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New theories suggest that the relationship between capillary pressure and saturation
should be enhanced by a dynamic term that is proportional to the time rate of change
of saturation. This so-called dyamic capillary pressure formulation is supported by labo
ratory experiments, and can be included in various forms of the governing equations for
two-phase flow in porous media. An extended model of two-phase flow in porous media
may be developed based on fractional flow curves and a total pressure - saturation de
scription that includes the dynamic capillary pressure terms. A dimensionless form of the
resulting equation set provides an ideal tool to study the relative importance of the dy
namic capillary pressure effect. This equation provides a rich set of mathematical research
questions, and numerical Solutions to the equation provide insights into the behavior of
two-phase immiscible flow. For typical two-phase flow systems, dynamic capillary pres
sure acts to retard infiltration fronts, with responses dependent on system parameters
including boundary conditions.

1. INTRODUCTION

Recent theoretical work, e.g. [7,B], suggests that the traditional algebraic relationship
between capillary pressure and saturation may be inadequate. Instead, a so-called dy
namic capillary pressure formulation is needed, where capillary pressure is defined as a
thermodynamic variable, and the difference between phase pressures is only equal to the
capillary pressure at equilibrium. Under dynamic conditions, the disequilibrium between
phase-pressure differences and the capillary pressure is taken to be proportional to the
time rate of change of saturation. A recent study by Hassanizadeh et al. [lo] presents
experimental evidence, culled from the literature, to support this claim. Numerical simu
lations using dynamic pore-scale network models, e.g. [s], and upscaling also support the
claim. In [lo], numerical Solutions were presented for an enhanced version of Richards’
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equation that included the dynamic terms. A preliminary assessment was made regard
ing the magnitude of the proportionality coefficient in the dynamic equation, idenftifying
ranges that produce significant modihcation to inhltration results.

While the work presented in [lo] provides a foundation for this problem, it only con
sidered the specific case of flow in unsaturated soils, under the assumption that the air
phase remains at essentially atmospheric pressure everywhere in the domain. In the
present work, we expand this earlier work to include the general two-phase flow case,
using a fractional flow formulation for the governing equations. Into these equations are
embedded the dynamic capillary pressure terms. The equations are then written in di
mensionless form, and a brief discussion of the mathematical properties of the enhanced
governing equations is presented. A numerical algorithm for their solution is given, and a
numerical simulation is presented to demonstrate the effects of the dynamic terms. Finally
the implication of these results is discussed, and a few comments on future directions for
research are given.

2. A TOTAL VELOCITY/GLOBAL PRESSURE FORMULATION

The basic equations describing two-phase immiscible flow in a porous medium are given
by mass balance equations, Darcy’s law, and associated constitutive relationships. In this
section we present a total velocity-global pressure formulation, [4,3], including a dynamic
capillary pressure term. Let II C R 3 denote the porous medium. Mass balance and
Darcy’s law for the phases are:

ua = -XaK-{Wpa -pag\/z), t> 0, a = w,n. (2)

Here, a = w,n, denote the wetting and non-wetting phases, respectively; s a ,pQ , and pa
are the saturation, pressure and fluid density of phase a; Å a = kra /pa is the mobility of
phase a with kra and pa being the relative permeability and viscosity of the phase; qa
denotes a source term (mass per unit volume per time); ø is the effective porosity; K
is the intrinsic permeability tensor; g is the gravity constant and z denotes the depth.
In addition Yla Sa = and we assume a dynamic relationship between pressures and
saturations as derived by Hassanizadeh and Gray [B]:

The pressure difference giving the left-hand side of Equation (3) should be interpreted
as a dynamic capillary pressure, whereas the Pc function on the right-hand side is the
capillary pressure measured under equihhrium conditions. Subsequently we assume that
L is constant, although results reported in [lo] may suggest a more general behavior. Also
note that the dimension of L is mass/{length x time). Next, we introduce

—+ v • (,paua ) = qa , x en, t> 0, a=w, n, (1)ot

Pn- Pw = Pc - L

Finally, we assume that

Aa = A a (s tw ), Pc = Pc{sw ) and L = L{sw ) >O. (4)

At = 5Z A“’ u = lL] Ua ’ and d{sa ) = -.
a Q;
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Here, XT is the total mobility, uis the total Darcy velocity, fa is the fractional flow of
phase a, and d is the harmonic average of the mobility functions. Dehne compressibilities
ca = (dpa /dp) /pa and cs = and a global pressure by

(5)

Here the weights ha , are assumed to be functions of s w and sum to 1. With these
definitions we can combine equations (l)-(3) to obtain:

(6)

f) c r) q
U = -\tK [Vp + -{(/„ - /„)V(L~) - V{{- K)L-—)} - + A (7)

0— + v  (/.« + dK  [(p„ - p„) S Vz + V(PC - L—)]}
di ap ap w

—Qw /Pw ~ TUw • Vp).

Supplied with appropriate constitutive relationship, equations (6)-(8) form a closed set of
equations with p and as primary variables.

2.1. One dimensional model
Assume that the flow takes place in one spatial dimension such that fl = (0, /) G R. To

simplify even more, assume that the flow is horizontal, Vz =O, and that cs =ca =qa =O.
Then equations (6)-(8) reduce to:

(9)

Equation (9) implies that u = u(t). We can therefore integrate (10) in space to obtain:

(12)

This model is often used to describe core-plug experiments. To be able to solve (11) and
(12) we need to specify the initial saturation s w {x, 0) = s0 (x) and appropriate boundary
conditions. If the volumetric flux ua = ua {t) of each phase is specified at the boundary,
Equation (12) become redundant, and a total-flux condition may be imposed on the
saturation equation (11). Furthermore, it is useful to write (11) in non-dimensional form:

(13)

i rSw
P~~ h-wPw ~t~ hnPn ~P hn)Pc / {fw fn)P•

(l) ~\
V• U = -ØCS — - V^CQ (ØS +Ua • Vp) + y^Qa/pa

a a

du

dx = ’

~ XtK(% + s {(/”“ Fn) dx {L dt ] dx [(hw hn)L (10)

+ l^u+dKi^- Ldir)} = 0 - ™

_ _p(l,t) - p(0, t)+ f‘ I{(/„- fn)é(Lfy) ~ ~
U[ ’ I!,{KX)r ldx

I + Yx {UsW) - a(s ’ æ)[e6(s) £ + =°-
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Here, l and u are respectively characteristic length scale and flow-rate; i = Zø( 1 sUr
sWr )/u is the characteristic time scale; s ( sw sWr )/{ 1 sUr sWr ) is the reduced
saturation; P'c and K are characteristic values for Pf[(s) and K\ ka < 1 are the end-point
relative permeabilities; A a = ka /ga ; d = kw/fiw . Dimensionless quantities are:

/* (s) = ITuTn ; a(s ’ x) = ' =Auj(s) + ArA n (s) X w [s) + AcA n (s) A |PC'|
Notice that the Richards’ equation including a dynamic term is formally obtained from
(13) by ietting k —> 00.

2.2. Sobolev equations
Except for the x and t dependency in coefficients, Equation (13) can be written in the

generic form

ut + f{u) x = eg{u) xx + u {h{u)utx ) x , (14)

where u{x, t) is the solution that is sought; subscripts connote partial differentiation; f[u)
(convection), g{u) (diffusion), and h{u) (dispersion) are given functions; while e, v > 0
are given scaling parameters indicating the importance of diffusion (e) and dispersion
(v). PDEs of the form (14), which often are referred to as Sobolev equations in the
literature, occur in several different applications, besides the one considered herein. We
mention briefly flow of fluids through hssured rocks, heat conduction, shear in second
order fluids, and consolidation of clay (see also discussion below). It is worth while
noticing that the time derivative of the solution to a Sobolev equation (14) is not given
explicitly, and, for this reason, Sobolev equations are often also referred to as implicit
evolution equations. Sobolev equations have been extensively studied in the literature, at
least when the functions g'[u)andh{u) are bounded away from zero (the non-degenerate
case). Unfortunately, in the applications considered herein the functions g'{u),h{u) may
both vanish for some solution values. A general mathematical theory (encompassing
non-smooth Solutions) for degenerate Sobolev equations of the type (14) has yet to be
developed. Although a general theory is missing, a traveling wave analysis is carried out
in [ll] when f 0 (more precisely, the authors consider a Richard type equation). In
the non-degenerate case, well-posedness of Sobolev equations are well-known. Typically,
existence and uniqueness of Solutions are established by using “abstract” Hilbert space
techniques for evolution equations; see, e.g, [l3] for some typical results and proofs. Let
us also mention that Sobolev equations have been extensively analyzed from a numerical
point of view, in particular when the convection term f is not dominating, see, e.g., [6]
and the references therein for some classical papers on hnite difference and hnite element
methods. Much more recently, in [9] the method of characteristics was applied to Sobolev
equations with a dominating convection term. The hnite difference scheme that we used
herein (for the convection dominated regime) is in the spirit of the ones used in [l2].

2.3. Vanishing diffusion-dispersion limits
Motivated by our numerical examples and the fact that we are particularly interested

in the Sobolev equation (14) when convection effects dominates over diffusion/dispersion

An dK |-f>c |(l s n swr ) dh / \ t/ \ A a (s)

K = i: ; e = I ; W(S) = 1T ; A“ (s) =
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effects, it is of great interest to understand the singular limit of Solutions uv of (14) as
e, zv 0. Note that such a study is highly relevant when it comes to constructing correct
and accurate numerical metlrods for convection dominated Sobolev equations. We can
view (14) as a diffusion-dispersion regularization of the conservation law

(15)

Currently there is no theory for the “e, v 0 limit” of (14) when the dispersion coefficient
h(u) is a nonlinear function. However, theory is available for the Cauchy problem for a
simpler Sobolev equation with a “constant dispersion coefficient”:

(16)

A particular example of this equation has been used to model the propagation of small
amplitude shallow-water waves (as an alternative to the Korteweg-de Vries (KdV) equa
tion), see [l]. For some recent results on (16) when e = 0 (in which case the equation
possesses solitary-wave Solutions), see [2].

3. NUMERICAL SOLUTION

To solve Equation (13) numerically, we shall use a semi-implicit conservative scheme.
Let [o,l] be divided into N uniform cells such that Ax = 1/N, and let S? satisfy:

for z = 1,..., N and n = 0,1,.... Here, S)° =O,At = tn+l -tn is the time step, St = Sl {t)
is an approximate average value to the exact solution over grid-cell z at time-level t, and
S? = Sx {tn ). The numerical flux is divided into an implicit and explicit part such that:

with ani+ l/2 = {a(S?+l ) + a{S?))/ 2 and bni+l/2 = (b(S?+1 ) + b{S?))/ 2. Note that when
e = zy = o, (17) reduces to the standard first order Godunov scheme since f'{u) > 0.
This implies that the standard CFL-constraint on the time step must be imposed. In the
calculations we choose At = Ax/ (2 rnax?i f'{u)).

3.1. Test case and numerical results
The non-dimensional form of the saturation equation allows us to test the effect of the

dynamic capillary term for a wide range of characteristic values. Experimental results
suggest that over the scale of a core plug, L should be in the range 10 4 - 10 7 kg/ms, see
[lo]. We will choose e ~ 10 -1 - 10” 3 . Since the dynamic capillary term is supposedly a
perturbation, we choose v~ e - 10“ 2 e. These numbers are also consistent with typical
characteristic values including the given values for L. Assume that K = K. We will
introduce some simple analytic forms for the constitutive relationships which will mimic

Ut + f{u)x = 0.

ut + f{u )x tg{u)xx + VUtxx (1 iy dx ) ut + / i u )x u)xx-

sr 1 + ~[F'(s!+l ,Ss ) - = S" - - (17)

/ v \ æv - sr1
F’{St+!, 5.) = -a?+l/2 (e6"+l/2 +—) Aæ

„ // 5"+1 -
FE [Sl+ i,St ) = fwiS?) + a"+1/2 — ~ ,
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typical behavior of measured relationships. Assume that krw [s) = kw s2 and krn {s )
A:n (l s) 2 , then:

The last relationship captures the degeneracy of the product of the mobilities and the
derivative at the residual saturations. In the computations we have chosen the mobility
ratio to be ac = 1. Initially we assume that only the non-wetting phase is present s o [x) = 0,
and we impose a fixed flow rate of the wetting fluid at the inflow boundary, uw —u, and
a zero-Neumann condition at the outflow boundary:

(18)

These boundary conditions can be implemented using

(19)

All the simulations were run to t = 0.5, equivalent to displacing half the effective pore
volume. To verify the implementation we checked that the Solutions converged to the
Buckley-Leverett profile in the limit L, e 0. We also checked the convergence rate in
a discrete defined by ||/||i = \fi\Axi, by comparing a fine-grid solution,
N = 4000, with coarse-grid Solutions. The result is reported in Table 1, and suggests
a convergence rate p dose to 0.8. To investigate the effect of the dynamic term we ran

Table 1
Estimated Li-errors for e = 0.01 and different mesh parameters N at t = 0.5. The
reference solution is computed with N = 4000 and p is the estimated order of convergence.

N\v 0.01 0.001

simulations with various values for e and Lon a fine grid (N = 4000), and then calculated
the redistribution of saturation in comparison to the Buckley-Leverett profiles s = s°(x, t)

[e =L = 0), and the capillary diffusion Solutions s = se [x,t) ( L 0), at time t = 0.5.
To measure the redistribution we used D 0 = \\s - s°|li/||s°||i and Dt = ||s - s e ||i/||s e ||i.
The results are reported in Table 2, and the saturation profiles for e = 0.01 and various
values for L are shown in Figure 1. Qualitatively similar results to the profiles in Figure
1 were obtained for other choices of e.

o 2 /-rqP ( 1 <,,N)P
fw{s)= 2 ' a(g) = n ' and a{s)b{s) 4s(l —s)5 2 + K.( 1 - Sj 2 Sp + ft(l S) p

ds s ds
fw{s) ~ a{s)[cb{s)— + v—] = 1 at x =O, and = 0 at x = 1.

F 1 {Si, Sq ) + Fe {S\, Sq) —l, and SN+l SN .

25 0.1214 0.0550
50 0.0800 0.0385
100 0.0468 0.0258
200 0.0267 0.0152
400 0.0154 0.0077
800 0.0085 0.0034

P 0.7749 0.7986
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Table 2

z/\e 0-1 0.01 0.001 0.1 0.01 0.001
10- 1 0.1235 - - 0.134
10“ 2 0.2296 0.2261 - 0.0143 0.2590
10“ 3 0.2595 0.0290 0.2868 0.0013
10~ 4 - - 0.2123

0.0567 0.2915
0.2123 0.2172

10~ 5 - - 0.0128 0.0180
0 0.2438 0.0515 0.0086 0 0 0

4. DISCUSSION AND CONCLUSIONS

The results presented above suggest that the effect of a dynamic term may easily be
of the same order as the effect of the equilibrium capillary pressure. We also observe
signihcant effects of these terms on the mass distribution even for fairly small values of e.
Capillary effects are often neglected in standard petroleum applications because e vanishes
in the limit of high flow rates. However, the scaling of the dynamic term is independent
of the characteristic flow rate. This may indicate that dynamic effects are important even
in cases when capillary effects would normally be omitted.

The main effect of the dynamic term on the solution prohles is to retard the fronts. Since
the simulations presented here are run with a hxed flow rate it follows that more mass
accumulate behind the front and the front height is increased. A retardation effect was also
observed for Solutions of the Richards equation, see [lo]. However, since the simulations
reported in [lo] were run with Dirichlet boundary conditions, no signihcant change of the
shape of the fronts was observed, although the retardation was more pronounced.

Finally, to our knowledge no experiments have so far demonstrated that dynamic cap
illary terms may affect held scale displacement. Although numerical simulations, as pre
sented in this and other work, may indicate the importance of such terms, experimental
evidence in this direction is strongly needed.
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