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A STRONGLY DEGENERATE CONVECTION-DIFFUSION PROBLEM
MODELING CENTRIFUGATION OF FLOCCULATED SUSPENSIONS

RAIMUND BURGERa AND KENNETH HVISTENDAHL KARLSEN6

Abstract. We prove existence and uniqueness of BV entropy Solutions of a strongly
degenerate convection-diffusion problem modeling centrifugation of flocculated suspen
sions. A modification of the generalized upwind method is employed to solve the initial
boundary value problem numerically, i.e., to simulate the centrifugation process.

1. Introduction

We consider the quasilinear strongly degenerate convection-diffusion equation

where we assume that J> 0, supp/(-,a:) C [o,l], a{u) 0 for u< uc and u> 1, and
a{u) > 0 otherwise, i.e., equation (1) is of hyperbolic type for u < uc and u > 1 and of para
bolic type for uc < u < 1. We assume that is continuous and piecewise differentiable
with \\du f{-,x)\\ < M and that A(-) and g(-,x) are Lipschitz continuous uniformly in x,
and that f{u, •) G Cl [x1,2:2) uniformly in u. In particular, the diffusion coefficient
a(-) is allowed to be discontinuous. We consider the initial and boundary conditions

(2)

(3)

and assume that the initial function satisfies

u 0 G{u G BV{xi,x2 ) : u(x) G [o,l]; 3M0 >O:W > 0 : TV(æi)X2 ) (dx A£ {u)) < Mo }, (4)

where A£ is dehned in terms of a standard C°° mollifier cu£ with C (—£,s) via

(5)

Remark 1. If A G C l , then it is sufficient to assume that TV( ;El)X2 )(no) < 00. Moreover,
the regularity assumption on /(n, •) used this paper can be weakened, see [l4] for details.
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nu
Ut + f{u,x) x = A{u)xx + g{u,x), A(u) := / a(s)ds; (x,t) GQt : = x (O,T), (1)

Jo

u{x, 0) = Uq{x), 0 < Uq{x) < 1, X G [x\,X2

f{u : xh ) - A{u{xh ,t)) x =O, xb e [xi,x2 }> t e (O,T],

ru

ae (u) ((a +é) * cj£ ) (u), A£ (u) := / ae {s)ds.
Jo
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The study of strongly degenerate hyperbolic-parabolic equations such as (1) is in part
motivated by a recent theory of sedimentation-consolidation processes [B]. While the paper
[4] is concerned with the case of settling in a gravitational held, which leads to an equation
similar to (1) but without a source term, we here focus on the application of this theory to
a centrifugal held in a rotating frame of reference [3]. It is the purpose of this contribution
to briefly outline how the analysis of strongly degenerate convection-diffusion problems
presented in detail in [4, 14] (see also [6]) can be extended to the initial-boundary valne
problem (IBVP) (l)-(3), and to draw attention to a new application of strongly degenerate
equations. In addition, we utilize an adaptation of the generalized upwind finite difference
method presented in [s] to solve the IBVP numerically, that is to simulate the centrifugation
process. For an overview of the mathematical and numerical theory of (strongly) degenerate
parabolic equations, we refer to the lecture notes by Espedal and Karlsen [ll].

This paper is organized as follows. In Section 2 we state and comment the definition
of entropy Solutions of the IBVP. We then outline in Sections 3 and 4 the existence and
uniqueness proofs of entropy Solutions, following the vanishing viscosity method and re
cent ideas by Carrillo [9] and Karlsen and Risebro [l4], respectively. We come back to the
application to centrifugation in Section 5, in which we present a working numerical algo
rithm and numerical Solutions for the IBVP.

2. Entropy Solutions

Due to both the degeneracy of the diffusion coefficient a(- ) and the nonlinearity of /(•, t),
Solutions of (1) are discontinuous and have to be defined as entropy Solutions.

Definition 1. A function u 6 T°°(Qr) fl BV(Qt ) is an entropy solution of the IBVP
(1) —(3) if (a) A{u) x € L2 {Qt ), (b) for almost all t G (O,T), 7Xb (/(w, •) - A(u) x ) =0;
Xb G (c) linp|o u{x,t) = uq(x) for almost all x G {xi,x2 ), and (d)

Here jXI and 7X2 denote the traces with respect to x 4 and x f x 2, respectively.
Entropy inequalities such as (6) go back to Kruzkov [l6] and Vokpert [l7] for first order
equations and to Vokpert and Hudjaev [lB] for second order equations.

Remark 2. The BV{Qt) assumption in Definition 1 is only used to ensure the existence
of the traces 7XI and 7X2 . Moreover, note that we can require that the boundary conditions
are satisfied in a pointwise sense almost everywhere, whereas Dirichlet boundary conditions
such as those stated in [4] (which are not considered here) have to be treated as entropy
boundary conditions [7]. Finally, we point out that it is at present not known whether jump
conditions for hyperbolic-parabolic equations such as those by Wu and Yin [2o] (see also
[7]) are valid here, since these jump conditions rely on stronger regularity properties (for
example, Lipschitz continuity) of the diffusion coefficient a{-) than is stipulated here.

Vip e C%°{Qt), v > v, Vk eR : JJ {\u - k\pt

+ sgn (u-k) [f{u,x)-f{k,x)-A{u)x\vx -[fx (k,x)-g{x,u)]ip}dtdx>o. (6)
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3. ExiSTENCE OF ENTROPY SOLUTIONS

Existence of entropy Solutions is shown by the vanishing viscosity method. To this end,
consider the regularized uniformly parabolic IBVP, in which the functions /, g and u 0
have been replaced by smooth approximations that ensure compatibility conditions and
existence of smooth Solutions for hxed f > 0, and where A£ is defined in (5):

(7b)

Lemma 1. The following uniform estimates are valid for Solutions u£ of the regularized
IBVP (7), where the constants M\ to M 3 are independent of e:

||r£ ||l-(qt ) < Ml] \\u£x {-A)\\l°°{xux2) <M2 and \\u£t {-,t)\\L°°{xux2 ) < M3 Vt G (O,T], (8)

Sketch of proof. The application of the maximum principle to establish the first estimate
is standard and not repeated here; we refer to the proof of Lemma 9 in [4] for details.

Defining := sgn(r) if |r| > 77, := r/77 if |r| <77 and | x\ v := f* sgnv {f)df
for r] > 0, we obtain by differentiating (7a) with respect to x, multiplying the result by
sgn 7? (n|), integrating over Qto , 0< T 0 <T, integrating by parts and using (7b)

To derive the second inequality of Lemma 1 from (9), we repeat the proof of part (a) of
Lemma 11 in [4] to estimate the first three integrals of the right-hand side of inequality (9)
for 77 -A 0. The integrand of the last term can for 77 -a obe rewritten as \u£x \g£u + sgn{u£x )g£x .
Since g£u and gx are uniformly bounded due to our assumptions on p, the desired estimate
on ||it|(-, t)||l°°(xi,x2 ) can be established by an application of Gronwalhs lemma.

The same argument can finally be employed to extend the derivation of the estimate on
\\ ut{'A)\\Lao {xi,x 2 ) Lemma 11 of [4] to the present equation with source term.  

From the estimates established in Lemma 1 we may conclude that there exists a sequence
£= 6n | 0 such that the sequence of Solutions {t/"} of the IBVP (7) converges in L l {QT )
to a function u G L°°{QT ) n BV{QT ). We now have to show that uis actually an entropy
solution of the IBVP (l)-(3). Part (a) of Definition 1 follows from the following lemma,
whose (short) proof is a straightforward extension of that of Lemma 10 in [4]:
Lemma 2. The limit function u of Solutions u£ of (7) satisfies A{u) x G L 2(

Finally, repeating the proofs of Lemmas 5 and 12 of [4], we can show
Lemma 3. The viscosity limit function u of Solutions u£ of (7) satisfies (6) and the initial
and boundary conditions mentioned in Definition 1.

Summarizing, we have:

u\ + fe {u,x) x = A£ (u£ ) xx + g£ {u£ ,x), {xA) € Qt, (7a)

Ue {x,o) = u£o {x), x E {xi,x2 y, f£ {u£ ,xh ) - A£ {u£ {xb ,t)) x =O, xb E {xu x2 }, t E (O,T].

rx2 rX2

/ \uex {x,T0 )\ dx < \{u£0 )'{x)\ dx +

rTo

/ sgn {uex {x,t))u£t {x,t)
X2

dt + // sgn;«)
J X 1 >/xi Jo ’JQt0

x u£xx[fuiu^x ) - dx {ae (u£))]u£x dtdx+ 1 / sgnv {ul)(geu (u e ,x+ ØxOA x)) dtdx. (9)J 'Qt0
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Theorem 1. The IBVP (l)-(3) admits an entropy solution u.

4. UNIQUENESS OF ENTROPY SOLUTIONS

After the important work by Carrillo [9], the uniqueness proof for entropy Solutions
of degenerate parabolic equations has become very similar to the “doubling of variables”
proof introduced by Kruzkov [l6] for hyperbolic equations. The key proposition allowing to
apply Kruzkov’s “doubling device” to second order equations is the following version (see
Karlsen and Risebro [l4] for its proof) of an important lemma from [9], which identihes a
certain entropy dissipation term (i.e., the right-hand side of (10) below).

Lemma 4 (Carrillo’s lemma). Let u be an entropy solution of the IBVP (l)-(3). Then,
for any non-negative cp G and any k G (nc , 1), we have

(10)

Equipped this lemma, one can prove the following main theorem:

Theorem 2. If v and u are two entropy Solutions of the IBVP (l)-(3), then we have for
any <p G C^°{QT ), V> 0;

(ii)

Sketch of proof. The argument given below relies on Lemma 4 and Kruzkov’s idea of
doubling the number of dependent variables together with a penalization procedure. We
let ip G C°°{Qt x Qt ), <P >o,g> = g?{x, t, y, s), v = v{x, t), u = u[y, s), and introduce the
"hyperbolic” sets L v = {(aqt) GQt : v{x,t) <uc or v(x A) > l} associated with v and

= {(2/,s) £Qt : u{y , s) <uc or u{y , s) > l} associated with u.
From the entropy inequality for v{x,t) (with k = u{y,t)), the entropy inequality for

u{y, s ) (with k = v{x,t)), and Lemma 4, the following inequality was derived in [l4]:

(12)

£ + 1 ) [[/(., .1 - w,.)-.4MJ

- [fx [k,x) - g{x,u)\(p ) dtdx = lim // (A{u) x ) 2 sgD.' (A{u) - A{k))cpdtdx
J JJqt

JJ (k - u \ Vt + sgn(w -u) [f {v, x) - /(li, x) - {A{v) x - A{u) y )] ipx

+ sgn(v —u) [g{v, x) g[x, it)] dtdx >O.

iiii + + ~U} ~ ~ (AW* - A iu)y)] {Vx + Vy)
QtxQt

+ sgn{v - u) [g(v, x) - g{u , y)] pj dtdxdsdy + EConv

> lim Jjjj {Mv)x - A(^) y ) 2 sgnJ? (A(i;) - A{u))(p dtdxdsdy >O,
(Qr\£u)x(Qr\£t<)
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where the “error term” EConv takes the form

-Econv = jIJJ Sgn(v - u)([{f(u,v) - f{u,x))ip] x - [(f {v,x) - f(v,y))<p] y ) dtdxdsdy
QtxQt

We are now on familiar ground [l6] and introduce in (12) the test function

where {Sh } k>o is a standard regularizing sequence in R Observe that

+Pt > )åh{~2 L )sh{^2å- )j Px + 'JL )åh •

Following [l4] (see also [l6] since f[u , •) is smooth), one can show that \imhio ECom =O.
Consequently, by sending hl 0 in (12), we get (11).  

where {4/I }/l>o is again the standard regularizing sequence in R Concerning these functions,
we have the following lemma (whose proof is easy);

Lemma 5. Let uG Ll (0, T; L°°{xi, x 2))  lf the traces 7Xl u := {'yu){xi,t) and 7X2 u
(7u)(x2,t) exist a.e. in (0, T), then we have for p G C°°{QT)

We are now in a position to deduce from (11) the following uniqueness result:

Corollary 1. Let v,u he entropy Solutions of the IBVP (l)-(3) with initial data vO ,u0 ,
respectively. Then for allte (0 ,T), ||u(-, *)-«( , t)||z,i (ll|l2 ) < exp(t|j 5 || Lip ) ||t>o -uo || L . (ll , l2).
In particular, the IBVP (l)-(3) admits at most one entropy solution.

Proof. In (11), we choose p{x,t) = ((1 - fih {x) - vh {x))xit) with x G Co°°(o,T), x> 0,
and ph and vh defined in (13). Note that p tends to x W as hl 0. Taking the limit h| 0,
we obtain from Lemma 5 and the boundary conditions at x = a, b (see Dehnition 1):

|u v\x'(t) dtdx > sgn(u - u) [g{v, x) - g{u, a;)] x W dtdx. (14)
Qt Qt

From (14), it follows that

u - v\x'{t) dtdx < ||ø|| Lip u - v\x{t) dtdx. (15)
Qt dJQt

Fixing r G (O,T), choosing xrø as ph (t) - ph {t -t) in (15), subsequently sending hi 0,
and using Gronwalhs lemma, we get the L 1 stability estimate ||u(-,r) - u{-,r)\\w{Xl X 2) <
exp(r l|p||Li P ) I|p(u 0) - u(-, o)|| L i(XljX2 ). Since r G (0, T) was arbitrary, we are finished.  

V>{x,t,y,s) =

Define for sufficiently small h > 0 the fimctions

/X Vh{x) := 1 - ph (x - Xx-2h), vh [x)  = ph {x - (x 2 - 2/i)), (13)-oo

lim Jf dx (v(x,t){l - nh {x) -vh dtdx = (ip(xu t)~/Xl u - ip(x2 , t)jX2 uj dt.
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Remark 3. Following [lO, 13, 14], it is possible to prove that the unique entropy solution
of the IBVP (l)-(3) depends continuously on the nonlinearities in the problem.

5. Batch centrifugation of flocculated suspensions

5.1. Introduction. Extending the arguments developed in [B] for a purely gravitational
force to rotating Systems, Biirger and Concha [3] show that the settling of a flocculated
suspension in a tube with constant cross section (7 = 0, Fig. 1 (a)) or in a rotating
axisymmetric cylinder (7 = 1, Fig. 1 (b)) is governed by the held equation

in which fis the sought volumetric solids concentration, r the radius, /ck (-) the centrifugal
Kynch flux density function, uj the angular velocity and A(-) is defined as in (1). The
function 4(0 is a nonnegative Lipschitz continuous function with support in [o,l], and the
diffusion coefficient is defined by a{<t>) := fck / {Apcf)) : where Ap > 0 is the solid-fluid
mass density difference and cre'(-) is the*derivative of the effective solid stress function. We
mention that equation (1) is based on the neglection of both the gravitational and Coriolis
forces compared to the centrifugal force and refer to [3] for details on its derivation.

Equation (16) inherits its degeneracy from the constitutive assumption that <re (-) vanishes
while the solid flocs are not in touch with each other, i.e., while the local concentration
f does not exceed a critical value <pc , and that cre'(ø) > 0 for f>c <f< 1. Assuming for
simplicity that supp /ck = (0,1), we see that a(ø) = 0 and hence (16) is of hyperbolic
type for <f < (f> c and (f> > 1 and that otherwise a{(f>) > 0, i.e., (16) is of parabolic type.
Consequently, (16) is indeed strongly degenerate. The special case a 0 is included in our
discussion and corresponds to the equation studied by Anestis and Schneider [l].

We assume that r varies between an inner and outer radii R 0 > 0 and R > RO . The
R, which implies the boundary conditions

0, t>o, Rk G {R, i?o}- (17)(17)

(18)

Figure 1. (a) Rotating tube, (b) rotating axisymmetric cylinder

dtø + r 7 <9r (/ck (ø)wV+7 ) = r 7dr (r7 dr A{(/))) , (16)

solids phase velocity vanishes at r = Rq and r =

{fcMu2 Rb +
The initial condition is

ø(r, 0) = ø0 (r), R 0 <r < R.
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Differentiating out the convection and diffusion terms in equation (16), we obtain in view
of the model assumptions an IBVP of the type (l)-(3). The existence and uniqueness
analysis therefore states that the centrifugation model admits a unique entropy solution ø.

5.2. Numerical algorithm. To solve the IBVP given by (16), (17) and (18) numerically,
we employ a modihcation of the generalized upwind hnite difference method presented in
detail in [s] for gravity settling. For an overview of numerical methods for approximating
entropy Solutions of degenerate parabolic equations, we refer again to [ll].

Let J, NEN,Ar - (R - R0 )/J , At - T/N, r, -R0 + jAr, j = 1/2,1, 3/2,..., J -
1/2, J and øy ~ ø(rj, nAt). The computation starts by setting ø° := øo(fj) for j =
0,..., J. Assume then that values øy, j = 0,..., Jat time level tn := nAt are known. To
compute the values øy+1 , we hrst compute the extrapolated values cfi- := øy - (Ar/2)sy
and (f)f := øy + (Ar/2)sy for j = 1,..., J- 1, where the slopes sy can be calculated, for
example, by the minmod limiter function M(-, •, •) in the following way:

where MM(a, 5, c) = min{a, 6, c] if a, 5, c > 0, MM(a, 5, c) = max{a, 6, c} if a, 5, c < 0 and
MM(a, 6, c) = 0 otherwise. Moreover we set Sq = sy = Sj_ x = sj = 0.

The extrapolated values and øj1 appear as arguments of the numerical centrifugal
Kynch flux density function /cf°(-,-) which, according to the Engquist-Osher scheme, is
defined by fi°(u,v) := f+{u) +fa (v), where f+(u) := /ck (0) +/“ max {/c'k {s), 0} ds and
/ck ( v ) := fo 111 ' n 0} ds. The interior scheme, which approximates the field equation
(16) and from which the values øy,..., øy_ x are calculated, can then be formulated as

The boundary formulas follow by considering (20) for j = 0 and j = J and inserting the
discrete versions of the boundary conditions (17). This leads to

To ensure convergence of the numerical scheme to the entropy weak solution of the IBVP,
the CFL stability condition Ruj 2 |/c'k (ø)| (At/Ar)+ 2 a(ø)(At/Ar2 ) < 1 must be
satisfied. In this work, this condition was ensured by selecting Ar freely and determining
At appropriately. The accuracy was J = 400. For more details about the upwind method
and its convergence analysis, we refer to [l2, 15].

5.3. Numerical example. Sambuichi et al. [l9] published centrifugation experiments
with three different flocculent aqueous suspensions, namely of limestone, yeast, and clay,
using a cylindrical centrifuge. For each material, the measured gravitational settling rates
led to a function /ck (ø), and compression data determined a unique effective solid stress
function cre (ø) for each material. In this paper, we choose the published data referring

».“ = MM(0" - <%_ lt (ø"+l - 4>U)/2. (€+l - *"))/Ar, j = 2,...,J-2 (19)

<t>r = - få #+i) - #)] (20)

+['•;+i/2 im+i) - aw) -rUMw-

r = r-1- ø-Ap fS°w, r) + AAA- (21)
rj = ør 1 + rj) - - .4(«_.)), (22)
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FIGURE 2. The functions (a) /ck (ø), (b) cre (ø) and (c) the resulting function
a(ø) used for simulating centrifugation of a limestone suspension.

to a limestone suspension (see [3] for the case of a clay suspension). Sambuichi et al. [l9]
approximated the measured gravity settling rates for various initial concentrations by three
different connecting straight segments in a logarithmic plot, which yields the function

m/s for 0 < ø < 0.035,
for 0.035 < ø < 0.08,
for 0.08 < ø < 0.119,
for 0.119 <ø < ømax = 0.45,
otherwise.

(23)

It should be pointed out that being cut at ømax , this function does not satisfy all assump
tions on / stated in Sect. 1. However, due to the presence of the diffusion term, solution
values are bounded away from ømax , so the numerical results presented below would look
the same if the jump of the function /ck at ø = ømax had been smoothed out in order to
produce an example in which these assumptions are precisely satisfied.

The solid pressure relationship suggested in [l9] can be converted into the function

<Je (ø) = 0 for o<Øc := 0.28, ae (0) = 0.30184(1 - 0)~ 17 - 544 Pa for 0 > Øc . (24)

The density difference for this material was Ap = 1710 kg/m3 . The functions /ck and ae
given by (23) and (24) and the resulting diffusion coefficient a(-) are plotted in Figure 2.

Figure 3 shows numerical Solutions of the phenomenological model calculated with the
functions (23) and (24) in the case of a rotating cylindrical vessel (7 = 1). The left column
of Figure 3 shows numerical settling plots, i.e., diagrams of iso-concentration lines for
selected values of ø, and the right column displays concentration prohles at selected times.
The parameters and the data that differ in the three cases considered, viz. ø 0 = 0.111 and
ca = 146.4 rad/s; ø 0 = 0.138 and ca = 146.4 rad/s; ø 0 = 0.138 and ca = 104.9 rad/s, were
chosen in such a way that the simulated supernate-suspension interfaces could be compared
with measurements by Sambuichi et al. [l9], which are shown as open circles (o). Figure 3
thus illustrates the different effects of initial concentration and angular velocity on the
dynamics of the centrifugation process.

srent connectmg straight segments m a J

(—47.923ø2 + 2.54740) xlO
1.3580 x 10~ B ø~°' 92775 m/s

/ck(ø) = \ 5.6319 x 10~ 13 ø~ 4 ' 9228 m/s
5.9735 x 10~ lo ø~ L65 m/s
0\

hould be pointed out that being cut at q
ls on f stated in Sect. 1. However, due
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Figure 3. Numerical simulation of the centrifugation of a floccnlated suspension

While in the compression zone, where (f) > øc is valid and hence (16) is parabolic, the So
lutions are similar to those of the pure gravity case [2, s], there are some distinctive features
visible in the hindered settling zone (ø < <f> c ) where (16) is hyperbolic, due to the rotat
ing frame of reference. Most notably, the vertical iso-concentration lines indicate that the
concentration of the bulk suspension is a (decreasing) function of time, and the supernate
suspension interface has a curved trajectory. These properties have previously been found
by Anestis and Schneider [l], who determined exact Solutions to the centrifugation model
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under the assumption that ae O, i.e. A O, using the method of characteristics. Of
course, in the centrifugal case (in contrast to the gravitational) characteristics are not
iso-concentration lines, see [l, 3].
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