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Abstract.

We consider the problem of cellular convection
induced by surface tension gradients. The solutions are
expanded in Fourier series, and we use a modification of the
Galerkin's method for the case of natural boundary conditions
to determine the Fourier coefficients. The problem 1s reduced
to a system of ordinary differential equations, and some
explicit calculations are carried out Lo Lllustradce the men-

linear effects.
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1 LinEEodlicuiens

We study the cellular convection in a horizontal fluild
layer heated from below, and allow for surface tension gradi-
ents resulting from temperature variations at a free surface.
The fluid is assumed to be infinite in horizontal extent.

We assume that the Fourier decompositions of the convectlve
motions in the horizontal (x,y) directions can be represented
by the wave numbers ia1 and jag,i,j.z L3210, dns LAt i Chon i
the decomposition in the vertical (z) direction at will, the
solutions are sought as (truncated) Fourier serles. We use a
modification of the Galerkin's method for the case of natural
boundary conditions to determine the Fourier coefficients.

- Since the explicit calculations required for a non-linear
analysis of this problem can be very long, we have used as
our model the limiting case of an infinite Prandtl number.

In this way we obtain the equations (14a,b,c) which
govern the Fourier coefficients (the amplitude equations).

- In what follows, we use a decomposition of the convective
motions in the z-direction gilven by the eigenvalue problems
(15a,b,c). We consider a state which differs slightly from
the onset of convection, and carry out some preliminary
calculations to illustrate the non-linear problem. We obtain
the amplitude equations(QOa,b) which have the same form as
those discussed by Segel and Stuart (1962). For the situation
to which our analysis applies, hexagonal convection cells

may be attributed to surface tension gradients.
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2. TFormulation of the problem.

Referring to Cartesian coordinates (x,y,z) with the z-axis
taken to be in the vertical direction, we consider a horizontal
fluid layer of infinite horizontal extent bounded by a rigid
plane at z = -h and a non-deformable free surface at 2z = O.
The lower boundary 1s taken to be a solid body at rest which
has a constant temperature T1. At the free surface we
consider the fluid to be in contact with an inviscid atmos-
phere which has a constant atmospheric pressure Dp.,. IS
assumed that the fluid density and the surface tenslon are
the only physical properties which vary with temperature.

Neglecting the dissipation of energy due to viscosity,

the governing equations in the Boussinesqg approximation are

(1a) p,(Qu/dt+u-vu) = -vp + WU - o, (1-a(T-T ) )ek

2

(1p) pmcp(BT/8t+g'VT) N T
(1e) Veu = O
where u = (u,v,w) is the velocity, p 1s the pressure, T 1s

the temperature, g is the acceleration of gravity, k is the
vertical unit vector, - is a constant reference density and
Tm a constant reference temperature. o, cp, 7 =liakel Ll LBl
the coefficient of thermal expansion, the specific heat at
constant pressure, the coefficient of heat conduction and
the coefficient of viscosity, respectively. - (The thermal

diffusivity x/pmcp and the kinematic viscosity u/pm .
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will be denoted by < and v, respectively).
The kinematic boundary condition at the free S Ce

is that the normal component of the velocity vanishes
(2a) e R ¢ T B

The dynamical free-surface condition is imposed by the
requirement that the viscous stress on the two sides of the

surface can differ only as a result of surface tension

where P 1is the viscous stress tensor in e fiudd, o Ls

the surface tension and Vg is the surface gradient operator.
The transport of heat across the free surface 1s sup-

posed to be proportional to the temperature difference

between the boundary and the adjacent medium. Denoting the

temperature in the adjacent medium by Ta’ this can be written
(2c) SRRV =ik (B alvas, 2110

where Kk 1is the heat-transfer coefficient, assumed constant.

At the lower boundary,the boundary conditions are
(24,e) sty 0 =9 gt [Fusdah

where T1 1s a prescribed temperature.

The difficulties in formulating proper boundary
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conditions as X,y - * o are circumvented by limiting e
discussion to solutions which are spatially periodic in
these directions. The interval over which this periodicity

takes place is, however, not known Zhoneilioneal

When no motion is present, u = 0, the temperature

distribution which satisfies (1b) and (2c,e) is
i ol B

where T, = TS(O) =B BN/k and B = (T1—TO)/h. - The
pressure distribution p = ps(z) ig not explieitly required,
we note, however, that pS(O) = D,-

The stability problem is now formulated in the usual

manner by substituting

VIR PR S 0 S TRl o ) -

into the governing equations (1a—c) and boundary conditions
(2a-e). - Assuming that the surface tension can be regarded

as a linear function of temperature, this can be written

PG L Y.

where TO is the undisturbed temperature at z = 0, and

v =do/dT evaluated at TO' For most fluilds the surface

tension decreases with increasing temperature, i.e. vy < O.
Measuring the velocity u' , temperature T', pressure

p' and the time and length in units of 45 ph, uX/hg,
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hg/x and h , respectively, and dropping the primes, the

governing equations are:

(3a) ' - (du/dt+u-vu) = -vp + \723 + RTk

(3b) T/d3t + u-vTl = ng e snule

{(Fe v-u = 0

with the boundary conditions

(4a,b) ez 000 oph 2 Ban g ~MRT 0 W8R8 = O
(4c) n-vT + LT = O ab e
(4d,e) T AR 5 Ey et e

where R, P, M and L. are the Rayleigh-, the Prandtl-, the

Marangoni- and the Nusselt number, respectively,

4 : 2
R =apgh™/vx » P=v/x » M= -pyh™/ux , L = «h/n .

2 iNerhodNofac el ubiiant

The method of solving our problem will be as follows.
We ask for approximate solutions U, and Tn which have

the form
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where &, and ¢, are some functions chosen beforehand,
and v-gk=o , o SRRy e TERISY TO the constraint v-gkzO
the pressure pn(zyt) is not explicitly required. - We can
always consider the functions Qk to be linearly independent
and to represent the first n functions of some set of
functions {@k}, W ey e ML O T complete.*) The same

assumptions apply to the functions Dy The functlons o

and ¢, are moreover taken to be orthonormal

(;izi,_ﬁgj) TREH (mi’@j) Sy
where ( , ) denotes the spatial average over Gl dkzhuEaas Sehe
inner product. - Our aim is to determine the functions

Akn(t) and Bkn(t> so that (5a,b) satisfies the governing
equations (3a,b) and the boundary conditions (4a-e) as
accurately as possible. To do sc, we shall use a modification
of Galerkin's method for the case of natural boundary conditions,
Mikhlin (1964). 1In applying this method to our problem, we

need not subject the functions & and P to any boundary

k

conditions beforehand, but can choose them at IR

) Ifia Runbbionispate,plees {@K} is complete 1f any
function in the space can be expanded 1in terms (ol MTinls {@K}.
- In this paper, we shall be concerned with the set of

infinitely differentiable functions.
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The modified Galerkin's method takes the form:

"1 _1 = % . el
(6a) (P7 du, /ot+P En°v3n’97) = R(T k,2& )
i st ol el

<6b) (aTn/at'*'En'an:(P,Y) =l (WM:CP',Y)'(VTn: W%

n 'Y)— L(Tl’l’(p.’y)s

where ( , )s denote the horizontal average at the free

gurtdese and v = 1,250 vt "BUDBEITHCINE the expressions

(5a,b) into (6a,b), we obtain a system of ordinary differential
equations for the amplitudes Akn(t) and Bkn(t)’ which can

be solved when given suitable initial conditions, say
A, (0) = (u(x,0),2,(x)) , B (0) = (2(x,0),0,(x))

There is a valuable physical interpretation of the
approximate method given by (6a,b). If we multiply (6a) by
Ayn(t) and sum over -y from 1 to n, we obtain the equation
which is the balance equation for the kinetic energy of
the approximate solution. An analogous relation is obtained
if we multiply (6b) by an(t) and sum over -y. This
relation is often interpreted as an entropy balance equation.
- If we take the inner product of (3a) and u , of (3b) and
T, and use (3c) and (4a-e), we obtain the same integral
properties for the exact solutions u and TR A s Al S v s a)
though u and T are approximated by the forms u and

Tn’ the fundamental integral properties are satisfied.
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The most important and most difficult step is the
séleétlion '¢f the ' funetions gk and P RO—RRSEN s e
In selecting these, we should carefully insure that the
functions are linearly independent and meémbers of a complete

set. Violation of these requlrements can lead to gross error

if n (the degree of approximation) is successively increased.

- Besides, we should insure that the functions incorporate the
most important physical characteristics of the problem, e.g.

some (or all) of the boundary conditions.

4, The amplitude equations.

When the solutions are expanded in orthogonal functions,
the analysis is in general very long and complicated. To
simplify the analysis, we will consider the limiting case it
an infinite Prandtl number. It is believed that this
simplification gives a good description for fluids which have

large Prandtl numbers and provides at least a gualitatively

*)

Some convergence proofs are available for certain problems
in hydrodynamics. Ladyzhenskaya (1964) uses Galerkin's method
to prove the existence of a "generalized solution" to the
incompressible Navier-Stokes equation. Chernyakov (1966a)
considered the problem of thermal convection in a bounded
reglon, and a related problem with a free surface was con-
sidered by Chernyakov (1966b), but he did not allow for
surface tension. It is worth noting that the modified
Galerkin's method is in agreement with the definition of a

"generalized solution'.

%)
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correct description of fluids with Prandfl numbers greater
than unity, Scanlon and Segel (1967).

An important consequence in the Liwmit of inflnice
Prandtl number is that the vertical component of the curl
of the velocity, (vVxu)-k = ¢ , vanishes. This can be seen
from the equations of motion and the boundary conditions,

which take the form (cf. Chandrasekhar (1961), Chap. 11

e DR R LR T o

which admits only the solution ¢ = O (assuming boundedness
B L oas 2.y - 2R
It can be shown from the identity wx(vxu} = v(veun)-v'u ,

Cliaioasinasclcneigen:

\Y%

2/\
-

= kx¥t - §(ow/dz) - kd(v-u)/dz

where 1 = (u,v,0), ¢ = (3/9x,3/dy,0) and M
+ 82/5y2 . When ¢ =0 and V-u = 0, it follows that

.

(7) v £_= -v(ow/3z) .

When explicit calculations are required, it is
convenient to divide each dependent variable into two
parts: one, which depends on z and t alone, alis) elais
horizontal average of that variable, the remaining part
is then periodic in the horizontal directions. We shall

use a horizontal bar to denote the horizontal average,
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and write

Pz

i

T(x,y,2,t) = T(z,t) + 6(x,y,2,8) , p(x,7,2,t)

il Tt ]

By averaging (3c) and (4a,d), it follows that ulEak) = 0
1

Then, by averaging (3a,b) directly (P = 0!), we obtain
(8a,b) -V + vgg + Rk = 0 , p, =RT

(8¢c) 6, +u-ve - (we), +wl, = Vo0 +w

(8a) e W iwE). = ;

(subscripts z and t denote partial derivatives). By
means of the constraint v'u = 0, the boundary conditions

(4a-e) take the form

i 2

(9a,b) =0 Mg W W< e | st o Z =0
(9¢,d) AL IF =0, 8 +5Lo=0 ab & 50
(9e-h) wishg w Mty Tre gL @' 088 TR =rE

Note that p does only appear in the equation (8b). Hence
this equation is used only to evaluate p after the other

equations have been solved.

We expand the solutions in Fouriler series, and assume

that the x,y- and z-dependenciles (in each term of the
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series) are separable. The X,y dependence which is periodic
and wave-like, will be denoted by fi;(x,y), o L e L L
dJ
2 z

(10) | v fij + a ijfij =0

where agij = (ia,‘)2 + (ja2)2 is the overall wave number of

the puriodic structure and defines the size (though not the

shape) of the cellular pattern. ia, and Jja,, 1,J = - M AR

are the wave numbers in the x and y directions, respectively.
If the velocity w(x,y,z,t) is represented by a trun-

cated Fourier expansion, this can be written

Wn(X:y:Z)t) i ? Wij (Z:t)fij (X;Y)
1]
(on the cell-walls certain boundary conditions must be
satisfied, Appendix A). For the functions wij(z,t),

locdemi 1205, 00 4 B WELGE

Wy (2,8) = z Ay (8D, (2)
k

where the sequence {wk(z)}, e, NoBLEU L e Comiplebe

on the interval: -1 s z £ 0. In this way we obtain

(112) Wy (ey,z,8) = ) Ay c(8)0 g (e )i (=)
ijk
In the same way we obtain the following expressions

for en(x,y,z,t) and Th(z,t);

(11b) 0, (X,,2,8) = qZkBijkﬁ)fij(x,y)Fk(z)
AL

(3
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(11¢) i 8 E;Ck(t)Tk(z)
Kk
and it follows from equations (7), (10) and (11a) that

(11d) Qn = (un,vn,O) = Einjka‘ijﬁfijawk/az
The expressions (11a-d) should be compared with (5a,b).
It was necessary to introduce the functions fij(x,y) to
account for the horizontal structure. For reasons of con-
venience we have omitted the index n in the amplitudes

- We havepointed out that we should choose the sequences

[Wk}, {Fk} argd T to form complete sets. While any

1)
complete sets may be used 1t is often convenient to choose

the functions W 17 ziaigl Tk as elgenfunctions of one or

| ag g
another simple eigenvalue problem, but at the same time
related to the problem. For the moment we shall only assume

that the following boundary conditions are satisfied

(12a) W, (0) = w (-1) = DW (-1) = 0
(12b) DF, (0) + LF, (0) = 0, F(-1) =0
(12¢) P o) + ERolEl =0, B At He R

for k = 1,2,3,..., where P = 3/0z.
By means of the boundary conditions (12a,b,c), it

is convenient to rewrite the equations which govern the
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Be, 0, Ee,b) and (8a.0.d)

8Tn 0 0 "
(13¢) <at et (W, 6.} - o0 ,Ty) =
for a,B,y = 1,2,...,n. Substituting the expressions (11a-d)

into (13a,b,c) the relations between A, . GelgeBuy, 4t Jorang

1jk ijk

Ck(t) are explicitly obtained. In doing so, we use the

integral relations given in Appendix A, besides, some other
simplifications are made by means of the boundary condition
(12a).

Suppressing the summation sign, the summation now
being indicated by the repeated 1ndices 1.3k 8w and: n,

we obtain the following amplitude equations:

(148)  Auq, ((D%-a0,)"

s 2 —
op W, ,W ) = a~ _RB (F WY)

ke~ aB Topk kid

()
Y DZWK(O) + a“~_MB

aB aBka<O)>DWY(O)

aBk
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dB

afk " o =
o (FK,Fy) = BGBK(\D aaB)Fk,bv) +
il \... 1 in s
f Aaﬁk(hk’Fy’ AaBkCn<kafn’by) '
(14b)
el . Vg s Y 2 e T
i3 ZaiJAiJkBﬁmn<aij " %pm aaB)<fijfﬁmfaB)<WKFH’DFy) if
e 2 o g 2
Zaiinleﬂmn(aij gl aaB)(fijfgmfaﬁ)(kaFn,Fy),
b >
(14c) T (TK,TM) &= CK(D T).»T ) + AijkBijn(kaTy,Fn)

Usually, it is not possible to choose some approximating
functions as the "best", but the following eigenvalue problems

turn out to be suitable and will be used in the next seetion.

2 duigp ) 2
i i 5 s
(15a) (D aaB) e xk(D aaﬁ)\/,k 0
2 2 e L - = A,
(15b,c) D aaB)Fk S PR e p L = 0

k = 1,2,3,..., with the boundary conditions (12a,b,c)
together with DZWK(O) = 0. We werify that (15a,b.c)
define denumerable infinite sequences of eigenfunctions,

Appendix B. Due to the boundary conditions, the following

orthogonality relations are obtained

2 2 e 2
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=y ¥ At W -
( (D —aaB >FK’F’\/> W uk (FK,F’Y) o leéky
2 St - skl o -
(D TK,TV)-— VK<TK,TV) g

Tt is worth noting that eigenvalue problems which are
not selfadjoint can also be used. The adjoint problem
generally differs from the original, but has the same eigen-
values, and each of its eigenfunctions i ereplamapiatll v
every eigenfunction of the original problem except The one
belonging to the same eigenvalue. For that reason, we replace
wy, FY and Ty in (1%a,b,c) and (14a,b,c) by the adjoint

funetieons.

5. Solutions of the amplitude equations.

In the present section we will investigate the factors
which govern the wave numbers &y and s by studying
some simplified systems of the amplitude equations. We
consider first the linearized problem which gives the growth
or decay of small perturbations. At the onset of convection,

we assume that stable modes are divided from unstable modes

*
by curves of marginal stability for which d/dt = O ).

*) The validity of the principle of the exchange of stabili-
ties 1s not exactly known for this problem. The validity can
be verified rigorously if M = 0, Chandrasekhar (1961), but
it seems impossible to prove or disprove it analytically if

M £ 0. Numerical computations of Vidal and Acrivos (1966)

indicate, however, that oscillatory instability does not

Geeleiwhen Bo= 0.
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Assuming that only one overall wave number 1s present,

o
)

(aa1)2 + (pa,)” = a“, say, we obtain in the simplest case

v = 1

(16a) foaB1 £ agBaB1{R(F1,W1)—MF1(O)qu(o)}
2 ‘

(16b) MTBO(,B'] = ACLE” (VJ1’F1)

This is an eigenvalue problem from which M can be

found in terms of a2, ahd Ryvalterngbivelyy H in terms of

a2, L and M. Solving the eigenvalue problem (16a,b) and

setting M = M in ‘the'cage " H'= 0, ana" R =R il BiniE e CBElE

1
W= 10 S W=l ey o tial

1

M R
LT 1 TR,
M, Ry
where
g =
A T UL
. il o {0
My = =5 Sl = 2
by (W1,F1)F1(O)DW1(O) a (W1,F1)

If we minimise M or R as functions of the wave
number a , we obtain the critical values MC Ot RC.
Both M and R are proportional to the (static) temperature
gradient, and the trivial solutions u=0 and T = 0 are
stable solutions only if the temperature gradient is so
small that M < MC 2Ll S UIRY Rc’

In the general case the minimasation process must

certainly be done by numerical methods, but some preliminary
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calculations can easily be made in the simple cases R = O

or M =0 to get some idea of the accuracy which can be

avvaineds. %o Although expansion in other functions may give

greater accuracy, we believe that the functions Wy and
FY defined by (15a,b) are useful in solving the problem.

When the temperature gradient becomes large enough to
make M > Mc OF, R B RC, the neglect of the non-linear Terms
in the amplitude equations (14a,b,c) is no longer justified.
We consider the case in which either MC or RC are slightly
exceeded. We may then assume that the wave numbers Uakeis | Eite
amplified most according to linear theory, deminaiesiing b hie SR onE
linear problem. (The experimental results do not indicate
motions which have a continous range of wave numbers.) If
so, the linear theory can be useful in the prediction of el
size (that is ag), since it provides realistic initial
conditions for the non-linear problem. Formulated in this
way, a non-linear analysis can specify the wave numbers a,
and ane

In the non-linear equation (14b) it i1s to be expected
that the horizontal average (fijfszag) deserves particular
interest, because when this average vanishes, the modes
faB(X’y) do not interact except through the mean temperature
profile Ty(z). If only modes with wave numbers

= y :
a“ = (1a1)2+(3a2)2 are present, we write

* b
1 ! .
) The "exact" values of M, and Rc in these cases are

computed by other methods and tabulated by Nield (19064).
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et = 2 e U ja

1 = a Co8 @ e = g2 E

2

and we consider a particular solution of {10}, Lor

instance

(17) fij(x,y) = cos{ia;x + jayy)

Setting x = r cos 8 and y = r sin 6, this can be written

fij(x,y) = fk(r’9> = cos{ar sin(@K+9)} P g R

It can be shown that the average (f1f2f3) is nonzero only
1L 1
T i 18
P = @y % 3 and o
2 m
or: o5 = @4 % 1 and ¢z = @y % 5

The results follow from the analysis given by Segel (1965b)*>.
For our purpose, it is convenient to consider the modes

f1 and f2 == fB' Then, by rotation of the frame of

reference we can choose o 0, and reverting to our earlier

notation, we can write the modes as

S
) Segel (1965b) not only allows for cosines in (17), but
also sines. The result is the same: modes interact with

each other only if they are associlated with the wave-

g

R eR sansles G- 2 o ang i 3

5
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(18a,b) foz(x,y) = J2 cos 2a,y f11(x,y) = 2 cOS a,X Ccos ayy

where a, = a sin = = 5 a and a, = @S % = 2a. These
modes are of particular interest in the investigations of

cellular convection, since
J2 £i4(xy) 2 foz(X’Y) = J2(2 cos a,X cOS a,y * cos 2a2y)

is the analytical expression for a hexagonal cell pattern,

cf. Chandrasekhar (1961), besides, they are of interest

; J2
since (fﬂfﬂfo2) = 5 £ 0.

Since (?::?TTTBE)% 0, we can carry out some preliminary
calculations to illustrate the non-linear effects by studylng
the amplitude equations for ~ = 1,2 and (a,B) = (0,2) and
(1,1). However, even this simplification results in extremely
complicated sets of equations for the amplitudes, and it

seems likely that we have to make some approximations if our
aim is to solve the equations in a closed form. To obtaln

a closed form, we will follow the arguments given by Segel

and Stuart (1962) in a related case. It is valld to neglect
the time differentials in the equations for the mean field

Cy, and all components of the disturbances B exeapt in

apy’

those for the fundamentals provided the purpose 1is

BaB1’
to obtain the dominant part of the non-linear problem.

Then, 1f we eliminate A we believe that and

apy’

adequate approximation to the problem is:
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S

(19a) dByoq/dt = £4Byoy + ayBoop + B1Byq4Byqo + v1By21Cy

(19b) B, ,/at = By ta,By oty (Byq1BoootBoot Brya)+vyByq4Cy

2

(19¢) 0 = exBuop + aoBpog + BoByqy

(194) 0 = e5Byyp + asByqy + 2858y 11Byny
2 2

(19e) 0=0C, + yg(B B B 021)

where the coefficients in these equations are functions of

a2, T, ‘M ‘and 'Ry and are given in Appendix C.

By elimination of 8022, B112 and C1 we obtailn

i - 3 2
(20a) dBy,,/dt = €Byoy - TByyq - QBpoq - Q3B1q4Bgoy
(2ob ) Weaman, Ads "ouaBe emiaS Res st ity gt dligiec e

111 111 1118021 = @B7111 7 93B021B114
where
€185 ~ Q405 aqBp * anBy
BBy 2B 4By

Q= YV O = YqYp * o Qs = VY2 ¥ £,

Apart from a slightly different notation (due to the
normalized modes fij(x,y)), the equations (20a,b) are
identical with those discussed by Segel and Stuart (1962}.

We do not quote the general results given by Segel
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and Stuart. However, the most "interesting" steady state

solutions of (20a,b) 1is Ve fJéBOQK 3

which characterizes the (hexagonal) gonviccuitonicellis

note that Q, = 2Q2—Q1)

{3111f11 + B021f02} = B111[2008 a,x cos a, t COs 2a2y}

This particular solution may be a stable equilibrium state
gy 1o ¢ £ 0, cainianad and Swnpert.  The coefrlecient I

is given explicitly in Appendlix C, and we obgerve that T =0
if M = 0. The hexagonal convection cells may then be
attributed to surface tension gradients (and not to buoyancy).
- A different approach to this problem is given by Scanlon

and Segel (1967).

6. Final Remarks.

We can of course proceed to study other disturbances
BGBV than those discussed in the previous section, but the
complexity of the amplitude equations becomes even greater,
and they may lose their attraction. However, the behaviour
of any finite number of modes which have the same overall
wave number can be deduced with little further work. The

reader 1s referred to the analysis by Segel (1965a,b) st

hig-analysis of buoyanceyrdriven flow.

Originally, our prupose was to suggest an approximate
method to solve the problem of cellular convection subject

to natural boundary conditions. The problem 1s reduced to



: _‘.:511.;‘:,_ ! R o .nam); mg@a fmz

aptalt Tenly .0

‘2‘.r~*> sy el

=

, ‘mf *rx,m am, wE‘JU wmvm{q C T Lol b%amaw a8ty [eid '\ﬂ‘&"m&?'
.Wﬁﬁama__mma amnmam mmm%wp& am :r.ﬁf.frm S ;‘dw,_xalq‘ws

;‘MQ.: m&&wﬁlég ?.c» ﬁwwwa :ma efvﬁw m? ng‘!;“bm
ur Dy jh% b w#&qu pelt l,,m;«g 91 Bajoh wRED MO Cridng. o8




iy S

a system of ordinary differential equations, which is the
most attractive result. Selecting approximating functions
may, however, be crucial in the applications, and 1s often
regarded as a major disadvantage of the method. As far as
we know, no rational methods for selecting approX¥imating
functions are known, and it remains somewhat dependent on
the user's intuition and experience. Nevertheless, we
believe that, if only the most important physical character-
igtics are incorporated in the approximating functions, the
qualitative description of the present problem should not

be affected.
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Appendix A.

Previously we described the solutions of the equation
(10) as periodic cell pattern. However, the precise
definition requires that on the cell-walls the normal
gradient of the vertical velocity vanishes, that is
ﬁ-@fij = 0, where N 1is a unit vector normal to the cell-
walls, Chandrasekhar (1961).

By means of Green's first identity in the plane

// Vo - Pydxdy +j J/ oO°ydxdy :j{ en* Vyds
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el -,

where ds 1ig a line element on the boundary enclosing the
remia o m/a, and -n/ap £ y = w/a,, we obtain
the following integral relations when ¢ and  are any
(orthonormalized) solutions of (10) subject to the boundary

conditions given above

& ~ e S
Vfij quB =] ijfijfaﬁ = ijéiaéjﬁ

and, settlng w.s DL aT y = T permutating the indices

3l 1l ap’
and taking sum and difference
A o 2 & 2
2 ol G = e - e
(faﬁvflj v gm) (a L aB)(flgfszag)

Appendix B.

The solutions of the eigenvalue problems (15a,b,c)
with the boundary conditions (12a,b,c) and Dgwy(O) = 0,

S LS

i af Y.
W (z) = C1Lsinh a

f "
. L2 2
1 5 o
(51n3 N i Sanx a aﬂz}
k e 2 '
1 - a
ap 51PJ% v ap

L

af

) i 2
Fy(z) = 0251nJu i 3 (z+1)

T (z) = C.8in Vy(z+1)
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where C1, 02 and C3 are normalization constants, while

the eigenvalues are solutions of

[ 2 i 1 S
J% . - a ap iz el aaB = aaﬁtan N i - a s

Jugy - agaB = ~L tanJLg

which yields %y = %Y(a aB), ey 5

Appendix C.

For reasons of convenience, we use the notations

= (F,Wy), S = Fk(o)Dwy(o),rkny = (kaFn,F 3

S (WKDTH,FV).
The coefficients in the equations (19a-e) are

0 BT 2 . -2 2
ey = 8RN 1107, N 5) - aTM(pyay N P800 R) - b

2

Sl B VoEs N 2 B 2
= a"R(p7p A 140 0N o) - aM(pp Ay 1tRndpph 2) - W

LB ~2 -2 - ~it! -2
ay = a"R(py PN 10 abopN 5) - @ MRy N 1P pdp0M 3
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5 o = 2 e o
a, = a R(p21p11% 1 TPosPyohs ) -~ a M(p21q11% 1 TPosdyoho )

2

iy 2 e d =)
By = 22°N," (Bpyq-May ) (rgyo-rpq ) (£ T00)

™
I

A el T g
Y= W s = el e e il - gy )

~

where }21, %22’ ua1, u22 and v21 are the eigenvalues given

in Appendix B.

The coefficient T 1in the equations (20a,b) can now

1608 wenlag e

and by the elimination of a4 and we obtain

Ba

N v r
ok R E;{(p21q11"p11q21)% t = (Papdp - Pyalap) 2}
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