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Convergence Rate Analysis of an Asynchronous Space
Decomposition Method for Convex Minimization*

Xue-Cheng Tai* Paul Tseng*

August 5, 1998

Abstract

Wc analyze the convergence rate of an asynchronous space decomposition method for con
strained convex minimization in a reflexive Banach space. This method includes as special
cases parallel domain decomposition methods and multigrid methods for solving elliptic partial
differential equations. In particular, the method generalizes the additive Schwarz domain de
composition methods to allow for asynchronous updates. It also generalizes the BPX multigrid
method to allow for use as solvers instead of as preconditioners, possibly with asynchronous up
dates, and is applicable to nonlinear problems. The method is also closely related to relaxation
methods for nonlinear network flow. Accordingly, wc specialize our convergence rate results to
the above methods. The asynchronous method is implementable in a multiprocessor system,
allowing for communication and computation delays among the processors.

1 Introduction

With the advent of multiprocessor computing systems, there has been much work in the de
sign and analysis of iterative methods that can take advantage of the parallelism to solve large
linear and nonlinear algebraic problems. In these methods, the computation per iteration is
distributed over the processors and each processor communicates the result of its computation
to the other processors. In some systems, the activities of the processors are highly synchronized
(possibly via a central processor), while in other systems (typically those with many processors),
the processors may experience communication or computation delays. The latter lack of syn
chronization måkes the analysis of the methods much more difficult. To aid in this analysis,
Chazan and Miranker [14] proposed a model of asynchronous computation that allows for com
munication and computation delays among processors, and they showed that the Jacobi method
for solving diagonally dominant system of linear equations converges under this model of asyn
chronous computation. Subsequently, there has been extensive study of asynchronous methods
based on such a model (see [s], [6] and references therein). For these methods, convergence typ
ically requires the algorithmic mapping to be either isotone or nonexpansive with respect to the
L°°-norm or gradient-like. However, aside from the easy case where the algorithmic mapping
is a contraction with respect to the L°°-norm, there has been few studies of the convergence
rate of these methods. One such study was done in [37] for an asynchronous gradient-projection
method.

*The work of the first author was supported by the Norwegian Research Council Strategic Institute Program within
Inverse Problems at RF-Rogaland Research, and by Project SEP-115837/431 at Mathematics Institute, University of
Bergen. The work of the second author was supported by the National Science Foundation, Grant No. CCR-9311621.

Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5007, Bergen, Norway (Kue-
Cheng. Tai@mi.uib.no).
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In this paper. wc study the convergence rate of asynchronous block Jacobi and block Gauss-
Seidel methods for finite or infinite dimensional convex minimization of the form

fm \
(1)

where each A', is a nonernpty closed convex set in a real reflexive Banach space V and F
is a real-valued lower semicontinuous Gåteau-difFerentiable function that is strongly convex on

E m A',. Our interest in these methods stems from their close connection to relaxation methodsi=i
for nonlinear network flow (see [4], [s], [38] and references therein) and to domain decomposition
(DD) and multigrid (MG) methods for solving elliptic partial differential equations (see [7], [12],
[16], [29], [34], [35], [39] and references therein). For example, the additive and the multiplicative
Schwarz methods may be viewed as block Jacobi and block Gauss-Seidel methods applied to
linear elliptic partial differential equations reformulated as (1). DD and MG methods are also
useful as preconditioners and it can be shown that such preconditioning improves the condition
number of the discrete approximation [7], [12], [29], [39]. In addition, DD and MG methods are
well suited for parallel implementation, for which both synchronous and asynchronous versions
have been proposed. Of the work on asynchronous methods [l], [10], [18], [24], \ve especially
mention the numerical tests by Frommer et al. [18] which showed that, through improved load
balancing. asynchronous methods can be advantageous in solving even simple linear equations.
Although these tests did not use the coarse mesh in its implementation of the DD method, it is
plausible that the asynchronous method would still be advantageous when the coarse mesh is
used. An important issue concerns the convergence and convergence rate of the above methods.
In the case where the equation is linear (corresponding to F being quadratic and K\ Km
being suitable subspaces of V) or almost linear, this issue has been much studied for synchronous
methods such as block Jacobi and block Gauss-Seidel methods (see [7], [12, §4], [29], [39, §4] and
references therein) but little studied for asynchronous methods [I], [10], [24]. In the case where
the equation is generally nonlinear (corresponding to K\ Km being suitable subspaces of V),
there are some convergence studies for synchronous methods [13], [16], [28], [34], [35], and none
for asynchronous methods. In the case where K\ Km are not all subspaces. there are some
convergence studies for synchronous methods and. in particular, block Jacobi and Gauss-Seidel
methods (see [22], [23], [30], [33] and references therein) but none for asynchronous methods.

Our contributions are two-fold. First, wc consider an asynchronous version of block Jacobi
and block Gauss-Seidel methods for solving (1). and wc show that. under a Lipschitzian as
sumption on the Gåteau derivative F' and a norm equivalence assumption on the product of
A'i, .... Km and their sum (see (5) and (6)), this asynchronous method attains global linear rate
of convergence with a convergence factor that can be explicitly estimated (see Theorem 1). This
provides a unified convergence and convergence rate analysis for such asynchronous methods.
Second, wc apply the above convergence result to (finite-dimensional) linearlv constrained con
vex programs and, in particular, nonlinear network flow problems. This yields convergence rate
results for some asynchronous network relaxation methods (see §6). The convergence result are
also applied to certain nonlinear elliptic partial differential equations. This yields convergence
rate results for some parallel DD and MG methods applied to these equations and, in particular,
the convergence factor is shown not to depend on the mesh parameters (see §7). Our results
may also apply to obstacle problems, but this would require further study. Finallv, wc note
that alternative approaches such as Newton-type methods have also been applied to develop
synchronous DD and MG methods for noniinear partial differential equations [2], [3], [9], [20],
[25], [40]. [41]. However. these methods use the traditional DD and MG approach or use a
special two-grid treatment.

2 Problem Description and Space Decomposition
Let I' be a real reflexive Banach space with norm ||  || and let V' be its dual space. Le., the
space of all real-valued linear continuous functionals on V. The value of / £ V' at w € V will be
denoted by (/, r), i.e., (•, •) is the duality pairing of V and V'. Wc wish to solve the following

?

mm
v,6K,,i = l,
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minimization problem
mm F(v) . (2)

where K is a nonempty closed (in the strong topology) convex set in V and F : V >—* 3? is a
lower semicontinuous convex Gåteau-differentiable function. Wc assume F is strongly convex
on K or, equivalently, its Gåteau derivative limt—o(F(v + tw) — F(v))/t, which is a well-defined
linear continuous functional of w denoted by F' (v) (so F' : V >— V"), is strongly monotone on
K, i.e.,

where a > 0. It is known that, under the above assumptions, (2) has a unique solution u [19,
p. 23].

Wc assume that the constraint set K can be decomposed as the Minkowski sum:

(4)

for some nonempty closed convex sets Xi in K, i = 1,...,m. This means that, for any v G K,
wc can find i>i G A',, not necessarily unique, satisfying '^2^_ l Vi = v and, conversely, for any
Vi G A',, i= l, ..., 7Ti, wc have X^Hi v* A'. Following Ku [39], wc call (4) a space decomposition
of A", with the term "space" used loosely here. Then wc may reformulate (2) as the minimization
problem (1), with (u\ um ) being a solution (not necessarily unique) of (1) if and only if
u, GKj for i= 1, ...,m and X^i u' =u- s was n°ted earlier, the reformulated problem (1)
is of interest because methods such as DD and MG methods may be viewed as block Jacobi
and block Gauss-Seidel methods for its solution. The method wc study will be an asynchronous
version of these methods. The above reformulation was proposed in [39] (for the case where F
is quadratic and K = V) to gi ve a unified analysis of DD and MG methods for linear elliptic
partial differential equations. The general case was treated in [30], [33] (also see [31], [34] for
the case of K = V).

For the above space decomposition, wc will assume that there is a constant C\ > 0 such that
for any Vi G A',, i = 1, ...,m, there exists u, G Xi satisfying

(5)

See [12, p. 95], [33], [34], [39, Lemma 7.1] for similar assumptions. Wc will also assume F 1has
a weak Lipschitzian property in the sense that there is a constant C-2 > 0 such that

i i

Hl 2
(6)

where wc define the set difference Kf ={u— v : u, v 6 A',} C V. The above assumption
generalizes those in [33], [34], [35] for the case of A', being a subspace, for which Kf = A\.

Furthermore, wc will paint each of the sets A'i,...,A'm one of c colors, with the colors
numbered from 1 up to c, such that sets painted the same color k G {1, ..., c} are orthogonal in
the sense that

2

(7)Vi

i6/(fc)

' iel(k)iG/(fc) 7 i£/(fc)

where /(A:) = {2 G {1,...,m} : A', is painted color k}. See [12, §4.1], [35] for similar orthogonal
decompositions in the case XxK x is a subspace. Thus 7(1) /(c) are disjoint subsets of {1, ..., m}

(F'(u) - F'(v),u-v) > a\\u - v\\\ Vu,v £K, (3)

K = > A'
1= 1

u = x and l -f ! || 2 <C\ u - v
i = l i=l ' 2 = 1

'=i j=i S=i' 1 "'" m / z=i

Vid.j G K,Uij G K®,Vi G A'®, i,j = 1,...,m,

lI v. II 2 - Vvi 6 /ff , i G /(fc),

» ,'a r ( l. \
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whose union is {1, ..., m} and I(k) comprises the indexes of the sets painted the color fe. Although
c = mis always a valid choice, in some of the applications that wc will consider, it is essential that
c be independent of m. In the context of a network flow problem, each set Xi may correspond
to a node of the network and sets are painted different colors if their corresponding nodes are
joined by an are. In the context of a partial differential equation defined on a domain fl C 3?d ,
each set A', may correspond to a subdomain of fl and sets are painted different colors if their
corresponding subdomains intersect (see §6, §7 for details).

Remark 1: It can be seen that condition (6) is implied by the following strengthened Cauchy-
Schwarz inequality (also see [29, p. 155], [39] for the case of quadratic F and subspace Xi):

with Ci being the spectral radius of the matrix Z — [cij]fj—i, assumed to be symmetric.
Remark 2: For locally strongly convex problems, the constants er, C\, C2may depend on u,v,
Vi, Wij, Uij. In this case, the subsequent analysis should be viewed as being local in nature, i.e.,
it is valid when the iterated solutions lic in a neighborhood of the true solution (see §7).

3 An Asynchronous Space Decomposition Method
Since Fis lower semicontinuous and strongly convex, for each (u\, ..., um ) GK\x •  x Km and
each i G {1, ..., m}, there exists a unique w% G A', satisfying

(9)

(see [19, p. 23]). Let 7r 1 (ui, ..., u m ) denote this w l . Then (tti, ..., 7rm ) may be viewed as the
algorithmic mapping associated with the block Jacobi method for solving (1). Consider an
asynchronous version of the block Jacobi method, parameterized by a stepsize 7 G (0, 1] which
for simplicity wc assume to be fixed, that generates a sequence of iterates (ui(t), ..., tim (<)),
t = 0, 1, ..., with (ui(0), ..., Um(0)) G A'i x•• x Km given, according to the updating formula:

(10)

where wc define

(11)

(12)

and Tl is some subset of {0, 1, ...} and each Tj(t) is some nonnegative integer not exceeding t.
Since each A', is convex and 7 G (o,l], an induetion argument shows that (u\(t), ...,um (t)) G
A"i x  • • x Km for all t — 0, 1, ...

Wc will assume that the iterates are updated in a partially asynchronous manner [5, Chap.
7], i.e., there exists an integer B > 1 such that

(13)

(14)

Wc say that a color k G {1,...,c} is active at time t if there exists an i G I{k) such that t € T*.
Recall that I(k) indexes those sets painted the color fe. Denoting by etc t the total number of
colors that are active at time t, wc will also assume that

7<min {2sb^}' I=o - 1 (15)

Notice that 7 does not depend on m nor on C\. Although (15) may give a very conservative
value of 7, this can be remedied by starting with a larger 7 and decreasing 7 whenever "sufficient
progress" (defined in any reasonable way) is not made and (15) is not satisfied.

(F'(vjij + un) - F'{wlJ ) ) vt ) < eylluyllUvill, Vwij G K, Uij G K?,Vi G Kf ,

F ( 5Z Uj + Wi ) - F [ XI uj + vi ) ' v^ e A"

Ui(t +1) = Ui(t) +7Sj(t), i = 1,...,m

Si(o = fwi(t)-ui(t) iiteT
[ 0 otherwise,

Wi(t) = TT.fu^T^O),...,^^^))),

{M + 1,-,t+ B-l}nrVØ £ = 0,1,..., Vi,

0< t - T-(t) <B - 1 and rl{t) = t Vt GT\ Vi,j.
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Remark 3: The above asynchronous method models a situation in which computation is
distributed over m processors with the ttfa processor being responsible for updating u, and
communicating the updated value to the other processors. T' is the set of "times" at which u,
is updated by processor i (by applying :: to its current copy of («i u m )): u,(O is the value
of u, known to processor i at time t: and Tj(t) is the time at which the value of u 3 used by
processor i at time t is generated by processor j. so t - Tj(t) is the communication delay from
processor j to processor i at time t. Thus, the processors need not wait for each other when
updating (u,)^. and the values used in the computation may be out-of-date.

Remark 4: The assumption that r/(t) = t can perhaps be removed through a more careful
analysis. though this seems to be a reasonable assumption in practice. Intuitively. (13) says
that each component u, is updated at least once every B time units. and (14) says that the
information used by processor i from processor j should not be out-of-date by more than B
time units. This assumption of bounded communication and computation delay is needed for a
convergence rate analysis.

4 Convergence Rate of the Asynchronous Method
In this section wc prove that the iterates (tti(t) Um(t)), t = 0.1 generated by the asyn
chronous method (10)-(15) attain linear rate of convergence. with a factor that depends on
a.Ci. C-2-c and B.~; only i^see Theorem 1). While parts of our proof uses ideas from the analysis
of asynchronous gradient-like methods [5. §7.5], [37], a number of new proof ideas are intro
duced to account for different problem assumptions and different natures of the Jacobi and
Gauss-Seidel algorithmic mappings. To simplify the notation in our analysis. define

(16)

for all i and t. li t 6 T x , then the definition (12) of Wi(t) and the fact that r,'(f) = t and Fis
Gåteau-differentiable imply Wi(t) satisfies the optimality condition

(17)

Our analysis will be based on estimat es given in the followmg two kev lemmas

Lemma 1 (Descent Estimate). Lei A\ and Ai

(18)

For t — 0. 1 wc have

sj(r)

Proof. Fix any time t G {0. 1. ...}. Recall that etc t is the total number of colors active at time t
and. without loss of generality. wc assume that the first etc t colors are active. Then s % (t) — 0 for
all i G I{k) and k > et.c t . so by defining

and using (16). (10) and the convexity of F. wc have

j = \ j=l

{F 1 {zi(t) +wi(t) - Ui{t)),Vi - Wi{t)) >0. Yr, £ K

be defined by

Ai = . Ai = - --) A 2.a 4

in t-t-B-l m t-l

F(u(t + B))<F(u{t))--yA 1 Yé Yl + A '2 Yl Yl

j= l r-t j=l r=t—B+lJ= l T= t

ek (t) = s -(0

F(u{t + l)) = F u(t)+7> si{t)]





(19)

Since u(t) G K and u(t) + efc(t) € K, the strong monotonicity of F' on A" given in (3) implies

(20)

Define

If t e T l . then setting u, = Ui(t) in (17) and noting that s,(/) = Wi(t) - Ui(t) (see (11)). wc
obtain that

If t £ T l . then Si(t) = 0 and the above inequality holds trivially. Combining the above inequality
with (7) and (8) and (20), wc obtain that

<

Substituting (21) into (19) and using (6) yields

G

fc=l iel(k) '
( c< \

=Fl(1 - ct7KO + + e fc (t)) jfc=i '

< (1 - cn )F(u(t)) +-> F(u(t) + e fc (o)

= F(u(t)) +1 J2 ( F ("(0 + - F(u(t)) jk=\ -^

F(u(t)) >F(u(t) + ek (t)) - (F' (u(t) + e k (t)) ,ek (t)) + |||e fc (OI| 2

J m
<f>)(t) = k (ri(t))+ u*(o. J =0,1. ....m.

Then ø lo {t) = u(t) and o'in {t) = z x {t) and

ø l: {t)-ø': _ 1 (t) =uj(rj(t))- uj(t) G Kf, j = 1,...,m

= -(F'(Zi (t) + Si (t)) - F'(u(t) + Si (t)), Si (t)) - (F'(u(t) + 8i(t)),si(t))

-Y^(F\o)(t) + s^t)) - F' (ø)_At) + - (F\u(t) + s^t))^^)).

[F(u(t) + ek (t))-F(u(t))\
er Cf

fe = l i€/(fc) fe = l ig/(fc)

]T(F'(u(O) + Si(t)), Si (t)) -| J2 'I 5 ' (Oil 2I=l !=1

+ Sl (O)-F'(^_ 1 (/) + s ,(o),.s .(O)~|X]lk 1 (OII 2 . (2i).=1 J=l " .=1

F(u(t + 1)) < F(u(t)) + jC2 122 -TaK

- ,§l>(Ofi = l





Since t — B + 1 < T l (t) < t for all i and j, wc also have from (10) and the triangle inequality
that

where the second inequality uses the identity ab < (a + 6 )/2 with a and 6 being the two

square-root terms multiplied and divided, respectively, by B l^ A y 27C2/IT. Applying the above
argument successively to t, t + 1, ..., t+B — 1 and wc obtain

2

This proves the lemma.  

The next key lemma estimates the optimality gap F(u(t -f B)) — F(u), where u is the unique
solution of (2).

Lemma 2 (Optimality Gap Estimate). Let A3and A\ be defined by

(25)

For t = 0, 1, ..., wc have

sj(r)f

Proof. Fix any t G {0, 1, ...}. For each i £ {1, ..., m}, let t l denote the greatest element of X"

(26)

Wc also have from (10) and (16) that

For notational simplicity, define

I

/ t-1 \ 2 t-1

\r=t-B+ l / T=t-B+l

Combining (22) and (23) yields

F(u(t + 1))

<F(u(i)) + 7 2 C2 V/B^ ]T ||-i(T)|N"f 2||-i(0IN" -7§£lMol| 2 (24)j=l T=t-B+ 1 ' 1= 1 ' " I=l

<F ( u(0)-f73^E e ii-iwna -7ff;ii-i(oii aj= l T=t-£ + l I=l

F(u(t + B))-F(u(t))

' j= l r= t j= l r=t-B+ l

c2 b 2 sel cl b , 3C2 ecifcj
2 <T Z O"

F(u(t + B))-F(u) < {1 - -y)(F(u{t)) - F(u))
m t +B-l m t-l

+ 7^ 3 Z H || Sj (r)|| 2 +7 3 A4^ 51j= l r=t j=l r=t-B+l

less than t + B. Then, wc have from (11) and (17) that

(F'(; t (O + s l (t l )),vl -w,{t 1 )) >0, Vu, G K

Ui (t +B) = Ui(t l )+-ysi(t l ),

u(t +B) = ]Tv,U l +l) = 53t*i(t i )+7^ai (< i ).
= 1 =1 = 1

w{t) = j2 w^ t '^ å(t) = j2 u >( i ')
= 1 = 1
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By assumption, there exists u x € Xi, i = 1, ..., m, such that (5) holds with v t = w l (t t ), i.e.,

(27)

Then (vi, ..., um ) is a solution of the convex program (1) and, by F being Gåteau-differentiable,
it satisfies the optimality condition

Defining

+

where the third inequality uses (6) and (29); the fourth inequality uses (27) and the
(see (10), (11), (13), (14)),

fact that

1m,m v $
ii = Vui and Vll^^i 1 )- ut || 2 <Ci||ii;(O~w

y2(F'(u) t Vi -vi) >0, Vui e Xi, i = 1,...,m.
1=1

<f>)(t) = J2wk (tk )+ Y^ MrL(t 1 )), i = 0,1,-,m,
k = 1 fe =j+ 1

wc have that (^>o(O = 2 i(^ ! ) an<i Øm(O = "'(O and

<t>)(t) - ti^it) = Wj (tj ) - UjiTJie)) e Kf, j = 1,...,m.

Setting Vi — ii, in (26) and v x — wl (t l ) in (28), we obtain that

(F'(w(t)) - F'(u),w(t)-u\ < (F'(w(t)),w(t)-u\
\V// \ v / /

J2/f' (w(t)\ -F' L(t l )\ , Wl (t l ) -ui\

J2(f1 Lit')) -F' L(t l ) + s l (t i )\wi (t i ) -uA

J2Y, (^tøiO) - mo -
I=l j=\

+J2 l F' ( Zi{tl) ) - F' (z^ l) + s^ l} ) - wi W - ~ui )
m 1

Ca(^.-mKm ||ui (T;(**))-«;J-(«i )|| ay('^||«;i (O-ui

+ Ca^lM«*)|| 2W^|K(O-ui|| 2 ] aI=l ' \ ,=1 /
/ m t+B-2 >. \

+ CicJ^riMOl^yiMO-u!!.

UjiTJPV-WjtfW 3 = \MTJ{ti ))-Uj (t?)-8j (t>)\\ 2
< 2\\uj {T ij (t i ))-uj {tj )\\ 2 +2\\sj (ti )\\ 2
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t + B-2

Also, the strong monotonicity (3) of F' on K implies

which together with (30) yields

+ —HElM'''!! 2x i= l (31)

Next, since F'(w(t)) is a subgradient of F at iu(i) [17, p. 23], wc have

F(w(t )) - F(u) < (F'(w(t)),w(t)-u),

so putting li, = u, in (26) and adding it to the above inequality yields

F(w(t)) - F(u)

(32)

where the second inequality uses (30) and (31) and the last inequality follows from the identity
(a + b) 2 < 2(a 2 +6 2 ).

Next wc estimate F(u(t)) — F(u(t)). Let t = max,=i,..., m t l and. for each i G {1, ...,m} and
r e {t, ...,i}, define

(33)

and hence, by (33), that

(F' ( 2l (r) + Si (r)) , a,(r) - ut (r + 1)) = (F' (e,(r) + Si (r)) , Ui (t) - Ui (r + 1))

Using this and defining

, t + B-2 \ 2

< 27 2 ( Y, IMT )H) + 2 l! si(<J')ll 2+ 1 '
t + B-2

< 47 2 B Y, W sÅr)\\ 2 + 2\\sj (tj )f.
T =t-B+ 1

(F'(w(t)) - F'(u),w(t) -u)> a\\w(t) - u\\ 2 ,

\\w(t)-u\\ < C}£l(f^(4<y2 B J 2\\ sAT)\\ 2 +'2\\sAt J )\\ 2 ))~T = t-B+ 1 '

< JjF'(u<(o) - F'(z>(t l ) + Sl (O),u, t (O - Ui)
1 = 1

(E(4^ E i^(-)ii 2 +2ik(^)ii 2 )) 2 + (Eiis^l )ii 2 ) 2J= l T =t-B+ 1 ' != 1 ' /

< t+JZ IM')ll 2 + 3f>(OlI 2} = l T = t-B + 1 I=l

it,(r) = Ui(min{r, i l }), u(t) — \ Ui{t).
= 1

Then, for each i G {1, ..., m} and r £ {t, ...,t — I}, either Uj(r +1) = Ui(r) so that

(F'( 2t (r) + sl(r)),{5 l (r)),{i l (r)-ut (r + l)) =0

or u,(t +1) Ux{t) so that t£ Tl and r < t x , implying by (11) and (17) that

(F'(*i(T) + *(T)),Ui(r)-u;i(T)) >0

7 (F'(c 1 (r) + S ,(r)), Ul (r)-u,1 (r)) > 0.

] m

<P){t) = Uk{T +1) + LL k {T'k {T)), J=o, 1 m
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wc obtain that

i i

(34)

i

i

where the first inequality uses the subgradient property of F' (u(t + 1)) [17, p. 23]; the third
inequality uses (6); the fourth and fifth inequalities use (33) and (10) and an inequality analogous
to (23); the last inequality uses the identity ab < (a 2 + b 2 )/2 with a and 6 being the two square
root terms. Summing the above inequality over r = i, t+ 1, ..., t— l and observing that u(t) — u(t)
and u(t) = u(f), wc then have

IMOII 2

Finally, using the convexity of F and 7 £ [0, I], wc see from (11) and (32) and (35) that

F(u(t + B))-F(u)

F(u(t + 1)) - F(u(t))

< -{F'(u(t + 1)),u(t)-u(t + 1))

< J2(F'(zi(T) + Si (r)) ~ F'(u(t + 1)), u^r) - u{ (t + 1))
I=l

- F'(u(t + l)),Ui(r) - u,(r + 1))
.=1

+ 2l (r) + Si(r)) - F'(zi(T)),Ui(r) - u,(r + 1))

J 2a (T)) - F'(^}(t)), ut (r) - ui{r + 1))
I=l j=l

+ F'^ {T^ + Si^ - F'MT)),Ui(T) -ux (r + 1))
I=l

< CafV.jnax ||#_i(r) - 2V f £ ||*(r) - u,(r + 1)|| 2 )
V J=l '- 1 m / \ i= i /

+ C-2 C i=rnaxm || Sl (r)|| 2 j"( f^ ll^(r) - Ui(r + 1)|| 2 j "
— m

< C27 (X]( j=maxJ|^(T + l)-uJ (T;(r))|| 2 )y^||St (r)

+ C27 (^|| Sl (r)|| 2 )
1 = 1

< E il^)l| 2 + 7^£lMr)|| 2

1 = 1 ' !=1

m i-l r -fl m i—l
F(u(t))-F(u(t)) < i^J2H E ii-;mii 2 +^£E

< -r3^f-fl E II^(-)II 2 + 7^E E lk(^)H 2 . (35).7 =1 r = f.-B+ l I=l r= t

= Fl + B)) -F(u)
I=l '
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Wc will now use Lemmas 1 and 2 to prove our convergence rate result. To simplify the
notations, define

By Lemmas 1 and 2, wc have

(36)

(37)

where Ai, A2, A3, A\ are given by (18) and (25). By (15), wc have A\ > 0. Choose 7 sufficiently
small so that

(39)

for n= 1, 2, ... Wc prove this by induction on n. Clearly (39) holds for n=l by our definition
of a. Suppose (39) holds for n — k — 1, where A: > 1. Multiplying (37) by Al/A3 and adding it
to (36) gives

which together with the inductive hypothesis max{at_i, j 3' 2 bk-\ } <ap and (38) yields

This shows that (39) holds for n — k, completing our induction proof.
Thus, wc have shown linear rate of convergence (in the root sense) for both an and bn , with

a factor of g. The latter implies u, (t), t = 0, 1, ..., is a Cauchy sequence for each i and hence it
converges strongly. This is summarized in the theorem below.

= (<l)+7(Wi(il) ~ Ui(il))) ) ~ F{jl)\ I=l '

= F((l--y)u(t)+'rw(t))-F(u)
< (l-i)F(u(t)) + jF(w(t))-F(u)

= (1 - i)(F(u(t)) - F(u)) + j(F(w(t)) - F(u))
2 m t +B-l m t + B-l

J=l T=t-B + 1 1= 1

Using 7 < 1 then proves the lemma.  

m kB-l
ak = F(u(kB)) - F(u), b k =J 2J 2W S^ T^^ fe = I'21 ' 2

j=l r=kß-B

eik < CLk-i — jAibk + 7 A-zbk-i,

ak < (1 — 7)ajt-i + jAåbk + 7

o = nmx{(l + 1 (l + (l-7)^+73/2 (^ + J4r 1 (7 1/2 +7'2^)}<l. (38)

Also, define a = max{ai,7 ' b\]/g. Wc claim that

max{a n , 7 b n } < agn

( 1 + £)ol <(1 + (1 _ 7) £) Ot _ 1+73/^ + (73^_l)

ak <(I+fy (l + (l-7)^ + 7 3/2 (A2 + 1 < a Q k
Similarly, (36) and at > 0 give

3/2 a v 1/2 , 2 A t 3/2, \7 A\b k <7 ' a fc _i +7 ,4-2(7 ft fc-i)

which together with max{at_i , ~f"' 2 6^_ i} < agk l and (38) yields

73/afc<Ar 1 (7 1/2 +7a i4a)ae fe - I<af1 <a ff\
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Theorem 1 Consider the minimization problem (2) and the space decomposition (4) o/§2 (see

(3), (5), (6), {!)). Let (u\ (f), ...,um (t)), t = 0,1,..., be generated by the asynchronous space
decomposition method o/§5 (see (10)—(12) and (13), (14) Jifii/i stepsize 7 satisfymg (15), (38).
Then, ihere exist a > 0 and p E (0,1), depending on a,C\,C-2 and B,j only, such that

where u(t) is given by (16) and u denotes the unique solution of (2) . Moreover, u(t) converges
strongly to u and, for each i 6 {1, ...,m}, Ui(£) converges strongly as t — 00.

5 Convergence Rate of Block Jacobi and Gauss-Seidel
Methods

It is readily seen that the following block Jacobi method is a special case of the asynchronous
space decomposition method (10)-(12) with T l = {0,1,...} and rj(/) = t for all i,j, t (so 5 = 1
and et = c). Thus, Theorem 1 can be applied to establish its linear convergence and obtain
estimate of the factor o under the assumptions of §2. Moreover, by observing that in this case
the left-hand side of (23) is zero so that Lemma 1 holds with A% = 0, the stepsize restriction
(15) can be relaxed to 7 < 1/ct.

Algorithm 1

Step 1. Choose initial values Ui(0) E A\ , i — 1,
in §2.

Step 2. For each t = 0. 1, ..., find Wi(t) E Id m parallel for i = 1, ...,m that satisfies

siep 3. set

and go to the next iteration.

The following block Gauss-Seidel method is also a special case of the asynchronous space
decomposition method (10)-(12) with 7 = 1, T* = {i — 1 + fcm}fc =0,i,... and r-(t) — t for all
i,j, t (so B — m and etc t — 1), Here Theorem 1 cannot be directly applied due to 7 = 1 possibly
violating (15). However, by observing that in this case the left-hand side of (23) is again zero so
that Lemma 1 holds with A2— 0, the proof of the theorem can be easily modified to establish
linear convergence of this method under the assumptions of §2, with factor g depending on
m, a, Ci, C-2 only. Moreover, by grouping sets of the same color into one set, wc can ensure that
m = c, where c is defined as in §2.

Step 2. For each t—o, 1, ..., find u l (t +1)E A\ sequentially for 1= 1. ..., m that satisfies

Step 3. Go to the next iteration.

F(u{nß)) - F{u) < agn . n = 1,2,...

m, and stepsize 7 = l/c, where c is defined as

F f Vu,f)+Wi(t) ) < F iy^Ui(t) +Vi I , Vt>, G A
\l\  )

Ui(t + 1) = Ui(t) + -y(wi(t) -Ui(t))

Algorithm 2

Step 1. Choose initial values u,(0) £ A',, i = 1,...,m.

F f 53ui (t +l) + tii (t +l) +^^(0 j

- F ( Yl Uj +x)+ Vi + S Uj w )  Vui eKi  \j<iJ' > i /
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The above two methods for solving (2) were studied in [30] (also see [31], [32], [33]), where
convergence of the methods was proved under weaker assumptions. However, no rate of conver
gence result was given. In [34], linear rate of convergence for the above two methods was proved
for the unconstrained case of A' = V. In the finite-dimensional case of V = !R", linear rate of
convergence for the Gauss-Seidel method can also be inferred from the results in [22], [23] and
references therein, but our estimate of the convergence factor is new.

In [34], the minimization subproblem at each iteration is solved inexactly. Wc can do likewise
in the constrained case. In particular, the proof of Theorem 1 (see (21) and (26)) suggests that
the exact minimization condition (17) can be relaxed to the following inexact minimization
condition

with 0 < cto < a  However, a would need to be known explicitly and both 7 and g would depend
on <jq.

6 Applications to Convex Programming
In this section wc consider the Euclidean space V = V = Wl , which is the space of n-dimensional
real column vectors with duality pairing (f, x) —fTx and norm ||x|| = Vx T x, where x T denotes
transpose of x. Wc will discuss choices of the space decomposition (4) and the corresponding
estimates for Ci, Ca, c in (5), (6), (7). In the case of nonlinear network flow, wc will also relate
our asynchronous method to those studied in [5, §7.2.3], [38].

6.1 Prinial Applications

Consider the problem (2). where F : 3i n 1— 3t is a differentiable convex function and Kis a
nonempty polvhedral set in Ji n . Then Fis continuous [26, p. 82] and continuously differentiable
[26. p. 246]. Wc assume that the gradient F' = (^-)"=1 is strongly monotone and Lipschitz
continuous on A and wc choose a space decomposition (4) such that each A', is a polvhedral
set.

Since each A , is a polvhedral set, a result of Hoffman on the Lipschitzian behavior of solutions
of a linear system with respect to the right-hand side (see [11]) implies that, for any v t E AL
i = 1 m, there exists u, E K% satisfying (5). where the constant Ci depends on 7?; and certain
condition numbers for A',, i = 1, ..., m. In cases where each A', has a simple structure, such
as the Cartesian product of closed intervals, C\ may be estimated explicitly. For a coloring of
the sets, if A', and K 3are not orthogonal, i.e., (vi)T Vj 0 for some v x E A',, Vj € Kj, then wc
paint them different colors. Let c be the maximum number of sets Kj that are not orthogonal
to an arbitrary set A',. Then an analysis similar to that used in §7.1.3 shows that (6) holds with
C-2 — Le. where L is the Lipschitz constant for F' .

6.2 Dual Applications

Consider the linearly constrained convex program

(40)

where G : ;)t n 1— 9i is a strictly convex differentiable function, 6 E Wl , and A E dimXn has
nonzero rows. Wre assume there exists x E 9?" satisfying Ai = b. By attaching Lagrange
multipliers A E 9x m to the equations Ax =b in (40), wc obtain the Lagrangian dual problem:

min G*(A T \) - bT X, (41)

where G' is the convex conjugate (also called Legendre-Fenchel transform) of G dermed by (see
[19]. [26])

(F' (zi{t) + Wi (t) - Ui (t)) , u, - Wi (t)) >-y|K(t) - u,(o|| 2 , Vt, 6A\

minimize G(x) subject to Ax =b,

G'{u) = sup {u T x - G(x)}
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The convex programs (40) and (41) are dual in the sense that one has a solution if and only
if the other does and these solutions satisfy G'(x) = A A [26. Cor. 28.3.1 and 28. 4.1]. Ising
b — Ax. wc can rewrite the dual problem (41) in the form of (2) with

(42)

Wc assume that (G~)' is strongly monotone and Lipschitz contmuous on -R", so that F satisfies
(3) for some a > 0. If G is twice difTerentiabie. this assumption essentially amounts to G" håving
bounded eigenvalues and the Hessian (G") -1 håving bounded entries on 9£n . Let u denote the
unique solution of (1) and let A : denote the ;th row of .4.

Wc can decompose K in the form (4) with subspaces

First wc show that. for any i\ £ A',, i = 1 >n, there exists u, £ K\ satisfying (5). where

(43)

with D being the diagonal raatrix with diagonal entries ||j4?*||, i= 1 m, and B being any
submatnx of .4 comprising linearly independent columns of .4 spannmg the column space of .4.
To see this. notice that u= A A for some A £ :}i m and i', = -4, fi, for some fi{ EK\ Moreo\ r er.
u, £ A',, i= 1 m. satisfy =l u, =u if and only if u, = .4^ A : and .4 r A = Å1 X for
some A = (A,)-^. Thus. minimizing X^H=i !l Ul ~ u*ll su bject to u, £ A", and Y =̂l u, =u is
equivalent to minimizing

subject to .4 T A = .4 r A. where /i = (/jJ^Lj. This in turn is equivalent to minimizing ||jD(A — /i)|| 2
subject to ,B r A = 5 r A. whose solution is X=fi + D~'2 B(BTD~ 2 B)~ 1 BT (X - /i). Then

\D(X-ri\\

The formula for Ci (43) simplifies if .4 has full row rank. in which case B is square and invertible.
If .4 does not have full row rank. wc could remove the redundant rows. but our experience with
network fiow problems suggests that this removal can slow the convergence of Gauss-Seidel
methods on the problem [38]. Since two subspaces A", and A', are orthogonal if and only if
AiAj =0. wc can color K\ Km as discussed in §6.1 and show that (6) holds with Cj = Le,
where L is the Lipschitz constant for (G*)' and c is the maximum number of rows Aj that
are not orthogonal to an arbitrary row .4,. If wc replace the equation Ax = b in (40) by an
inequality Ax < b. wc would have an additional constramt of A < 0 in (41). so A" would not be
a subspace and the estimate (43) would need to be modified accordingly.

In the case of a nonlinear network fiow problem [27], where .4 is the node-arc incidence
matrix for a connected digraph with m nodes and n arcs. i.e.. every column of .4 has one 1 and
one — 1 in two of its rows. and a 0 in the remaming rows. wc can estimate C\ explicitly in terms
of 77i and 77 as follows: For any r, £ A',, i= 1 tn, wc have u = .4 r A = (A* — A/)?=1 . lk h for
some A = (Åi)£Lj and v, — Å[fM for some /i, £ di. where k ~ {i.j) means that column k has a 1
in row i and a —1 in row j or. equivalently. are k is directed from node i to node j. Choose any
spanning tree for the digraph and choose any node i. Let A, = A, -f- (//; — Åj) and u, = .4, Å,
for all nodes i in the network. Since each node i can be reached from i via a simple path P, in
the spanning tree, wc have

\Xi-m (A* - fik - A; + fli)

F(u) = G'(u) - x T u. K={u € ->i n :fi = .4 r A for some A 6 ftm }.

h\ ={vi S»n : Li, = .4,T A, for some A, € :K}

d = \\D~ 1 B(BTD~ 3 B)~I \l

y \\A[Xi - -4^ = i| 2 =Y, ll^l| 2 |Ai - 2 = \\D(\ - n)\\ 2
I=l I=l

D~ I B{BTD~2 B)~ l BT{X- lx)

< Cl \\BT (X- fji)\\ < Ci||i4T (A-/i)|| = C, u-^t
I=l

(A* - uk - \i + m) +
[k,l)€P^ [k.l)£P-
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(A* — A| — fik + fit)(A* — A/ — uk + fit) +

(k.l)£P-

<

:

Afc — A; — Hk + Mil"< \A
(fc.i)€P,

hi u — y vp

where Pt+ and Px denote the set of forward arcs and backward arcs in P, and hi denotes the
number of arcs in P,. Thus.

where rf, is the number of arcs incident to node i. This shows that (5) holds with C\ =

\/y^."Li djhj. Notice that Yl^-i d x — 2n and /i, is at most the diameter of the spanning tree.
Since the choice of the spanning tree and the node i are arbitrarv. wc can choose them to

minimize C\. Also. .4,^4^ = 0 if and only if nodes i and j are not joined by an are. so
c = max{Ji dm } and the coloring of A'i Km is equivalent to graph coloring on the digraph.

In the above case of a nonlinear network fiow problem, if G is also separable in the sense
that G(x) = for all x — (zj)"_a and G 3 :tR — d\. then t,(vi um ) given by

(9) depends on only those u-K for which node k is a neighbor of node i and the asynchronous
method (10)-(12) reduces to the asynchronous network relaxation method studied in [5. §7.2.3]
and [38]. It is known that iterates generated by this method converge for any stepsize •) G (0. 1).
assuming G" is convex differentiable and (41) has a solution (G need not be defined everywhere
on di n and (G~)' need not be strongly monotone or Lipschitz continuous). However. no rate
of convergence result was known. By applying Theorem 1. wc obtain that this method has a
linear rate of convergence, assuming (G*)' is strongly monotone and Lipschitz continuous and
the stepsize is sufficiently small.

7 Applications to Partial Differential Equations
In this section wc consider the Sobolev space V — Hq(Q) = {v S H l^) : r = 0 on Ofl} with

duality pairing (u, v) = /n(^i _1 djudjV + uv)dx and norm ||v|| = IMljf^fi) = i 1 '- 1 ') 1 - where
Q is an open, bounded, and connected subset of få* with Lipschitz continuous boundary dil,
H l {Q) ={v e L 2 {fl) : a, r G L2 (Q),i = 1 c/}, and dx v is the locally Lebesgue integrable

real function defined on Q. satisfying JQ dt v odæ— — J i'§f- dx for all o G G^° (Q) —{o G
C°°(Q) : o has compact support} [15. pp. 10-13]. Wc will consider two nonlinear elliptic partial
differential equations formulated as the minimization problem (2) and, for each. wc will consider
the space decomposition (4) corresponding to, respectively, DD and MG methods. and wc will
develop corresponding estimates for C\ in (5), for C-2 in (6) and for c in (7)-(8). Throughout.

wc denote |j| = (£?i=l x 2)? for any x = (x,)f=1 G 3id .
The first partial differential equation corresponds to the minimization problem (2) with

(k,l)£P +

YJ \^k —Ai — fik +/xj

-

- X^ |Ajt-Ai-/ifc +/i,| 2 j
i~(«.-.J)

p=\

i=l i=l I=l I=l p=l

ff d \
A' = //o(fi). (F'{u),v)= f y]ai(x,u,Vu)diV + ao(x,u,Vu)v-fv\dx, (44)Jn V ,_, /





where / G L 2 (Q) and Vu = (<9,-ii)f=1 is the gradient of u [16, p. 302], It is assumed that each
nonlinear coefficient a t (x,p) is a real-valued function of x = {xJ ) J — l and p = (pk) fc _ 0 and is
sufficiently smooth in the sense that

(45)

(46)

for all (x,p) GO x 3id+l and j=o,l, • •  , ef, with L a constant. In addition, the matrix
r i d
jr2j-(x,p)\ is assumed to be uniformly positive definite, i.e.,

(47)

for all (x,p) G Q x 3? + , with o > 0 a constant. Under these assumptions, the problem (2),
which has the equation formulation

v^^(fi), (48)

H&(n) (see [16, p. 302] and [21]). Moreover,is well posed and has a unique solution u G
straightforward calculation shows that

(49)

for all u, v, w G H l (Q), so F' is strongly monotone and Lipschitz continuous.
The second partial differential equation corresponds to the minimization problem (2) with

(50)

where / G L'(fl) and d G {2, 3}. The corresponding equation is the simplified Ginzburg-Landau
equation for superconductivity:

-&u + u 3 I in a
0 on dQ, (51)u

where u is the wave function, which is valid in the absence of internal magnetic field [36], and
Au — Y^ . di(diu) denotes the Laplacian of u. Notice that F' has the form (44), with ao(x,p) —
/70 and at (x,p) = pr , i — 1,...,d, which does not satisfy (47). Nevertheless, straightforward
calculation shows

for all ii, v G H l (£l). Since the semi-norm |  |i,n is equivalent to the norm || •|| on Hq(Q) [15,
p. 12], this shows F' is strongly monotone on Hq(Q).

In §7.1 and §7.2 below, wc will study asynchronous DD and MG methods for solving the
above two equations (48) and (51). Wc will analyze the convergence rate of the methods by
estimating the constants d , C2and c for the corresponding space decomposition of the finite
element approximation subspace and then applying Theorem 1. In particular, wc will show that
the above two equations can be solved in parallel with a convergence factor that is independent
of the finite element mesh size h, i.e., the number of iterations to reach a desired solution
accuracy is independent of h.

10

a, e c\n x^+1 )

max <\a l (x,p)\, ~(x,p) , —Z-(x,p) ><L
j = i.2....,i dxj dpk

dd d

i=o fc=o z=o

(F'(u),v)=O

/ J—i? / \ 7~~> ' / \ \ \ II II 2
(F (u) — F [v), u— v) > a\\u — v\\ .

(F'(u)-F'(v),w) < L(d + l)\\u-v\\\\w\\,

K = Hfon), F (v) = I Q|W| 2 + iu4 - fv^j dx,

(F'(u)-F'(v),u-v)= / |Vu- Vy\ 2 + (u3 -v3 )(u- v)dx > / |Vu- Vy\ i dx =\u - v\\ M
Jq Jn
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7.1 Domain decomposition methods

7.1.1 Decomposition of the domain Q

In DD methods, the domain fl is decomposed into the disjoint union of subdomains fl r , i =
1 m, and their boundary, i.e., fl U dfl = U^ft, U3fi,) and fl t nO, = 0 for i j. This is
illustrated in Figure 1 where a rectangular-shaped domain in !R 2 is decomposed into the disjoint
union of m = 25 rectangular-shaped subdomains and their boundary. The subdomains, which
are assumed to form a regular quasi-uniform division (see p. 124 and Eg. (3.2.28) of [15] for
definitions) with a specified maximum diameter of H , are the finite elements of the coarse mesh.
To form the fine mesh for the finite element approximations, wc further divide each fli into finite
elements of size (i.e., maximum diameter) h such that all the fine-mesh elements together form a
regular finite element division of fl. Wc denote this fine division by Th- For each fli, wc consider
an enlarged subdomain f2, = {e 6 Th : dist(e, fli) < B}, where dist(e, fli) = minæ g e ,yen, \x — y\.
The union of il, , i = 1,...,m, covers fl with overlap proportional to 6. Let Kg C Hq(Q)
and K C Hq(Q.) denote the continuous, piecewise rth-order polynomial (r > 1) finite element
subspaces, with zero trace on dfl, over the /f-level and /i-level subdivisions of fl respectively. For
i = 1, ..., m, let Xi denote the continuous, piecewise rth-order polynomial finite element subspace
with zero trace on the boundary dfl % and extended to have zero value outside flf U dfl\ . Then
Kf = A', for i = 0, 1, ..., 77i, and it can be shown that

Til

K Xi,

so the space decomposition (4), with summation index from 0 to m, holds. Wc assume that the
overlapping subdomains are chosen such that each subdomain fl6x and its corresponding finite
element subspace Xi can be painted one of ne colors (numbered from Ito nc ), with subdomains
painted the same color being pairwise non-intersecting. The coarse mesh and its corresponding
subspace A"o are painted the color 0. Moreover, ne should be independent of h. For general
domain fl, finding overlapping subdomains with such property is nontrivial. If fl is the Cartesian
product of intervals, wc can easily find overlapping subdomains with ne =2ifd = 1, and ne < 4
if d = 2, and ne < 6 if d — 3. For the example of Figure I, d — 2 and ne — 4. Then the total
number of colors needed for (7) and (8) to hold is c = ne + 1.

a) The global fine mesh b) Color 0: the coarse mesh c) Color 1 subdomains

d) Color 2 subdomains e) Color 3 subdomains I) Color 4 subdomains

Figure 1: Decomposition of a rectangular-shaped domain in $R 2.

1 = 0
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7.1.2 Estimating C\ for equations (48) and (51)

Let {9 % }™=l be a smooth partition of unity with respect to {fl l }^L l , i.e., 6% G Co°(S"2) with 9 % > 0,
0i — 0 outside of Oi, and #, = 1. Let //, be the finite element interpolation mapping onto
K which uses the function values at the /i-level nodes. For any v G K, let vg be the projection

in the L 2 -norm of v onto A'o, i.e., v 0 GKq and Jn (^o — u)s dx — 0 for all ø G A'o, and let
Vi = Ih(6i(v — vo)). Then, it can be seen that v t £ A', for i = 0, 1, ..., m and satisfy v — ]>^™_ 0 Vi
[29, pp. 163-165], [39, p. 607]. Moreover, by further choosing 0, so that |W,| has a certain
boundedness property, it was recently shown in [35. Lem. 4.1] that, for any s > 1,

where C is a constant independent of the mesh parameters and m. Taking s — 2 and using
the subspace nature of A't , wc obtain that, for any vt £ Xi, i — 1, ...,m, there exists u l 6 A',
satisfying (5) (with summation index from 0 to m), where

Also see [12. Thm. 16] and a work of Dryja and Widlund cited therein for related results. By
choosing the overlapping size 5 proportional to the coarse-mesh size H , the constant C\ will be
independent of the mesh parameters and the number of subdomains m.

7.1.3 Estimating C-i for equations (48) and (51)

Consider F given by (50), associated with the equation (51). By the mean value theorem, for any
u G SR, v € 3i, wc have \u3 -v3 \ = 3\6u+(l-6)v\ 2 \u-v\ < 3(\u\ + \v\) 2 \u-v\ < 6(\u\ 2 + \v\ 2 )\u-v\
for some 9 G [0, I]. Thus, using the continuous embedding of H (Q) in LP (Q) for p < 2d/(d — 2)
and d — 2, 3 (see [15, p. 114], [19, p. 21]), wc have for any u, v £ H 1(fl) and any subdomain fl'
of Q that ii, u G L 4 (Q) and

(r -f —\ r( / |u| 4 dx) 2+ ( / \vfdx) )( / \u- v\ 2 \w\ 2 dx)

< 6 (H u llL4(n') + IK'llL4(n')) ll u - u lli4(n')ll u; llL4(n')

< C (H u ll//i(n') + \\ v W 2HHn>)) \\ u ~ v Whhq')\\ w \\hH^)^

1

where C depends only on the embedding constant. Also, define Qq — f°r convenience, so that
every v G A', vanishes outside of Q, (i — 0, 1, ..., m). Then, for F given by (50), wc have from
the above inequality that, for i,j = 0, 1, ..., m,

< [1 + Cll^tj + u*jllHi(nfnn*) + CH^ill/f^nfnn*)) H uuil//i(nfnn^)ll u llH I(nfn1 (nfnnjA )' ( 52 )

for any u;^ G A", vi:,u i:, G Kj, u, G A',, with a tJ = 0 whenever fi* nQ*— 0. Assume there exists a

constant a> 0 such that \\wij +Uij ||^i (nA nnA) + ll u 'u ll^i (n"nn A ) < « for i, j=o, 1, ..., m. Also,

for £,j = 1 ?n, let f X] —0 if fl* fl fi* =0 and otherwise let e t j =1. Let cbe the smallest
integer such that every subdomain intersects at most c other subdomains. It is not difficult to

(Éw)'sc ci(i + (f)*)|H|,

a -^(l + (f)*)

f  f
/ (u —v)w dx < 6 / \u \u — v\\w\ +v\ u — v\\w dx

Jq' Jq 1

" •((/^*)* + (/w w4*)*)(/a

aij = {F'(wij +Uij) - F'(wij),Vi)

I (Vuij) T Vvi + UijVi + {(wij + Uij) 3 - wfj)vi dx
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show that the symmetric matrix £ — [Uj]™j=i has the following estimate of its spectral radius
(see [35, Corollary 5.1] for a proof):

This together with the estimate (52) yields

II "ull W

Next, by using the fact o* , j É I(k), are disjoint subsets of Q for /c = 1 c, the estimate (52)
yields

i i

1,2

•"oj

I

uo:\\ 2 \\vq\\ Vuqj € A'j , Vdo € A"o

Similar to the above argument, the estimate (52) gives

Wc combine these estimates to obtain

p(£) < max /£tj <c.1= 1 m f '
3 =1

in 7 ri TTI TTI

1= 1 7=l 1= 1 j=l=1 J=l

< (l + CcOVy^ii max || Uij || \\vi\\*—~* < * l = 1,...,TTl

= (1 + Ca)c( =maKm |K|| 2 j (£

oj <(l + Ca)^||itoill||uo|| H i (n«) < (I+C")[£
J=l

< (1 + Ca) y/c
J=l
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with C2a constant depending on Ca.c.c only. Compared with (6) (with i.j —0. 1 m), wc
see that (53) has an extra term on the right-hand side. In the appendix, wc will show that t his
extra term does not affect the convergence rate result of §4. In particular. wc will show that
Lemmas 1 and 2 hold with Ci = C-i + (1 + Ca)^/c. so that Theorem 1 is still valid.

For F specified by (44), associated with the equation (48), it can be similarly proved using
(49) that (53) holds. possibly with different constants C and a.

Upon applying the asynchronous method (10)— ( 12) with the above choice of space decom
position and under the assumptions (13)—(14), wc obtain a parallel DD method for (48) and
(51) whose convergence factor, according to Theorem 1 and the above estimates of C\ and Ca
and assuming the overlapping size 6 is proportional to the coarse mesh size H , is independent
of the mesh parameters and the number of the subdomains.

7.2 Multigrid methods
7.2.1 Construction of the multigrid subspaces

In MG methods, Q is divided into a finite element triangulation T by a successive refinement
process. More precisely, wc have T — Tj for some J > 1, where Tk, k = 1 J. is a nested

sequence of regular quasi-uniform triangulation. i.e.. Tk is a collection of simplexes 7* = {t^ }
of size (i.e., maximum diameter) hk such that Q = UiT,' and for which the quasi-uniformity
constants are independent of k [15, Eg. (3.2.28)] and with each simplex in 7jb_i being the union
of simplexes in Tk. Wc further assume that there is a constant r < 1. independent of k. such
that hk is proportional to r .

For example. in the two-dimensional case of d = 2. if wc construct 71- by connecting the
midpoints of the edges of the triangles of Tk-i, with T\ being the given coarsest initial trian

gulation. the resulting sequence of triangulation is quasi-uniform and r = l/v2(see Figure 2).
Corresponding to each triangulation 7jt, wc define the finite element subspace:

1

0 5

0 0

Figure 2: The multigrid mesh and basis functions.

where 'Pi (r) denotes the space of real-valued linear functions of d real variables defined on r.
Wc associate with Mk a nodal basis, denoted by {ofj^j. that satisfies of G .Vi k and

«', k=i, I=lLevel k = 1

0 0
Level k = 2

0 0
K , i =1.2... .49Level k = 3

M k -{v€H^{Q) : v\ T eVi(r), Yr e T,}.

o, (Xj ) = B{j, the Kronecker function
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where {xf}"^j is the set of all interior nodes of the triangulation Tk. For each such nodal basis
function, wc define the one-dimensional subspace:

Then, (K*)® — K\ and wc have the following space decomposition:

j m.

On each level k, wc color the nodes of Tk so that neighboring nodes are always of a different
color. The number of colors needed for a regular mesh is a constant independent of the mesh
parameters, which wc denote by ne . Then the total number of colors needed for (7) and (8)
(with summation indices adjusted accordingly) to hold is c = nc j.

7.2.2 Estimating C\ for equations (48) and (51)

Let Qk be the projection in the L -norm onto the subspace A4k, which is well defined on
Ho(n) C L 2 (tt). For any v G A", let v k = (Q k -Qk -i)v, k = 1, ..., J. Then, by Prop. 8.6 in [39,
p. 611], wc have

where Co is a constant independent of the mesh parameters and J. By further decomposing
each v as

the above estimate can be refined to show that

where C is a constant independent of the mesh parameters and the number of levels J [35,
§5.1]. Thus, for any v\ 6 A'f, i — 1, ..., n^, k= 1, ..., J, there exists u - € A'f satisfying (5) (with
summation indices adjusted accordingly), where C\ — \/C.

7.2.3 Estimating C 2 for equations (48) and (51)

Let A* denote the support set of the basis function <j>f , for all i and k. Also, recall the constant
r < 1 defined earlier. Then, for any k < I and 1 < i < rik, 1 < j < ni, the following estimate

can be shown, where Co is a constant independent of the mesh parameters and J [35, Eg. (56)].
Then, for F given by (50), wc obtain as in (52) that

(54)

where C is the embedding constant. For any

t — span (ø t ).

K=y > Xi with K = Mj.
fe=l I=l

J

Eli k 1 1 2 /^i ti 1 1 2\\v II < Co ||t;||

k \~^ fe •i u *: k/ k\ ,k

=1

J n k J 'H
u = vy%? and y^y^ikfii 2 < ciiuii 2 .

fc=l t= i fc=i ,= i

!„ II *s f~i dll — k)\i ii w _ r-k
l^ll//i(A^nA^) < <-or '||u||, Vu GA, ,

{F'(w + u)-F'(w),v)

< +C||w + ti||^i (A fc nAij +Cl ||u;||5rl(A t nA i ) j ||"t! // i ( A^nA^)ll l 'll//i(A^nA'y )

< (l + + *i(A^nA^+^lHlii(AW.))^ord('- fe) |H| || V ||,

Vu- e A", u e A',fe , w G A'j,

i, j, k, /, defining

£k,i _ f Co7d"~ fe| , if suppitf) n suppfå) 0;
1J [0; othertwise.
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Assuming there exists a constant a> 0 such that \\w^j + u{^ || 2 + ||u>> || 2 < q for all i,j, k, I
the estimate (54) then yields

With proper ordering of the indices, the matrix £ = [ei'j] 1S symmetric and its spectral radius
p{£ ) has been shown to be less than a constant independent of the mesh parameters and the
number of levels [29, pp. 182-184], Therefore

which shows that (6) holds, with the constant Cz = Co(l + Ca)p(£) independent of the mesh
parameters and the number of levels for the MG approximation.

For F specified by (44), it can be similarly proved that (6) holds with C-i some constant
independent of the mesh parameters and the number of levels.

Upon applying the asynchronous method (10)— (12) with the above choice of space decom
position and under the assumptions (13)—(14), wc obtain a parallel MG method for (48) and
(51) whose convergence factor, according to the above estimates of C\ £ind C-i and Theorem 1.
is independent of the mesh parameters. This method generalizes the BPX multigrid method
proposed in [B], which was used as a preconditioner for linear elliptic problems. Here, the par
allel MG method is used as a solver and is applicable not only to linear, but also to nonlinear
elliptic problems. And it further allows for asynchronous updates.

8 Appendix
In this appendix, wc show that (53) can be used in place of (6) to prove Lemmas 1 and 2 for
the DD method of §7.1, with C-z = C-i + (1 + Ca) s/c. Here, the indices i and j are understood
to always range over 0, 1, ..., m, instead of 1, ..., m.

First, wc note that condition (6) is used only to show (22), (30) and (34) in the proofs. For
(22), if wc use condition (53) instead of (6), then (22) would have C-z in place of C2and would
have the following extra term on its right-hand side:

Correspondingly, (24) would have C2in place of C> and would have the above extra term on
its right-hand side. Using (23) and the fact that il^ , i G I(k), are disjoint subsets of Q for
k = 1, .... c, wc see that

y ) 2> / v £i,i max iKu ii  \\ vi n> Vul ,j v j> v^i g Aj .
fc=i ,=i (=i j=i

J n k J n,

k=\ i=i (=i ]=\

<Co(l + Ca)^)(^^max||ny|| 2)V^^|kfc || 2 )'\ i=i j=i '' ' fe=i I=l '

E = (1 + C«b (J2 IM^oO) - uo(0llilri(n*) )2( 51 ll s»( f )IN

,= 1 r=t-B+l i=l

< (l + Ca)Y^Wc( J 2\\so(r)\A' (j2\\si(t)\Ar=t-B+ l ' »=1 '
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which implies that (24) holds with C-2 = C2+(l + Ca)y/c. The remainder of the proof of Lemma
1 then proceeds as before.

For (30) and (34), a similar argument can be applied to show that Lemma 2 holds with the
above choice of Ci,
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