ae is given by

Let X£ be the product space (ifo (div) fl e  Hq) x and X* the
corresponding dual space with respect to the L2-inner product. This
space can also be expressed as

X; = (Jf -1 (rot) + e~ 1 H~ 1 ) x Lfy

Here the -f sign has the interpretation as the sum of Hilbert spaces,
and the space H~ l ( rot) is given by

H = {u G H 1 : rot v e H I }.

The operator Ae can be seen to be an isomorphism mapping X£ into
X*. Furthermore, the corresponding operator norms

are independent of e. In fact, with the definitions above, this is also
true for e e [o,l], i.e. the endpoint s= 0 can be included.

The uniform boundedness of Ae is straightforward to check from the
definitions above, while the uniform boundedness of the inverse can be

IWII I = IHIo + II div v||q + £2 \\Dv\\l,

* (“) - (J)  

«“> + {'-£* ~Td)-

i lAII £(xe ,x* ) and 11 Ae 1 11 C {x* ,xe )
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verified from the two Brezzi conditions, cf. [6]. For the present problem
these conditions read:

(2.6)

and

Since it is well known, cf. for example [ll, Chapter 1, Corollary 2.4],
that condition (2.6) holds for e=l it also holds for all e G [o, l] with
the same constant cr0 . Furthermore, condition (2.7) holds trivially with
(3q = 1 for e G [o,l].

3. Uniformly stable discretizations

The purpose of this section is to discuss hnite element discretizations
of the system (1.1). In particular, we shall be interested in discretiza
tions which are stable uniformly in the parameter s G (o,l].

Let Vh C Hl and Qh C L\ be hnite element spaces, where h G (o,l]
is a discretization parameter. The weak formulation (2.4) leads to the
following corresponding hnite element discretization:

Find (uh,Ph) x Qh such that

Remark. Below we shall also encounter several examples of noncon
forming approximations of (2.4), i.e. the space V/,, Hl. In all these
examples the bilinear form ae (-, •) is understood to be the sum of the
corresponding integrals over each element. No extra jump terms are
added. The same remark applies to the energy norm, ||| • ||| e .  

The discretization (3.1) is stable in the sense of [6] if proper discrete
analogs of the conditions (2.6) and (2.7) holds. These conditions are:
Stability conditions.
The discretization (3.1) is said to be uniformly stable if there exist
constants a, /3 > 0, independent of £ and h, such that

(3.2)

and

For the case £ = 1, or more precisely for e bounded away from zero,
the second condition is obvious. In this case there are several choices of
pairs of hnite element spaces which satishes (3.2) with a independent

There are constants ao,/?o > 0, independent of s, such that

{q } div v) || || w r 2
sup —— > Vry E L O ,

t;€ffo(div)n£-i/g II! Ilk

(2.7) a£ (v,v) > Mv\\* \/v e Z

where Z {v £ H{ \ : divv = o}.

( o,\ a£ {uh ,v) + (ph ,dIV v) ={f,v) VveVh
' ' ’ (divuh ,q) =(g,q) Vg G Qh .

sup — > «ikllo v<? eQ,
vevh li^le-

(3.3) a£ {v : v) > Vt> G Zh

where Zh —[vGVh ' (divv,q) = 0 Vg G Qh]
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of h. We mention for exarnple the Mini element proposed in [l] or the
P 2 P 0 element, i.e. we choose continuous quadratic velocities for Vh
and the corresponding space of piecewise constants for Qh , cf. [lo]. For
a general review of stable Stokes elements we refer to [B].

However, most of these spaces do not lead to discretizations which
are stable uniformly in e. The main reason for this is that when e
approaches zero the second condition is no longer obvious. In fact, for
the reduced problem with e = 0 the condition (3.3) requires

Hence, we must have

(3.4) || divv||o < c||u|| o Mv eZh

for a suitable constant c independent of h, and this condition does not
hold for the common conforming stable Stokes elements.

Exarnple 3.1 We consider the problem (1.1) with 12 taken as the
unit square. The domain is triangulated by hrst dividing it into h x h
squares. Then, each square is divided into two triangles by the diag
onal with a negative slope. The system is then discretized using the
P 2 Pq element with repect to this triangulation, i.e. Vh C H] con
sists of piecewise quadratic functions, while Qh C Tg is the space of
discontinous piecewise constants. This discretization is known to be
stable when e > 0 is hxed, cf. [lo]. However, our purpose here is to
investigate how the convergence behave as e becomes small.

We consider the system (1.1) with the function g chosen to be identi
cal zero, while / = u—s2 Au—gradp, where u = curlsin2 (7ra:i) sin2
and p = sinfTraq). Hence, in this exarnple the solution is independent
of e.

In Table 3.1 below we have computed the relative error in the velocity
u , given by ||tx W/l ||| e /|||it||| £ , for different values of £ and h.

Table 3.1. The relative error in velocity obtained by
the P 2 Pq element

When 6 1 the convergence seems to be nealy quadratic with respect
to h in this case. However, the convergence deteriorates as e becomes
smaller, and for e = 0 there is no convergence. In fact, when e = 0 the
norm, |ix/i| e , seems to grow almost unboundedly as h approach zero.

v\\l > P\\v\\‘L e zh  

e\ h 2~ 2 2~ 3 2"4 2~ 5 2“6

1.00 6.60e-l 1.87e-l 5.03e-2 1.43e-2 4.84e-3
2.50e-l 1.07e-0 5.22e-l 2.62e-l 1.32e-l 6.55e-2
6.25e-2 7.61e-0 6.36e-0 3.91e-0 2.10e-0 1.07
3.90e-3 2.51e+l 1.71e+2 1.86e+2 1.33e+2 1.44e+2

0.00 2.59e+l 3.11e+2 1.21e+3 1.53e+4 1.12e+4
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This must be due to the fact that only the projection of div uh into
piecewise constants is controlled by the method in this case.  

Excmiplc 3.2 We repeat the experiment above, but with the differ
ence that we use the nonconforming Crouzeix-Raviart element instead
of the P 2 - Po elemet, i.e. Vh consists of piecewise linear veetor helds
which are continuous at the midpoint of each edge of the triangulation,
while Qh C L20 is the space of piecewise constants. It is well known
that for any hxed e > 0 this element leads to a stable discretizetion,
cf. [lo].

In Table 3.2 we have again computed the relative error m the velocity
u for different values of e and h.

T7OO 2230 T2O 6.05e-l 3.04e-l 1.52e-l
2.50e-l 9.21e-l 4.90e-l 2.50e-l 1.26e-l 6.31e-2
6.20e-2 I 6.53e-l 4.97e-l 3.UBe-l 1.66e-l 8.54e-2
3.90e-3 7.54e-l 7.94e-l 8.05e-l 7.81e-l 6.91e-l

0,00 7.55e-l 7.98e-l B.lBe-l 8.27e-l 8.31e-l

the nonconforming Crouzeix-Raviart element

As expected we observe a linear convergence when £ is large. How
ever. also in this case the convergence deteriorates as £ decreases, and
for the reduced problem, with e 0, the observed values for the rel
ative error is monotonically increasing. In fact, the divergence of the
Crouzeix-Raviart element in the case e = 0 is not surprising. Since
the divergence free vector helds in this case can be realized as the curl
operator applied to the corresponding Morley space. this behavior of
the Crouzeix-Raviart element is closely tied to the divergence of the
Morley element for the Poisson equation, cf. [l4].  

The two examples above show that the P 2 - Po element and the
nonconforming Crouzeix-Raviart element, which both are known to be
stable for e = 1, fail to give methods which converge uniformly in e.
The divergence of the P 2 - Po element for £ = 0 is basically due to the
fact that the estimate (3.4) does not hold, and therefore the method
is unstable, while the divergence of the Crouzeix-Raviart method is
caused by the nonconsistency of the method.

Example 3.3 We repeat the experiment above once more. but this
time the system (1.1) is discretized by using the Mmi element, i.e.
Vh c Hq consists of linear combinations of piecewise linear funetions
and cubic bubble funetions with support on a single tnangle, while
Q h cLq t^ie s Pace continous piecewise linear funetions.

In Table 3.3 below we have computed the relative error in the veloc
itv. with repect to the norm ||| • ||| e , for different values of c and h.

Table 3.2. The relative error in velocity obtained by
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Table 3.3. The relative error in velocity obtained by
the Mini element

When e = 1 the convergence seems to be linear with respect to h.
This agrees with the theoretical results given in [l]. The convergence
deteriorates as £ becomes smaller, and for e = 0 there seems to be no
convergence.

An intersting observation can be done for the Mini element if we
consider the corresponding errors for the pressure p. In Table 3.4 below
we study the relative error given by ||p P/,J|o/||p||o-

Table 3.4. The relative L 2 error in the pressure ob
tained by the Mini element

The surprising observation is that for the pressure the convergence
seems to be uniform with respect to e. In fact, the convergence rate
seems to improve as e tends to zero and for e small the convergence
with respect to h appears to be quadratic. We should clearly State here
that this effect is not present in the two other methods studied above
in Examples 3.1 and 3.2. In both these cases the error in the pressure
diverges as e tend to zero.

What we have observed here is not special to the present example.
The Mini element leads to a discretization which is uniforrnly stable
with respect to e in a proper e-dependent norm different from ||| • ||| e .
If we define the solution space X£ by

then it can be shown that the Mini element will in fact produce a
uniforrnly stable discretization in the corresponding energy norm. This
norm degenerates to the norm of L 2 x H l as e tends to zero, cf. the
discussion in Section 2 above. In order to confirm this behavior we

X£ = (L2n £  Hl) x ((H 1 n + e- 1 • L 2),

e\ h 2~ 2 "2^ 2~ 4 2~ 5 2 -b

1.00 3.01 1.65 8.42e-l 4.22e-l 2.11e-l
2.50e-l 2.70 1.55 7.80e-l 3.90e-l 1.95e-l
6.25e-2 3.71 1.67 7.89e-l 3.87e-l 1.92e-l
3.90e-3 7.32 4.28 2.79 1.64 6.51e-l

0.00 7.44 4.76 3.70 3.39 3.30

e\h 2~ 2 2~ a 2~ 4 2~b 2 -6

1.00 8.78 2.81 8.85e-l 2.95e-l 1.02e-l
2.50e-l 6.09e-l 1.84e-l 5.62e-2 1.85e-2 6.40e-3
6.25e-2 6.08e-2 1.51e-2 3.88e-3 1.21e-3 4.07e-4
3.90e-3 3.58e-2 9.93e-3 2.34e-3 4.10e-4 6.00e-5

0.00 3.59e-2 1.02e-2 2.75e-3 7.23e-4 1.87e-4
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computed the relative error in velocity once more, but this time we
used the L 2 norm instead of ||| • ||| e . The results are given in Table 3.5.

Table 3.5. The relative L 2 error in velocity obtained
by the Mini element

These results seem to cpnhrm that the Mini element leads to a uni
formly convergent discretization as long as the error is properly mea
sured. However, as motivated in Section 2 above, in the present paper
we are interested in a discretization of the system (1.1) which has a uni
form behavior when the error is measured in (iTo (div) fl e • iT({) x L§.
Therefore, for our purpose here, the Mini element should not be re
garded as a uniformly stable element.  

Let us recall that if a standard conforming Stokes element is not
uniformly stable with respect to e, then this unstability must be caused
by the failure of the second stability condition (3.3), or equivalently
(3.4). Note that the stability condition (3.4) will be trivially satished
if the spaces Vh x Qh are constructed such that all elements of Zh
are divergence free, i.e. Zh C Z. In fact, nearly all proposed finite
element methods for the reduced problem will have this property. This
is for example true for the Raviart-Thomas spaces, cf. [ls], and for
the Brezzi-Douglas-Marini spaces of [7]. However, in all these cases
the spaces Vh will only be a subspace of iTo (div) and not of H{ {, due
to the fact that only the normal components of the elements of Vh
are required to be continuous across element edges. It is therefore not
clear that these spaces will be useful for problems of the form (TI)
with e > 0.

Example 3.4 We repeat the calculation done in the three examples
above, but now we use the lowest order Raviart-Thomas space for
the discretization. Hence, for e 0 we will expect to obtain linear
convergence with respect to h. On the other hand, for e > 0 the
method is nonconforming and there seem to be no reason to expect
that the method is convergent in this case.

In Table 3.6 we have computed the relative error in the velocity u.
measured in the piecewise energy norm, for different values of £ and h.

As expected, the method appears to be divergent for e > 0.  

6 \h ir 1 2- 3 2 -4 2~ b 2 -b
1.00 3.54e~l 1.03e-l 2.64e-2 6.60e-3 1.65e-3

2.50e-l 3.16e-l 8.79e-2 2.20e-2 5.48e-3 1.37e-3
6.25e-2 1.90e-l 4.60e-2 1.07e-2 2.59e-3 6.42e-4
3.90e-3 1.81e-l 7.23e-2 2.87e-2 8.70e-3 1.74e-3

0.00 1.82e-l 7.66e-2 3.59e-2 1.76e-2 8.75e-3
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6.25e-2 ' 5.97e-l 5.23e-l 5.04e-l 4.99e-l 4.98e-l

0.00 ' 3.86e-l 1.98e-l 9.98e-2 5.00e-2 2.50e-2
Table 3.6. The relative error in velocity obtained by
the Raviart-Thomas element

4. A ROBUST NONCONFORMING FINITE ELEMENT SPACE

The four examples presented above illustrate that none of the stan
dard elements, proposed for the case f=l or g 0, will lead to a
discrization of the problem (1.1) with uniform convergence properties
with respect to g, when the error is measured in the norm of the space
(iTo(div) He • Hq) x Lq. The purpose of the rest of this paper is there
fore to construct and analyze a new hnite element space which has this
property.

4.1. The finite element space. In order to describe the new hnite
element space we will hrst dehne the proper polynomial space, or shape
functions, on a given triangle. Let T C 1“ be a triangle and consider
the polynomial space of vector helds on T given by

V{T) —[vG F 3 : diva G Pq, (v • n)\ e GPi Ve G £{T)}.

Here Pfc denotes the set of polynomials of degree k and £{T) denotes
the set of the edges of T. Furthermore, n is the unif normal vector on
the edge e. Below we will also use t to denote the unit tangent vector
on e, while r denotes the are length along e.

The space P 3 is a vector space of dimension twenty. Furthermore,
the conditions

diva GPq and (a • n)\ e GP] Ve G £{T),

represent at most eleven linearly independent constraints on this space.
Therefore we must have

dim V(T) >9.

Lemma 4.1. The space V(T) is a linear space of dimension nine. Fur
thermore, an element v G V (T) is uniquely determined hy the following
degrees of freedom:

• fe (v • n)rk dr k 0,1 for all e G £{T).
• fe (v  t) dr for all e G £{T).

e\ h || 2~ 3 2~ 4 2~ ,l> '

1.00 I] 2.79e+l 3.21e+l 3.34e+l 3.38e+l 3.39e+l
2.50e-l 310 3.46 3.58 3.62 3.63

3.90e-3 ' 3.87e-l 2.00e-l 1.04e-l 5.74e-2 3.78e-2

In fact, we shall show that dimV(T) 9.
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Figure 4.1. The degrees of freedom of the new noncon-
forming element

Proof. Since V (T) is a vector space of dimension > 9 it is enough to
show that elements of V (T) are uniquely detemined by the given nme
degrees of freedom. Assume that v G V(T) with all the degrees of
freedom equal zero. In particular. this implies that

As a consequence of this

Hence, since div v G Pq, we conclude that v is divergence free.
However, since v G P 3 is divergence free we must have v = curlrc

for a suitable scalar function w G P4. Furthermore, since

for each edge e, we conclude that grad w  t = 0 011 dT. Since w is
uniqely determined only up to a constant, we can therefore assume that
w 0 on dT.

Hence, w is of the form w = pb , where p G Pi and b is the cubic
bubble function with respect to T, i.e. b = AiA 2 A 3 , where A z (a:) are the
barycentric coordinates of x with respect to the three corners of T. In
particular, J-| e does not change sign on e. Furthermore,

and

We can therefore conclude that p has a root in the interior of e. How
ever. if p G Pi with a root in the interior of each edge of T then
p = w = 0.

Let {%} be a shape regular family of triangulations of H. where his
the maximal diameter. Furthermore, let Eh be the set of edges of Th .

{v • n)\ar = 0.

/ divvdx = / v-ndr =O.
Jt JdT

(grad w - t)\ e =(v  n)\ e = 0

dw dh
= Vt—\ dT

On on

[p~dr = f L fvtdr = 0 Ve e £(T).
J e dn J e dn J e



ROBUST FINITE ELEMENTS FOR DARCY-STOKES FLOW 13

Define a finite element space of vector fields Vh , associated with the
triangulation Th, as all fimctions v e Vh such that

v\ T G V{T) for all TG Th
J(v  n)rk dr is continuous for k 0,1 for all e G
J {v  t ) dr is continuous for all e 6 4,

Here we assurne that v is extended to be zero outside 17, i.e. if e is an
edge on the boundary of Q then we require

It follows from Lemma 4.1 that any function v G V}l is uniquely de
termined by the two lowerest order moments of v n and by the mean
value of v  t for all interior edges, cf. Figure 4.1.

If v G Vh then the normal component v  n is continuous for all
interior edges. Therefore, Vh C Ho {div). However, the tangental com
ponent of v is not continuous, only the mean value with respect to
each edge is continuous. Therefore, Vh £ HQ In addition to the space
Vh we let Qh C Ll denote the space of scalar piecewise constants with
respect to the triangulation Th-

In the rest of this paper Vh and Qh will always refer to the hnite ele
ment spaces just introduced. The corresponding nonconforming hnite
element approximation of the system (1.1) is dehned by the system
(3.1).

4.2. Properties of the new finite element space. It follows from
the definition of Vh that divVh = Qh . Hence, if we define Zh CVh as
the weakly divergence free elements of Vh , i.e.

Zh ={vG Vh : (div v, q) = 0 \/q G Qh },

then these elements are in fact divergence free.
Remark. It can be seen that

(4.1)

where Wh is an associated nonconforming FT2 -element. Locally, on each
triangle Wh consists of all P 4 polynomials which reduces to a quadratic
on each edge. In addition, Wh C and the normal derivatives of
functions in Wh are weakly continuous on each edge. The finite element
space Wh is precisely described and analyzed in [l4]. The identity (4.1)
was actually the main motivation for the construction of the space Vh .
More precisely, the spaces Wh , Vh and Qh are related such that the
sequence

is exact.  

/(v  n)rk dr = 0 k = 0,1 and {v  t)dr = 0.
Je J e

Zh = curl Wh ,

o > Wh /R Vh Qh > 0
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for all e e £h- In addition, let Ph : L‘q ha Qh be the L2-projection. From
the definition of the operator 11/, we easily verify the commutativity
property

and hence (4.2) follows.
Since Qh is the space of piecewise constants the L2-projection Ph

onto Qh satishes

(4.3) \\w - Ph w\\ 0 < ch\\w\\i

for all wG Hl nL2 , where c>o is independent of h and w. The opera
tor Uh is well dehned on HQ it is locally dehned on eac.h triangle, and
it preserves linear functions locally. Furthermore, the polynomial space
V (T) is invariant under affine Piola transformations. More precisely,
let T G % and (j>(x) = Bx + c an affine map of T onto a reference
triangle T. Then the Piola transform, v ha v, where

maps V{T) onto V{f). Therefore, approximation estimates for the
operator FP can be derived from standard scaling arguments utilizing
the shape regularity of ln particular, there exists a constant
c > 0, independent of h such that

In addition, from the Bramble-Hilbert lemma we can further conclude
that

(4.5) j|n h v v\\j,h < chk 11 v11fc for o<j<l < k < 2,

and for all v G fl Hk . Here || • || jVl denotes the piecewise HJ -norm

In fact, if T is a reference triangle, and II : H l {T) ha V{T) the
corresponding interpolation operator, then for all v G H l {T)

Define an interpolation operatør Yl h :Hq Vh by

j{Tlh v  n)rk dr ={v  n)rk dr k = 0,1

Uh v -t) dr = I {v  t) dr

(4.2) div IlhV =Ph div v for all v e Hq.

In fact, for all Te %

/ div Uh v dx= (Uhv - ri) dr = (v  n) d,r = / div vdx
Jt JdT Jar Jt

v {x) = (det B) l Bv(x ), x = (f){x),

(4.4) ||n^|| div < < c||v||i.

T£Th

< cilHlo,9f < calHlJflHl^.
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where c\ and c 2 only depends on T. Hence, from a scaling argument
we also obtain the low order estimate

(4.6) ||nfc w u||o < c/i 1//2 ||n||J //2 ||i;||

for all v G Hq.
Next we will verify the stability conditions (3.2) and (3.3) for the

product space Qh . However, due to the fact that we are consider
ing a nonconforming finite element approximation of the system (1.1),
where Vh (f- Hq, the norm ||| • ||| e has to be properly modihed. For each
v G Vh we dehne

Note that for e= 0 this norm is simply equal to || • || ciiv , while for e= 1
it is equivalent, uniformly in h, to the piecewise H v -norm || • || l;/t .
Lemma 4.2. There exists a constant oq > 0, independent of h, such
that

Proof. This follows by a standard argument from the properties of
the interpolation operator Iih and the corresponding continuous re
sult (2.6). In fact, since for any v G H(\ and q G Qh we have

and

we can take ol\ olq/c\

The following uniform stability result is an immediate consequence
of the previous lemma.

Theorem 4.1. The pair of spaces (Vh ,Qh ) satisfies the uniform, sta
bility conditions (3.2) and (3.3), but with the norm. ||| • ||| e replaced by
11 • lIU-

Proof. The norms ||| • |||i s /x and || • are equivalent on Vh and ||| • ||| e>/l
decreases as 5 decreases. It follows from Lemma 4.2 that condition (3.2)
holds. Since Zh C Z the second condition (3.3) holds with (5 =l.  

5. Error ESTIMATES FOR SMOOTH SOLUTIONS

Since our new finite element space {Vh ,Qh ) satisfies the proper sta
bility conditions (3.2) and (3.3), uniformly with respect to 5, it seerns
probable that the corresponding finite element method will in fact have
uniform convergence properties. In the present section we shall inves
tigate this question under the assumption that the solution {u,p) of
the continuous problem is sufhciently smooth, while the effect of the

Wl?,/, = IHldiv + £ '2 Y H^Hloj-
TeTh

(g, divu)
sup —— > for all q G Qi,
vevh

(<Zj div = (g, div v)

|nfcv||i >fc < ci||t»|| ls
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e-dependent boundary layers will be taken into account in the next
section.

We will start the discussion heie with a numerical example which is
completely similar to Examples 3.1-3.3.

Example 5.1 We redo the computations done in Examples 3.1-3.3,
but this time we use the finite element spaces constructed above.

In Table 5.1 we have computed the relative error in the velocity u.
measured in the norm ||| • | Ej h, for different values of e and h , and in
Table 5.2 we present the corresponding relative error, || p - Ph\\o/\\p\\o,
for the pressure p.

I.ooe+oo II TB3 9.66e-01 4.87e-01 2.44e-01 1.22e-l
2.50e-01 7.08e-01 3.70e-01 1.85e-01 9.27e-02 4.64e-2
6.25e-02 ' 2.06e-01 1.02e-01 4.91e-02 2.43e-02 1.21e-2
3.90e-03 ' 1.02e-01 3.05e-02 8.14e-03 2.35e-03 8.73e-4

O.OOe+OO ' 1.03e-02 3.24e-02 9.12e-03 2.37e-03 5.99e-4
Table 5.1. The relative error in velocity obtained by
the new nonconforming element

e\h || 2~ 2 2-j 2~ 4 2~ b 2^

6.25e-02 ' 1.85e-01 9.25e-02 4.63e-02 2.32e-02 1.16e-2
3.90e-03 ' 1.84e-01 9.24e-02 4.63e-02 2.31e-02 1.16e-2

O.OOe+OO ' 1.84e-01 9.24e-02 4.63e-02 2.31e-02 1.16e-2

Table 5.2. The relative error in pressure obtained by
the new nonconforming element

We observe that the convergence with respect to h appears to be at
least linear uniformly with respect to e G [o,l]. In fact, for this special
example the convergence in velocity seems to be quadratic in h when
£ = (). 

The rest of this section will be devoted to establish error estimates
for the new nonconforming finite element method. Throughout this
section we will assume that u G H 2 fl Hq, where [u,p) is the weak
solution of (2.4). For convenience we also introduce the notation |j  || a
for the norm on Vh associated the bilinear form a£ , i.e.

I.ooe+oo : 2.26e+00 9.52e-01 5.33e-01 2.77e-01 1.40e-l
2.50e-01 2.36e-01 I.loe-01 5.69e-02 2.89e-02 1.45e-2

IHIa = IHIo + ETeTh
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For any v G Vh , we define the consistency error E£ j,fu , v) by

Here, if T_ and T+ are two triangles, sharing an edge e, then [iy] =
[u)] e = w\t+ w\t_ denotes the jump of w across e, while t is the unit
tangent vector along e corresponding to the clockwise direction on T+ .
Since [v  n\ e = 0 for any v G Vj,. it follows from (2.2) and Green’s
theorem, in particular from (2.1), that

where the term E appears due to the fact that Vh <jL Hq.
In the error analysis below we will need proper estimates on the

consistency error E£ jl . The following bounds are therefore useful.

Lemma 5.1. If u G H 2 nH] then

Proof. Let eG4 and v G Hq + V/,,. Since the mean value with respect
to e of v  t is zero, it follows from a standard scaling argument, cf. for
example [5, Section 8.3] or [l4, Section 4] for similar arguments, that
for any (j> G H 1

fe (f)[v  t\dr < infA>/ieR ||f - A|| o>e ||[u •t - /i]|| o , e
(5.2) f ch\(f)\i^e {\v\i T_ + Hijy)

“ I c/i1/2 |ø|J^J|(/)||Jge (|v| l!r_ + Hi,t+ ).

Here T_ and T+ denote the two triangles meeting the edge e and Fb =
T_ UT+. Since

the desired estimate follows by applying the estimate (5.2) with d> =
rot ti, summing over all edges, and using the fact that

Let ( Ph ) F Vh xQh be the approximation of {u,p) derived from
the discrete system (3.1). From (3.1) and (5.1) we obtain

div Uh = Ph div u = div LI h u.

Ee ,h {u,v) =£2 /(rot u) [v  t] dr.
ee£h J e

( a£ (u,v) + {p, divv) =(/,«) + Ee , h {u,v) \/v G Vh ,
(div u, q) (g, q) \/q € L‘q,

\E£th{u,v) | ( /i||rotit||i
vevh IHIo “C£ \ hl/2 \\ rotit||} /2 || rot u||J/2 ,

where c > 0 is independent of e and h.

\Ee , h iu , v)| <e2 | /(rot u) [v-t\dr\,
ee£h e

Y Hi,t < 2 ae {v,v).
e££h

(5.3) a£ {u - uh , v) + (p- ph , div v) = EeJl{u , v)

for all v G Furthermore,
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a£ {u - uh , Uh u - u h ) = E£th (u, Uh u - u h )

Since ae is an inner product we further have

From this basic bound we easily derive the following error esimate.

Theorem 5.1. If uGH2 n Hq and pGHl n then the following
estimates hold:

Proof. The hrst estimate is a direct consequence of (4.5), (5.4), and
Lemma 5.1. The second estimate follows from the bound (4.3), and
the fact that div Uh = Ph div u.

In order to establish the third estimate we first observe that (4.3)
implies that

(5.5) \\p - PhP\\o < ch\\p\\i.

Hence, it only remains to estimate Php~Ph • However, from the modihed
inf-sup condition (3.2), cf. Theorem 4.1, we obtain

Furthermore, for any v G Vh we have

{Php - ph , div v) =(p - ph , div v)

a£ (u Uh , v) + E; j,{u. v),

which implies that

or

(5.6)

From the previous estimates we therefore obtain

Therefore, taking v = IlhU Uh in (5.3) we obtain

Uh u - uh \\ 2a < ||w - Uhu\\ 2a + 2ae (u - uh . Uh u - uh )

\\ U n/i 11 a U h )

Hence, we conclude that

(5.4) 11 U - Uh \\ a < 2(11 U - Uhu\\ a + supveVh 11 11 a

u - uh \\ 0 + e\\ rot [u - it>i)||o < c{h2 + £h)\\u\\ 2

|| div(it - Ufi) 11o <ch 1| divu||i

P— Ph 110 < ch{\\p\\i +(e+ h) ||it|| 2)

Here c > 0 is a constant independent of e and h.

„ / -1 {PhP - Ph, div v)
\\PhP - Ph\\o < a sup iii—iii

v&Vh |||^|||e,/i

\Ee h[u. v) |
[Php - Ph: div v)\ < {\\u-uh \\ a + sup —— 111

vevh lin

, \Ef h(u, v)L
PhV - Pjo < « *(||u - «h||a + sup )•

vevh lla

11 PhP ~ Ph\\o < °{h~ + £ h)W u \\2-
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and together with (5.5) this establishes the desired estimate on the
error \\p Ph\\o-  

6. Boundary layers and uniform error ESTIMATES

In general, we cannot expect that the norm ||it|| 2 of the solution
of (1.1) is bounded independently of e. In fact, as e approach zero
even || rotit|| o should be expected to blow up. Hence, the convergence
estimates given in Theorem 5.1 will deteriorate as e becomes small.
The following example shows that this behavior of the error is in fact
real.

Example 6.1 In this example we consider the behavior of e dependent
Solutions. Let u— e curl e~xy//e , p = ee~ x/le and f— u s 2Au .In
Table 6.1 below we have computed the relative error for the velocity u
in the energy norm, ||| • for different values of f and h.

Table 6.1. The relative energy error in velocity ob
tained by the new nonconforming element

These results seem to indicate that for each fixed f the convergence
is at least linear with respect to h. However, we observe that for each
fixed value of h the error increases as £ decreases. This indicates that
we do not have linear convergence uniformly in e.

In Table 6.2 we give the correponding relative L 2 errors for the pres
sure.

g\ h || 2~ 2 2~ 6 2~4 2~ b 2~ b
1.00 6.Sle-2 3.48e-2 1.75e-2 8.78e-3 4.40e-3

2.50e-l 3.72e-l I.Boe-l 8.73e-2 4.30e-2 2.14e-2

Table 6.2. The relative L 2 error in the pressure ob
tained by the new nonconforming element

Also these errors seem to be linear with respect to h for e not too
small, but again the results deteriorate when e is dose to zero.  

The main purpose of this section is to establish error estimates which
are uniform with respect to the perturbation parameter e. We shall

6.25e-2 ' 3.32 1.64 7.61e-l 3.55e-l I.lBe-l
3.90e-3 2.33e+2 1.72e—1 2 1.34e+2 B.lBe+l 3.10e-j-l

e\ h 2~ 2 2“ :j 2~ 4 2~ b 2 -6
1.00 6.31e-2 3.18e-2 1.59e-2 7.93e-3 3.96e-3

2.50e-l 1.62e-l 8.32e-2 4.16e-2 2.07e-2 1.03e-2
6.25e-2 4.06e-l 2.14e-l 1.12e-l 5.63e-2 2.81e-2
3.90e-3 5.41e+0 3.48e+0 1.72e+0 7.00e-l 3.13e-l
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show a uniform 0(h1/2 ) error estimate in the energy norm. We observe
that if g G n L[] then it follows directly fiom Theoiem 0.l that.

(6.1) || div(n - uh )\\ Q < c^lMld
where the constant c is independent of £ and h. Hence, we have uniform
linear convergence for the error of the divergence. In contrast to this,
the remaining part of the error will be affected by boundary layers as
£ becomes small. However, the following uniform convergence estimate
will be derived.
Theorem 6.1. If f G iT(rot) and g G H\ then there is a constant cr
independent oj /, g, e, and h such that

\\u Uh\\o + - n/j)||o + \\p - Ph\\o < c/l 1//2 (ll/||rot + IMIl,+ )’

Here the Sobolev space H\ is a space contained in H\ with asso
ciated norm, || • Hi,+, slightly stronger than || • ||i- This space will be
precisely defined below.

The derivation of the uniform error estimate above will depend heav
ily on certain regularity estimates for the solution of the system (1.1).
For example, we shall estimate the blow up of [| rotu||i as £ approach
zero. We shall therefore first derive these regularity estimates.

For convenience of the reader we repeat the system (1.1).

We also repeat that the domain His a polygonial domain in E 2. In
fact, in the discussion of this section we shall assume that Cl in addition
is convex. If £ G (o,l], fG L 2 and g= 0 then the correrspondmg weak
solution admits the additional regularity that {upp) G (H 0 x L 0) n
{H2 x H l ). This regularity result follows directly from the result for
the corresponding Stokes problem on a convex domain which can be
found in [l2, Corollary 7.3.3.5]. In fact, the same regularity holds for
g oif we restrict the data gto the space H\.

In order to define this space let xi,x2 , ..-,xN FOC denote the ver
tices of Cl. The space Hf is given by

Hence, functions in H\ vanish weakly at each vertex of Cl.
It is established in [2] that

(J - e2 A)u - gradp =/ in Q,
/g_2) div u =g in

u = 0 on dVt.

H l+ = {geH l nLl : / di < 00, j= 1, 2,..., TV},Jo K I

with associated norm

Ml+ =Ml + ijn^^ dx-

div(H2 n Hi) = H\.
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Furthermore, the divergence operator has a bounded right inverse, R :
Hl H 2 n i.e. div Rg = g for all g€ H\ and

Note that if {u,p) solves (6.2) then (u - Rgpp) solves a corresponding
problem with g 0. From the result in the case g 0 we can therelore
conclude that (u,p) G ( x Lq)P(772 x H l ) for any {f,g) GL 2 xH\.

The following result gives an upper bound for the blow up of the
norm || rotn||i as e tends to zero.

Lemma 6.1. Assume that f G 77 (rot), g G H[, and let [upp] be
the corresponding solution of (6.2). There exist a constant c > 0,
independent of e, f and g, such that

(6.3) s l/2 \\ rot w|| o + £ 3/2 |] rot u\\i < c(|| rot/|| o + ||ø||i,+ ).

Proof. We First construct a function h G Hl Pl 77({ such that

(6.4) div w= g , and rot Ah. =O.

In fact, the function h can be constructed by dehning

u Rg -t curl v.

with ip G Hq being the weak solution of the biharmonic equation

A2 yi = rot ARg in fl,

We observe that, since Rg G 772 , the right hand side is in H 1 . There
fore, from the regularity of Solutions of the biharmonic equation on
convex domains, cf. [l2, Theorem 7.2.2.3], we have that ip G i73 , and
IWla A c|| rot ARg\\_i. Hence, h G 77 2 fl Hq, and

(6.5)

Furthermore, clearly divh = div Rg = g, and for any p G we have

Hence, the second property in (6.4) also holds.
Define v=u u. Then {v,p) G {Hq x Lq) Pl (77 2 x H l ) is the weak

solution of the problem

(6.6) div r; =0 in fl,

rot f = rot f rot h.

\\Rgh < c\\g\\i,+.

/ dip'ip = —— = 0 on oil.on

INb < c||^||i,+.

(Au, curl/i) = ( ARg, curl/i) (A'ø,A/i) = 0.

(/ £2 A)v gradp = / in Q,

v 0 on dQ,

where f=f+e2Au u. Clearly, f G L 2. In fact, fG Jf (rot), since
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Furthermore, there is a constant c, independent of e, f and g , such
that

Since v E L 2 and div x; = 0 there exists øE H\ nniquely determined
up to a constant, such that v = curl ø ([ll, Theorem 1.3.1]). Hence,
since v E H 2 fl Hq, we can choose øGH3 Pl Hq. In fact, by applying
the rot operator, as a map from L 2 to H~ l , to the hrst eqnation of
(6.6) we obtain

The function ø is nniquely determined by this problem. This singular
perturbation problem was in fact studied in [l4], where it was estab
lished that ([l4, Lemma 5.1])

and as a consequence

This completes the proof.

In addition to the £ dependent bound on the solution (xx,p) of (6.2)
derived above, we shall also need convergence estimates on how fast
these Solutions converge to the solution of the reduced system.

The reduced system corresponding to (6.2) is of the form

A precise weak formulation of this system is given by:
Find (xx°,p°) G ifo(div) x L\ such that

(xx°, v) + (p°, div v) ={f,v) Vn G ifo(div)
(div xx°, q) = {g,q) \/q E L‘q.

If (f,g) E H~l [ rot) x L20 then this system admits a unique solution. In
fact, if / G H (rot) then xx° G H{rot) with rot u° = rot/. Therefore,

and hence, cf. [ll, Proposition 3.1, Chap. I], xx n G Hl . As a con
sequence, p° E H l . Furthermore, the corresponding solution map is

(6.7) || rot /||o < c (|| rot /||o + |M|i,+).

-A (j) + e 2A2 (J) = rot / in 17,

cf) = — = 0 on 517.on

e l/2 Uh + II Øl Is < c|| rot /||o

£ l/2 H rot u||o + e3/2 |l rot v\\i < c|| rot/|| 0

Therefore, since u = v + u, (6.5) and (6.7) implies

e 1 rotit||o + f3 rotn||i < c\\ rot/|| o + £ l/2 (|| rot u|lo + e\\ rotw||i)

< c(|| rot /|| o + l|plli,+)-

u° gradp0 = f in 17,
(6 8) div u° —g in Q,

uQ n =0 on dn

u° e ifo(div) n H (rot),
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continuous, i.e. there exist a constant c, independent of / and g , such
that

Lemma 6.2. Assume that f G H{rot) ; g G H_and let (u,p) be
the correspondmg solution of (6.2). There exist a constant c > 0,
independent of e, f and g, such that

Proof. It follows from (2.2), the weak formulation of (6.2), and Greeiks
theorem that for any v G Hl fl Ho (div) the solution (u,p) satishes

(n, v) + 5 2 (div u, div v) + £2 (rot u, rot v) +e2 / (rot u)(v-t)dr
Jon

By subtracting from this the hrst equation of (6.9), we obtain

for any v G Hl nH() {div) with diva = 0. Hence, if we take v = u-u°,
and observe that rotu0 = rot f and div(w - u°) = 0, we derive the
identity

ll u ~ w°llo + 2 || rot w||q =£2 / (rot u){u° • £)dr + £2 (rot w, rot/),Jan

which immediately leads to the bound

(6.11) Ilu-«U + E|j rotu ||2 < E2|| rot j||2 +e2 / ( rotn)(uo, t J dr
z Jan

In order to estimate the boundary integral we note that it follows from
Lemma 6.1 and [l2, Theorem 1.5.1.10] that

|j rot w|]o,an < cj| rotu|jJ/2 |j rot«||{ /2 < ce~ l (||rot/|| o + || ff || l>+ ).

Together with the estimate (6.10) this leads to

The estimate for |b~P°||i is now a direct consequence of the identity

grad(p p°) = u u° - e 2 Au

(6-10) ll tx °l|l + lb°||l < c (||/||rot + Ibllo)

||w - ix°||o + ||p - p° Hi < C£ l/2 (||/|| rot + \\g\\i,+).

+ {p, div v) = {f, v).

[u - ir°, v) + £ 2 (rot u, rot v) +£2 / (rot u){y  t)dr = 0
Jdn

£ 2 / (rot u){u° • t)dr < e2 \\ rot w||o )øn||ix°||iJdn

< ce(ll/llL + ll</llf,+)
Hence, the estimate

(6.12) ||u - w°|| o +e2 ||rotu||2 < C£ l/2 (||/|| rot + ||p|| I>+ )
follows.

= u - u i] +e2 (curl rot u grad g)
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and the previously established bounds. In fact, it follows from Lemma
6.1 and (6.12) that

Since p - p° G 1%, an application of the Poincaré inequality completes
the proof.

The regularity bounds derived above will now be used to prove the
uniform convergence estimates.

Proof of Theorem 6.1. Recall that since u G H] it follows from [ll,
Proposition 3.1. Chap. 1] that

Furthermore, by the standard #2-regularity for Solutions of the Poisson
equation on convex domains, and (2.2), we obtain

Hence, from the estimates given in Lemmas 6.1 and 6.2 we conclude
that

(6.13) £ 2 ||wl|2+s||rx||i + ||'u-iio ||o + llp-p°||i < c6 L2 {\f\\ TOt P\\g\\p+ ).

The desired esimate on the velocity error will be derived from (5.4).
We will first establish the interpolation estimate

Furthermore, from (4.4), (4.5), and (6.13),

The estimate (6.14) is therefore verified.
Similarly, since 11 tx 11^^1 1txll 2 /2 £ c£” 1 (ll/;lrot+||p|li,+ )- we obtain from

Lemma 5.1 that

(6.15)

However, by combining (5.4), (6.1), (6.14), and (6.15). this implies

(6.16) jj xx iifi llo T £ll rot(xx - uh )\\o < ch 1 2 () f rot + IML+)-

| grad(p - p°)||o < ||w - U ||o + £ 2 (ll rotu||i + ||ø||i)

< C^ l/2 (||/|| rot + \\g\\l,+ )-

ll u ||i < c(|| div u||o +II rotn||o).

u || 2 < c||Aw|| o < c(|| divu||i +ll rot u||i)

(6.14) ||ix + £\\D{u n/jix)|| i <ch ! (I|/11 rot 4“ \\g ||i,+)•

From (4.6), (6.10), and (6.13) we have

u nhu\\ o < ||(/ nh){u it°)l|o +||w° nfc iz°||o

< ch 1 ' 2 (llu - u°l!J/2 1|« - «°m/2 + A. 1/2 ||u°||i)

< c/i1/2 (||/||rot + IM|l,+)

e\\D(u - < c£\\u\\\ /2 \\u - Uh u\\\ /2 < ceh 1 2 ||w||l 2 \\u\\l /2
< Ch l 2 (|i/||rot + ||p||l,+ )-

sup ~~T < ch' ' f rot + IM!l,+ )'
v&Vh II a
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In order to establish the estimate for the \\p Ph\\o note that (4.3) and
(6.13) implies

\\PhP~Ph\\o < c/z i/2 (||/||rot + \\9\\l,+)-

This completes the proof of Theorem 6.1.

Remark. Even if Lemma 6.2 states that ||_p||! is uniformly bounded
with respect to e, we are not able to prove that \\p Ph\\o converges
linearly in h uniformly in e. The convergence rate is polluted by the
blow up of u. This seem to agree with what we observed in Example
6.1 above.  

7. An associated elliptic system

In this section we shall study the elliptic system (1.2) given by

where e, 6 G (o,l]. Recall that by introducingp = å~ 2 div u this system
can be alternatively be written on the mixed form (1.3). Hence, as S
approach zero the system formally reduces to (1.1).

The system (7.1) will be discretized by a standard finite element
approach, i.e. the mixed system (1.3) is not introduced in the dis
cretization. Let the bilinear form 6e>(J (-, •) be defined by

For a given finite element space Vh , the corresponding standard finite
element discretization of (7.1) is given by:

Find auh e Vh such that

Our purpose here is to propose that the finite element space Vh , intro
duced in §4 above, in used this discretization. Since this space is not a
subspace of Hl this will lead to a nonconforming discretization of the
system (7.1). However, before we analyze this discretization, we will
present some numerical experiments based on the system (7.1).

Example 7. 1 In all the examples presented in this section we consider
the system (7.1) with u curlsin2 (7rxi) sin2 (7ra:2), g = 0, and f =
u e 2 Alt. Hence, the solution is independent of e and å.

We consider the problem (7.1) with 12 taken as the unit square. The
domain is triangulated as described in Example 3.1. The system is
then discretized by solving the system (7.2), where the space Vh is the

lI PhP - Pllo < ch\\p\\i < ch{\\f\\ TOt + \\g\\i,+).

Finally, by (5.6), (6.15), and (6.16),

/«..x (/ - s2 A)u - 6 2 gradfdivit -g) f in fl,
u =0 on dQ,

b£ts{u, v) = ae {u, v) + å 2 (div w, div v)

= ( u , v) -f e2 (Du , -Du) + d-2 (div tx, div u).

(7.2) hetS {uh ,v) = (f,v)+ S 2 (g, divt?) \/v e Vh .
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standard space of continuous piecewise linear functions with repect to
this triangulation.

In the present exarnple we have used e = 1, while 6 and h varies. In
Table 7.1 below we have computed the relative error in the L 2 norm
for different values of <5 and h.

| 6\h || 2~ 2 2~ 3 2~ 4 2~ 5 2~b
1.00 || 7.44e-l 2.54e-l 7.10e-2 1.83e-2 4.62e-3
0.10 1.77 1.40 8.35e-l 3.63e-l 1.19e-l
0.01 ' 1.92 1.92 1.89 1.79 1.52

Table 7.1. The relative L 2 error using linear elements.
& = 1

As expected we observe quadratic convergence with respect to h for
6 = 1. However the convergence clearly deteriorates as 6 tends to zero.

Example 7.2 We repeat the experiment above, but we extend the
finite element space and use the corresponding velocity space of the
Mini element instead of the piecewise linear space. It is interesting to
note that the L 2 convergence deteroriates, as 6 gets small, also in this
case, in contrast to what we have observed in Table 3.5. The relative
L 2 error is given in Table 7.2.

6\h || 2~ 2 2~ 6 2~ 4 2~ b 2~ d

1.00 jj 3.80e-l 1.30e-l 3.62e-2 9.34e-3 2.35e-3
0.10 9.19e-l 7.28e-l 4.34e-l I.BBe-l 6.20e-2
0.01 9.99e-l 9.96e-l 9.82e-l 9.33e-l 7.88e-l

Table 7.2. The relative L 2 error using the Mini ele
ment, £ = 1

Of course, the main reason for the difference between the results
given here, for 6 small, and the results given in Example 3.3, where
5 = 0, is that the second equation of the mixed method used previously
implicitly introduces a reduced integration in the divergence term.  

Example 7.3 We repeat the experiment above once more, but this
time we use the new nonconforming element. In Table 7.3 below we
have computed the relative error in the energy norm. i.e. the norm
generated by the form b£ j, for different values of 6 and h.

In contrast to the other examples above, in this case the convergence
seems to be linear with respect to h , uniformly in 3. We also observe
that the errors are almost independent of 6.

Next, we reduce £ and take e = 0.01 and redo the experiment. The
results are given in Table 7.4.
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Table 7.3. The relative error using the new noncon
forming element, £ = 1

Table 7.4. The relative error using the new noncon
forming element, 5 = 0.01

We observe that to the given accuracy, the numerical solution is
independent of 3, clearly indicating that the numerical Solutions are
dose to a pure curl held independent of 5, which is precisely the form
of the exact solution in this case. A similar observation is done if we
take e = 0.  

The numerical experiments just presented indicate that the noncon
forming space Vh , introduced in §4 above, is well suited for the problem
(7.1). We will give a partial theoretical justification for this claim by
deriving a generalization of Theorem 5.1.

We assume throughout this section that ue H 2 fl if0L Let || • \\ b be
the energy norm associated with the system (7.1), i.e.

It is a straightforward consequence of the second Strang lemma, cf. [9,
Theorem 4.2.2], that there exists a c > 0 independent of a, h and u
such that

(7.3)

where the nonconsistency error EeJl is introduced in §5 above. However,
since ||n|L > ||u|| a , the nonconsistency term can be bounded as in
Lemma 5.1. Furthermore, (4.5) implies

As a consequence of the fact that div 11 b u =Pb div u , it is also true
that

INI b = b£ ,6{v, V).

112 /ii -r-r 11 2 \Ee /j(w, v)\ 2u - Uh\\t < ll w - + c sup J—-• •
vevh IML

lI U - rifcitHa < c{h'2 + eh)\\u\\ 2 .

|| div(it - uh ) ||o =|| div(w - nft u)||o +|| diy{Uh u - uh )\\q.

å \h 2^ 2-a 2~ 4 2~b 2-b

1.00 1.84 9.83e-l 4.98e-l 2.50e-l 1.25e-l
0.10 1.83 9.66e-l 4.87e-l 2.44e-l 1.22e-l
0.01 1.83 9.66e-l 4.87e-l 2.44e-l 1.22e-l

S\h 2~ 2 2~ a 2~ 4 2~ b 2~ b

1.00 1.04e-l 3.23e-2 8.94e-3 2.21e-3 5.29e-4
0.10 1.04e-l 3.23e-2 8.94e-3 2.21e-3 5.29e-4
0.01 1.04e-l 3.23e-2 8.94e-3 2.21e-3 5.29e-4
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Thus, we can conclude from (7.3) that

We therefore have established the following convergence result
Theorem 7.1. If u G H 2 n Hq then

||u, Uh llo + £|| rot(it Uh) 110 1 1) div(ll/! it )11 o A c‘{h +t/?)
Here c > 0 is a constant independent of e, å and h.

Note that from this result we can conclude that il e and h are fixed,
and <5 approach zero, then divu/, converges in L 2 to Ph div u. Further
more, the divergence ol the error can be controlled by this estimate
since

Of course, exactly as for the problem (1.1) we can argue that, in general
cases. the norm jj zxj1 2 will not remam bounded as s and <5 appioach
zero. Hence. ideally we would like to generalize the results of §6 to
the problem (7.1). However, this discussion is outside the scope of this
paper.

Acknowledgment. The authors are gratelul to Piofessors D.N Arnold
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