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Abstract.

We consider the problem of cellular convection

induced by surface tension gradients. The Solutions are

expanded in Fourier series., and we use a modification of the

Galerkin 1 s method for the case of natural boundary conditions

to determine the Fourier coefficients. The problem is reduced

to a system of ordinary differential equations, and some

explicit calculations are carried out to illustrate the non

linear effects.





1. Tntroduction.

We study the cellular convection in a horizontal fluid

layer heated from below, and allow ion surface tension gradi

ents resulting from temperature variations at a free surface.

The fluid is assumed to be infinite in horizontal extent.

We assume that the Fourier decompositions of the convective

motions in the horizontal (x,y) directions can be represenued

by the wave numbers and . Choosing

the decomposition in the vertical (z) direction at will, the

Solutions are sought as (truncated) Fourier serles. We use a

modification of the Galerkin ! s method for the case of natural

boundary conditions to determine the Fourier coefficients.

- Since the explicit calculations required for a non-linear

analysis of this problem can be very long, we have used as

our model the limiting case of an infinite Prandtl number.

In this way we obtain the equations (l4a,b,c) which

govern the Fourier coefficients (the amplitude equations).

- In what follows, we use a decomposition of the convective

motions in the z-direction given by the eigenvalue problems

{1 5a,bj, c). We consider a state which differs slightly from

the onset of convection, and carry out some preliminary

calculations to illustrate the non-linear problem. We obtain

the amplitude equations(20a,b) which have the same form as

those discussed by Segel and Stuart (1962). For the situation

to which our analysis applies, hexagonal convection cells

may be attributed to surface tension gradients.





2. Pormulation of the problem.

Referring to Cartesian coordinates (x,y,z) with the z-axis

taken to be in the vertical direction, we consider a horizontal

fluid layer of infinite horizontal extent bounded by a rigid

plane at z = ~h and a non-deformable free surface at z = 0.

The lower boundary is taken to be a solid body at rest which

has a constant temperature T . At the free surface we

consider the fluid to be in contact with an inviscid atmos

phere which has a constant atmospheric pressure p a » It is

assumed that the fluid density and the surface tension are

the only physical properties which vary with temperature.

Neglecting the dissipation of energy due to viscosity,

the governing equatlons in the Boussinesq approximation are

(lb)

(1c)

where u = (u,v,w) is the velocity„ p is the pressure, T is

the temperature,, g is the acceleration of gravity, k is the

vertical unit vector, p is a constant reference density and

T a constant reference temperature. a ? c . 7\ axid q arem P

the coefficient of thermal expansion, the specific heat at

constant pressure, the coefficient of heat conduction and

the coefficient of viscosity, respectively. - (The thermal

diffusivity 7\/pmcp and the klnematic viscosity q/pm j.

(la) pm (du/dt+u- yu) = -Vp + p.V2u -Pm (1 -a(T-Tm ) )gk

pmcp (ST/c)t+u-VT) = AV4!

V u = 0
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will be denoted by y and v, respectively)

The kinematlc boundary condition at the free surface

is that the normal component of the velocity vanishes

(2a)

The dynamical free-surface condition is imposed by the

requirement that the viscous stress on the two sides of the

surface can differ only as a result of surface tension

(2b)

where P is the viscous stress tensor in the fluid, ais

the surface tension and is the surface gradient operator.O

The transport of heat across the free surface is sup

posed to be proportional to the temperature difference

between the boundary and the adjacent medium. Denoting the

temperature in the adjacent medium by this can be written

(2c)

where k is the heat-transfer coefficient, assumed constant.

At the lower boundaryy the boundary conditions are

(2d,e)

where Tu is a prescribed temperature.

The difficulties in formulating proper boundary

u-n =0 , (n =k) at z= 0

-(p-p )n + P«n = V Q a at z = 0Q. S

- 7\n •VT = k (T-T ) at z= 0— d

u = O j,T =T 1 at z = -h



'
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conditions as x,y -> ± oo are circumvented by limiting the

discussion to Solutions which are spatially periodic in

these directions. The interval over which this periodicity

takes place is, however, not known apriori.

When no motion is present, u = _0, the temperature

distrlbution which satisfies (1b) and (2c,e) is

where T Q = T g (o) =Ta + p?\/ k and j3 =(T “Tq )/h- - The

pressure distribution p = P s ( z ) zs explicitly required,

we note, however, that p (0) = P a *

The stability problem is now formulated in the usual

manner by substituting

into the governing equations (la-c) and boundary conditions

(2a-e). - Assuming that the surface tension can be regarded

as a linear function of temperature, this can be written

where Tq is the undisturbed temperature at z - 0, and

y =do/dT evaluated at Tq. For most fluids the surface

tension decreases with increasing temperature, i.e, 7< 0.

Measuring the velocity u* , temperature T 1 , pressure
2

p' and the time and length in umts of X/h, ph, px/h ,

T = T s (z) = T0 - pz

u= u' , T = T (z) +T' , p = p„(z) +p'— — s

a (T) = o(T0 ) + 7 (Mq )
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h2/x and h , respectively, and dropping the primes, the

governing equations are:

(5a)

(3b)

(3c)

with the houndary conditions

where R, ?, M and L are the Rayleigh-, the Prandtl-, the

Marangoni- and the Nusselt number, respectively.

Method of solution.

The method of solving our problem will be as follows,

We ask for approximate Solutions un and Tn which have

the form

P 1 (du/dt+u*Vu) = -Vp + V2u + RTk

dT/dt + u.VT = V2T + u-k

V-u = 0

4- 2
R = otpgh /vx , P = v/x , M = -p-yh Au , L = (ChA





6

n

an = 2., Akn (t)4k (i }
k= 1

(5a)

(5b)

wheue and cp.„ ane some functions chosen befonehand,

and V-$ =0 , k=1,2,5,...,n. Due to the constralnt V-$k=0

the pressure pn (x,t) is not explicitly required. - We oan

always consider the functions 3> k to be linearly independent

and to represent the flrst n functions of some set of

functions ($k ), k=1,2,5,..., which Is complete.* ) The same

assumptlons apply to the functions cpk - The functions $k

and cp, are moreover taken to be orthonormal

where ( , ) denotes the spatial average over the layer, or

inner product. - Our aim is to determine the functions

A (t) and B, (t) so that (5a,b) satisfies the governingkn v ' kn

equations (5a,b) and the boundary conditions (4a-e) as

accurately as possible. To do so, we shall use a modifxcation

of Galerkin's method for the case of natural boundary conditions,

Mikhlin (1964). In applying this method to our problem, we

need not subject the functions and to any boundary

conditions beforehand, but can choose them au will.

In a function space, a set is complete if any

function in the space can be expanded in terms of the

- In this paper, we shall be concerned with the set of

infinitely differentiable functions.

n

Tn (x,t) = ta (t) Vk (x)
k=1

= 6 ij ' (tpl’ cPJ ) = 6 1J
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The modified Galerkin’s method takes the form:

(p ,V$‘ ) - M(v T .$ )v ~n-* —7' v s n —7 s

where ( , )s denote the horizontal average at the free

surface and 7 = l,2,...,n. Suhstituting the expressions

(5a,b) into (6a,b), we obtain a system of ordinary differential

equations for the amplitudes (t) and B^,n (t), which can

be solved when given suitable initial conditions, say

There is a valuable physical interpretation of the

approximate method given by (6a,b). If we multiply (6a) by

A (t) and sum over 7 from 1 to n, we obtain the equation
7n' ; 1

which is the balance equation for the kinetic energy of

the approximate solution. An analogous relation is obtained

if we multiply (6b) by B (t) and sum over 7. This

relation is often interpreted as an entropy balance equation.

- If we take the inner product of (ha) and u , of (hb) and

T, and use (hc) and (4a-e), we obtain the same integral

properties for the exact Solutions u and T. Then, even

though u and T are approximated by the forms un and

T , the fundamental integral properties are satisfied.

(6a) (P~ 1 Sun/6t+P' 1 un -Vun ,iJ = R(Tnk^)

(6b) (aTn/at+un -VTn = (wn ,cp7 )-(vrn ,vcp7 )- L(T n ,tp7 ) s

\n (°) = (u(x,0),Ok (x)) , Bkn (0) =(T (x, 0), cpk (x))
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*)

The most important and most dlfficult step is the

selection of the functions and , k = 1,2,3,...,

In selecting these, we should carefully insure that the

functions are linearly independent and members of a complete

set. Violation of these requirements can lead to gross error

if n (the degree of approximation) is successively increased

- Besides, we should insure that the functions incorporate the

most important physical characteristics of the problem, e.g.

some (or all) of the boundary conditions.

4. The amplitude equations.

When the Solutions are expanded in orthogonal functions,

the analysis is in general very long and complicated. To

simplify the analysis, we will consider the limiting case of

an infinite Prandtl number. It is believed that this

simplification gives a good description for fluids which have

large Prandtl numbers and provides at least a qualitatively

* \
} Some convergence proofs are available for certain problems

in hydrodynamics. Ladyzhenskaya (1984) uses Galerkin's method

to prove the existence of a "generalized solution" to the

incompressible Navier-Stokes equation, Chernyakov (1986a)

considered the problem of thermal convectlon in a bounded

region, and a related problem with a free surface was con

sidered by Chernyakov (1966b), but he did not allow for

surface tension. It is worth noting that the modified

Galerkin's method is in agreement with the definitlon of a

"generalized solution".
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correct descrlptlon of fluids with Prandtl numbørs greater

than unity, Scanlon and Søgel (1967).

An important consøquøncø in the limit of infinite

Prandtl. number is that the vertical component of the curl

of the velocity, (Vxu)-k = £ , vanishes. This can be seen

from the equations of motion and the boundary conditions,

which take the form (cf. Chandrasekhar (1961), Chap. Il)

which adrnits only the solution C = 0 (assuming boundedness

that in general

(7)

When explicit calculations are required, it is

convenient to divide each dependent variable into two

parts: one, which depends on z and t alone, is the

horizontal average of that variable,, the remaining part

is then periodic in the horizontal directions. We shall

use a horizontal bar to denote the horizontal average.

v =0, — 0 at z= 0 and £= 0 at z= -1

of C as x,y -> ± co).
2

Xt can be shown from the identity vx(vxu_) = v(V'y) - V if >

= kxVC - v(dw/dz) - kd(v*u)/dz

where u = (u,7;0), V = (d/dx, h/by, 0) and V = d /^x

+ . When £ = 0 and v*u = 0, lt follows that

V2u = -V(dw/dz)



. , / _ , ... \
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and write

By averaging (3c) and d) ; it follows that u(z,t) _Cn
1

Then, by averaging (3a,b) directly (P ‘ = 0»), we obtain

(8a,b)

(8c)

(8d)

(subscripts z and t denote partial derlvatives). By

means of the constraint V*u =0, the boundary conditions

(4a-e) take the form

(9a,b)

(9c.d)

(9e-h)

Note that p does only appear in the equation (8b). Hence

this equation is used only to evaluate p after the other

equations have been solved.

We expand the Solutions in Fourier serie s , and assume

that the x,y- and z-dependencies (in each term of the

T (x, y, z, t) = T(z,t) + e(x,y,z,t) , p(x,y,z,t) s p(z,t) +

+ca (x,y, z 3 1 )

-Vco + V"u +RØk = 0 , p z =RT

o
e + u-ve - (wø) z + wT’ z = v"ø + w

T t + (we) Z = T zz

W= 0. w - V 2 W = +MV 2 e at Z= 0* zz

T + LT = 0 , +LO - 0 at z = 0z z

w = 0. w = 0, T = 0, 6=0 at z = -1z
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)

series) are separable. The x,y dependence which is periodic

(10)

where a2 . . = (ia,) 2 + (Jap ) 2 Is the overall wave number of1 J 1

the periodic strueture and defines the size (though not the

shape) of the cellular pattern. and J a2* - !

are the wave numbers in the x and y directions, respectively

If the velocity w(x,y,z,t) is represented by a trun

cated Fourler expansion, this can be written

(on the cell-walls certain boundary conditions must be

satisfiedj Appendix A). For the funetions wij( s, t)j

where the sequence k = 1 >2,3, .. . is complete

On the interval: -1 é z é 0. In this way we obtain

(11a)

In the same way we obtain the following expressions

for (x,y,z,t) and Tn (z,t);

(11b)

and wave-lllce, will be denoted by f. l,j

V2f. . + a 2 . 4= 01J ij

wn (x,y,z,t) = Y wiJ (z,t)flj (x,y)
ij

1,j = 1,2,3,•••, we write

= y A1Jk (t)wk ( Z )
k

wn (x,y,z,t) = Y A ljk (t)f1J (x,y)Wk (z).
i jk

Øn (x,y,z,t) = Y B, jk (t)f. j (x,y)Fk (z)
ijk
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(11c)

and it follows from equations (?), (10) and (ila) that

(lid)

The exprøssions (l1a-d) should be compared with (53-jb).

It was necessary to introduce the functions fkjfey) to

account for the horizontal structure. For reasons of con

venience we have omitted the Index n in the amplitudes .

- We have polnted out that we should choose the sequences

[W }, [F k ] and [T R ] to form complete sets. While any

complete sets may be used lt is often convenient to choose

the functions W R , F R and T R as eigenfunctions of one or

another simple eigenvalue problem, but at the same time

related to the problem. For the moment we shall only assume

that the following boundary conditions are satisfied

(12a)

(12b)

(12c)

By means of the boundary conditions (l2a,b,c), it

is convenient to rewrite the equations which govern the

T n (z,t) = Vc k (t)T k (z)
k

i = = Y .

W k (0) = W k (-1) = DW k (-l) = 0

DF r (0) + LP k (0) = 0, F k (- 1 ) = 0

DT k (0) + LT k (0) = 0, T k (-1) = 0

for k= 1 2, 3 j•• - * where D = d/dz.
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(13c)

for a,[3,7 = 1,2,...,n. Substituting the expressions (l1a-d)

into (13a,b,c) the relations between and

C (t) are explicitly obtained. In doing so, we use theK

integral relations given in Appendix A, oesides, some other

simplifications are made by means of the boundary condition

(12a).

Suppressing the summation the summatlon now

being indicated by the repeated indices i*J*k,

we obtain the following amplitude equations:

amplitudes jk aSj? (6a,b) anc * (8a,c,d)

( 1 3a) (V%. vf ap DW 7 ) + (V 2 w n+ R 6 n . f ) -

- rå- u + MVØ ,a ) = o'c)z —n n* a(3 ap 7 s

sd9 ' p

(i 3 b) + u n -ve n - n e n ) +« n a#-vø n - V VV = 0

/3T % S 2 t
inr + k <v£> " #'V

< 14a )

(VA (0) + a ap MB a P k F k (0))DW 7 (0)
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(14b)

Usually, it is not possible to choose some approximating

functions as the "best”, but the following elgenvalue problems

turn out to be suitable and will be used in the nexc section,

(15a)

k = 1,2,3,.,,, with the boundary conditions (l2a,b,c)

together with = 0, We verify that (l5a,b,c)

define denumerable infinite sequences of eigenfunctions,

Appendix B, Due to the boundary conditions, the following

orthogonality relations are obtained

= B apk ((D 2 -a2 p )F k ,F 7 ) +

+ A ,(%.F ) - A C (W, DT ,F ) +
apk 1 k 7 a[3k n v k rr 7'

+ i a 3 A ljkW a iJ + a fm ' a ap» f ijVap )( ¥n' BF 7 >

i a f/ljk B W a lj - a L + a a P ){f iJ f £m f a P )(W k DF n' F 7 )-

dC, o . \

(14c) ) = C k (D T k ,T 7 ) + A 1Jk B 1Jn (W k ra 7 ,F n )

for a, (3,7 = 1, 2 } ... ,n

- a a/\ + - a a = °

(15b, c) (D 2 - a 2 p )F k + n 2 F R =0 , T>\ + v 2 ? k = 0

= -*k ((D2 - a a P )W k’V = A iA 7
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It is worth noting that eigenvalue problems which are

not selfadjoint can also be used. The adjoint problem

generally differs from the original, but has the same eigen

values, and each of its eigenfunctions is orthogonal to

every eigenfunction of the original problem except the one

belonging to the same eigenvalue. For that reason, v/e replace

5. Solutions of the amplitude equations.

In the present section we will investigate the factors

which govern the wave numbers and by studying

some simplified systems of the amplitude equations. VJe

consider first the linearized problem which gives the growth

or decay of small perturbations. At the onset of convection }

we assume that stable modes are divided from unstable modes

The validity of the principle of the exchange of stabili

ties is not exactly known for this problem. The validity can

be verified rigorously if M= 0, Chandrasekhar (1961), but

it seems impossible to prove or disprove it analytically if

M 0. Numerical computations of Vidal and Acrivos (1966)

indicate, however, that oscillatory instabillty does not

occur when R = 0.

((D 2 - a a P )F k' F 7 } = - u k ( VV = 6 k 7

(» 2 vV= = -\ 6 k 7

W, P and T in (l3a,b,c) and (l4a,b.,c) by the adjoint
7 7 7

functions.

*)
by curves of marginal stability for which d/dt = 0
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Assuming that only o.ne overall wave number is present,,

7 = 1

(16a)

1 B a(31 A ap 1 W 1 1(1 6b)

This is an eigenvalue problem from which M can be

found in terms of a 2 ., L and R; alternati vely,, Rin terms of

a 2 , L and M. Solving the eigenvalue problem (l6a*b) and

setting M= M 1 in the case R= 0, and R= R 1 in the case

M = 0, we obtain

where

If we minimise M or R as functions of the wave

number a , we obtain the critical values M or R .O v

Both M and R are proportional to the (static) temperature

gradient,, and the trivial Solutions us _0 and T = 0 are

stable Solutions only if the temperature gradient is so

In the general case the minimasation process must

certainly be done by numerical methods., but some preliminary

p p p
+ (j3a 0 )~ = a“, we obtain in the simplest case

A 1 A a31 = a 2 B apl {R(F r W 1 )-MF 1 (0)DW 1 (0)}

+ R_ = !
M 1 R 1

2 2 .2 2

A 1 p '1M A — p 3 -“-1 ” p P
a‘ i (W 1 ,P 1 )F 1 (0)DW 1 (0) a (WpF,)

small that M < M and R < Rc c



......
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calculations can easily be made in the simple cases R = 0

or M = 0 to get some idea of the accuracy whlch can be
 X* .

attained. ' ’ Although expansion in other funczions may give

greater accuracy, we belleve that the functlons ¥ and

F defined by are useful in solving the problem.
7

When the temperature gradient becomes large enough to

make M > M., or R> R , the neglect of the non-linear termsc c

in the amplitude equations (l4a,b,c) is no longer justified.

¥e consider the case in which either M c or R c are slightly

exceeded. ¥e may then assume that the wave numbers that are

amplified most according to linear theory, dominate in the non

linear problem. (The experimental results do not indicate

motions which have a continous range of wave numbers.) If

so, the linear theory can be useful in the prediction of cell
2

size (that is a ), since it provldes realistic initial

conditions for the non-linear problem. Formulated in this

way, a non-linear analysis can specify the wave numbers

and a. 2»

In the non-linear equation (14b) it is to be expected

that the horizontal average (f,.f. f n ) deserves particulari,] xj m cxp
interest, because when this average vanishes, the modes

f (x,y) do not interact except through the mean temperature

profile (z). If only modes with wave numbers
2 p p

a = (ia^) +(ja 2 ) are present, we write

•¥r
' The ”exact" values of M and in these cases arec c

computed by other methods and tabulated by Nield (1564).



•   
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= a sin cp k , ja p = a cos cp k , k = 1,2,3,

and we consider a partlcular solution of (10)_, for

instance

(17)

It can be shown that the average is nonzero only

if

or;

For our purpose, it is convenient to consider the modes

f 1 and f 2 -fy Then, by rotation of the frame of

reference we can choose cp = 0, and reverting to our earlier

notation, we can write the modes as

Segel (1965b) not only allows for cosines in (17), but

also sines. The result is the same: modes interact with

each other only if they are associated with the wave

number angles cp, cp - and cp + 4 •

f. . (x,y) = cos[la..x + ja p y)± J \ c.

Setting x = r cos 6 and y = r sin S, this can te written

f. . (x,y) = f, (r,ø) = cos[ar sin(cp k +ø)} , k = 1,2,3,1 J A.

cp 0 — + and + .

2 71 71
cp 2 = 1 ~ and 93 = ± J

*)
The results follow from the analysis given by Segel (1965b)'



• •  
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where = a sin -- = a and = a cos ~ = ia. These

modes are of particular interest in the investigations of

cellular convection, since

is the analytical expression for a hexagonal cell

cf. Chandrasekhar (1961), besides, they are of interest

since (f 1^Q2 ) = ~ °-

Since (f^, 1‘, ,f 2 ) 0, we can carry out some preliminary

calculations to illustrate the non-linear effects by studying

the amplitude equations for 7 = 1,2 and (a*p) = (0,2) and

(1,1). However, even thls simplification results in extremely

complicated sets of equations for the amplitudes, and it

seems likely that we have to make some approximations if our

aim is to solve the equations in a closed form. To obtain

a closed form, we will follow the arguments given by Segel

and Stuart (1962) in a related case. It is valid to neglect

the time differentials in the equations for the mean field

C , and all components of the disturbances exce Pt i- n

those for the fundamentals , provided the purpose is

to obtain the dominant part of the non-linear problem.

Then. if we eliminate A , we believe that anda(3y J
adequate approximation to the problem is:

(I8a,b) f 0 2 (x,y) =/2 oos 2a g y , f n (x,y) = 2 cos a., x cos a g y

n/2 f l1 (x,y) ± f Q2 (x,y) = /2(2 cos cos a g y ± cos 2a g y)
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(19c)

(19(3)

(1 9e )

where the coefficients in these equations are functions of

a 2 , Lj M and R, and are given in Appendix C.

where

8 /| £r, CX /| QLr^ d P Q “I” 1e . r

Apart from a slightly different notation (due to the

normalized modes . (x,y)), the equations (20a,b) are

identical with those discussed by Segel and Stuart (1962).

We do not quote the general results given by Segel

(19a) - £-jBq2-j + a i B Q22 + B 111 B 112 +

(19b) = e l B 111 +a 1 B 112 +f3 1 (B 111 B 022 +B 021 B 112 )+7i b i , 1 C,

2
0 = £ 2 B 022 + a 2 B 021 + B 111

0 - e 2 B 112 + a 2' B 1 11 + 2^2 B 111 B 021

0 = C i + 7 2 ( b2 i11 + ® 2 021^

By elimination of &Q22 3 B i12 and C 1 W0 obtain

(20a) - 1 1^021

(20b) - €B 1 1 2^2 B ? 1 1 1 B 1 1 1

c* J o
° 2

P! P 2 2p l p 1

Q-l = 7-172' = 7 1 7 2 + e., ’ % ~ 7 1 7 2 + e 2
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)

and Stuart. However, the most "interesting" steady state

Solutions of (20a,b) is that = 2Q^-Q^

which characterizes the (hexagonal) convection cells

This particular solution may be a stable equilibrium state

only if r 0 , cf. Segel and Stuart. The coefficient p

is given explicitly in Appendix C 3 and we observe that p = 0

if M = 0. The hexagonal convection cells may then be

attributed to surface tension gradients (and not to buoyancy)

- A dlfferent approach to this problem is given by Scanlon

and Segel (19^7)•

6. Final Remarks.

We can of course proceed to study other disturbances

B than those discussed in the previous section, but the
a(3y

complexity of the amplitude equations becomes even greater.

and they may lose their attraction. However 3 the behaviour

of any finite number of modes which have the same overall

wave number can be deduced with little further work. The

reader is referred to the analysis by Segel in

his analysis of buoyancy driven flow.

Originally, our prupose was to suggest an approximate

method to solve the problem of cellular convection subject

to natural boundary conditions. The problem is reduced to

{ 1 f 1 , + B Q21 f 02 ) =B 1 1 (2cos &1 x cos ± cos 2a 2 y]
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a system of ordinary differential equations, which is the

most attractive result. Selecting approximating functlons

may, however, be cruclal in the applications, and is often

regarded as a major disadvantage of the method. As far as

we know, no rational methods for selecting approximating

functions are known, and it remains somewhat dependent on

the user 1 s intultion and experience, Nevertheless, we

believe that, if only the most important physical character

istics are incorporated in the approximating functions, the

qualitative description of the present problem should not

be affected.
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Appendix A.

Previously we descrlbed the Solutions of the equation

( 10 ) as periodic cell pattern. However, the precise

definition requlres that on the cell-walls the normal

gradient of the vertical velocity vanishes, that is

walls, Chandrasekhar (1961).

By means of Breen's first identity in the plane

n*Vf. . = 0 , where n is a urdt vector normal to the cell- ij

J J Vcp • Vvj/dxdy +j J = cpn* V\J/ds
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where ds is a line element on the boundary enclosing the

region -7r/a.j xé u/ and -rr/ag -Y - 'n7 / 3-2- s we obtain

the following integral relations when cp and \|/ are any

(orthonormalized) Solutions of (10) subject to the boundary

conditions given above

and, setting cp = c(/ = permutatlng the Indices

and taking sum and difference

Åppendix B.

The Solutions of the eigenvalue problems (l5a*bjc)

7— —-— p — 2
Vf •vf = a . .f. .f = a ..6. 6 .

v ij ap ij ij ap ij ia jp

2
with the boundary conditions (I2a,b.,c) and D W (0) = 0,

are

/ 2 2~*rSlnh a sinn „, - a n z-^

«w - «,Uri*- - ,l» t /* }
L “P sWa y a a(3

F 7 (z) = C 2 sin7n 2 7 - a 2 ap (z+l)

T (z) = C-,sin v (z+1 )7 3 7



I • . - ; ..... . .

.
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where Cy and C. are normalizatlon while

the eigenvalues are Solutions of

-L tanvv
7 7

v (L)
7

Appendlx C.

For reasons of we use the notations

The coefficients in the equations (I9a-e) are

f 2 2 " / 2n/a - a' *tanh. a = a tanVA
7 ap ap ap 7

/p2 i 2 2
vll -a D = - Jj t arW pt - a «

a(3 ap

P o
which yields 7\ =7\ n ), \x = jjl ,L) and vJ 7 7 v ap 7 7 ap 7

Pk 7 " Vy " M°) D V°Wn

w (« k D W-

P 2 - 2 2 - 2 2 -2 _2 \ 2
8 1 = a“R(p 11 A -i+P 12 " 1 + Pi2 q 2' ~ q 1

2 2 -22 -2 2 -2 - 2\ 2
£q = 3-R (p "] 2 — (Pg 1 1 1 ”^^ > 22 2 " M- 2

2 "2 —2 2 _ 2 — 2\
Q,j 3. R (p 1 ~Pp -j 2 ~ M fc-] i 1 1 1 2



 V" ;
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The coefficient rin the equations (20a, b) can now

be written.

and by the elimination of and a 2 we obtaln

2 —2 _2 2 —2 _ 2
= 3- R(p2']P , ] /  ] P 1 2 _ < ] /  } r P

P-j ~~ P'2 ~2 a -j -] -] 11 ) ( r i 12 r 1 21 1 1 1 02

2 2 -2

7-| ~ v -] 7-2 ~~ a "i 'j ~ ]-] )

2 2 2 2 2
where 7\ y A 0 , p y p 9 and v are the eigenvalues given

in Appendix B.

+ ctg(3 1 P 2
r ' ~ = (a 1 - «V

r a M e 2 [^ p 21 q 11 p 11 q 21^ A 1 + (P 2 2 q 12 ~ p 1 2 q 22' 2J
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