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Degenerate Convection-Diffusion Equations
and Implicit Monotone Difference Schemes

Steinar Evje, Kenneth Hvistendahl Karlsen

Abstract. Wc analyse implicit monotone finite difference schemes for nonlin
ear, possibly strongly degenerate, convection-diffusion equations in one spatial
dimension. Since wc allow strong degeneracy, solutions can be discontinuous
and are in general not uniquely determined by their data. Wc thus choose to
work with weak solutions that belong to the BY (in space and time) class and,
in addition, satisfy an entropy condition. The difference schemes are shown to
converge to the unique BY entropy weak solution of the problem. This paper
complements our previous work [8] on explict monotone schemes.

1. Degenerate Convection-Diffusion Equations
Wc are interested in finite difference schemes for nonlinear, possibly strongly de
generate, convection-diffusion problems of the form

where (x, t) 6 Qt =tx(o, T) and uo,f,k are given, sufficiently smooth functions.
For later use, wc need a conservative-form version of (1),

By the term 'strongly degenerate' wc mean that there are two numbers a
and (3 such that k(u) = 0 for all u £ [ot,o\. Hence, the class of equations under
consideration is very large and contains, to mention a few, the heat equation,
the porous medium equation, the two-phase flow equation and conservation laws.
Strongly degenerate equations will in general possess discontinuous - shock wave -
solutions. Furthermore, discontinuous weak solutions are not uniquely determined
by their data. In fact, an entropy condition is needed to single out the physically
relevant weak solution of the problem. Wc call a bounded measurable function
u(x,t) an entropy weak solution if

dt \u -c\ +dx [sgn(u - c)(f(u) - f(c))] + dl\K{u) - K(c)\ < 0 (weakly).
It is not difficult to construct an entropy weak solution of (1), even in several
space dimensions, see [12]. To the authors knowledge, the main open question
seems to be the uniqueness of such solutions, even in one space dimension. This

dt u + dx f(u) = dx(k(u)dx v), u(x, 0) = uo (x), (1)

dt u + dxf(u) = d2x K(u), K(u) = f Jb({) df. (2)Jo
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has motivated us to seek solutions in the (significantly) smaller class containing the
BY entropy weak solutions. Before introducing this notion of a solution, wc recall
that uniqueness of weak solutions for the purely parabolic case (no convection
term) in the class of bounded integrable functions has been proved by Brezis and
Crandall [I], and that uniqueness of entropy weak solutions for hyperbolic problems
(no diffusion term) is a classical result due to Kruzkov [9].

Definition 1.1. A bounded measurable function u(x,t) is said to be a BY entropy
weak solution of the initial value problem (1) if

(a) u(x,t)£BV(QT ) and K(u) eCl '2(QT ).

(3)

What måkes this definition interesting is that uniqueness of B V entropy
solutions follows from the work of Wu and Vin [13] (actually, instead of (a), they
require u 6 BY(QT ) and only dx K(u) e L\OC (QT ))- Wc mention here that the
jump conditions proposed by Volpert and Hudjaev [12] are in general not correct,
and thus the uniqueness proof presented there is incomplete, see [13] for more
details. Roughly speaking, entropy weak solutions that are of bounded variation
in both space and time are solutions in the sense of Wu and Vin. One should note
that it is rather restrictive to require BY (in space and time) regularity of solutions
to parabolic equations. In particular, for dt u to be a (locally) finite measure on Qt,
dx v and dlK(u) need to be (locally) finite measures on Qt- This fact immediately
implies that the diffusion term K(u(-,t)) needs to possess a certain amount of
smoothness, which in turn indicates that it should be harder (than for conservation
laws) to establish the analog of the Crandall and Majda theory [5] for strongly
degenerate parabolic equations. The convergence of a scheme to the desired BY
solution is not an immediate consequence of a BY estimate (in space), as is the
case with hyperbolic conservation laws.

It is possible to use the theory developed in [13] to treat strongly degenerate
boundary value problems as well, see Biirger and Wendland [2] (and the references
therein). In [2] the authors analyse their recently proposed model for the settling
and consolidation of a flocculated suspension under the influence of gravity. Wc
refer to Concha and Biirger [4] for an overview of the activity centring around this
and related sedimentation models. Cockburn and Gripenberg [3] have recently
shown that solutions of degenerate equations also depend continuously on the
nonlinear fluxes of the problem, see [3, 8] for more details.

It is important to realize that solutions of strongly degenerate parabolic equa
tions (1) in general have a more complex structure than solutions of conservation
laws. The following example demonstrates this. Let f(u) = u 2 (referred to as the

(b) Fot all non-negative (f) £ Cq°(Qt) and any c € M,

Jf (W- c\dt4> + sgn(u - k){f(u) - f(c) - dx K(u))dx^j dt dx
Qt

+ / \uo -c\</)(x,o)dx> 0.
E
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FIGURE 1. Left: The solution (solid) of the inviscid Burgers' equation.
Right: The solution (solid) of Burgers' equation with a strongly degen
erate diffusion term and the corresponding diffusion function K(u(-,t))
(dashed). The initial function is shown as dotted.

Burgers flux), and let k(u) = 0 for u G [0,0.5], 2.5u- 1.25 for u € (0.5,0.6) and
0.25 for u € [0.6,1.0]. Note that k(u) is continuous and degenerates on the in
terval [0,0.5]. In Fig. 1 wc have plotted the initial function, the solution of the
corresponding conservation law, i.e., k = 0 in (1), and the solution of (1) at time
T — 0.15. An interesting observation is that the solution of (1) has a 'new' increas
ing jump, despite of the fact that / is convex. Thus the solution is not bounded
in the so-called Lip+ norm, as opposed to the solution of the conservation law.
Moreover, while the speed of a jump in the conservation law solution is determined
solely by /, the speed of a jump in the solution of (1) is in general determined by
the jumps in both f(u) and dx K(u), see [13] for precise statements of these jump
conditions. Here it suffices to that say the speed s of a jump is

(4)

where u and u+ denote the usual left and right limits (tåken along the unit
normal to the shock curve) of u respectively. Furthermore, the entropy condition
requires that the following inequalities hold for all c £ int(u~, u+ ):

(5)

See Fig. 2 for an illustration of (5). Finally, wc mention here that the techniques
developed by Kruzkov (stability) and Kuznetsov (error estimates) for first order
equations are not straight on adaptable to second order problems such as (1).

In this paper wc are interested in implicit monotone difference schemes for (1).
A convergence analysis of explicit monotone schemes was given recently in [B] . In
view of the classical monotone theory for conservation laws [s], the main difficulty
in obtaining a convergence theory for (1) is to show that the approximations are
L 1 Lipschitz continuous in the time variable, i.e., that they are in BY (in space

/(«+)-/(«-)-( lim dxK(u)- lim dT K(u))\X—*Xq+ X~*X 0 — /
S ~ ' u+-u-

/(«+)- /(c)- lim drK(u) f(u-)-f(c)- lim BxK{u)8x K{u)
*^°+ < 5 < fZ^£Z

w + — c w~ — c
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FIGURE 2. Geometric interpretation of the entropy condition (5) for
the solution shown in Fig. 1 (right). Left (the left jump): Note that
K(u) lx =0, K(u)l > 0, see Fig. 1 (right). Condition (5) requires that
the graph of / restricted to the interval [«~,«+] lies above or equals
the straight line between (w~, /(«")) and (u + , f(u+ ) — K(u)x ). Right
(the right jump): Note that K{u) lx < 0, K(u)x = 0. Condition (5)
requires that the graph of / restricted to [u+ ,w~] lies below or equals
the straight line between (w+ ,/(u+ )) and (u~",/(u~) - K(u) lx ).

and time), see Lemmas 2.3 and 2.4 in this paper. To the authors knowledge,
there exists no general finite difference theory for strongly degenerate parabolic
equations, except for [B]. The main purpose of this paper is show that the theory
developed in [8] can be easily extended, using the theory of Crandall and Liggett
[6], to implicit schemes as well. An accurate and efficient operator splitting scheme
for (1) has been proposed and analysed in [7]. However, for this approximation
it is in general impossible to prove L 1 Lipschitz in time regularity, see [7] for
details. Finally, wc are currently looking into the issue of devising higher order
difference schemes for strongly degenerate parabolic equations. In particular, wc
are investigating to what extent the 'higher order' theory/schemes developed for
hyperbolic conservation laws can be tåken over to strongly degenerate equations.

2. Implicit Monotone Difference Schemes
Wc will follow the work [8] closely and refer the reader to it for details not found

here. Introduce the difference operators D-Uj = U>~£j~ 1 and D+ = Uh£~U' .We
then consider the three-point monotone difference schemes of the form

where F(u,u) = f(u) and {U?} is some discretization of uo. In what follows, wc
assume, without loss of generality, that ug has compact support and /(0) = 0. The

£/"+! _ J/n
1 M ' +D. (FWf+Wfå) - D+ K(U?+1 )) =0, (6)
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FIGURE 3. The solutions produced by the conservative scheme (6)
(solid) and the non-conservative scheme (8) (dashed) plotted at the
times Ti = 0.0625, T 2 = 0.25 and T = 1.0. The initial function is
shown as dotted; see the text for a further description of the problem.

assumption of monotonicity in the case of implicit schemes reads

Note that a sufficient condition for (7) to hold is that Fu > 0 and Fy < 0. Con
sequently, any monotone numerical flux F for conservation laws will produce a
monotone scheme for (1). To keep the notation simple and making the arguments
more transparent, wc consider only three-point schemes in this paper.

The monotone schemes (6) are based on differencing the conservative-form
equation (2), and not the equation in its original form. One can also devise schemes
based on differencing (1) directly, yielding, for example, schemes of the form

where U /̂2 = I* l + U?+i). Although it is possible to prove that (8) con
verges to a limit, wc have not been able to show that this limit satisfies an entropy
condition. In fact, wc do not believe that (8) will converge to the physically cor
rect solution in the case of strong degeneracy. Wc now present a simple numerical
example intended to support this view. For this purpose wc use fluxes f(u) = 2
and k(u) = 4k(u), where k is the one used above. In Fig. 3 wc have plotted the solu
tion produced (using small grid parameters) by (6) and (8) at three different times.
The convective numerical flux was the upwind flux F(Uf+1 , U?+±) = /(C/"+1 ) in
these calculations. Clearly, the non-conservative scheme (8) produces an incorrect
solution. Wc are currently investigating this phenomenon and will come to back
to it in a separate report.

As an aid in the following analysis wc shall view the equation (6) in terms
of an m-accretive operator and an associated contraction solution operator, i.e.,
wc shall use the Crandall and Liggett theory [6]. A similar treatment of implicit
difference schemes for conservation laws has been given earlier by Lucier [11]. If X

2 ) + 3)>o, A-k(r3 ) - Fv ( ri ,r2 ) >0, V{ru r2 ,r3 ). (7)

jjn+l _ jjn
1 At '+ D. (F(t/;+1 , Ufå) - kiUfSfJD+U?") =0, (8)
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is a Banach space, a duality mapping J : X —+ X* has the properties that for all
x G A', ||J(ar)||x* = \\x\\x and J{x)(x) = ||a:||^-. A possibly multi-valued operator
.4, defined on some subset D(A) of X, is said to be accretive if for every pair of
elements (x,A(x)) and (y,A(y)) in the graph of A, and for every duality mapping
J on A", J(x - y)(A(x) - A(y)) > 0. If, in addition, for all positive A, I + KA is a
surjection, then A is m-accrective. For a fixed n, let us now rewrite the difference
equation (6) as (suppressing the Ax dependence)

(9)

where A{U\j) =D. (F{U^+\ U?£)-D+K(Uj )) . Let (ft, d/i) be a measure space.
Recall that, since the dual of L l^) is L°°(£l), any duality mapping Jin Ll (Sl) is
of the form J(u){y) = J l̂ J(u)(x)v(x)dfi ) where

(10)

where a(x) is any measurable function with \a(x)\ < 1 for almost every x G Cl.
Wc shall rely heavily on the following well-known results (see e.g. [6, 11]):

Theorem 2.1. Let (Q,d[i) be a measure space. Suppose that the nonlinear and pos
sibly muhi-valued operator A : L 1 (Q) —*• L l^) is m- accretive. Then for any
A > 0 and any u G L X (Q) the equation T(u) + XA(T(u)) = u has a unique
solution T(u). If A satisfies Jn A(u)dfi = 0 and commutes with translations,
then the solution operator T : L 1 (Q) — L l (fi) possesses the following prop
erties: (a) Jn T(u)dfi = J^udfi, (b) \\T(u) - 7»||L i (n) < ||ti - v\\ LHn), (c)
\T(u)\BV(ci) < Wbvw, (d)u<v^ T(u) < T(v), (e) \\T(u)\\Loom < ||n|| L oo (n).

The following lemma deals with the question of existence, uniqueness and
properties of the solution of the (nonlinear) system (6).

Lemma 2.2. // (7) is satisfied, then for any U there exists a unique U* satisfying

the equation + Z?-(F(£//,C//+1 ) - D+K(U*)) =O,Vj G Z. Furthermore,
we have the properties: (a) Uj <VjVje%=> Uf <VfVj G Z, (b) ||^*|| Loo(z) <
lI^IL-(zv w ll^-^ILW < ll^-^ILw w \ u*\bvw< \v\BV{%r '

Proof. Wc will first show that the operator A is accretive. As a first step to achieve
this goal, wc observe that

(11)

U? +1 + AtA(Un+l ;j) = U? 1

11, ifu(ar)>o,
-1, ifti(*)<o,
a(x), if u(x) =0,

£sgn((/; - V* ) (.4(l7; i) - A(V;j))

>-Yl\cWi -(A{U;j)-A(V;j))\+cYJ[Wi \,



Degenerate Convection-Diffusion Equations 7

where Wj denotes Uj — Vj and c = c(Ax) > 0 is a number chosen so that c >
-^{Fu {ru r2 ) - Fv (ra,r{)) + -^k(r4 ), V^, r 2, r 3, r 4). Next, wc write

for some numbers aj, fy between Uj and Vj. Inserting this into (11) yields

(12)

which shows that A is accretive. Observe that A is Lipschitz continuous, which
implies that A is not only accretive but also m-accretive. Wc can now invoke
Theorem 2.1 to conclude the existence of a unique solution operator S of (6), i.e.,
Uj = S(U]j), which proves the first part of the lemma. Since 52j £%A(U;j) = 0
and A commutes with translations, the second part of the lemma follows. D

The next lemma plays a key role in our analysis and has no counterpart in
the theory of monotone difference approximations for conservation laws.

lemma 2.3. // (7) is satisfied, wc have

(13)

\HUFWUI) - D+K(U?+l)\BV(z) < \F(U°, U?+i) - D+ K(Uf)\Bvm.

Proof. From the equation (6), it follows that V? = Ax EL-oo ("""ff") satisfies

Next, wc derive an equation for the quantity {V™}. For this purpose consider the
difference equation (6) evaluated at iAx and subtract the corresponding equation
at time t = nAt. Multiplying the resulting equation by Ax and then summing
over i = — 00, . .  j, yields the following equation

A(U;j)-A(V;j) = ±((Fu (aj1 UHi)Wj + Fy (VJi aJ+l )Wj+1 )

-(Fuiaj-uUrfWj-i+F^Vj^arfWj))

- -p(*tø-i)Wi-i -»tø)WJ +*(ft+i)W5+i),

£sgn(J7,- - Vj){A(U;j)-A(V;j))

cEKI-E[i^(a>-i-^)+^2W;-i)]l^

F(Ur\ 155») - D+ K(U^)\\ L^m < \\F(U?, Uf+1 ) - D+K(U?)\\Lxm ,

V/1 * 1 = -(F(C/;+1 , £/;+/) - D+ K(U?)). (14)

(^n+l -V?) + (FQDf+Wfå) - F(U?,U?+1 )) - D+(K(U?+1 ) - K(Uf)) =0.



8 S. Evje, K. H. Karlsen

where ajjj = Fu (a", t/j!^1 ), aj = Fv (Up t Q^+1 ) and a", ar" are some numbers
between £/" and C/" +1 . Similarly, wc can write

where bj — k((3f) and fy is a number between U™ and t/j1 . Summing up, the
sequence {VP} satisfies the following linear system of equations

AfvpJi1 + b?v?+1 + q1^1 =v?  (it)

_i_ Af in pn 1 _i_ At / _n _n \ _i_ At (in iin \ ]
i + A^6j J' Bj ~ [ 1+ At\au,j ~ av,j) + A^\bj + 6;+l)Jwhere A? =-[^ + ,Bf=[l + " <;) + +

and Cf = - [^2^"+ i - ;£F<,;]  Because of (7), the linear system (17) is strictly
diagonal dominant. Hence, there exists a unique solution Vn+l of (17) satisfying
Il^n+l |L~(S) — ll^n |L~(zy n arSument similar to the one in [8] will also reveal
that |^n+l | Bvrz) — \Vn BV(zy e lemmanow follows by induction.  

A direct consequence of (13) is that the approximations are L 1 Lipschitz
continuous in the time variable, and thus in BY in space and time.

Lemma 2.4. // (7) is satisfied, wc have

Proof. The result follows directly from (6) and (13), see also [B].

Lemma 2.5. // (7) is satisfied, wc have

Proof. First, |#(tf/n ) - K(Uf)\ < Qi + Q 2, where Q x = \K(UP) - K(Up)\
and Q 2 = \K(Up - K(U?)\. In view of (13), \\D+K{Um )\\ Loo{%) = 0(1) and
thus Q\ = O(l)\(i — j)Ax\. Kruzkov [10] has developed a technique for deriving
a modulus of continuity in time from a known modulus of continuity in space of
certain parabolic equations. To estimate Q2wc apply a discrete version of this
technique to the parabolic difference equation (16). To this end, let <j){x) be a test
function, put <j)j — <f)(jAx) and let m < n. Using the difference equation (16) and
summation by parts (on the right-hand side of (16)), wc easily find that

After observing that J At—- = D-Vj ,we can write

F{U?+\U?#) - F(U?, U?+1 ) = Atal tj D-Vf+1 + Ata]D. VJ!* 1 , (15)

K{U?+l ) - K(U?) = AtbjD-Vj1 * 1

yn+ 1 _ yn
1 At ' + (anujD-VJ'+1 + a?JD-V?+1 1 ) = D+ (^D_lA"+1 ). (16)

Observe that this system can be written as

Vm - Un \\ LHI) < \F(U°, V?+1) - D+ K(U°)\BV{l)^\m - n\.

K(UD - K(U?)\ = O(l)(|(i - j)Ax\ + V\(m-n)At\)

AzJXVT1 -Vp) = 0(1)(|M|l-(e) + |W'||L-(E))At(m - n),
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since, for all /, a lu^ alV j and \Vl+l BV ,^, are uniformly bounded quantities. From
this weak estimate and the BY regularity of Vn , it now follows that

see [8] for details. On the other hand, from (14) and Lemma 2.4, wc also have

Wc thus conclude that Ax^^ D+K(Up - D+K{Uf)\ = O(l)^/(m - n)At.
From this the desired Holder estimate in time follows, since

Lemma 2.6. // (7) is satisfied, then the following cell entropy inequality holds

Proof. The proof is similar to the one presented in [B], see also [5, 11]

Let wa (where A = (Ax, At)) be the interpolate of degree one associated
with the discrete data points {U™}, see [B]. Note that va is continuous everywhere
and differentiable almost everywhere. In view of Lemmas 2.2 - 2.4, wc conclude
that there is a constant C = C(T) > 0 such that

for all (x,t),(y, r) € R x [O,T]. Consequently, since BY is compactly imbedded
into L 1 on compacta, there is a subsequence of discretization parameters and a
function u G L°°(Qt) fl BV(Qt) such that uAj -* u a.e. in Qt- Furthermore, via
the Ascoli-Arszela theorem, K(u^3 ) —* K(u) uniformly on compact sets K, C Qt,
and K(u) € Clj 2 (Qt). Repeating the proof of the Lax-Wendroff theorem (with
Lemma 2.6 in mmd), it follows that u satisfies the entropy condition (3).

Summing up, wc have proven the following main theorem:

Theorem 2.7. The sequence {wa}, which is buili from the implicit monotone dif
ference schemes (6), converges a.e. to the BY entropy weak solution of (1).
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Ax Y^\ Vjm - VP\ = O(l)y/\rn-n\At,

Ax ZK™ - Kl = WX™ - w)A/ + A^ J2\ D+K(U™) ~ D+K(U?)\.

thus conclude that Ax^2j€Z \D+K(Up) - D+K(U?)\ = O(l)y/(m-n)At

Q 2= \K(UP) - K(Uf)\ < AxY}D+K{U™) - D+K(U?)\ = O(l)y/(m-n)At.

This concludes the proof of the lemma. D

\U"+1 —cl — U" — c
i-i i + £>_ (F(U?+1 Ve, Uffi Ve)- F(t/;+1 Ac, I^+> Ac)

-£>+ |A'(t/;+1 )-A-(C)|)<o.

Wa\\l°°(qt ) + Wa\bv(qt ) <C,

\K(uA (y, r)) - K(uA (x,i))\ < C(\y -x\ + \/|r-<| +Ax + VSi).
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