Department of
 APPLIED MATHEMATICS

Kinetic Theory for Evolution of a Plasma in External Electromagnetic Fields toward a State characterized by Balance of Forces Transverse to the Magnetic Field
by

Alf H. Øien
Report No. 40
April 1973

UNIVERSITY OF BERGEN Bergen, Norway

Kinetic Theory for Evolution of a Plasma in External Electromagnetic Fields toward a State characterized by Balance of Forces Transverse to the Magnetic Field

by

Alf H. Øien
Report No. 40 April 1973

Two parameters, ε and α, related to weak inhomogenity and mass ratio between electrons and ions are considered in the kinetic and macroscopic equations for a two component, weakly coupled, weakly inhomogeneous electron - ion plasma in electromagnetic fields. For certain orderings between these parameters $(\varepsilon \ll \alpha)$ the plasma components evolve toward local equilibrium of the same temperature before the typical transport processes set in. In this report we consider an extreme such ordering. Distribution functions and macroscopic functions are expanded in both parameters.

\qquad
\qquad
\qquad
\qquad
\qquad

Solutions of equations are discussed and we show in particular that when solutions of kinetic eqations are assumed bounded on short effective collision time scales the plasma evolves so that forces transverse to the magnetic field in the mass velocity equation balance on longer time scales.

 \&

The transport equations of Chapman and Cowling [1] for ionized gases, we can derive by use of the multiple time scale method of Sandri [2], Frieman [3] and Su [4], starting from the following set of parametrized kinetic and macroscopic equations (nf. Appendix 1).

$$
\begin{align*}
& \frac{\partial f_{i}}{\partial t_{0}}+\varepsilon_{1}\left(\underline{c}_{0} \cdot \frac{\partial f_{i}}{\partial \underline{r}}+\underline{C}_{i} \cdot \frac{\partial f_{i}}{\partial \underline{r}}+\underline{F}_{i} \cdot \frac{\partial f_{i}}{\partial \underline{C}_{i}}+\frac{e_{i}}{m_{i}} c_{0} \times \underline{H} \cdot \frac{\partial f_{i}}{\partial \underline{C}_{i}}-\underline{c}_{0} \cdot \frac{\partial \underline{c}_{0}}{\partial \underline{r}} \cdot \frac{\partial f_{i}}{\partial \underline{C}_{i}}-\right. \\
& \left.-\frac{\partial f_{i}}{\partial \underline{C}_{i}} \underline{C}_{i}: \frac{\partial \underline{C}_{0}}{\partial \underline{r}}\right)-\frac{\partial \underline{c}_{0}}{\partial t_{0}} \cdot \frac{\partial f_{i}}{\partial \underline{C}_{i}}+\frac{e_{i}}{m_{i}} \underline{C}_{i} \times \underline{H} \cdot \frac{\partial f_{i}}{\partial \underline{C}_{i}}=\sum_{j} C_{i j}\left[f_{i} f_{j}\right] \tag{1}\\
& \frac{\partial p_{i}}{\partial t_{0}}+\varepsilon_{1} \frac{\partial}{\partial \underline{r}} \cdot\left(p_{i} \underline{c}_{0}\right)+\varepsilon_{1} \frac{\partial}{\partial \underline{r}} \cdot\left(p_{i} \overline{\underline{C}}_{i}\right)=0 \tag{2}\\
& p\left(\frac{\partial \underline{c}_{0}}{\partial t}+\varepsilon_{1} \underline{c}_{0} \cdot \frac{\partial \underline{c}_{0}}{\underline{r}}\right)=\varepsilon_{1} \sum_{i} \rho_{i} \underline{F}_{i}+\varepsilon_{1} \rho_{e} \underline{c}_{0} \times \underline{H}+\underline{j} \times \underline{H}-\varepsilon_{1} \frac{\partial}{\partial \underline{r}} \cdot \underset{\sim}{\mathbb{P}} \tag{3}\\
& \frac{3}{2} n k\left(\frac{\partial T}{\partial t_{0}}+\varepsilon_{1} \underline{c}_{0} \cdot \frac{\partial T}{\partial \underline{r}}\right)=\varepsilon_{1} \frac{3}{2} k T \frac{\partial}{\partial \underline{r}} \cdot \sum_{i} n_{i} \underline{\bar{C}}_{i}+\varepsilon_{1} \sum_{i} \rho_{i} \overline{\bar{C}}_{i} \cdot \underline{F}_{i}+ \\
& +\varepsilon_{1} \underline{j} \cdot\left(\underline{c}_{0} \times \underline{H}\right)-\varepsilon_{1} \underset{\sim}{p}: \frac{\partial \underline{c}_{0}}{\partial \underline{r}}-\varepsilon_{1} \frac{\partial}{\partial \underline{r}} \cdot \underline{q} \tag{4}
\end{align*}
$$

Besides, the following a priori condition has to be fulfilled

$$
\begin{equation*}
\sum_{i} \rho_{i}{\overline{\bar{C}_{i}}}_{i}=0 \tag{5}
\end{equation*}
$$

\therefore -

Indexes i and j refer to types of particles. Later we shall be concerned with a fully ionized plasma of electrons and one type of ions only. Instead of Boltzmann collision terms we shall use Fokker - Planck (FP) collision terms in the kinetic equations. \underline{F}_{i} and $\frac{e_{i}}{m_{i}} C_{0} \times H$ are accellerations due to an electric field and a magnetic field \underline{H}. The definitions of mass densities ρ_{i}, charge density ρ_{e}, mass velocity \underline{c}_{o}, conduction current \underline{j}, thermal flow vector \underline{q}, temperature T and pressure tensor $\underset{\sim}{P}$ are the same as in [1]. $\overline{\mathrm{C}}_{i}$ is the average peculiar velocity of particles of type i. ε_{1} is a small parameter which partly can be interpreted as λ / L where λ is the effective mean free path of particles and L is the scale of inhomogenities, and partly as the ratio $\left|\underline{c}_{O \perp}\right| /\left|\underline{C}_{i}\right|$ where $\underline{-}_{0 \perp}$ is the mass velocity perpendicular to the magnetic field. However, this ordering between $\underline{C}_{O \perp}$ and \underline{C}_{i} in the equations of Chapman and Cowling is made only in the magnetic force terms. Therefore the parametrization of Chapman and Cowling is only formally consistent and the range of validity of the final equations obtained is not so clear. To clear up this Naze Tjøtta and \emptyset ien, [5], [6] and [7] introduced two small parameters ε and α in the kinetic and macroscopic equations. ε relates to weak inhomogenities and weak (electric) fields and $\alpha=\left(m_{1} / m_{2}\right)^{\frac{1}{2}}$, the square root mass ratio between electrons and ions. Relating these two parameters

\qquad

\qquad

 11 - 6 tatan 9.3 andan 5
 $0-20$ 0 1
 to onemen.
and 2

 4

to each other a new consistent ordering between all terms in the equations was obtained. The evolution of the gas through its various stages was studied by use of the multiple time scale method. The range of validity of resulting equations for the models studied was clear. These models were:

$$
\begin{aligned}
& \text { a: } \quad \alpha \sim \varepsilon, \quad \alpha^{2} \sim \varepsilon \alpha \sim \varepsilon^{2}, \text { etc. } \\
& \text { b: } \varepsilon=0, \alpha \text { finite } \\
& \text { c: } \alpha=0, \quad \varepsilon \text { finite }
\end{aligned}
$$

Model c discribes the evolution of electrons on a background of immobile ions. The hydrodynamic stage was discribed by two variables, the density and the temperature. The results for model b are easily obtained from the results for model a . For model a the short time scale is ${ }^{2} 20$, the effective time between electron - electron collisions. On the long time scale $\tau_{22} \sim \tau_{20} / \alpha^{2}$ macroscopic equations similar, but not identical to those of Chapman and Cowling were obtained. The relaxation of temperature for electrons and ions also takes place on this long time scale. This feature also differs from the theory of Chapman and Cowling since they consider electrons and ions to have the same temperature. If the gas is homogeneous and no electric field is present, on the ${ }^{\tau} 22$ time scale the mass velocity perpendicular to the magnetic field dies away and the temperatures of electrons and ions relax against each other.

 ama in altabay

 20.

 4.

 C.

In this report we study a model where the relaxation of temperature for electrons and ions takes place before the typical transport phenomena due to inhomogenities and electric fields set in. We study an extreme model having this feature:

$$
\alpha: \quad \varepsilon<\alpha^{n}, \quad \text { all } n \geqq 0 \quad \text { as } \quad \alpha \rightarrow 0 .
$$

Distribution functions and macroscopic quantities are sought as two parameter expansions. Also the time derivative is expanded in this way. The sets of equations to zeroth and first order in the parameter ε are written down in section 1 . In section 2 we study these sets of equations as time goes to infinity on the short time scale. The equations to zeroth order in ε are essentially the equations for model b. Using a H - theorem we easily see that on the short time scale electrons and ions evolve toward local equilibrium having then the same temperature to this order, and the perpendicular mass velocity to this order, allowed to be of the same order as the thermal velocity of ions, dies away. As time goes to infinity on the short time scale, from the equations to first order in ε we easily obtain continuity equations and equations for the temperature and mass transport vector parallel to the magnetic field of the same form as in [1] (cf. Appendix 1) except that only the parallel mass transport vector is seen in these equations to this order of approximation. Difficulty arises when trying to solve the kinetic equations and the equation for the perpen-

2ate

 ate

dicular mass transport vector to first order in ε. On the short time scale these equations are strongly coupled, and because of this we have not succeeded in deriving their general form as time goes to infinity on the short time scale. To bypass this difficulty we make the plausible assumption in section 2 that the short time derivative of distribution functions to first order in ε goes to zero as the short time variable goes to infinity. This is a sufficient condition to avoid too strong growth of the distribution functions to first order in ε, but not necessary conditions for the distribution functions to be bounded on the short time scale. Consistent with this assumption we assume that the short time derivative of the perpendicular mass transport vector to first order in ε (of the order of ε times the thermal velocity of electrons) also goes to zero as the short time variable goes to infinity. This gives a balance of transverse forces at the end of the short time scale. With these assumptions we obtain a set of equations for the distribution functions to first order in ε at the end of the short time scale, corresponding to the equations of Chapman and Cowling. The balance of transverse Iorces determines the perpendicular mass transport vector. In section 3 we partly derive what is assumed in section 2: We derive up to a certain order of approximation that the gas evolves so that time derivatives of bounded distribution functions do vanish as time grows, and in particular that the gas evolves into a state where the transverse forces balance each other. To reach this

\qquad
\qquad

conclusion we expand the sets of equations to zeroth and first order in ε in the parameter α. These equations show the above feature as time grows on the $\tau_{20}, \tau_{21} \sim \tau_{20} / \alpha$ and $\tau_{22} \sim \tau_{20} / \alpha^{2}$ time scales.

 :

The notations of [1] are used almost throughout. As in
[5] , [6] and [7] we study a two component inhomogeneous electron - ion plasma in an external electromagnetic field. The gas is assumed to be weakly coupled, [2], [3] and [4] so that collisions between particles give rise to FokkerPlanck (FP) collision terms only. The temperatures T_{1} and T_{2} of electrons and ions are initially not equal, but of equal. orders of magnitude

$$
\frac{1}{2} m_{1} \bar{c}_{1}^{2} \sim \frac{1}{2} m_{2} \bar{c}_{2}^{2}
$$

Thus

$$
\frac{\bar{c}_{2}}{\bar{c}_{1}} \sim\left(\frac{m_{1}}{m_{2}}\right)^{\frac{1}{2}}=\alpha \ll 1
$$

(Subscripts 1 and 2 refer to electrons and ions respectively)。

This is a basic assumption. Besides we have $n_{1} \sim n_{2}$ and $e_{1} \sim e_{2}$ and assuming for mean particle velocities

$$
\begin{aligned}
& \left|\bar{c}_{1}\right| \sim \bar{c}_{1} \\
& \left|\bar{c}_{2}\right| \sim \alpha \bar{c}_{1}
\end{aligned}
$$

for the mass transport vector c_{0} we have

$$
\left|\underline{c}_{0}\right|=\frac{1}{\rho}\left|n_{1} m_{1} \bar{c}_{1}+n_{2} m_{2} \bar{c}_{2}\right| \sim \alpha \bar{c}_{1}
$$

In the same way we estimate peculiar velocities $\underset{-}{C}$, ie.

$$
\begin{aligned}
& \left|\underline{c}_{1}\right| \sim \bar{c}_{1} \\
& \left|\underline{c}_{2}\right| \sim \alpha \bar{c}_{1}
\end{aligned}
$$

a.d.

$$
\therefore x+\cdots(\cdots,+\cdots)
$$

$$
8
$$

$$
\begin{aligned}
& 0-2+21 \\
& +\cdots+
\end{aligned}
$$

Besides the small parameter α we also introduce

$$
\varepsilon \sim \frac{\bar{c}_{1} \tau_{20}}{L} \ll 1
$$

Here τ_{20} is the effective time between electron-electron collisions and L is the characteristic length scale for all (weak) inhomogenities. For the electric and magnetic fields E and \underline{H} we assume that

$$
\frac{{ }_{2} 2\left|\underline{F}_{1}\right|}{\left|\underline{C}_{1}\right|} \sim \varepsilon
$$

where $\underline{F}_{i}=e_{i} / m_{i} E$ are particle accellerations, and

$$
{ }^{\tau_{20}} \Omega_{1} \sim 1
$$

where $\Omega_{i}=e_{i} / m_{i} H$ are gyrofrequencies. Both \underline{E} and H are assumed to be stationary and uniform on the scales we consider, and we neglect the generation of an electromagnetic field by the evolution of the plasma itself. This assumption may be omitted, cf. Appendix 2. Since the distribution functions f_{1} and f_{2} are functions of the peculiar velocities \underline{C}_{1} and \underline{C}_{2}, besides position vector \underline{r} and time t, we must be aware of the a priori condition, [1],

$$
\int d \underline{C}_{1} f_{1}\left(\underline{r}_{2} \underline{C}_{1}, t\right) m_{1} \underline{C}_{1}+\int d \underline{C}_{2} f_{2}\left(\underline{r}, \underline{C}_{2}, t\right) m_{2} \underline{C}_{2}=0
$$

Till now assumptions necessary for parametrizing the kinetic equations have been made. When parametrizing the moment equations we assume velocity moments vary on scales the same as the scales for corresponding powers of velocity, i.e.
a

$$
\begin{aligned}
& \left|\overline{\mathrm{C}}_{1}\right| \sim\left|\underline{C}_{1}\right| \sim \overline{\mathrm{c}}_{1} \\
& \left|\overline{\mathrm{C}}_{2}\right| \lesssim\left|\underline{\mathrm{C}}_{2}\right| \sim \alpha \overline{\mathrm{c}}_{1} \\
& \left|m_{i} \overline{\bar{C}_{i} \underline{C}_{i}}\right| \sim m_{i} \overline{\mathrm{C}}_{i}^{2} \sim m_{i} \overline{\mathrm{c}}_{i}^{2} \\
& \left|\frac{1}{2} \mathrm{~m}_{i} \overline{C_{i}^{2} \underline{C}_{i}}\right| \sim m_{i} \overline{\mathrm{C}}_{i}^{2} \overline{\mathrm{C}}_{i}
\end{aligned}
$$

Consequently we parametrize the apriori condition in the following way

$$
\begin{equation*}
\alpha \int \frac{d C_{1} f_{1} m_{i} \underline{C}_{1}}{}+\int \frac{d C_{2} f_{2} m_{2} \underline{C}_{2}}{}=0 \tag{6}
\end{equation*}
$$

which also shows necessary in order to avoid a break down of the multiple time scale method when we consider evolution from an initial state far from equilibrium. Kinetic and macroscopic equations are parametrized as follows (t is a time variable on a scale with unit τ_{20})
$\frac{\partial \mathrm{f}_{1}}{\partial t}+\varepsilon \alpha \underline{C}_{0} \cdot \frac{\partial \mathrm{f}_{1}}{\partial \underline{r}}+\varepsilon \underline{C}_{1} \cdot \frac{\partial \mathrm{f}_{1}}{\partial \underline{r}}+\varepsilon \underline{F}_{1} \cdot \frac{\partial \mathrm{f}_{1}}{\partial \underline{C}_{1}}-$
$-\alpha\left(\frac{\partial \underline{c}_{0}}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial \underline{c}_{0}}{\partial \underline{r}}\right) \cdot \frac{\partial f_{1}}{\partial \underline{C}_{1}}+\alpha \frac{e_{1}}{m_{1}} \underline{c}_{0} \times \underline{H} \cdot \frac{\partial f_{1}}{\partial \underline{C}_{1}}+\frac{e_{1}}{m_{1}-C_{1}} \times \underline{H} \cdot \frac{\partial f_{1}}{\partial \underline{C}_{1}}-$
$-\varepsilon \alpha \frac{\partial f_{1}}{\partial \underline{C}_{1}} \underline{C}_{1}: \frac{\partial C_{0}}{\partial \underline{r}}=$
$=\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}} \cdot \int \frac{\partial \underline{C}_{1}^{\prime} \Phi}{\Phi^{11}}\left(\underline{C}_{1}-\underline{C}_{1}^{\prime}\right) \cdot\left(\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}-\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}^{\prime}}\right) f_{1}\left(\underline{C}_{1}\right) f_{1}\left(\underline{C}_{1}^{\prime}\right)+$ $+\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}} \cdot \int \frac{\partial \underline{C}_{2} \Phi}{}{ }^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}-\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}\right) f_{1}\left(\underline{C}_{1}\right) f_{2}\left(\underline{C}_{2}\right)$.

$$
\begin{aligned}
& 12+2 \cdot 4 \cdot \frac{1}{2} \\
& \square \square \\
& \cdots \\
& \cdots \cdots \\
& \text { (3) } \\
& \because-6
\end{aligned}
$$

\qquad
$\frac{\partial f_{2}}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial f_{2}}{\partial \underline{r}}+\varepsilon \alpha{\underline{C_{2}}}_{2} \cdot \frac{\partial f_{2}}{\partial \underline{r}}+\varepsilon \alpha \underline{E}_{2} \cdot \frac{\partial f_{2}}{\partial \underline{C}_{2}}-$
$-\left(\frac{\partial \underline{c}_{0}}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial \underline{c}_{0}}{\partial \underline{r}}\right) \cdot \frac{\partial f_{2}}{\partial \underline{c}_{2}}+\alpha^{2} \frac{e_{2}}{m_{2}} \underline{c}_{0} \times \underline{H} \cdot \frac{\partial f_{2}}{\partial \underline{c}_{2}}+$
$+\alpha^{2} \frac{e_{2}}{m_{2}} \underline{C}_{2} \times \underline{H} \cdot \frac{\partial f_{2}}{\partial \underline{C}_{2}}-\varepsilon \alpha \frac{\partial f_{2}}{\frac{C_{2}}{C_{2}}} \underline{C}_{2}: \frac{\partial \underline{c}_{0}}{\partial \underline{r}}=$
$=\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}} \cdot \int \frac{d \underline{C}_{2}^{\prime} \Phi^{22}}{}\left(\underline{C}_{2}-\underline{C}_{2}^{\prime}\right) \cdot\left(\frac{1}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}-\frac{1}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}^{\prime}}\right) f_{2}\left(\underline{C}_{2}\right) f_{2}\left(\underline{C}_{2}^{\prime}\right)+$
$+\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}} \cdot \int \frac{d \underline{C}_{1} \Phi^{21}\left(\alpha \underline{C}_{2}-\underline{C}_{1}\right) \cdot\left(\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}-\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}\right) f_{1}\left(\underline{C}_{1}\right) f_{2}\left(\underline{C}_{2}\right) ~ . ~ . ~}{\text {. }}$

Here ${\underset{\sim}{\Phi}}^{i j}(\underline{w})$ are tensors taking into account the weak interaction between particles. For suitable cutoffs they take Landau's form [8]. Note that a also appears inside some collision terms.

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\varepsilon \alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho \underline{c}_{0}\right)=0 \tag{9}
\end{equation*}
$$

$\rho\left(\frac{\partial \underline{c}_{0}}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial \underline{c}_{0}}{\partial \underline{r}}\right)=-\varepsilon \alpha \frac{\partial}{\partial \underline{r}} \cdot \sum_{i=1}^{2} n_{i} m_{i} \overline{C_{i} \underline{C}_{i}}+\alpha^{2} \rho_{e} \underline{c}_{0} \times \underline{H}+$
$+\alpha n_{1} e_{1} \overline{\mathrm{C}}_{1} \times \underline{H}+\alpha^{2} n_{2} e_{2}{\underline{C_{2}}}_{2} \times \underline{H}+\varepsilon \alpha \sum_{i=1}^{2} \rho_{i} \underline{F}_{i}$

$$
\begin{aligned}
& \begin{array}{ccc}
\square \\
\square
\end{array}
\end{aligned}
$$

$\frac{3}{2} n k\left(\frac{\partial T}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial T}{\partial \underline{r}}\right)=\varepsilon \frac{3}{2} k T \frac{\partial}{\partial \underline{r}} \cdot\left(n_{1} \overline{\bar{C}}_{1}\right)+$
$+\varepsilon \alpha \frac{3}{2} k T \frac{\partial}{\partial \underline{\underline{r}}} \cdot\left(n_{2} \overline{\bar{C}}_{2}\right)+\varepsilon \rho_{1} \underline{F}_{1} \cdot \underline{\bar{C}}_{1}+\varepsilon \alpha \rho_{2} \underline{\underline{F}}_{2} \cdot \underline{\bar{C}}_{2}+$
$+\alpha n_{1} e_{1} \underline{\bar{C}}_{1} \cdot\left(\underline{c}_{0} \times \underline{H}\right)+\alpha^{2} n_{2} e_{2} \underline{\bar{C}}_{2} \cdot\left(\underline{c}_{0} \times \underline{H}\right)-\varepsilon \frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{1}-$
$-\varepsilon \alpha \frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{2}-\varepsilon \alpha \sum_{i=1}^{2} n_{i} m_{i} \overline{C_{i} \underline{C}_{i}}: \frac{\partial \underline{c}_{0}}{\partial \underline{r}}$

We also take into account the following moment equations for each gas component:
$\frac{\partial \rho_{1}}{\partial t}+\varepsilon \alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1} \underline{c}_{0}\right)+\varepsilon \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1} \underline{\bar{C}}_{1}\right)=0$
$\frac{\partial \rho_{2}}{\partial t}+\varepsilon \alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{2} \underline{c}_{0}\right)+\varepsilon \alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{2} \mathcal{T}_{2}\right):=0$
$\frac{\partial}{\partial t}\left(\rho_{1} \overline{\bar{C}}_{1}\right)+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial}{\partial \underline{r}}\left(\rho_{1} \overline{\bar{C}}_{1}\right)+\varepsilon \alpha \rho_{1} \underline{\bar{C}}_{1} \frac{\partial}{\partial \underline{r}} \cdot \underline{c}_{0}+$
$+\varepsilon \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1} \overline{\mathbb{C}_{1} \underline{C}_{1}}\right)-\varepsilon \rho_{1} \underline{F}_{1}+\alpha \rho_{1}\left(\frac{\partial \underline{c}_{0}}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial \underline{c}_{0}}{\partial \underline{r}}\right)-$
$-\alpha n_{1} e_{1} \underline{c}_{0} \times \underline{H}-n_{1} e_{1} \overline{\bar{C}}_{1} \times \underline{H}+\varepsilon \alpha \rho_{1} \underline{\bar{C}}_{1} \cdot \frac{\partial \underline{c}}{\partial \underline{\underline{r}}}=$
$=-\int \alpha \underline{C}_{1} \alpha \underline{C}_{2}{\underset{\sim}{1}}^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}-\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}\right) f_{1}\left(\underline{C}_{1}\right) f_{2}\left(\underline{C}_{2}\right)$
\qquad

$$
x_{2}+\frac{1}{2}
$$

$$
\begin{aligned}
& 2=-2 \cdot(2)=
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\rho_{2} \overline{\bar{C}}_{2}\right)+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial}{\partial \underline{r}}\left(\rho_{2} \underline{\bar{c}}_{2}\right)+\varepsilon \alpha \rho_{2} \underline{\bar{C}}_{2} \frac{\partial}{\partial \underline{r}} \cdot \underline{c}_{0}+ \\
& +\varepsilon \alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{2}{\overline{C_{2}} \underline{C}_{2}}\right)-\varepsilon \alpha \rho_{2} \underline{F}_{2}+\rho_{2}\left(\frac{\partial \underline{c}_{0}}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial \underline{c}_{0}}{\partial \underline{r}}\right)- \\
& -\alpha^{2} n_{2} e_{2} \underline{c}_{0} \times \underline{H}-\alpha^{2} n_{2} e_{2} \underline{\bar{C}}_{2} \times \underline{H}+\varepsilon \alpha \rho_{2} \underline{\bar{C}}_{2} \cdot \frac{\partial \underline{C}}{\partial \underline{r}}= \\
& =-\alpha \int \frac{d \underline{C}_{1}}{} \underline{\underline{C}}_{2}{\underset{\sim}{\Phi}}^{12}\left(\underline{c}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}-\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}\right) \tilde{f}_{1}\left(\underline{C}_{1}\right) f_{2}\left(\underline{C}_{2}\right) . \\
& \frac{3}{2} n_{1} k\left(\frac{\partial T_{1}}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial T_{1}}{\partial \underline{r}}\right)-\frac{3}{2} k T_{1} \frac{\partial}{\partial \underline{r}} \cdot\left(n_{1} \overline{\bar{C}}_{1}\right)+\varepsilon \frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{1}- \\
& -\varepsilon \rho_{1} \underline{F}_{1} \cdot \overline{\bar{C}}_{1}+\alpha \rho_{1} \underline{\bar{C}}_{1} \cdot\left(\frac{\partial \underline{c}_{0}}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial \underline{c}_{0}}{\partial \underline{r}}\right)- \\
& -\alpha n_{1} e_{1} \underline{\bar{C}}_{1} \cdot \underline{C}_{0} \times \underline{H}+\varepsilon \alpha \rho_{1}{\underline{C_{1}} \underline{C}_{1}}: \frac{\partial \underline{c}}{\partial \underline{r}}= \\
& =-\alpha \int \frac{\alpha \underline{C}_{1}}{} \alpha \underline{C}_{2} \underline{C}_{2} \cdot{\underset{\sim}{\Phi}}^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}-\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}\right) f_{1}\left(\underline{C}_{1}\right) f_{2}\left(\underline{C}_{2}\right) . \\
& \frac{3}{2} n_{2} k\left(\frac{\partial T_{2}}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial T_{2}}{\partial \underline{r}}\right)-\varepsilon \alpha \frac{3}{2} k T_{2} \frac{\partial}{\partial \underline{r}} \cdot\left(n_{2} \underline{\bar{C}}_{2}\right)+ \\
& +\varepsilon \alpha \frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{2}-\varepsilon \alpha \rho_{2} \underline{F}_{2} \cdot{\overline{\bar{C}_{2}}}_{2}+\rho_{2}{\overline{\bar{C}_{2}}}_{2} \cdot\left(\frac{\partial \underline{c}_{0}}{\partial t}+\varepsilon \alpha \underline{c}_{0} \cdot \frac{\partial \underline{c}_{0}}{\partial \underline{r}}\right)- \\
& -\alpha^{2} n_{2} e_{2} \overline{\underline{c}}_{2} \cdot\left(\underline{c}_{0} \times \underline{H}\right)+\varepsilon \alpha \rho_{2}{\overline{\bar{C}_{2} \underline{c}_{2}}}_{2}: \frac{\partial \underline{c}}{\partial \underline{r}}= \tag{17}\\
& =-\alpha \int \frac{\partial \underline{C}_{1}}{} \underline{a d}_{2} \underline{C}_{2} \cdot{\underset{\sim}{\Phi}}^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}-\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}\right) \underline{f}_{1}\left(\underline{C}_{1}\right) \underline{f}_{2}\left(\underline{C}_{2}\right) .
\end{align*}
$$

(ancolen

The models studied in [5] and [6] were
a) $\varepsilon \sim \alpha, \varepsilon^{2} \sim \varepsilon \alpha \sim \alpha^{2}$ etc.
b) $\varepsilon=0, \alpha \neq 0$ but small
c) $\alpha=0, \varepsilon \neq 0$ but small.

We shall now study a model which we shall characterize by
d) $(0<) \varepsilon<\alpha^{n}$ all $n \geqq 0$ as $\alpha \rightarrow 0$.

This is an extreme model having the property that electrons and ions reach the same temperature before the typical transport processes set in. We first expand the distribution functions f_{1} and f_{2} and macroscopic functions in series in the parameter ε, for instance

$$
\begin{aligned}
& f_{i}=f_{i}^{(0)}+\varepsilon f_{i}^{(1)}+\ldots \\
& \rho=\rho^{(0)}+\varepsilon \rho^{(1)}+\ldots
\end{aligned}
$$

where

$$
\rho^{(k)}=\sum_{i=1}^{2} \int_{i} f_{i}^{(k)}(\underline{C}) m_{i} d \underline{C}_{i}
$$

There is no such connection between expansions for f_{i} and the mass transport velocity \underline{c}_{0}. However,

```
***:****)
```


...
we seek C_{o} as

$$
\underline{c}_{0}=\underline{c}_{0}^{(0)}+\varepsilon{\underset{-}{0}}_{0}^{(1)}+\ldots
$$

Here we note that $\left|\underline{c}_{0}\right| / \bar{c}_{1} \sim\left|{\underset{-}{c}}_{(0)}^{0}\right| / \bar{c}_{1} \sim \alpha$. However $\left|\underline{c}_{0}^{(1)}\right| / \bar{c}_{1} \sim \varepsilon$ so that $\left|\underline{c}_{0}^{(1)}\right| /\left|\underline{c}_{0}^{(0)}\right| \sim \varepsilon / \alpha$. This must be taken into account in the equations to first and higher orders in the parameter ε.

We introduce time variables $t_{i}, i=2,3, \ldots$, on time scales $\tau_{i}=\frac{\tau_{2}}{\varepsilon^{i-2}}$. Therefore the time derivative is expanded as follows

$$
\frac{\partial}{\partial t}=\frac{\partial}{\partial t_{2}}+\varepsilon \frac{\partial}{\partial t_{3}}+\varepsilon^{2} \frac{\partial}{\partial t_{4}}+\ldots .
$$

We substitute these expansions into Eqs (6) - (17) and separate in zeroth, first, second order etc in ε.

In each of these sets of equations we have the parameter α. We can expand Functions in each set in series of the parameter α and in each set separate in zeroth, first, second order etc in the parameter α. Thus, in all, we make a double expansion of functions in series of parameters ε and α, for instance

$$
\begin{aligned}
f_{i}=f_{i}^{(00)}+\alpha & f_{i}^{(01)}+\alpha^{2} f_{i}(02)+\ldots .+ \\
& +\varepsilon\left[f_{i}^{(10)}+\alpha f_{i}^{(11)}+\ldots\right]+\varepsilon^{2}\left[f_{i}^{(20)}+\ldots\right]+
\end{aligned}
$$

$$
\begin{aligned}
& \text { सि } 2 \text { H Hosce ow }
\end{aligned}
$$

 and

 ant ming

gonem amt hort

Similarly the time derivative in all is expanded as follows
$\frac{\partial}{\partial t}=\frac{\partial}{\partial t_{20}}+\alpha \frac{\partial}{\partial t_{21}}+\alpha^{2} \frac{\partial}{\partial t_{22}}+\ldots .+$

$$
+\varepsilon\left[\frac{\partial}{\partial t_{30}}+\alpha \frac{\partial}{\partial t_{31}}+\cdots\right]+\varepsilon^{2}\left[\frac{\partial}{\partial t_{40}}+\ldots\right]+\cdots
$$

consistent with introduction of time variables $t_{i j}$ $i=2,3, \ldots$ and $j=0,1,2, \ldots$ on time scales $\tau_{i j}=\frac{\tau_{i}}{\alpha}$.

The $\Phi^{i j}$ functicns appearing in the collision integrals of Eqs. (7) and (8) are expanded in terms of α by use of Taylors formula, assumed distributional convergent. Each set of equations to each order in ε and α should be solved eliminating all secular terms that arise.

*

We end this section writing down kinetic and macroscopic equations including the a priori condition to zeroth and first order in the parameter ε. Note the differences between this set of equations and the corresponding set of equations of Chapman and Cowling (cf.Appendix 1). All () in superscripts are omitted from now on.
2.0.

$$
\begin{aligned}
& \ldots+\frac{1}{2}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\vdots \\
\vdots
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. EDO }
\end{aligned}
$$

$$
\begin{align*}
& \alpha \int d \underline{-}_{1} f_{1}^{O} m_{1} \underline{C}_{1}+\int \frac{d \underline{C}_{2} f_{2}^{O} m_{2} \underline{C}_{2}}{0}=0 \tag{18}\\
& \frac{\partial f_{1}^{O}}{\partial t_{2}}-\alpha \frac{\partial c_{-}^{O}}{\partial t_{2}} \cdot \frac{\partial f_{1}^{O}}{\partial \underline{C}_{1}}+\alpha \frac{e}{m_{1}} \underline{c}_{0}^{O} \times \underline{H} \cdot \frac{\partial f_{1}^{O}}{\partial \underline{C}_{1}}+\frac{e_{1}}{m_{1}} \underline{C}_{1} \times \underline{H} \cdot \frac{\partial f_{1}^{O}}{\partial \underline{C}_{1}}= \tag{19}\\
& =\operatorname{FP}_{11}\left[f_{1}^{O}\left(\underline{C}_{1}\right) f_{1}^{O}\left(\underline{C}_{1}^{\prime}\right)\right]+F P_{12}\left[f_{1}^{O}\left(\underline{C}_{1}\right) f_{2}^{O}\left(\underline{C}_{2}\right)\right]
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial f_{2}^{0}}{\partial t_{2}}-\frac{\partial c_{0}^{0}}{\partial t_{2}} \cdot \frac{\partial f_{2}^{0}}{\partial \underline{C}_{2}}+\alpha^{2} \frac{e_{2}}{m_{2}} \underline{c}_{0}^{0} \times \frac{\partial f_{2}^{0}}{\frac{H}{-}-2}+\alpha^{2} \frac{e_{2}}{m_{2}}{\underset{-}{2}}_{2} \times \underline{H} \cdot \frac{\partial f_{2}^{0}}{\frac{\partial C_{2}}{-}}= \tag{20}
\end{equation*}
$$

$$
=\alpha F P_{22}\left[f_{2}^{0}\left(\underline{C}_{2}\right) f_{2}^{0}\left(\underline{C}_{2}^{\prime}\right)\right]+\alpha F P_{21}\left[f_{2}^{0}\left(\underline{C}_{2}\right) f_{1}^{0}\left(\underline{C}_{1}\right)\right]
$$

$$
\begin{equation*}
\frac{\partial \rho^{0}}{\partial t_{2}}=0 \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\frac{3}{2} n^{\circ} k \frac{\partial T_{1}^{0}}{\partial t_{2}}=\alpha n_{1}^{0} e_{1} \underline{\bar{C}}_{1}^{\circ} \cdot\left(\underline{c}_{0}^{0} \times \underline{H}\right)+\alpha^{2} n_{2}^{0} e_{2} \overline{\bar{C}}_{2}^{0} \cdot\left(\underline{c}_{0}^{0} \times \underline{H}\right) \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\rho^{0} \frac{\partial c_{0}^{0}}{\partial t_{2}}=\alpha^{2} \rho_{e}^{0} c_{0}^{0} \times \underline{H}+\alpha n_{1}^{0} e_{1} \overline{\mathrm{C}}_{1}^{0} \times \underline{H}+\alpha^{2} n_{2}^{0} e_{2} \overline{\mathrm{C}}_{2}^{0} \times \underline{H} \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial p_{1}^{0}}{\partial t_{2}}=0 \tag{24}
\end{equation*}
$$

$2-2+20-2$

$2+20-20$

(45)

(43) \square

$$
\frac{3}{2}_{2} n_{1}^{0} k \frac{\partial T_{1}^{0}}{\partial t_{2}}+\alpha \rho_{1}^{0} \underline{\bar{C}}_{1}^{\circ} \cdot \frac{\partial \underline{c}_{0}^{\circ}}{\partial t_{2}}-\alpha n_{1}^{0} e_{1} \overline{\bar{C}}_{1}^{0} \cdot\left(\underline{c}_{0}^{0} \times \underline{H}\right)=
$$

$$
\begin{equation*}
=-\alpha \int \frac{d \underline{C}_{1}}{d} \cdot \underline{C}_{2} \underline{C}_{2} \cdot \dot{\sim}^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}-\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}\right) f_{1}^{0}\left(\underline{C}_{1}\right) f_{2}^{0}\left(\underline{C}_{2}\right) \tag{28}
\end{equation*}
$$

${ }_{2}^{3} n_{2}^{\circ}{ }_{2}^{K} \frac{\partial T_{2}^{\circ}}{\partial t_{2}}+\rho_{2}^{\circ}{\overline{C_{C}^{2}}}_{2}^{\circ} \cdot \frac{\partial \underline{c}_{0}^{\circ}}{\partial t_{2}}-\alpha^{2} n_{2}^{\circ} e_{2} \underline{\bar{C}}_{2}^{\circ} \cdot\left(\underline{c}_{0}^{\circ} \times \underline{H}\right)=$

$$
\begin{equation*}
=-\alpha \int \underline{C}_{1} \underline{\alpha}_{2} \underline{C}_{2} \cdot{\underset{\sim}{\Phi}}^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}-\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}}\right) f_{1}^{0}\left(\underline{C}_{1}\right) f_{2}^{0}\left(\underline{c}_{2}\right) \tag{29}
\end{equation*}
$$

First order equations in the parameter ε

$$
\begin{equation*}
\alpha \int d \underline{C}_{1} f_{1}^{1} m_{1} \underline{C}_{1}+\int d \underline{C}_{2} f_{2}^{1} m_{2} \underline{C}_{2}=0 \tag{30}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial t_{2}}\left(\rho_{1}^{0} \overline{\underline{C}}_{1}^{0}\right)+\alpha \rho_{1}^{0} \frac{\partial \underline{C}_{0}^{0}}{\partial t_{2}}-\alpha n_{1}^{0} e_{1} \underline{C}_{0}^{0} \times \underline{H}-n_{1}^{0} e_{1} \overline{\bar{C}}_{1}^{0} \times \underline{H}= \tag{26}\\
& =-\int \frac{d \underline{C}_{1}}{} \alpha \underline{C}_{2} \Phi^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{1}{m_{1}} \frac{\partial}{\frac{\partial}{C_{1}}}-\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}\right) f_{1}^{0}\left(\underline{C}_{1}\right) f_{2}^{0}\left(\underline{C}_{2}\right) \\
& \frac{\partial}{\partial t_{2}}\left(\rho_{2}^{0} \overline{\bar{C}}_{2}^{0}\right)+\rho_{2}^{0} \frac{\partial \underline{c}_{0}^{0}}{\partial t_{2}}-\alpha^{2} n_{2} e_{2} \underline{c}_{0}^{0} \times \underline{H}-\alpha^{2} n_{2} e_{2} \overline{\bar{C}}_{2}^{0} \times \underline{H}= \\
& =-\alpha \int \frac{\underline{C}_{1}}{} \alpha \underline{C}_{2} \Phi^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}-\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}\right) f_{1}^{0}\left(\underline{C}_{1}\right) f_{2}^{0}\left(\underline{C}_{2}\right) \tag{27}
\end{align*}
$$

$$
(80)
$$

为

$$
\begin{align*}
& \frac{\partial f_{1}^{1}}{\partial t_{2}}+\frac{\partial f_{1}^{0}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial f_{1}^{0}}{\partial \underline{r}}+\underline{C}_{1} \cdot \frac{\partial f_{1}^{0}}{\partial \underline{r}}+\underline{F}_{1} \cdot \frac{\partial f_{1}^{0}}{\partial \underline{C}_{1}}-\alpha\left(\frac{1}{\alpha} \frac{\partial \underline{c}_{0}^{1}}{\partial t_{2}}+\right. \\
& \left.+\frac{\partial c_{0}^{0}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial c_{-}^{0}}{\partial \underline{r}}\right) \cdot \frac{\partial f_{1}^{0}}{\partial \underline{C}_{1}}-\alpha \frac{\partial \underline{c}_{0}^{0}}{\partial t_{2}} \cdot \frac{\partial f_{1}^{1}}{\partial \underline{C}_{1}}+\alpha \frac{e_{1}}{m_{1}} c_{0}^{0} \times \underline{H} \cdot \frac{\partial f_{1}^{1}}{\partial \underline{C}_{1}}+ \\
& +\frac{e_{1}}{m_{1}} \underline{c}_{0}^{1} \times \underline{H} \cdot \frac{\partial f_{1}^{0}}{\partial \underline{C}_{1}}+\frac{e_{1}}{m_{1}} \underline{C}_{1} \times \underline{H} \cdot \frac{\partial f_{1}^{1}}{\partial \underline{C}_{1}}-\alpha \frac{\partial f_{1}^{0}}{\partial \underline{C}_{1}}: \frac{\partial \underline{c}_{0}^{0}}{\partial \underline{C}}= \tag{31}\\
& =F P_{11}\left[f_{1}^{0}\left(\underline{C}_{1}\right) f_{1}^{1}\left(\underline{C}_{1}^{1}\right)+f_{1}^{1}\left(\underline{C}_{1}\right) f_{1}^{0}\left(\underline{C}_{1}^{\prime}\right)\right]+ \\
& +F P_{12}\left[f_{1}^{0}\left(\underline{C}_{1}\right) f_{2}^{1}\left(\underline{C}_{2}\right)+f_{1}^{1}\left(\underline{C}_{1}\right) f_{2}^{0}\left(\underline{C}_{2}\right)\right] \\
& \frac{\partial f_{2}^{1}}{\partial t_{2}}+\frac{\partial f_{2}^{0}}{\partial t_{3}}+\alpha \underline{c}_{-0}^{0} \cdot \frac{\partial f_{2}^{0}}{\partial \underline{r}}+\alpha \underline{C}_{2} \cdot \frac{\partial f_{2}^{0}}{\partial \underline{r}}+\alpha \underline{F}_{-2} \cdot \frac{\partial f_{2}^{0}}{\partial \underline{C}_{2}}-\left(\frac{1}{\alpha} \frac{\partial c_{0}^{1}}{\partial t_{2}}+\right. \\
& \left.+\frac{\partial c_{0}^{0}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial c_{0}^{0}}{\partial \underline{r}}\right) \cdot \frac{\partial f_{2}^{0}}{\partial \underline{c}_{2}}-\frac{\partial c_{0}^{0}}{\partial t_{2}} \cdot \frac{\partial f_{2}^{1}}{\partial \underline{c}_{2}}+\alpha^{2} \frac{e_{2}}{m_{2}} c_{-}^{0} \times \frac{H}{\underline{H}} \cdot \frac{\partial f_{2}^{1}}{\partial \underline{c}_{2}}+ \\
& +\alpha \frac{e_{2}}{m_{2}} \underline{c}_{0}^{1} \times \underline{H} \cdot \frac{\partial f_{2}^{0}}{\partial \underline{C}_{2}}+\alpha^{2} \frac{e_{2}}{m_{2}} \underline{C}_{2} \times \underline{H} \cdot \frac{\partial f_{2}^{1}}{\partial \underline{C}_{2}}-\alpha \frac{\partial f_{2}^{0}}{\underline{C}_{2}} \underline{C}_{2}: \frac{\partial \underline{c}_{0}^{0}}{\partial \underline{r}}= \\
& =\alpha \operatorname{FP}_{22}\left[f_{2}^{0}\left(\underline{C}_{2}\right) f_{2}^{1}\left(\underline{C}_{2}^{1}\right)+f_{2}^{1}\left(\underline{C}_{2}\right) f_{2}^{0}\left(\underline{C}_{2}^{1}\right)\right]+ \tag{32}\\
& +\alpha F P_{21}\left[f_{2}^{0}\left(\underline{C}_{2}\right) f_{1}^{1}\left(\underline{C}_{1}\right)+f_{2}^{1}\left(\underline{C}_{2}\right) f_{1}^{0}\left(\underline{C}_{1}\right)\right] \\
& \frac{\partial p^{1}}{\partial t_{2}}+\frac{\partial \rho^{0}}{\partial t_{3}}+\alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho^{0} \underline{c}_{0}^{0}\right)=0 \tag{33}
\end{align*}
$$

$$
\begin{aligned}
& 2-2-2 x-20-2 \\
& -2-2=-2-2-2 \\
& \square-20-20 \\
& 2+20-2
\end{aligned}
$$

$4-2 \cdot-2 \cdot-1+2$

$$
\begin{aligned}
& 2+20+2 \\
& 2-2-2-2-2
\end{aligned}
$$

$120-2-2 \cdot x$
$+2+2+0+2+0$

$$
\begin{align*}
& \rho^{0}\left(\frac{1}{\alpha} \frac{\partial c_{0}^{1}}{\partial t_{2}}+\frac{\partial c_{0}^{0}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial c_{0}^{0}}{\partial \underline{r}}\right)+\rho^{1} \frac{\partial c_{0}^{0}}{\partial t_{2}}=-\alpha \frac{\partial}{\partial \underline{r}} \cdot \sum_{i=1}^{2} n_{i}^{0} m_{i}{\overline{C_{i}} \underline{C}_{i}^{0}}^{0}+ \\
& +\alpha \rho_{e}^{0} \underline{C}_{0}^{1} \times \underline{H}+\alpha^{2} \rho_{e}^{1} C_{-}^{0} \times \underline{H}+\alpha n_{1}^{0} e_{1} \overline{\mathbb{C}}_{1}^{1} \times \underline{H}+\alpha n_{1}^{1} e_{1} \underline{C}_{1}^{0} \times \underline{H}+ \\
& +\alpha^{2} n_{2}^{0} e_{2} \bar{C}_{2}^{1} \times \underline{H}+\alpha^{2} n_{2}^{1} e_{2} \overline{\mathrm{C}}_{2}^{0} \times \underline{H}+\alpha \sum_{i=1}^{2} \rho_{i}^{0} \underline{F}_{i} \\
& \frac{3}{2} n^{0} k\left(\frac{\partial T^{1}}{\partial t_{2}}+\frac{\partial T^{0}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial T^{0}}{\partial \underline{r}}\right)+\frac{3}{2} n^{1} k \frac{\partial T^{0}}{\partial t_{2}}=\frac{3}{2} k T^{0} \frac{\partial}{\partial \underline{r}} \cdot\left(n_{1}^{0}{\overline{\mathbb{C}_{1}^{0}}}^{0}\right)+ \\
& +\alpha \frac{3}{2} k T^{\circ} \frac{\partial}{\partial \underline{r}} \cdot\left(n_{2}^{O} \bar{C}_{2}^{O}\right)+\rho_{1}^{O} \underline{F}_{1} \cdot \overline{\mathrm{C}}_{1}^{O}+\alpha \rho_{2}^{0} \underline{F}_{2} \cdot \underline{\bar{C}}_{2}^{O}+n_{1}^{0} e_{1} \overline{\mathrm{C}}_{1}^{0} \cdot\left(\underline{c}_{0}^{1} \times \underline{H}\right)+ \tag{35}\\
& +\alpha n_{1}^{0} e_{1} \underline{\bar{c}}_{1}^{1} \cdot\left(\underline{c}_{0}^{0} \times \underline{H}\right)+\alpha n_{1}^{1} e_{1} \overline{\bar{C}}_{1}^{\circ} \cdot\left(\underline{c}_{0}^{0} \times \underline{H}\right)+\alpha n_{2}^{0} e_{2} \overline{\underline{C}}_{2}^{0} \cdot\left(\underline{c}_{0}^{1} \times \underline{H}\right)+ \\
& +\alpha^{2} n_{2}^{0} e_{2} \underline{\bar{c}}_{2}^{1} \cdot\left(\underline{c}_{0}^{0} \times \underline{H}\right)+\alpha^{2} n_{2}^{1} \underline{e}_{2} \overline{\bar{c}}_{2}^{0} \cdot\left(\underline{c}_{0}^{0} \times \underline{H}\right)-\frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{1}^{0}-\alpha \frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{2}^{0} \cdots \\
& -\alpha \sum_{i=1}^{2} n_{i}^{0} m_{i}{\overline{C_{i} C_{i}}}^{0}: \frac{\partial \underline{c}_{0}^{0}}{\partial \underline{r}} \\
& \frac{\partial p_{1}^{1}}{\partial t_{2}}+\frac{\partial p_{1}^{0}}{\partial t_{3}}+\alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1}^{0} \underline{C}_{0}^{0}\right)+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1}^{0} \overline{\underline{C}}_{1}^{0}\right)=0 \tag{36}\\
& \frac{\partial p_{2}^{1}}{\partial t_{2}}+\frac{\partial \rho_{2}^{0}}{\partial t_{3}}+\alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{2}^{0} \underline{C}_{0}^{0}\right)+\alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{2}^{0} \overline{\underline{C}}_{2}^{0}\right)=0 \tag{37}
\end{align*}
$$

$2-20.20$ $2,-2,-2$

$2-2+2+2+2$

$4+\frac{120}{2}$

$$
\begin{align*}
& \frac{\partial}{\partial t_{2}}\left(\rho_{1} \overline{\bar{C}}_{1}\right)^{1}+\frac{\partial}{\partial t_{3}}\left(\rho_{1} \overline{\bar{C}}_{1}\right)^{0}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial}{\partial \underline{r}}\left(\rho_{1}^{0} \overline{\underline{C}}_{1}^{0}\right)+\alpha \rho_{1}^{0} \overline{\mathcal{C}}_{1}^{\circ} \frac{\partial}{\partial \underline{r}} \cdot c_{0}^{0}+ \\
& +\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1}^{0}{\overline{C_{1}} \underline{C}_{1}^{0}}_{0}\right)-\rho_{1}^{0} \underline{F}_{1}+\alpha \rho_{1}^{0}\left(\frac{1}{\alpha} \frac{\partial \underline{c}_{0}^{1}}{\partial t_{2}}+\frac{\partial \underline{c}_{0}^{0}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial \underline{c}_{0}^{0}}{\partial \underline{r}}\right)+ \\
& +\alpha p_{1}^{1} \frac{\partial \underline{c}_{0}^{0}}{\partial t_{2}}-n_{1}^{\circ} e_{1} \underline{c}_{0}^{1} \times \underline{H}-\alpha n_{1}^{1} e_{1} \underline{c}_{0}^{0} \times \underline{H}-n_{1}^{0} e_{1} \bar{C}_{1}^{1} \times \underline{H}- \\
& -n_{1}^{1} e_{1} \overline{\bar{C}}_{1}^{\circ} \times \underline{H}+\alpha \rho_{1}^{0} \overline{\underline{C}}_{1}^{\circ} \cdot \frac{\partial \underline{c}_{o}^{o}}{\partial \underline{r}}= \tag{38}\\
& =-\int \frac{d \underline{C}_{1}}{} \frac{d \underline{C}_{2}}{\sim}{ }_{\sim}^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}-\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}\right) \\
& \left(f_{1}^{0}\left(\underline{c}_{1}\right) f_{2}^{1}\left(\underline{c}_{2}\right)+f_{1}^{1}\left(\underline{c}_{1}\right) f_{2}^{0}\left(\underline{c}_{2}\right)\right)
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial t_{2}}\left(\rho_{2} \overline{\mathrm{C}}_{2}\right)^{1}+\frac{\partial}{\partial t_{3}}\left(\rho_{2} \overline{\underline{c}}_{2}\right)^{0}+\alpha{c_{0}^{0}}_{0}^{0} \frac{\partial}{\partial \underline{r}}\left(\rho_{2}^{0} \overline{\mathrm{C}}_{2}^{0}\right)+\alpha \rho_{2}^{0} \overline{\mathrm{C}}_{2}^{0} \frac{\partial}{\partial \underline{r}} \cdot \underline{c}_{0}^{0}+ \\
& +\alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{2}^{0} \bar{C}_{2} \bar{C}_{2}^{\mathbb{C}_{2}^{0}}\right)-\alpha \rho_{2}^{0} \underline{\underline{F}}_{2}+\rho_{2}^{0}\left(\frac{1}{\alpha} \frac{\partial}{\partial t_{2}} \underline{c}_{0}^{1}+\frac{\partial}{\partial t_{3}} \underline{c}_{0}^{0}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial \underline{c}_{0}^{0}}{\partial \underline{r}}\right)+ \\
& +\rho_{2}^{1} \frac{\partial \underline{c}_{0}^{0}}{\partial t_{2}}-\alpha n_{2}^{0} e_{2} \underline{c}_{0}^{1} \times \underline{H}-\alpha^{2} n_{2}^{1} e_{2} \underline{c}_{0}^{0} \times \underline{H}-\alpha^{2} n_{2}^{0} e_{2} \bar{C}_{2}^{1} \times \underline{H}- \\
& -\alpha^{2} n_{2}^{1} e_{2} \overline{\underline{C}}_{2}^{0} \times \underline{H}+\alpha p_{2}^{0} \overline{-}_{2}^{0} \cdot \frac{\partial \underline{c}_{0}^{0}}{\partial \underline{r}}= \tag{39}\\
& =-\alpha \int \frac{\partial \underline{C}_{1}}{} \frac{\alpha \underline{C}_{2}}{2}{\underset{\sim}{12}}^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}-\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}\right) \\
& \left(f_{2}^{0}\left(\underline{C}_{2}\right) f_{1}^{1}\left(\underline{C}_{1}\right)+f_{2}^{1}\left(\underline{C}_{2}\right) f_{1}^{0}\left(\underline{C}_{1}\right)\right.
\end{align*}
$$

$$
\begin{aligned}
& \text { (3) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) }
\end{aligned}
$$

$$
\begin{align*}
& \frac{3}{2} n_{1}^{O} k\left(\frac{\partial T_{1}^{1}}{\partial t_{2}}+\frac{\partial T_{1}^{O}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial T_{1}^{\circ}}{\partial \underline{r}}\right)+\frac{3}{2} n_{1}^{1} k \frac{\partial T_{1}^{O}}{\partial t_{2}}-\frac{3}{2} k T_{1}^{0} \frac{\partial}{\partial \underline{r}} \cdot\left(n_{1}^{0} \bar{C}_{1}^{O}\right)+ \\
& +\frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{1}^{r}-\rho_{1}^{0} \underline{F}_{1} \cdot \overline{\bar{c}}_{1}^{\circ}+\alpha\left(\rho_{1} \overline{\bar{C}}_{1}\right)^{0} \cdot\left(\frac{1}{\alpha} \frac{\partial \underline{c}_{0}^{1}}{\partial t_{2}}+\frac{\partial \underline{c}_{0}^{0}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial \underline{c}_{0}^{0}}{\partial \underline{r}}\right)+ \\
& +\alpha\left(\rho_{1} \bar{c}_{1}\right)^{1} \cdot \frac{\partial \underline{c}_{0}^{0}}{\partial t_{2}}-n_{1}^{0} e_{1} \bar{C}_{1}^{0} \cdot\left(\underline{c}_{0}^{1} \times \underline{H}\right)-\alpha n_{1}^{0} e_{1} \overline{\bar{C}}_{1}^{1} \cdot\left(\underline{c}_{0}^{0} \times \underline{H}\right)- \\
& -\alpha n_{1}^{1} e_{1} \overline{\underline{C}}_{1}^{O} \cdot\left(\underline{c}_{0}^{O} \times \underline{H}\right)+\alpha \rho_{1}^{0}{\overline{C_{1}} \underline{C}_{1}^{O}}_{O}: \frac{\partial \underline{c}_{0}^{0}}{\partial \underline{r}}= \tag{40}\\
& =-\alpha \int \frac{d \underline{C}_{1}}{} \underline{C}_{2} \underline{C}_{2} \cdot \Phi_{\sim}^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}-\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}\right) \\
& \left(f_{1}^{0}\left(\underline{c}_{1}\right) f_{2}^{1}\left(\underline{c}_{2}\right)+f_{1}^{1}\left(\underline{c}_{1}\right) f_{2}^{0}\left(\underline{c}_{2}\right)\right) \\
& \frac{3}{2} n_{2}^{0} k\left(\frac{\partial T_{2}^{1}}{\partial t_{2}}+\frac{\partial T_{2}^{0}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial T_{2}^{0}}{\frac{r}{r}}\right)+\frac{3}{2} n_{2}^{1} k \frac{\partial T_{2}^{0}}{\partial t_{2}}-\alpha \frac{3}{2} k T_{2}^{0} \frac{\partial}{\partial \underline{r}} \cdot\left(n_{2}^{0} \overline{\mathrm{C}}_{2}^{0}\right)+ \\
& +\alpha \frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{2}^{0}-\alpha \rho_{2}^{0} \underline{F}_{2} \cdot{\overline{C_{-}^{2}}}_{0}^{-}+\left(\rho_{2} \overline{\mathrm{C}}_{2}\right)^{0} \cdot\left(\frac{1}{\alpha} \frac{\partial \underline{c}_{0}^{1}}{\partial t_{2}}+\frac{\partial \underline{c}_{0}^{0}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \cdot \frac{\partial c_{0}^{0}}{\partial \underline{r}}\right)+ \\
& +\left(\rho_{2} \bar{C}_{2}\right)^{1} \cdot \frac{\partial c_{0}^{0}}{\partial t_{2}}-\alpha n_{2}^{0} e_{2} \bar{C}_{2}^{0} \cdot\left(\underline{c}_{0}^{1} \times \underline{H}\right)-\alpha^{2} n_{2}^{0} e_{2} \bar{C}_{2}^{1} \cdot\left(\underline{c}_{0}^{0} \times \underline{H}\right)- \\
& -\alpha^{2} n_{2}^{1} e_{2} \overline{\bar{C}}_{2}^{\circ} \cdot\left(\underline{c}_{0}^{\circ} \times \underline{H}\right)+\alpha \rho_{2}^{0}{\overline{C_{2}} \underline{C}_{2}^{0}}_{0}: \frac{\partial \underline{c}_{0}^{0}}{\partial \underline{r}}= \tag{41}\\
& =-\alpha \int \frac{\partial \underline{C}_{1}}{} \frac{d \underline{C}_{2}}{\underline{C}_{2}} \cdot{\underset{\sim}{\Phi}}^{12}\left(\underline{C}_{1}-\alpha \underline{C}_{2}\right) \cdot\left(\frac{\alpha}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}-\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}\right) \\
& \left(f_{2}^{0}\left(\underline{C}_{2}\right) f_{1}^{1}\left(\underline{C}_{1}\right)+f_{2}^{1}\left(\underline{C}_{2}\right) f_{1}^{0}\left(\underline{C}_{1}\right)\right)
\end{align*}
$$

$$
\frac{1}{2}+\frac{1}{2}+2
$$

$(x+2 a+2 x+2$
2. Solutions in the limit $t_{2}=\infty$.

In this section we study the equations to zeroth and first order in ε in the limit $t_{2}=\infty$, 59]. We do not need then to expand functions and time derivatives in the parameter α.

The solutions of the zeroth order equations can be discussed by studying the H - function, [1]
$H=\int f_{1}^{0}\left(\underline{C}_{1}\right) \operatorname{lnf}{ }_{1}^{0}\left(\underline{C}_{1}\right) d \underline{C}_{1}+\int f_{2}^{0}\left(\underline{C}_{2}\right) \operatorname{lnf} \underline{C}_{2}^{0}\left(\underline{C}_{2}\right) d \underline{-}_{2}$

H is bounded below and
$\frac{\partial H_{2}}{\partial t_{2}} \leqq 0$
the sign of equality holding if and only if ([10]for a one component gas)
$f_{1}^{O}\left(\underline{C}_{1}\right)=\exp \left[-\frac{1}{2} A_{1} C_{1}^{2}+\underline{B}_{1} \cdot \underline{C}_{1}+D_{1}\right]$
$f_{2}^{0}\left(\underline{C}_{2}\right)=\exp \left[-\frac{1}{2} A_{2} C_{2}^{2}+\underline{B}_{2} \cdot \underline{C}_{2}+D_{2}\right]$
and
$\frac{1}{m_{1}} \frac{\partial}{\partial \underline{C}_{1}}\left(-\frac{1}{2} A_{1} C_{1}^{2}+\underline{B}_{1} \cdot \underline{C}_{1}+D_{1}\right)-\frac{1}{m_{2}} \frac{\partial}{\partial \underline{C}_{2}}\left(-\frac{1}{2} A_{2} C_{2}^{2}+\underline{B}_{2} \cdot \underline{C}_{2}+D_{2}\right)=$

$$
=\mu \cdot\left(\underline{C}_{1}-\underline{C}_{2}\right)
$$

gJjemtarac

Here μ (a scalar function) A_{i},
\underline{B}_{i} and D_{i}, $i=1,2$, are independent of \underline{C}_{1} and \underline{C}_{2}.

The last relation is fulfilled if and only if

$$
\begin{align*}
& \frac{A_{1}}{m_{1}}=\frac{A_{2}}{m_{2}} \tag{42}\\
& \frac{B_{1}}{m_{1}}=\frac{B_{2}}{m_{2}} \tag{43}
\end{align*}
$$

A_{i}, B_{i} and $D_{i}, i=1,2$, can be expressed by the first moments :

$$
\begin{gathered}
A_{i}=\frac{\frac{3}{2} m_{i}}{\frac{3}{2} k T_{i}^{0}-\frac{1}{2} m_{i} \overline{\mathbb{C}}_{i}^{0}} \\
\underline{B}_{i}=\frac{\frac{3}{2} m_{i} \bar{C}_{i}^{0}}{\frac{3}{2} k T_{i}^{0}-\frac{1}{2} m_{i} \bar{C}_{i}^{2}} \\
e^{D_{i}}=n_{i}^{0}\left(\frac{A_{i}}{2 \pi}\right)^{3 / 2} \exp \left[-\frac{B_{i}^{2}}{2 A_{i}}\right]
\end{gathered}
$$

The a priori condition to zeroth order , Eq. (18), together with Eqs (42) and (43) give that

$$
\begin{equation*}
\overline{\mathrm{C}}_{1}^{0}=\frac{\overline{\mathrm{C}}_{2}^{0}}{2}=0 \tag{44}
\end{equation*}
$$

$(2+2)$

$$
\theta+\square=\frac{\ddots}{\square}
$$

$$
\begin{equation*}
T_{1}^{0}=T_{2}^{0} \quad\left(=T^{0}\right) \tag{45}
\end{equation*}
$$

in the limit $t_{2}=\infty$, and the distribution functions then take Maxwellian forms,

$$
\begin{equation*}
f_{i M}^{0}=n_{i}^{0}\left(\frac{m_{i}}{2 \pi k T^{0}}\right)^{3 / 2} \exp \left(-\frac{m_{i} C_{i}^{2}}{2 k T^{0}}\right) \tag{46}
\end{equation*}
$$

(The subscript " M " is used occasionally to denote quantities in "local" equilibrium).

Substituting Eqs. (44) and (46) into Eqs. (23), (28) and (29) show that

$$
\begin{equation*}
\frac{\partial T^{0}}{\partial t_{2}}, \frac{\partial T_{i}^{0}}{\partial t_{2}}, \quad i=1,2, \text { all } \rightarrow 0 \text { as } t_{2} \rightarrow \infty \tag{47}
\end{equation*}
$$

We now study the kinetic equations to zeroth order in the limit $t_{2}=\infty$. We assume

$$
\begin{aligned}
& \frac{\partial f_{i}^{0}}{\partial C_{i}} \rightarrow \frac{\partial f_{i M}^{0}}{\partial C_{i}} \\
& \frac{\partial f_{i}^{0}}{\partial t_{2}} \rightarrow \frac{\partial f_{i M}^{0}}{\partial t_{2}}
\end{aligned}
$$

as $t_{2} \rightarrow \infty$, and from the last relation it follows, using Eqs. (24) and (25) and Eq. (47), that

$$
\frac{\partial f_{i}^{0}}{\partial t_{2}} \rightarrow \frac{\partial T^{0}}{\partial t_{2}} \cdot \frac{\partial f^{0}}{\partial T^{0}}=0 \quad \text { as } t_{2} \rightarrow \infty
$$

(e4)

 minks furato (ou) hans.
(84)

a

Substituting from Eq.(22), Eqs.(19) and (20) in the limit $t_{2}=\infty$ become

$$
\begin{aligned}
& \left(-\alpha^{2} \frac{\rho_{e}^{0}}{\rho^{0}} c_{0}^{0} \times \underline{H}+\frac{e_{1}}{m_{1}} c_{0}^{0} \times \underline{H}\right) \cdot C_{1}=0 \\
& \left(-\frac{\rho_{e}^{0}}{\rho^{0}} c_{0}^{0} \times \underline{H}+\frac{e_{2}}{m_{2}} c_{0}^{0} \times \underline{H}\right) \cdot \underline{C}_{2}=0
\end{aligned}
$$

showing that the perpendicular (1) mass transport vector in the limit $t_{2}=\infty$ vanishes,

$$
\begin{equation*}
\stackrel{c}{0}_{0}^{0}=0 \tag{48}
\end{equation*}
$$

(while the parallel (II)mass transport vector $c_{-0 \|}^{0}$ may be non-vanishing).

Thus the equations to zeroth order in the parameter ε, Which correspond to the equations in the absence of an external electric field and inhomogenities, describe the evolution into a local equilibrium state in space and time where electrons and ions are of equal temperature and where only a parallel mass transport to zeroth order may exist. Before this local statethermal energy of
 and electrons and ions have exchanged energy. This is in agreement with "fine structure solutions" (expanding in the parameter α) obtained in [5] , [6], [7] Ind in section 3 of this report.

From the equations to first order in ε we find easily that $p^{1}, p_{i}^{1}, \underline{c}_{0}^{1} \|, T^{1}$ and $T_{i}^{1}, i=1,2$, have transients on the τ_{2} time scale, for instance

$$
\begin{aligned}
& p_{1}^{1}\left(t_{2}, \ldots\right)=p_{1}^{1}\left(t_{2}=0, t_{3}, \ldots\right)-\int_{0}^{t_{2}} d \tau\left[\alpha \frac{\partial}{\partial r} \cdot\left(p_{1}^{0} c_{01}^{0}(\tau)\right)+\right. \\
& \left.+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1}^{0} \overline{\bar{C}}_{1}^{O}(\tau)\right)\right]
\end{aligned}
$$

and as non secularity conditions we obtain

$$
\begin{gather*}
\frac{\partial p^{0}}{\partial t_{3}}+\alpha \frac{\partial}{\partial \underline{r}} \cdot\left(p^{0} \underline{c}_{0 \|}^{0}\right)=0 \tag{49}\\
\frac{\partial p_{i}^{0}}{\partial t_{3}}+\alpha \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{i}^{0} \underline{c}_{0}^{0} \|\right)=0 \quad, \quad i=1,2 \tag{50}\\
\frac{3}{2} n^{0} k\left(\frac{\partial T^{0}}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \| \cdot \frac{\partial T^{0}}{\partial \underline{r}}\right)=-\alpha \underset{\sim}{I} p^{0}: \frac{\partial c_{0}^{0} \|}{\partial \underline{r}} \tag{51}
\end{gather*}
$$

The equation for the parallel mass transport vector becomes

$$
\begin{equation*}
\rho^{\circ}\left(\frac{\partial c_{-0}^{0} \|}{\partial t_{3}}+\alpha \underline{c}_{0}^{0} \| \cdot \frac{\partial c_{0}^{0} \|}{\partial \underline{r}}\right)=-\alpha \frac{\partial p^{0}}{\partial \underline{r} \|}+\alpha \sum_{i=1}^{2} \rho_{i}^{0} \underline{E}_{i \|} \tag{52}
\end{equation*}
$$

Equations (49) - (52) are similar to corresponding equations of Chapman and Cowling [1] (cf.Appendix 1, Eqs.A12-A14) except that it is the mass transport vector parallel to the magnetic field that dominates in Eqs. (49) - (52).


```
                40-20)
```

```
\[
(3 x)-(-(4)
\]
```

We now study the kinetic equations, Eqs. (31) and (32), and the transverse part of Eq. (34). These equations are strongly coupled as to the evolution on the τ_{2} time scale. However, the problem to find the behaviour of f_{1}^{1}, f_{2}^{1} and $\underline{c}_{0 \perp}^{1}$ as $t_{2} \rightarrow \infty$ we here simplify as follows: We seek bounded solutions of Eqs. (31) and (32) which obey

$$
\begin{align*}
& \frac{\partial f_{1}^{1}}{\partial t_{2}} \rightarrow 0 \text {, as } \quad t_{2} \rightarrow \infty \\
& \frac{\partial f_{2}^{1}}{\partial t_{2}} \rightarrow 0 \text {, as } t_{2} \rightarrow \infty \tag{53}
\end{align*}
$$

We note that the conditions Eq. (53) alone are neither necessary nor sufficient for f_{1}^{1} and f_{2}^{1} to be bounded as $t_{20} \rightarrow \infty$. Chapman and Cowling implicitly make similar assumptions concerning f_{1}^{1} and $f_{2}^{1}\left(c f_{2}\right.$ Appendix 1, Eq.A15). In the limit $t_{2}=\infty f_{1}^{1}$ and f_{2}^{1} fom Eqs.(31) and (32) will then be functionals of $n_{1}^{0}, n_{2}^{0}, T^{\circ}, \underline{c}_{0}^{0} \|$ and \underline{c}_{-1}^{1}. All except $c_{0 \perp}^{1}$ we have found are either independent of t_{2}, Eqs. (24) and (25) and the parallell part of Eq. (22), or relax according to Eq. (47) as $t_{2} \rightarrow \infty$. To be consistent with the assumptions above we also assume that

$$
\begin{equation*}
\frac{\partial c_{-1}^{1}}{\partial t_{2}} \rightarrow 0 \quad \text { as } \quad t_{2} \rightarrow \infty \tag{54}
\end{equation*}
$$

This assumption will now give a balance of transverse forces in the limit $t_{2}=\infty$: From the transverse part

$$
\begin{aligned}
& x+\operatorname{sen} \operatorname{sen} \sin +0<\frac{5 \pi 6}{9+6}
\end{aligned}
$$

 20.2

 (4id)

of Eq. (34) using the results from zeroth order equations and the assumption Eq. (54) we get
$-\frac{\partial p^{0}}{\partial \underline{r}_{1}}+\rho_{e}^{0} e_{-}^{1} \times \underline{H}+n_{1}^{0} e_{1} \underline{\bar{C}}_{1}^{1} \times \underline{H}+\alpha n_{2}^{0} \underline{e}_{2} \underline{-}_{2}^{1} \times \underline{H}+\sum_{i=1}^{2} \rho_{i}^{0} \underline{F}_{i}=0$
In this equation we find $\overline{\bar{C}}_{1}^{1}$ and $\overline{\mathrm{C}}_{2}^{1}$ from the solutions of the kinetic equations to first order in the limit $t_{2}=\infty$. Eq. (55) then determines $c_{0 \perp}^{1}$ in this Iimit. We note here that in the next section we partly derive what is assumed above concerning the time derivatives of f_{1}^{1}, f_{2}^{1} and ${\underset{-}{c}}_{0}^{1}$ as $t_{2} \rightarrow \infty$.

Making use of the results to zeroth order and also Eqs. (50), (51) and (52) and the assumptions above $\left(f_{1}^{1}\right.$ and f_{2}^{1} bounded and Eqs. (53) and (54)), the kinetic equations to first order in ε, Eqs. (31) and (32) in the limit $t_{2}=\infty$ can be written
$f_{1 M}^{0}\left(\frac{m_{1} C_{1}^{2}}{2 k T^{0}}-\frac{5}{2}\right) \frac{1}{T^{0}} \frac{\partial T^{0}}{\partial \underline{r}} \cdot \underline{C}_{1}+f_{1 M}^{0}\left(\frac{\partial}{\partial \underline{r} \|} \ln p_{1}^{0}-\frac{\rho_{1}^{0}}{\rho_{1}^{0} \rho^{0}}\left(\rho^{0}-\alpha^{2} \rho_{1}^{0}\right)\left(\underline{F}_{1 \|}-\right.\right.$
$\left.\left.-\alpha^{2} \underline{F}_{2 \|}\right)-\alpha^{2} \frac{\rho_{1}^{0}}{p_{1}^{0} \rho^{0}} \frac{\partial p^{0}}{\partial \underline{r} \|}\right) \cdot \underline{C}_{1}-f_{1 M}^{0} \frac{e_{1}}{k T^{0}}\left(\frac{m_{1}}{e_{1}} \underline{F}_{1 \perp}+\underline{c}_{0}^{1} \times \underline{H}-\right.$
$\left.-\frac{k T^{\circ}}{e_{1}} \frac{\partial}{\partial \underline{I}_{1}} \operatorname{lnp_{1}}{ }_{1}^{\circ}\right) \cdot \underline{C}_{1}+\alpha f_{1 M}^{O} \frac{m_{1}}{k T^{\circ}} \underline{C}_{1}{ }^{\circ} \underline{C}_{1}: \frac{\partial C_{0}^{O} \|}{\partial \underline{r}}=$
$=-\frac{e_{1}}{m_{1}} \underline{C}_{1} \times \underline{H} \cdot \frac{\partial f_{1}^{1}}{\underline{C}_{1}}+F P_{11}\left[f_{1 M}^{0}\left(\underline{C}_{1}\right) f_{1 M}^{1}\left(\underline{C}_{1}^{1}\right)+f_{1 M}^{1}\left(\underline{C}_{1}\right) f_{1 M}^{0}\left(\underline{C}_{1}^{\prime}\right)\right]+$
$+F P_{12}\left[f_{1 M}^{0}\left(\underline{C}_{1}\right) f_{2 M}^{1}\left(\underline{C}_{2}\right)+f_{1 M}^{1}\left(\underline{C}_{1}\right) f_{2 M}^{0}\left(\underline{C}_{2}\right)\right]$

$$
\begin{align*}
& 4 \\
& \text { Risis } \\
& \text { 都 } \\
& \text { Sist } \tag{array}
\end{align*}
$$

 $40 c t$

$\alpha f_{2 M}^{\circ}\left(\frac{m_{2} C_{2}^{2}}{2 k T^{\circ}}-\frac{5}{2}\right) \frac{1}{T^{0}} \frac{\partial T^{\circ}}{\partial \underline{r}} \cdot \underline{C}_{2}+f_{2 M}^{\circ}\left(\alpha \frac{\partial}{\partial \underline{r} \|} \ln p_{2}^{0}-\right.$
$\left.-\alpha\left(\rho^{0}-\rho_{2}^{0}\right) \frac{\rho_{2}^{0}}{p_{2}^{0} \rho^{0}}\left(\alpha^{2} \underline{F}_{2}\left\|^{-} \underline{F}_{1}\right\|\right)-\alpha \frac{\rho_{2}^{0}}{\rho p_{2}^{0}} \frac{\partial p^{0}}{\partial \underline{r}} \|\right) \cdot \underline{C}_{2}-$
$-\alpha f_{2 M}^{0} \frac{e_{2}}{k T^{\circ}}\left(\frac{m_{2}}{e_{2}} \underline{F}_{21}+\underline{c}_{0}^{1} \times \underline{H}-\frac{k T^{0}}{e_{2}} \frac{\partial}{\partial \underline{r}_{1}} \operatorname{lnp} 2_{2}^{0}\right) \cdot \underline{C}_{2}+$
$+\alpha f_{2 M}^{\circ} \frac{m_{2}}{k T^{\circ}}{\underset{-}{C}}_{2}^{\circ} \underline{C}_{2}: \frac{\partial c_{-}^{\circ} \|}{\partial \underline{r}}=$
$=-\alpha^{2} \frac{e_{2}}{m_{2}} \underline{C}_{2} \times \underline{H} \cdot \frac{\partial f_{2 M}^{1}}{\frac{\partial C_{2}}{1}}+\alpha F P_{22}\left[f_{2 M}^{O}\left(\underline{C}_{2}\right) f_{2 M}^{1}\left(\underline{C}_{2}^{\prime}\right)+\right.$
$\left.+f_{2 M}^{1}\left(\underline{C}_{2}\right) f_{2 M}^{0}\left(\underline{c}_{2}^{\prime}\right)\right]+\alpha F P_{21}\left[f_{2 M}^{0}\left(\underline{C}_{2}\right) f_{1 M}^{1}\left(\underline{C}_{1}\right)+f_{2 M}^{1}\left(\underline{C}_{2}\right) f_{1 M}^{0}\left(\underline{C}_{1}\right)\right]$

These equations together with the constraint Eq. (30) in the limit $t_{2}=\infty$ correspond to the "second order kinetic equations" of Chapman and Cowling.

Eqs(30), (56) and (57) can be solved by successive approximations expanding in the parameter α. Leaving out terms of order α in Eqs. (30), (56) and (57) we obtain

$$
\begin{equation*}
\int \frac{d{\underset{-}{2}}_{2}}{f_{2 M}^{1}\left(\underline{C}_{2}\right) m_{2} \underline{-}_{2}=0} \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
0=s s^{3 x(}(2) \operatorname{sig}^{2} 962 \tag{8c}
\end{equation*}
$$

$$
\begin{aligned}
& \cdots
\end{aligned}
$$

$$
\begin{align*}
& f_{1 M}^{\circ}\left[\left(\frac{m_{1} C_{1}^{2}}{2 k T^{\circ}}-\frac{5}{2}\right) \frac{1}{T^{\circ}} \frac{\partial T^{\circ}}{\partial \underline{r}}-\frac{e_{1}}{k T^{0}}\left(\frac{m_{1}}{e_{1} \underline{F}_{1}}+\underline{c}_{0}^{1} \times \underline{H}-\right.\right. \\
& \left.\left.-\frac{k T^{\circ}}{\mathrm{e}_{1}} \frac{\partial}{\partial \underline{r}} \operatorname{lnp_{1}^{0}}\right)\right] \cdot \underline{C}_{1}= \tag{59}\\
& =-\frac{e_{1}}{m_{1}} \underline{C}_{1} \times \underline{H} \cdot \frac{\partial f_{1 M}^{1}}{\partial \underline{C}_{1}}+F P_{11}\left[f_{1 M}^{0}\left(\underline{C}_{1}\right) f_{1 M}^{1}\left(\underline{C}_{1}^{1}\right)+f_{1 M}^{1}\left(\underline{C}_{1}\right) f_{1 M}^{0}\left(\underline{C}_{1}^{1}\right)\right]+ \\
& +D_{1}^{\circ}\left[f_{1 M}^{1}\right] \\
& f_{2 M}^{0}\left(\frac{m_{2} C_{2}^{2}}{2 k T^{0}}-\frac{5}{2}\right) \frac{1}{T^{0}} \frac{\partial T^{0}}{\partial \underline{r}} \cdot \underline{C}_{2}+f_{2 M}^{0} \frac{m_{2}}{k T^{0}} \underline{C}_{2}^{0} \underline{C}_{2}: \frac{\partial c_{0}^{0}}{\partial \underline{r}}= \tag{60}\\
& =F P_{22}\left[f_{2 M}^{0}\left(\underline{C}_{2}\right) f_{2 M}^{1}\left(\underline{C}_{2}^{\prime}\right)+f_{2 M}^{1}\left(\underline{C}_{2}\right) f_{2 M}^{0}\left(\underline{C}_{2}^{\prime}\right)\right]
\end{align*}
$$

Here $\quad D_{1}^{0}=\frac{n_{2}^{0}}{m_{1}^{2}} \frac{\partial}{\partial \underline{C}_{1}} \cdot\left(\dot{\Phi}^{12}\left(\underline{C}_{1}\right) \cdot \frac{\partial}{\partial \underline{C}_{1}}\right)$ is a diffusion operator.

To obtain Eq. (60) use is also made of Eq. (39) in the limit $t_{2}=\infty$. Eqs. (59) and (60) are of the same form as Eqs. (2.50) and (2.86) of [5] or Eqs. (10) and (15) of [6], see also [7].

Using the Landau form for the tensor $\underset{\sim}{\Phi^{-u}}$,
${\underset{\sim}{\Phi}}^{i j}(\underline{w})=k \frac{w^{2} \frac{I}{\sim}-\underline{w}-\underline{w}}{w^{3}}, \quad k=2 \pi e_{i}^{2} e_{j}^{2} \ln \left[\frac{3 \lambda_{D} k T^{\circ}}{2 e_{1}^{2}}\right]$, where $\underset{\sim}{I}$
is the unit tensor and λ_{D} the Debye length, Leversen and Naze Tjøtta [11] have proved existence of solutions of Eqs. (59) and (60) with certain properties. The solution of Eq. (59) contains two arbitrary parameters, and imposing

$$
\begin{aligned}
& \begin{array}{ccc}
\square & \ddots & \ddots
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots+\frac{1}{2}+\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 1020+0 \cdot 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{n}_{1}^{1}=0 \\
& \mathrm{~T}_{1}^{1}=0
\end{aligned}
$$

in the limit $t_{2}=\infty$, these parameters vanish. The solution of Eq. (60) contains 5 arbitrary parameters so that Eq. (58) can be fulfilled too. To see the form of the solution of Eq. (59), which is sufficient in the discussion later, we substitute

$$
\begin{equation*}
v_{1}\left(f_{1 M}^{0}-f_{1}\right) \tag{61}
\end{equation*}
$$

for the collision terms of Eq. (7) when terms of order α are left out. Here v_{1}, assumed constant, is a measure of electron-electron and electron-ion effective collision frequency, with ions at rest. The solution of Eq. (59) thus takes the form, [5]
$f_{1 M}^{1}=-f_{1 M}^{0}\left[\frac{1}{\nu_{1}} \underline{C}_{1 \|}+\frac{\frac{1}{v_{1}}}{1+\left(\frac{\Omega_{1}}{v_{1}}\right)^{2}}\left(\underline{C}_{1 \perp}-\frac{\Omega_{1}}{v_{1} H} \underline{C}_{1} \times \underline{H}\right)\right] \cdot \underline{h}_{1}^{1}$
where $f_{1 M}^{0} \underline{h}_{1}^{1} \cdot \underline{-}_{1}$ is the left hand side of Eq. (59). From Eq. (62) we derive for the homogeneous case
$n_{1}^{o \bar{C}_{1 \perp}^{1}}=\frac{\frac{1}{\nu_{1}}}{1+\left(\frac{\Omega_{1}}{\nu_{1}}\right)^{2}}\left[\frac{n_{1}^{o} e_{1}}{m_{1}}\left(\frac{m_{1}}{e_{1}} \underline{F}_{1}+c_{-}^{1} \times \underline{H}\right)-\right.$

$$
\begin{equation*}
\left.-\frac{n_{1} e_{1}}{m_{1}} \frac{\Omega_{1}}{v_{1}} \frac{H}{H} \times\left(\frac{m_{1}}{e_{1} \underline{F}_{1}}+\underline{c}_{0}^{1} \times \underline{H}\right)\right] \tag{63}
\end{equation*}
$$

$$
8
$$

$$
0=1
$$

 -
(x)

$$
\left(r^{2}+\left(x^{2}\right)^{2}\right)^{v}
$$

\square

Leaving out terms of order α in the balance of transverse forces relation Eq. (55) and substituting from Eq. (63) we obtain the form of $\underline{c}_{0 \perp}^{1}$ in the limit $t_{2}=\infty$ for the homogeneous case,

$$
\begin{aligned}
& \left(\rho_{e}^{0}-n_{1}^{0} e_{1} \frac{\left(\frac{\Omega_{1}}{\nu_{1}}\right)^{2}}{1+\left(\frac{\Omega_{1}}{\nu_{1}}\right)^{2}}\right)\left(n_{1}^{0} m_{1} \frac{\left(\frac{\Omega_{1}}{\nu_{1}}\right)^{2}}{1+\left(\frac{\Omega_{1}}{\nu_{1}}\right)^{2}} \underline{H} \times \underline{F}_{1}-\underline{H} \times \sum_{i=1}^{2} \rho_{i}^{\circ} \underline{F}_{i}\right) \\
& + \\
& \overline{H^{2}}\left[\rho_{e}^{o 2}-\frac{\left(\frac{\Omega_{1}}{v_{1}}\right)^{2}}{1+\left(\frac{\Omega_{1}}{v_{1}}\right)^{2}}\left(2 \rho_{\left.\left.e^{n_{1}} 0_{1}^{o} e_{1}-n_{1}^{o 2} e_{1}^{2}\right)\right]}\right.\right. \\
& n_{1}^{o 2} e_{1} m_{1} \frac{\left(\frac{\Omega_{1}}{v_{1}}\right)^{2}}{\left[1+\left(\frac{\Omega_{1}}{v_{1}}\right)^{2}\right]^{2}} \underline{H} \times \underline{F}_{1} \\
& H^{2}\left[\rho_{e}^{r 2}-\frac{\left(\frac{\Omega_{1}}{v_{1}}\right)^{2}}{1+\left(\frac{\Omega_{1}}{v_{1}}\right)^{2}}\left(2 \rho_{e}^{0} n_{1}^{0} e_{1}-n_{1}^{02} e_{1}^{2}\right)\right]
\end{aligned}
$$

The first part vanishes when F_{i} arises from an electric field.
 \because.
 4040 : a. ...

$$
\begin{aligned}
& x+2+2+2+2 \\
& =102
\end{aligned}
$$

(अव)

65.3

From Eq. (64) we get
the drift in collisionless theory for ions in static and uniform fields. The expression Eq. (64) is a collisional counterpart to this result. The electron drift follows from Eq. (63).

$$
\begin{aligned}
& \therefore \quad-
\end{aligned}
$$

3. Evolution into a state of balance of transverse forces.

In this section we expand in α the sets of equations to zeroth and first order in ε. Then we shall in more detail see the evolution of distribution functions and macroscopic quatities. Assuming bounded solutions of all kinetic equations we shall derive to some extent the assumptions Eq. (53) and (54) and show that the gas evolves into a state where forces transverse to the magnetic field balance in the mass transport equation.

We obtain equations to zeroth order in ε and zeroth, first, second orders etc. in a from the equations (18)-(29) or from the equations of [5] putting $\frac{\partial}{\partial \underline{r}}$ and \underline{F}_{i}, $i=1,2$, all equal to zero. We will discuss some of these equations up to third order in α here. Since ρ°, ρ_{i}^{0} and $\underline{c}_{o \|}^{0}$ are all independent of t_{2} we do not expand them in a for simplicity here.

The equations to zeroth order in ε and zeroth order in α show that $f_{2}^{00},{\underset{C}{0}}_{00}^{00}, T^{00}, T_{i}^{00}, i=1,2$, and \bar{C}_{2}^{00} are all independent of t_{20} while $\overline{\mathrm{C}}_{1}^{00}$ evolves according to the evolution of f_{1}^{00} on the τ_{20} time scale. A H-theorem can be established which shows that

$f_{1}^{\circ \circ} \rightarrow f_{1 M}^{\circ \circ}=n_{1}^{\circ}\left(\frac{m_{1}}{2 \pi k T_{1}^{\circ O}}\right)^{3 / 2} \exp \left(-\frac{m_{1} C_{1}^{2}}{2 k T_{1}^{\circ \circ}}\right)$ as $t_{2 \circ} \rightarrow \infty$
Accordingly $\quad \overline{\underline{C}}_{1}^{00} \rightarrow 0$ as $t_{20} \rightarrow \infty$.

From the equations to zeroth order in ε and first in α we get from the mass transport equation

$$
\begin{aligned}
& {\underset{C}{c}}_{01}^{c_{1}}\left(t_{20}, t_{21}, \ldots\right)={\underset{C}{0 \perp}}_{01}^{c_{1}}\left(t_{20}=0, t_{21}, \ldots\right)-t_{20} \frac{\partial c_{01}^{00}}{\partial t_{21}}+ \\
& +\frac{n_{1}^{0} e_{1}}{\rho^{0}} \int_{0}^{t_{20}} d \tau \underline{\underline{C}}_{1}^{00}(\tau) \times \underline{H}
\end{aligned}
$$

and eliminating the secular term we get that \subseteq_{-1}^{00} is also independent of t_{21} and

$$
\begin{aligned}
\underline{c}_{0 \perp}^{01}\left(t_{20}, t_{21}, \ldots\right)=\underline{c}_{0 \perp}^{01}\left(t_{20}\right. & \left.=0, t_{21}, \ldots\right)+ \\
& +\frac{n_{1}^{0} e_{1}}{\rho^{0}} \int_{0}^{t_{20}} d \underline{\tau}_{1}^{00}(\tau) \times \underline{H},
\end{aligned}
$$

i.e. $\subseteq_{0 \perp}^{01}$ has a transient on the τ_{20} time scale. Similarly we find that $T^{00}, T_{1}^{\infty 0}$ and T_{2}^{00} are also independent of t_{21}, T_{2}^{01} is independent of t_{20}, while $T^{01}, T_{1}^{01}, \overline{\mathrm{C}}_{2}^{01}$ and f_{2}^{01} all have transients on the τ_{20} time scale.

A H-theorem can again be established showing that

$$
\begin{aligned}
& \text { and }
\end{aligned}
$$

$+\cdots$
2
(20.2.
$f_{2}^{00} \rightarrow f_{2 M}^{00}=n_{2}^{\circ}\left(\frac{m_{2}}{2 \pi k T_{2}^{00}}\right)^{3 / 2} \exp \left(-\frac{m_{2} C_{2}^{2}}{2 k T_{2}^{00}}\right)$ as $t_{21} \rightarrow \infty$

Here use has been made of the a priori condition to zeroth order in α.

The electron kinetic equation tofirst order is of the form
$\frac{\partial f_{1}^{01}}{\partial t_{20}}+\frac{e_{1}}{m_{1}} \underline{C}_{1} \times \underline{H} \cdot \frac{\partial f_{1}^{01}}{\partial \underline{C}_{1}}-F P_{11}\left[f_{1 M}^{O O}\left(\underline{C}_{1}\right) f_{1}^{01}\left(\underline{C}_{1}^{\prime}\right)+f_{1}^{01}\left(\underline{C}_{1}\right) f_{1 M}^{O O}\left(\underline{C}_{1}^{\prime}\right)\right]-$
$-D_{1}^{0}\left[f_{1}^{01}\left(\underline{C}_{1}\right)\right]=-\frac{e_{1}}{m_{1}} \underline{c}_{0}^{00} \times \underline{H} \cdot \frac{\partial f_{1 M}^{00}}{\partial \underline{C}_{1}}+G^{01}\left(t_{20}\right)$
where $G^{01}\left(t_{20}\right) \rightarrow 0$ as $t_{20} \rightarrow \infty$. Some assumptions concerning commutation of differential operations and "limit as $t_{20} \rightarrow \infty$ " operations have been made. In the appendixes of [5], [7] and [12] it is shown that every bounded solution of Eq. (67) evolves as $t_{20} \rightarrow \infty$ toward the solution of
$-\frac{e_{1}}{m_{1}} \underline{C}_{1} \times \underline{H} \cdot \frac{\partial f_{1 M}^{O 1}}{\underline{C}_{1}}+F P_{11}\left[f_{1 M}^{O O}\left(\underline{C}_{1}\right) f_{1 M}^{O 1}\left(\underline{C}_{1}^{\prime}\right)+f_{1 M}^{O 1}\left(\underline{C}_{1}\right) f_{1 M}^{O O}\left(\underline{C}_{1}^{\prime}\right)\right]+$ $+D_{1}^{O}\left[f_{1 M}^{O 1}\left(\underline{C}_{1}\right)\right]=\frac{e_{1}}{m_{1}} c_{0}^{O O} \times \underline{H} \cdot \frac{\partial f_{1 M}^{O O}}{\partial \underline{C}_{1}}$
which has the same form as Eq. (59). Substituting for the collision terms the relaxation term Eq. (61) we get that the solutions of Eq. (67) evolve toward a solution of the form Eq. (62) with $-e_{1} / k T_{1}^{00} \underline{c}_{0}^{00} \times \underline{H}$ instead of \underline{h}_{1}^{1}.
 2

Fnom the equations tozeroth order in ε and second in α we derive from the mass transport equation, eliminating the secular terms when integrating on the t_{20} time scale

$$
\begin{aligned}
& \rho^{O}\left(\frac{\partial c_{01}^{O 1}}{\partial t_{21}}\left(t_{20}=0, t_{21}, \ldots\right)+\frac{\partial c_{o 1}^{00}}{\partial t_{22}}\right)=c_{e}^{0} c_{-0}^{00} \times \underline{H}-n_{1}^{0} e_{1} \bar{C}_{1 M}^{O 1} \times \underline{H} \\
& \left.c_{01}^{02}\left(t_{20}, t_{21}, \ldots\right)={\underset{-}{02}}_{02}^{\left(t_{20}\right.}=0, t_{21}, \ldots\right)+ \\
& +\frac{n_{1}^{o} e_{1}}{\rho^{0}} \int_{0}^{t_{20}} d \tau\left(\overline{\mathrm{C}}_{1}^{01}(\tau)-\overline{\mathrm{C}}_{1 \mathrm{M}}^{01}\right) \times \underline{H}
\end{aligned}
$$

 $=\frac{\partial c_{-1}^{01}}{\partial t_{21}}\left(t_{20}=0, t_{21}, \ldots\right)$. Integrating on the τ_{21} time scale we see that ${\underset{o}{o l}}_{01}^{\left(t_{20}=0\right)}$ is independent of t_{21}. For ${\underset{-}{01}}_{00}^{01}$ and likewise for T^{00}, T_{1}^{00} and T_{2}^{00} we get the following equations on the τ_{22} time scale
$\rho^{0} \frac{\partial c_{o}^{o o}}{\partial t_{22}}=\rho_{e}^{0}{\underset{-}{c}}_{o \infty}^{\infty} \times \underline{H}+n_{1}^{0} e_{1} \bar{C}_{1 M}^{O 1} \times \underline{H}$
$\frac{3}{2} n^{o} k \frac{\partial T^{00}}{\partial t_{22}}=n_{1}^{0} e_{1} \overline{\widetilde{C}}_{1}^{01}\left(\underline{C}_{0}^{00} \times \underline{H}\right)$

 420.2 2 H
(1)
LIsma sutht Mgs enft no arrodtadpo geriwortoz odit

$$
\begin{equation*}
=\frac{108}{m b} \theta^{\circ} 14+H \times \frac{00}{0} a^{9}=\frac{0^{26}}{s s^{36}} \circ a \tag{et}
\end{equation*}
$$

$$
\begin{align*}
& \frac{3}{2} n_{1}^{O} k \frac{\partial T_{1}^{\infty}}{\partial t_{22}}=n_{1}^{0} e_{1} \bar{C}_{1 M}^{O 1} \cdot\left(\underline{c}_{0}^{\infty 0} \times \underline{H}\right)- \tag{71}\\
& -\frac{n_{1}^{0} n_{2}^{0}}{m_{2}}\left(\frac{m_{1}}{2 \pi k}\right)^{3 / 2}\left(\frac{T_{1}^{00}-T_{2}^{00}}{T_{1}^{00} 5 / 2}\right) \int d \underline{1}_{1} \Phi_{\sim}^{12}\left(\underline{C}_{1}\right): I \exp \left(-\frac{m_{1} C_{1}^{2}}{2 k T_{1}^{00}}\right) \\
& \frac{3}{2} n_{2}^{o} k \frac{\partial T_{2}^{00}}{\partial t_{22}}=\frac{n_{1}^{o} n_{2}^{o}}{m_{2}}\left(\frac{m_{1}}{2 \pi k}\right)^{3 / 2}\left(\frac{T_{1}^{00}-T_{2}^{00}}{T_{1}^{00} 5 / 2}\right) \int d \underline{-}_{1} \Phi^{12}\left(\underline{C}_{1}\right): \\
& : \underset{\sim}{I} \exp \left(-\frac{m_{1} C_{1}^{2}}{2 k T_{1}^{00}}\right) \tag{72}
\end{align*}
$$

In general Eqs.(69)-(72) are a coupled set of equations describing the relaxation of $C_{01}^{00}, T^{00}, T_{1}^{00}$ and T_{2}^{00} on the τ_{22}-time scale. We simplify using for $\overline{\mathbb{C}}_{1}^{01}$ an expression corresponding to Eq. (63). Eq. (69) then can be solved and shows that C_{-1}^{00} oscillates and is damped away exponentially on the τ_{22} time scale having solutions proportional to (5) $e^{ \pm i \omega_{ \pm} t} 22, \omega_{1}=\eta \pm i \frac{\delta H^{2}}{\rho}$, $\delta=\frac{n_{1}^{0} e_{1}^{2}}{m_{1}} \frac{\frac{1}{v_{1}}}{1+\left(\frac{\Omega_{1}}{v_{1}}\right)^{2}}>0, \quad \eta=\frac{H}{\rho^{0}}\left(\rho_{e}^{0}-\delta \frac{\Omega_{1} H}{v_{1}}\right)$.

This is in agreement with Eq.(48). Due to this damping Eq. (70) shows how the temperature grows, and Eqs. (71) and (72) describe how T_{1}^{00} and $T_{2}^{\circ 0}$ relax against each other. This should be compared with Eq. (45). Due to the damping of $c_{0 \perp}^{\circ 0}$ also $f_{1 M}^{\circ 1}$ from Eq. (68) damps away as $t_{22} \rightarrow \infty$ (when n_{1}^{01} and \mathbb{T}_{1}^{01} are set equal to zero in the limit $t_{20}=\infty$).
 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$

 $\because 6, \ldots+6$

$$
\operatorname{coc}
$$

$$
\therefore \quad \cdots \quad \cdots \quad \cdots \sqrt{3}
$$

The ion kinetic equation to this order shows that f_{2}^{02} has a transient on the τ_{20} time scale. On the τ_{21} time scale the equation is of the form,
$\frac{\partial f_{2}^{01}}{\partial t_{21}}-F P_{22}\left[f_{2 M}^{00}\left(\underline{C}_{2}\right) f_{2}^{01}\left(\underline{c}_{2}^{i}\right)+f_{2}^{01}\left(\underline{c}_{2}\right) f_{2 M}^{00}\left(\underline{c}_{2}^{\prime}\right)\right]=H^{01}\left(t_{21}\right)$
where $\mathrm{H}^{01}\left(t_{21}\right) \rightarrow 0$ as $t_{21} \rightarrow \infty$, [5]. Using the appendix of [12] shows that every bounded f_{2}^{01} evolves toward the solution of

$$
\begin{equation*}
F P_{22}\left[f_{2 M}^{00}\left(\underline{C}_{2}\right) f_{2}^{01}\left(\underline{C}_{2}^{\prime}\right)+f_{2}^{01}\left(\underline{C}_{2}\right) f_{2 M}^{00}\left(\underline{C}_{2}^{\prime}\right)\right]=0 \tag{74}
\end{equation*}
$$

as $t_{21} \rightarrow \infty$.

Using the a priori condition Eq. (18) to first order in α in the limits $t_{20} \rightarrow \infty$ and $t_{21} \rightarrow \infty$ and also $n_{2}^{01}=0$ and $T_{2}^{01}=0$ in the same limits give

$$
\begin{equation*}
f_{2 M}^{01}=0 \tag{75}
\end{equation*}
$$

From the electron kinetic equation to this order we get, using the appendixes of [5], [7] and [12] and the solution of Eq. (68) and Eq. (75), that every bounded $f_{1}^{o 2}$ evolves toward the solution of

 20. motynloa ent
(45)

(हा)

$$
0=\operatorname{ks}
$$

$$
\begin{align*}
& \frac{\partial f_{1 M}^{00}}{d t_{22}}+\frac{e_{1} c^{01}}{m_{1}}{ }_{0}^{0} \times \underline{H} \cdot \frac{\partial f_{1 M}^{00}}{\frac{\partial C_{1}}{-1}}+\frac{e_{1} c^{00}}{m_{1}} \times \underline{H} \cdot \frac{\partial f_{1 M}^{01}}{\frac{\partial C_{1}}{-1}}- \\
& -F P_{11}\left[f_{1 M}^{01}\left(\underline{C}_{1}\right) f_{1 M}^{01}\left(\underline{C}_{1}^{\prime}\right)\right]-\frac{1}{m_{1} m_{2}} \frac{\partial}{\partial \underline{C}_{1}} \cdot \int_{-2 C_{2}}\left(\underline{C}_{2} \cdot \frac{\partial \Phi^{12}}{\partial \underline{C}_{1}}\left(\underline{C}_{1}\right)\right) \cdot \frac{\partial f_{2 M}^{00}}{\frac{C_{2}}{2}} f_{1 M}^{00}- \\
& -\frac{1}{m_{1}^{2}} \frac{\partial}{\partial \underline{C}_{1}} \cdot \int \underline{C C}_{2}\left(\frac{\mathbb{C}_{2} \underline{C}_{2}}{2}: \frac{\partial^{2} \Phi^{12}\left(\underline{C}_{1}\right)}{\partial \underline{C}_{1} \underline{C}_{1}}\right) \cdot f_{2 M}^{00} \frac{\partial f_{1 M}^{00}}{\partial C_{1}}= \\
& =-\frac{e_{1}}{m_{1}} \underline{C}_{1} \times \underline{H} \cdot \frac{\partial f^{O 2}}{\partial \underline{C}_{1}}+\operatorname{FP} P_{11}\left[f_{1 M}^{O O}\left(\underline{C}_{1}\right) f_{1}^{O 2}\left(\underline{C}_{1}^{\prime}\right)+f_{1}^{O 2}\left(\underline{C}_{1}\right) f_{1 M}^{O O}\left(\underline{C}_{1}^{\prime}\right)\right]+ \\
& +D_{1}^{\circ}\left[\mathrm{f}_{1}^{\mathrm{o2}}\right] \tag{76}
\end{align*}
$$

as t_{20} and t_{21} go to infinity (in the limit $t_{20}=\infty$ only, f_{2}^{00} instead of $\mathrm{i}_{2 \mathrm{M}}^{00}$), or, rewriting terms on the left hand side, f_{1}^{02} evolves toward the solution of

$$
\begin{align*}
& f_{1 M}^{00}\left(\frac{m_{1} C_{1}^{2}}{2 k T_{1}^{00}}-\frac{3}{2}\right) \frac{1}{T_{1}^{00}} \frac{\partial T_{1}^{00}}{\partial t_{22}}+\frac{e_{1}}{m_{1}} c_{0}^{01} \times \underline{H} \cdot \frac{\partial f_{1 M}^{00}}{\frac{C_{1}}{-1}}+\frac{e_{1}}{m_{1}} c_{0}^{00} \times \underline{H} \cdot \frac{\partial f_{1 M}^{01}}{\partial C_{1}}- \\
& -F P_{11}\left[f_{1 M_{1}}^{01}\left(\underline{C}_{1}\right) f_{1 M}^{01}\left(\underline{C}_{1}^{\prime}\right)\right]-k \frac{2 n_{2}^{00}}{m_{1} I_{2}} \frac{T_{1}^{00}-T_{2}^{00}}{T_{1}^{00}} \frac{\partial}{\partial C_{1}} \cdot\left(\frac{C_{1}}{C_{3}^{3}} f_{1}^{00}\right)= \tag{77}\\
& =-\frac{e_{1}}{m_{1}} C_{1} \times \underline{H} \cdot \frac{\partial f_{1}^{\circ 2}}{\underline{C}_{1}}+F P_{11}\left[\mathscr{I}_{1 M}^{O O}\left(\underline{C}_{1}\right) f_{1}^{\circ 2}\left(\underline{C}_{1}^{\prime}\right)+f_{1}^{\circ 2}\left(\underline{C}_{1}\right) f_{1 M}^{O O}\left(C_{1}^{\prime}\right)\right]+ \\
& +D_{1}^{O}\left[f_{1}^{\circ 2}\right] \text {. }
\end{align*}
$$

Here we have used Landau's form for the tensor ${\underset{\sim}{\Phi}}^{12}$ (cf.p. 30) To prove existence of solutions of Eq. (77) whose left hand side has terms of zeroth, first and higher order anistropy

$$
\because \hat{\ddots}
$$

 $\begin{array}{cc} & \\ \vdots & \ddots \\ \therefore & \ddots\end{array}$
-1
$\cdots$$\quad \because \quad \because$

1	
	\ddots

$\because \ddots \overbrace{0} \quad \cdots$ 人

$$
\because \quad, \quad,
$$

. .
\qquad
\qquad
(207:
\qquad

?$\therefore+$$\cdots \quad \because$$\cdots \cdot{ }^{\prime}$
$\therefore \quad \therefore$ \because
 \square
. .
\qquad
, + $\because \quad \because \quad$$\because \because \because \because: \quad ;$

```
\because%
```

8. \quad.
\square
in velocity space, we may follow the lines of [11].
We also need the mass transport equation to zeroth order in ε and third in α,

$$
\begin{align*}
\rho^{0}\left(\frac{\partial c_{0}^{03}}{\partial t_{20}}+\frac{\partial c_{0}^{o 2}}{\partial t_{21}}+\frac{\partial c_{0}^{01}}{\partial t_{22}}\right. & \left.+\frac{\partial c_{0}^{00}}{\partial t_{23}}\right)=\rho_{e}^{0} c_{-}^{01} \times \underline{H}+ \\
& +n_{1}^{0} e_{1} \bar{C}_{1}^{o 2} \times \underline{H}+n_{2}^{0} e_{2}^{\bar{C}_{-2}^{01}} \times \underline{H} \tag{78}
\end{align*}
$$

Integrating on the τ_{20} time scale, eliminating secular terms, using that ${\underset{-}{c}}_{-21}^{01} \rightarrow 0$ as $t_{20} \rightarrow \infty$ according to the a priori condition and assuming
we get

$$
\begin{aligned}
& \underline{c}_{0}^{03}\left(t_{20}, t_{21}, \ldots\right)={\underset{-}{o}}_{03}\left(t_{20}=0, t_{21}, \ldots\right)+ \\
& +\int_{0}^{t_{20}} d \tau\left[\frac{\partial}{\partial t_{22}}\left(\underline{c}_{0}^{01}\left(t_{20}=\infty\right)-\underline{c}_{0}^{01}(\tau)\right)+\frac{p_{e}^{0}}{\rho^{0}}\left(\underline{c}_{0}^{01}(\tau)-\right.\right. \\
& \left.-\underline{c}_{0}^{01}\left(t_{20}=\infty\right)\right) \times \underline{H}+\frac{n_{1}^{0} e_{1}}{\rho^{o}}\left({\overline{C_{1}^{02}}}_{0}(\tau)-\bar{C}_{1}^{02}\left(t_{20}=\infty\right)\right) \times \underline{H}+ \\
& \left.+\frac{n_{2}^{0} e_{2}}{\rho^{0}} \bar{C}_{2}^{01}(\tau) \times \underline{H}\right]
\end{aligned}
$$

\qquad
$16:$

$$
\begin{aligned}
& \text { … }
\end{aligned}
$$

$$
\begin{aligned}
& 4 \times 1+\cdots+1
\end{aligned}
$$

$\rho^{0}\left(\frac{\partial c_{0}^{02}}{\partial t_{21}}\left(t_{20}=\infty\right)+\frac{\partial c_{0}^{01}}{\partial t_{22}}\left(t_{20}=\infty\right)+\frac{\partial c_{0}^{00}}{\partial t_{23}}\right)=$

$$
=\rho_{e_{-}^{o}}^{0}{ }_{0}^{01}\left(t_{20}=\infty\right) \times \underline{H}+n_{1}^{0} e_{1} \bar{C}_{1 M}^{O 2} \times \underline{H}
$$

Integrating here on the τ_{21} time scale and eliminating secular terms again show that $c_{0}^{02}\left(t_{20}=\infty\right)$ (and from the above assumption $c_{0}^{02}\left(t_{20}, \ldots\right)$ and $c_{0}^{02}\left(t_{20}=0\right)$ is

$\overline{\mathrm{C}}_{1 \mathrm{M}}^{02}$ we find from the solution of $\mathrm{Eq} \cdot(77)$, and the expression depends on \underline{c}_{0}^{01} in the same way as $\overline{\mathrm{C}}_{1 \mathrm{M}}^{01}$ depends on \underline{c}_{0}^{00}. Consequently the "homogeneous" equation for c_{o}^{01} corresponding to Eq. (79) is the same as the equation for $\underbrace{00}_{0}$ and (using for $\frac{c_{1}^{02}}{c_{1}^{2}}$ an expression corresponding to Eq. (63))therefore has solutions proportional to
$e^{ \pm i \omega_{ \pm} t} 22$. The inhomogeneous term vary like $e^{ \pm i \omega_{ \pm} t} 22$
(the term $\frac{\partial c_{o}^{00}}{\partial t_{23}}$). To avoid $c_{-0 M}^{01}$ to vary like $t_{22} e^{ \pm i \omega_{ \pm} t_{22}}$ (which is secular compared to $\left.\begin{array}{c}c_{00}^{00} \\ -{ }^{-1}\end{array}\right)$ we set

$$
\frac{\partial c_{0}^{\infty 0}}{\partial t_{23}}=0
$$

$$
\begin{aligned}
& \therefore<\frac{0}{6}+\cdots+(
\end{aligned}
$$

4
Q

 0 20. 4.

$$
\frac{6}{6}
$$

No.

We now expand some equations to first order in ε in terms of the parameter α.

Equations to first order in ε and zeroth order in α are

$$
\begin{equation*}
\int \mathrm{dC}_{2} f_{2}^{10} \mathrm{~m}_{2}{\underline{C_{2}}}_{2}=0 \tag{80}
\end{equation*}
$$

$\frac{\partial f_{1}^{10}}{\partial t_{20}}+\frac{\partial f_{1}^{00}}{\partial t_{30}}+\underline{C}_{1} \cdot \frac{\partial f_{1}^{00}}{\partial \underline{r}}+\underline{F}_{1} \cdot \frac{\partial f_{1}^{00}}{\frac{\partial \underline{C}_{1}}{}}-\frac{\partial c_{0}^{10}}{\partial t_{20}} \cdot \frac{\partial f_{1}^{00}}{\frac{\partial C_{1}}{00}}+\frac{e_{1}}{m_{1}} c_{0}^{10} \times$
$\times \underline{H} \cdot \frac{\partial f_{1}^{O O}}{\partial \underline{C}_{1}}+\frac{\mathrm{e}}{m_{1}} \underline{C}_{1} \times \underline{H} \cdot \frac{\partial \tilde{f}_{1}^{10}}{\frac{\partial \underline{C}_{1}}{0}}=F P_{11}\left[f_{1}^{O O}\left(\underline{C}_{1}\right) f_{1}^{10}\left(\underline{C}_{1}^{\prime}\right)+\right.$
$\left.+f_{1}^{10}\left(\underline{C}_{1}\right) f_{1}^{00}\left(\underline{C}_{1}^{\prime}\right)\right]+D_{1}^{00}\left[f_{1}^{10}\right]+D_{1}^{10}\left[f_{1}^{00}\right]$
where $\quad D_{1}^{i j}=\frac{n_{2}^{i j}}{m_{1}^{2}} \frac{\partial}{\partial \underline{C}_{1}} \cdot\left({\underset{\sim}{\Phi}}^{12}\left(\underline{C}_{1}\right) \cdot \frac{\partial}{\partial \underline{C}_{1}}\right)$,

$$
\begin{equation*}
\frac{\partial p^{10}}{\partial t_{20}}+\frac{\partial \rho^{0}}{\partial t_{30}}=0 \tag{82}
\end{equation*}
$$

$$
\begin{equation*}
\rho^{0} \frac{\partial c_{0}^{10}}{\partial t_{20}}=0 \tag{83}
\end{equation*}
$$

$\frac{3}{2} n^{o} k\left(\frac{\partial T^{10}}{\partial t_{20}}+\frac{\partial T^{00}}{\partial t_{30}}\right)=3_{2}^{1 T^{00}} \frac{\partial}{\partial \underline{r}} \cdot\left(11_{1}^{0} \underline{\bar{C}}_{1}^{00}\right)+\rho_{1}^{0} \underline{F}_{1} \cdot \underline{\bar{C}}_{1}^{00}+$
$+n_{1}^{0} e_{1-1}^{\bar{C}_{1}^{00}} \cdot\left(\underline{c}_{0}^{10} \times \underline{H}\right)-\frac{\partial}{\partial \underline{r}} \cdot q_{1}^{00}$

```
(1) acy
```


(43)
...8)
(a8)
(58)

$$
(4+8)
$$

(an

$$
\begin{equation*}
\frac{\partial \rho_{1}^{10}}{\partial t_{20}}+\frac{\partial \rho_{1}^{o}}{\partial t_{30}}+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1-\overline{\underline{c}}_{1}^{\circ 0}}^{\circ}\right)=0 \tag{85}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial p_{2}^{10}}{\partial t_{20}}+\frac{\partial p_{2}^{0}}{\partial t_{30}}=0 \tag{86}
\end{equation*}
$$

$\frac{3}{2} n_{1}^{O} k\left(\frac{\partial T_{1}^{10}}{\partial t_{20}}+\frac{\partial T_{1}^{00}}{\partial t_{30}}\right)=\frac{3}{2} k T_{1}^{00} \frac{\partial}{\partial \underline{r}} \cdot\left(n_{1}^{0} \overline{\mathrm{C}}_{1}^{00}\right)+\rho_{1}^{0}{\underset{F}{1}}_{1} \cdot{\overline{\bar{C}_{1}^{00}}}_{-}-$
$-\rho_{1}^{0} \overline{\mathrm{C}}_{1}^{\circ 0} \cdot \frac{\partial \underline{c}_{-}^{10}}{\partial t_{20}}+n_{1}^{0} e_{1}{\overline{\bar{C}_{1}}}_{1}^{\circ 0} \cdot\left(\underline{c}_{0}^{10} \times \underline{H}\right)-\frac{\partial}{\partial \underline{\underline{r}}} \cdot q_{1}^{00}$

Eqs. $(82)-(87)$ show that ρ^{10}, c_{0}^{10} and ρ_{2}^{10} are t_{20} independent while ρ_{1}^{10}, T^{10} and T_{1}^{10} all have transients on the τ_{20} time scale. $\rho^{0}, \rho_{1}^{0}, \rho_{2}^{0}, T^{\infty 0}$ and T_{1}^{00} are all independent of t_{30}. The electron kinetic equation Eq. (81) is of the form
$\frac{\partial f_{1}^{10}}{\partial t_{20}}+\frac{e_{1}}{m_{1}} \underline{C}_{1} \times \underline{H} \cdot \frac{\partial f_{1}^{10}}{\partial \underline{C}_{1}}-F P_{11}\left[f_{1 M}^{00}\left(\underline{C}_{1}\right) f_{1}^{10}\left(\underline{C}_{1}^{\prime}\right)+\right.$
$\left.+f_{1}^{10}\left(\underline{C}_{1}\right) f_{1 M}^{00}\left(\underline{C}_{1}^{\prime}\right)\right]-D_{1}^{00}\left[f_{1}^{10}\right]=f_{1 M}^{00}\left[\left(\frac{m_{1} C_{1}^{2}}{2 k T_{1}^{00}}-\frac{5}{2}\right)_{T_{1}^{00}} \frac{\partial}{\partial \underline{r}}-\right.$
$\left.-\frac{e_{1}}{k T_{1}^{O 0}}\left(\frac{m_{1}}{e_{1}} \underline{F}_{1}+\underline{c}_{0}^{10} \times \underline{H}-\frac{k T_{1}^{00}}{e_{1}} \frac{\partial}{\partial \underline{\underline{r}}} \operatorname{lnp_{1}^{00}}\right)\right] \cdot \underline{C}_{1}+G^{10}\left(t_{20}\right)$

Here $G^{10}\left(t_{20}\right) \rightarrow 0$ as $t_{20} \rightarrow \infty$. Using the appendixes

$$
\begin{aligned}
& \therefore<\begin{array}{ccc}
a & \ddots & \cdots
\end{array} \\
& \text { x } \\
& -\frac{1}{2}+\cdots \\
& \text { 隹 } \\
& \ldots \\
& \text { () : }
\end{aligned}
$$

[7] and [12] we find that every bounded solution of this equation evolves toward the solution of Eq. (59) as $t_{20} \rightarrow \infty$ with obvious changes of superscripts and T_{1} in place of T .

Equations to first order in ε and first in α are, using results obtained above,

$$
\begin{equation*}
\int d \underline{C}_{1} f_{1}^{1 o} m_{1} \underline{C}_{1}+\int d \underline{C}_{2} f_{2}^{11} m_{2} \underline{C}_{2}=0 \tag{89}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial f_{2}^{10}}{\partial t_{20}}+\frac{\partial f_{2}^{00}}{\partial t_{30}}-\left(\frac{\partial c_{0}^{11}}{\partial t_{20}}+\frac{\partial c_{0}^{10}}{\partial t_{21}}+\frac{\partial c_{0}^{00}}{\partial t_{30}}\right) \cdot \frac{\partial f_{2}^{10}}{\frac{\partial c_{2}}{}}=0 \tag{90}
\end{equation*}
$$

$\frac{\partial \rho^{11}}{\partial t_{20}}+\frac{\partial \rho^{10}}{\partial t_{21}}+\frac{\partial \rho^{0}}{\partial t_{31}}+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho^{0} \underline{c}_{0}^{00}\right)=0$

$$
\begin{equation*}
\rho^{0}\left(\frac{\partial c_{0}^{11}}{\partial t_{20}}+\frac{\partial c_{0}^{10}}{\partial t_{21}}+\frac{\partial c_{0}^{00}}{\partial t_{30}}\right)=0 \tag{92}
\end{equation*}
$$

$\frac{3}{2} n^{0} k\left(\frac{\partial T^{11}}{\partial t_{20}}+\frac{\partial T^{10}}{\partial t_{21}}+\frac{\partial T^{01}}{\partial t_{30}}+\frac{\partial T^{00}}{\partial t_{31}}+\underline{c}_{0}^{00} \cdot \frac{\partial T^{00}}{\partial \underline{r}}\right)+\frac{3}{2} n^{1 o_{k}} \frac{\partial T^{01}}{\partial t_{20}}=$

$+n_{1}^{\circ} e_{1} \underline{\bar{C}}_{1}^{\infty 0} \cdot\left(\underline{c}_{o}^{11} \times \underline{H}\right)+n_{1}^{O} e_{1} \underline{\bar{C}}_{1}^{\circ 1} \cdot\left(\underline{c}_{o}^{10} \times \underline{H}\right)+n_{1}^{\circ} e_{1} \underline{\bar{C}}_{1}^{10} \cdot\left(\underline{c}_{o}^{00} \times \underline{H}\right)+$
$+n_{1}^{10} e_{1} \bar{C}_{1}^{00} \cdot\left(\underline{c}_{0}^{00} \times \underline{H}\right)-\frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{1}^{01}-\frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{2}^{00}-\sum_{i=1}^{2} n_{i}^{0} m_{i}{\overline{C_{i} \underline{C}_{i}^{00}}}_{00}^{\frac{\partial \underline{c}_{0}^{00}}{\partial \underline{r}} .}$

$\frac{\partial \rho_{1}^{11}}{\partial t_{20}}+\frac{\partial \rho_{1}^{10}}{\partial t_{21}}+\frac{\partial \rho_{1}^{0}}{\partial t_{31}}+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1}^{0} \underline{c}_{0}^{00}\right)+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1}^{0} \overline{\bar{C}}_{1}^{O 1}\right)=0$
$\frac{\partial \rho_{2}^{11}}{\partial t_{20}}+\frac{\partial \rho_{2}^{10}}{\partial t_{21}}+\frac{\partial \rho_{2}^{0}}{\partial t} \frac{\partial}{31}+\frac{\partial \underline{r}}{\partial \underline{2}} \cdot\left(\rho_{2}^{0}{\underset{c}{0}}_{00}^{0}\right)=0$
$\frac{3}{2} n_{1} \mathrm{k}\left(\frac{\partial T_{1}^{11}}{\partial t_{20}}+\frac{\partial T_{1}^{10}}{\partial t_{21}}+\frac{\partial T_{1}^{01}}{\partial t_{30}}+\frac{\partial T_{1}^{00}}{\partial t_{31}}+c_{-0}^{00} \cdot \frac{\partial T_{1}^{00}}{\partial \underline{r}}\right)+$
$+\frac{3}{2} n_{1}^{1 O} k \frac{\partial T_{1}^{01}}{\partial t_{20}}=\frac{3}{2} k T_{1}^{01} \frac{\partial}{\partial \underline{r}} \cdot\left(n_{1}^{0} \overline{\widetilde{C}}_{1}^{O O}\right)+\frac{3}{2} k T_{1}^{O O} \frac{\partial}{\partial \underline{r}} \cdot\left(n_{1}^{O-\overline{\mathrm{C}}_{1}^{\mathrm{O}}}\right)+$
$+\rho_{1}^{O} \underline{F}_{1} \cdot \underline{\bar{C}}_{1}^{\mathrm{O}}+\mathrm{n}_{1}^{\mathrm{O}} \mathrm{e}_{1} \overline{\mathrm{C}}_{1}^{\mathrm{OO}} \cdot\left(\underline{c}_{0}^{11} \times \underline{H}\right)+n_{1}^{\mathrm{O}} \mathrm{e}_{1} \underline{\mathrm{C}}_{1}^{\mathrm{O}} \cdot\left(\underline{\mathrm{c}}_{\mathrm{O}}^{10} \times \underline{H}\right)+$

$-\rho_{1}^{0} \overline{\mathrm{C}}_{1} \underline{\mathrm{C}}_{1}^{00}: \frac{\partial \underline{c}_{0}^{00}}{\partial \underline{r}}$
$\frac{3}{2} n_{2}^{o} k\left(\frac{\partial T_{2}^{10}}{\partial t_{20}}+\frac{\partial T_{2}^{00}}{\partial t_{30}}\right)=0$

These equations show that $f_{2}^{10}, p^{11}, \rho_{2}^{11}, c_{0}^{11}$ and T_{2}^{10} are all independent of t_{20}, while ρ_{1}^{11}, T^{11} and T_{1}^{11} all have a t_{20} transient. c_{-}^{10} is independent of t_{21} and $f_{2}^{00},{\underset{-}{0}}_{00}^{0}$ and T_{2}^{00} are independent of t_{30}. The variations on the τ_{21} - and τ_{22} time scales in Eq. (91) and Eqs. (93) - (96) may be absorbed by

?
$\rho^{10}, \rho_{1}^{10}, \rho_{2}^{10}, T_{1}^{10}$ and T^{10} (using that $t_{22}=\alpha t_{21}$), for instance

$$
\begin{aligned}
& \rho_{1}^{10}\left(t_{20}, t_{21}, \ldots\right)=\rho_{1}^{10}\left(t_{20}=0, t_{21}=0\right)-\int_{0}^{t_{20}} \frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1-1}^{0} \overline{\mathcal{C}}_{1}^{\circ 0}(\tau)\right) d \tau- \\
& -\int_{0}^{t_{21}} \frac{\partial}{\partial \underline{r}} \cdot\left[\rho_{1-0 \perp}^{0}{\underset{O}{O O}}_{00}(\alpha \lambda)+\rho_{1-1}^{0 \overline{\mathrm{C}}_{-1}^{01}(\alpha \lambda)}\right] d \lambda
\end{aligned}
$$

the first integral coming from the equation to first order in ε and zeroth in α. The term $\rho_{1}^{10}\left(t_{20}=0, t_{21}=0\right)$ may vary on the τ_{22} time scale. In the limits $t_{20}=\infty$, $t_{21}=\infty$ and $t_{22}=\infty$ we obtain the equations

$$
\begin{align*}
& \frac{\partial p^{0}}{\partial t_{31}}+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho^{0} \underline{c}_{o}^{o 0}\right)=0 \tag{98}\\
& \frac{\partial \rho_{1}^{0}}{\partial t_{31}}+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{1}^{0} \underline{c}_{0}^{0} \|\right)=0 \tag{99}\\
& \frac{\partial \rho_{2}^{o}}{\partial t_{31}}+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{2}^{0}{ }_{-0 \|}^{o o}\right)=0 \tag{100}\\
& \frac{3}{2} n^{0} k\left(\frac{\partial T^{\infty 0}}{\partial t_{31}}+c_{-0 \|}^{\infty} \cdot \frac{\partial T^{\infty 0}}{\partial \underline{r}}\right)=-I p^{\infty 0}: \frac{\partial c_{-}^{\infty} \|}{\partial \underline{r}} \tag{101}
\end{align*}
$$

(ancon

$$
\begin{equation*}
\frac{3}{2} n_{1}^{0} k\left(\frac{\partial T_{1}^{00}}{\partial t}+\underline{c}_{-\| \|}^{00} \cdot \frac{\partial T_{1}^{00}}{\partial \underline{r}}\right)=-I p_{1}^{00}: \frac{\partial c_{-0 \|}^{00}}{\partial \underline{r}} \tag{102}
\end{equation*}
$$

Eqs.(98) - (101) correspond to Eqs.(49) - (51)

Equations to first order in ε and second in α are
$\frac{\partial f_{2}^{11}}{\partial t_{20}}+\frac{\partial f_{2}^{10}}{\partial t_{21}}+\frac{\partial f_{2}^{01}}{\partial t_{30}}+\frac{\partial f_{2}^{00}}{\partial t_{31}}+\underline{c}_{0}^{00} \cdot \frac{\partial f_{2}^{00}}{\partial \underline{r}}+\underline{C}_{2} \cdot \frac{\partial f_{2}^{00}}{\partial \underline{r}}+\underline{F}_{2} \cdot \frac{\partial f_{2}^{00}}{\partial \underline{C}_{2}}-$
$-\left(\frac{\partial c_{0}^{12}}{\partial t_{20}}+\frac{\partial c_{0}^{11}}{\partial t_{21}}+\frac{\partial c_{0}^{10}}{\partial t_{22}}+\frac{\partial c_{0}^{01}}{\partial t_{30}}+\frac{\partial c_{0}^{00}}{\partial t_{31}}+c_{0}^{00} \cdot \frac{\partial c_{0}^{00}}{\partial \underline{r}}\right) \cdot \frac{\partial f_{2}^{00}}{\frac{\partial C_{2}}{}}-$
$-\frac{\partial c_{0}^{01}}{\partial t_{20}} \cdot \frac{\partial f_{2}^{10}}{\frac{\partial \underline{C}_{2}}{\underline{t}_{2}}}+\frac{e_{2}}{m_{2}} c_{0}^{10} \times \underline{H} \cdot \frac{\partial f_{2}^{00}}{\partial \underline{C}_{2}}-\frac{\partial f_{2}^{00}}{\frac{\partial C_{2}}{C_{2}} \underline{C}_{2}}: \frac{\partial c_{0}^{00}}{\partial \underline{\underline{r}}}=$
$=F P_{22}\left[\underline{f}_{2}^{00}\left(\underline{C}_{2}\right) f_{2}^{10}\left(\underline{C}_{2}^{\prime}\right)+f_{2}^{10}\left(\underline{C}_{2}\right) f_{2}^{00}\left(\underline{C}_{2}^{\prime}\right)\right]-\frac{1}{m_{1} m_{2}} \frac{\partial}{\partial \underline{C}_{2}}$.
$\cdot \int \underline{\mathrm{C}}_{1}{\underset{\sim}{\Phi}}^{12}\left(\underline{\mathrm{C}}_{1}\right) \cdot \frac{\partial}{\partial \underline{\mathrm{C}}_{1}}\left(f_{2}^{\mathrm{OO}}\left(\underline{\mathrm{C}}_{2}\right) \mathrm{f}_{1}^{10}\left(\underline{\mathrm{C}}_{1}\right)+\mathrm{f}_{2}^{10}\left(\underline{\mathrm{C}}_{2}\right) \mathrm{f}_{1}^{\mathrm{OO}}\left(\underline{\mathrm{C}}_{1}\right)\right)$
$\rho^{0}\left(\frac{\partial c_{0}^{12}}{\partial t_{20}}+\frac{\partial c_{0}^{11}}{\partial t_{21}}+\frac{\partial c_{0}^{10}}{\partial t_{22}}+\frac{\partial c_{0}^{01}}{\partial t_{30}}+\frac{\partial c_{0}^{00}}{\partial t_{31}}+\underline{c}_{0}^{00} \cdot \frac{\partial c_{0}^{00}}{\partial \underline{r}}\right)+$
$+\rho^{10} \frac{\partial \underline{c}_{o}^{01}}{\partial t}=-\frac{\partial}{\partial \underline{r}} \cdot \sum_{i=1}^{2} n_{i}^{\circ} m_{i}{\overline{\underline{C}_{i} \underline{C}_{i}}}^{00}+\rho_{e}^{0} \underline{C}_{0}^{10} \times \underline{H}+n_{1}^{0} e_{1} \overline{\mathrm{C}}_{1}^{10} \times \underline{H}+$
$+n_{1}^{10} e_{1} \overline{\bar{C}}_{1}^{00} \times \underline{H}+\sum_{i=1}^{2} \rho_{i}^{\circ} \underline{\underline{F}}_{i}$

(2\}- リ.

(2)

$$
\begin{align*}
& \text { \& } \tag{10,1}
\end{align*}
$$

$$
\begin{align*}
& \frac{3}{2} n_{2}^{0} k\left(\frac{\partial T_{2}^{11}}{\partial t_{20}}+\frac{\partial T_{2}^{10}}{\partial t_{21}}+\frac{\partial T_{2}^{01}}{\partial t_{30}}+\frac{\partial T_{2}^{00}}{\partial t_{31}}+c_{-0}^{00} \cdot \frac{\partial T_{2}^{00}}{\partial \underline{r}}\right)= \\
& =-\frac{\partial}{\partial \underline{r}} \cdot \underline{q}_{2}^{00}-\rho_{2}^{0} \underline{c}_{2} \underline{c}_{2}^{00}: \frac{\partial c_{0}^{00}}{\partial \underline{r}} \tag{105}
\end{align*}
$$

The parallel part of Eq. (104) is
$\rho^{0}\left(\frac{\partial c_{0}^{12}}{\partial t_{20}}+\frac{\partial c_{-0 \|}^{11}}{\partial t_{21}}+\frac{\partial c_{0}^{10}}{\partial t_{22}}+\frac{\partial c_{0}^{0} \|}{\partial t_{31}}+\underline{c}_{0}^{00} \cdot \frac{\partial}{\partial \underline{r}} c_{0}^{0}{ }_{0}^{0}\right)=$
$=-\frac{\partial}{\partial \underline{r}} \cdot \sum_{i=1}^{2} n_{i}^{0} m_{i} \bar{C}_{i}{ }_{-}^{C} 00 ~+\sum_{i=1}^{2} \rho_{i}^{O} \underline{F}_{i} \|$
remembering that ${\underset{O}{o}}_{0}^{0}$ is not expanded in α. We see that ${\underset{c}{c}}_{12}^{12}$ has a transient on the τ_{20} time scale and $c_{o l l}^{11}$ has a transient on the τ_{21} time scale :

$$
\begin{array}{r}
\underline{c}_{0}^{12}\left\|\left(t_{20}, \ldots\right)=\underline{c}_{0}^{12}\right\|\left(t_{20}=0, t_{21}, \ldots\right)-\int_{0}^{t_{20}} d \tau \frac{\partial}{\partial \underline{r}} \\
 \tag{107}\\
\cdot\left(n_{1}^{0} m_{1} \overline{\left.\underline{c}_{1}(\tau) \underline{c}_{1}(\tau)^{00}-I p_{1}^{00}\right)}\right.
\end{array}
$$

$$
\begin{align*}
& c_{0}^{11}\left(t_{21}, \ldots\right)=\underline{c}_{0}^{11} \|\left(t_{21}=0, t_{22}, \ldots\right)-\int_{0}^{t_{21}} d \lambda \frac{\partial}{\partial \underline{r}} \cdot \\
& \cdot\left(n_{2}^{0} m_{2}{\overline{C_{2}}}(\lambda) \underline{C}_{2}(\lambda)^{\infty 0}-I p_{2}^{\infty}\right) \tag{108}
\end{align*}
$$

$$
x_{2}^{2}+2 \cos +x^{2}
$$

$$
+
$$

\qquad
$2-2+20-20$

- $-\frac{10}{2}$

In the limits $t_{20}=\infty$ and $t_{21}=\infty$ Eq. (106) reduces to

$$
\begin{equation*}
\rho^{\circ}\left(\frac{\partial c_{0}^{10} \|}{\partial t_{22}}+\frac{\partial c_{0}^{0} \|}{\partial t_{31}}+\underline{c}_{0}^{00} \cdot \frac{\partial}{\partial \underline{r}} c_{0}^{0} \|\right)=-\sum_{i=1}^{2} \frac{\partial p_{i}^{00}}{\partial \underline{r} \|}+\sum_{i=1}^{2} \rho_{i}^{0} F_{i} \| \tag{109}
\end{equation*}
$$

As $t_{22} \rightarrow \infty, \underline{c}_{01}^{00} \rightarrow 0$ and $T_{i}^{00} \rightarrow T^{00}$. Due to this \underline{c}_{0}^{10} has a transient on the τ_{22} time scale and in the limit $t_{22}=\infty$ Eq. (109) becomes
$\rho^{\circ}\left(\frac{\partial c_{-}^{0} \|}{\partial t_{31}}+\underline{c}_{0}^{0}\left\|\cdot \frac{\partial}{\partial \underline{r}} c_{0}^{0}\right\|\right)=-\frac{\partial p^{00}}{\partial \underline{r}}+\sum_{i=1}^{2} p_{i}^{0} \underline{F}_{i \|}$
which corresponds to Eq. (52).
 a transient on the τ_{20} time scale and \underline{c}_{01}^{11} a transient on the τ_{21} time scale. In the limits $t_{20}=\infty$ and $t_{21}=\infty$ the transverse part is

$$
\begin{align*}
& p^{0}\left(\frac{\partial c_{01}^{10}}{\partial t_{22}}+\frac{\partial c_{01}^{01}}{\partial t_{30}}+\frac{\partial c_{01}^{00}}{\partial t_{31}}+{\underset{-}{o}}_{00} \cdot \frac{\partial}{\partial \underline{r}}{\underset{-}{c}}_{00}^{00}\right)=-\sum_{i=1}^{2} \frac{\partial p_{i}^{00}}{\frac{\partial r}{-1}}+ \\
& +\rho_{e_{-}^{O}}^{O}{ }_{-0}^{10} \times \underline{H}+n_{1}^{O} e_{1} \bar{C}_{1}^{10} \times \underline{H}+\sum_{i=1}^{2} \rho_{i}^{O} \underline{F}_{i \perp} \tag{111}
\end{align*}
$$

$$
-x_{2}=
$$

$$
\operatorname{cosen} \operatorname{cosen}+\operatorname{cosec}
$$

$$
2 \log +\sin +\sin
$$

$\overline{\mathrm{C}}_{1}^{10}$ we find from Eq. (88) in the limit $\mathrm{t}_{20}=\infty$. Thus $\overline{\mathrm{C}}_{1}^{10}$ depends on \underline{c}_{0}^{10} in the same way as $\overline{\mathrm{C}}_{1}^{01}$ depends on $\underline{c}_{0}^{o o}$ or $\underline{C}_{1}^{o 2}$ depends on \underline{c}_{0}^{01}, and therefore the "homogeneous" equation corresponding to Eq. (111) for c_{o}^{10} is the same as the equation for c_{o}^{∞}. The inhomogeneous term of Eq. (111) for c_{o}^{10} tends toward a nonzero limit as $t_{22} \rightarrow \infty$. Using for $\overline{\mathrm{C}}_{1}^{10}$ a simplified expression corresponding to Eq. (63) and for ${\underset{c}{o}}_{00}^{0}$ and \underline{c}_{0}^{01} expressions obtained from Eqs. (69) and (79) in the same way, we easily solve Eq. (111) and find that c_{o}^{10} evolves toward a limit as $t_{22} \rightarrow \infty$ which we can find setting the right hand side of Eq. (111) in the limit $t_{22}=\infty$ equal to zero, ie.
$-\sum_{i=1}^{2} \frac{\partial p_{i}^{00}}{\partial \underline{r}_{\perp}}+\rho_{e}^{0} \underline{c}_{0}^{10} \times \underline{H}+n_{1}^{0} e_{1} \overline{\mathrm{C}}_{1}^{10} \times \underline{H}+\sum_{i=1}^{2} \rho_{i}^{0} \underline{F}_{\perp}=0$
 all tend to zero as $t_{22} \rightarrow \infty$ we have shown that for bounded distribution functions, \underline{c}_{01} up to terms of order ε evolves so that balance of transverse forces is established as $t_{22} \rightarrow \infty$, using simplified expressions for $\overline{\mathrm{C}}_{1}^{01}$, $\overline{\mathrm{C}}_{1}^{02}$ etc. However, this result is expected to hold using for $\overline{\mathrm{C}}_{1}^{\mathrm{O}}$, $\overline{\mathrm{C}}_{1}^{\mathrm{O}}$ 2 etc. exact expressions obtained from the solution of Eqs. (68), (77) etc.

 . 2. 2

From Eq. (105) we see that T_{2}^{11} is independent of t_{20} while T_{2}^{10} may absorbs, apart from the variation on the τ_{21} time scale, also the variations on the τ_{22} time scale. In the limits $t_{20}=\infty, t_{21}=\infty$ and $t_{22}=\infty$ we obtain
$\frac{3}{2} n_{2}^{\circ} k\left(\frac{\partial T_{2}^{\infty}}{\partial t_{31}}+\underline{c}_{0}^{0} \| \cdot \frac{\partial T_{2}^{\infty 0}}{\partial \underline{r}}\right)=-\operatorname{Ip}_{2}^{\infty 0}: \frac{\partial c_{0}^{0} \|}{\partial \underline{r}}$
which when added to Eq. (102) corresponds to Eq. (51).

Eq. (103) shows that f_{2}^{11} has a transient on the τ_{20} time scale and substituting from Eq. (39) to second order in α for the terms in paranteses on the left hand side of Eq. (103) and also from Eqs. (100) and (113) we derive that in the limit $t_{20}=\infty$ Eq. (103) reduces to

$$
\begin{align*}
& \frac{\partial f_{2}^{10}}{\partial t_{21}}-F_{22}\left[f_{2 M}^{00}\left(\underline{C}_{2}\right) f_{2}^{10}\left(\underline{C}_{2}^{1}\right)+f_{2}^{10}\left(\underline{C}_{2}\right) f_{2 M}^{00}\left(\underline{C}_{2}^{1}\right)\right]= \\
& =-f_{2 M}^{00}\left(\frac{m_{2} C_{2}^{2}}{2 k T^{00}}-\frac{5}{2}\right) \frac{1}{T^{00}} \frac{\partial T^{00}}{\partial \underline{r}} \cdot \underline{C}_{2}-f_{2 M}^{00} \frac{m_{2}}{k T^{00}} \underline{C}_{2}^{0} \underline{C}_{2} \tag{114}
\end{align*}
$$

$$
: \frac{\partial c_{-0}^{0}}{\underline{\partial r}}+H^{10}\left(t_{21}, t_{22}\right)
$$

where $H^{10}\left(t_{21}, t_{22}\right) \rightarrow 0$ as $t_{21} \rightarrow \infty$ and $t_{22} \rightarrow \infty$.
$(-2+1)$
\square

$$
\begin{aligned}
& \text { 20. }
\end{aligned}
$$

Again using the appendix of [12], every bounded solution of Eq. (114) evolves toward the solution of
$F P_{22}\left[f_{2 M}^{00}\left(\underline{C}_{2}\right) f_{2}^{10}\left(\underline{C}_{2}^{\prime}\right)+f_{2 M}^{10}\left(\underline{C}_{2}\right) f_{2 M}^{O O}\left(\underline{C}_{2}^{\prime}\right)\right]=$
$=f_{2 M}^{00}\left(\frac{m_{2} C_{2}^{2}}{2 k T^{00}}-\frac{5}{2}\right) \frac{1}{T^{00}} \frac{\partial T^{00}}{\partial \underline{r}} \cdot \underline{C}_{2}+f_{2 M}^{00} \frac{m_{2}}{k T^{00}} \underline{C}_{2}^{0} \underline{C}_{2}: \frac{\partial c_{0}^{c} \|}{\partial \underline{r}}$
as $t_{21} \rightarrow \infty$ and $t_{22} \rightarrow \infty$, the $\partial / \partial t_{21}$ of Eq. (114) also taking account of the variation on the τ_{22} time scale. This result for the ion distribution function to first order in ε and zeroth in α corresponds to the result of Eq. (60) in the same way as Eq. (88) for the electron distribution function to the same order in the limits $t_{20}=\infty, t_{21}=\infty$ and $t_{22}=\infty$, corresponds to Eq. (59).
This ends our partial derivation of assumptions Eqs. (53) and (54).

 (ea) -ast ot

Appendix 1.

We here briefly derive the equations of Chapman and Cowling [1] from Eqs. (1)-(5) by use of the multiple time scale method.

The distribution functions and macroscopic quantities are expanded in terms of the parameter ε_{1}, for instance
$f_{1}=f_{1}^{(0)}+\varepsilon_{1} f_{1}^{(1)}+\varepsilon_{1}^{2} f_{1}^{(2)}+\ldots . \cdot$

Later we leave out the paranteses in the superscripts.
Also the time derivative is expanded in this way
$\frac{\partial}{\partial t}=\frac{\partial}{\partial t_{0}}+\varepsilon_{1} \frac{\partial}{\partial t_{1}}+\varepsilon_{1}^{2} \frac{\partial}{\partial t_{2}}+\ldots . .$.
consistent with introduction of time variables t_{i} on time scales $\tau_{i}=\frac{\tau_{0}}{\varepsilon_{1}^{i}}$, $i=0,1,2, \ldots$, where τ_{0}, roughly speeking, is the time scale on which the gas evolves toward local thermodynamic equilibrium.

The equations to zeroth order are
$\sum_{i} \rho_{i}^{O} \bar{C}_{i}^{O}=0$
$\frac{\partial f_{i}^{O}}{\partial t_{0}}-\frac{\partial c_{0}^{O}}{\partial t_{0}} \cdot \frac{\partial f_{i}^{O}}{\frac{\partial C_{i}}{C_{i}}}+\frac{e_{i}}{m_{i}} \underline{C}_{i} \times \underline{H} \cdot \frac{\partial f_{i}}{\partial C_{i}}=\sum_{j} C_{i j}\left[f_{i}^{O} f_{j}^{0}\right]$

$$
(S)+9_{3}+(t)+4+3+(0)+2=y^{2}
$$

$$
0=\frac{050}{2-19} 3
$$

$$
\begin{gather*}
\frac{\partial \rho_{i}^{o}}{\partial t_{o}}=0 \tag{AB}\\
\rho^{0} \frac{\partial c_{o}^{0}}{\partial t_{o}}=\underline{j}^{O} \times \underline{H} \tag{AL}
\end{gather*}
$$

$$
\begin{equation*}
\frac{3}{2} n^{0} k \frac{\partial T^{0}}{\partial t_{o}}=0 \tag{AS}
\end{equation*}
$$

A H - theorem can be established showing that
$f_{i}^{0} \rightarrow n_{i}^{0}\left(\frac{m_{i}}{2 \pi k T^{0}}\right)^{3 / 2} \exp \left(-\frac{m_{i} C_{i}^{2}}{2 k T^{0}}\right) \quad$ as $\quad t_{0} \rightarrow \infty$
 $t_{o} \rightarrow \infty$, or ${\underset{O}{C}}_{\circ}^{\circ}$ has a transient on the τ_{o} time scale, $c_{0}^{0}\left(t_{0}, \ldots.\right)=\underline{c}_{0}^{0}\left(t_{0}=0, t_{1}, \ldots\right)+\frac{1}{\rho_{0}^{0}} \int_{0}^{t_{0}} \underline{j}^{0}(\tau) \times \underline{H} d \tau$ ρ_{i}^{0} and T° are independent of t_{0}.

The equations to first order are (they correspond to the second order equations of Chapman and Cowling)

$$
\begin{equation*}
\sum_{i} \rho_{i}^{0} \bar{C}_{i}^{1}+\sum_{i} \rho_{i}^{1} \bar{C}_{i}^{0}=0 \tag{AT}
\end{equation*}
$$

(8.
(4)

$$
\underline{1}+0806
$$

(ac)

$$
0=\frac{9 x 6}{g_{5}} x^{0}
$$

(a).

(54)

$$
0=89+8: 1=+\frac{7}{2}
$$

$$
\begin{align*}
& \frac{\partial f_{i}^{1}}{\partial t_{0}}+\frac{\partial f_{i}^{0}}{\partial t_{1}}+\underline{c}_{0}^{0} \cdot \frac{\partial f_{i}^{0}}{\partial \underline{r}}+\underline{C_{i}} \cdot \frac{\partial f_{i}^{0}}{\partial \underline{r}}+\underline{F}_{i} \cdot \frac{\partial f_{i}^{0}}{\partial C_{i}}+\frac{e_{i}}{m_{i}} \underline{c}_{0}^{0} \times \underline{H} \cdot \frac{\partial f_{i}^{0}}{\partial \underline{C}_{i}}- \\
& -\frac{\partial f_{i}^{0}}{\partial \underline{C}_{i}} C_{i}: \frac{\partial c_{0}^{0}}{\partial \underline{r}}-\frac{\partial c_{0}^{0}}{\partial t_{0}} \cdot \frac{\partial f_{i}^{1}}{\frac{\partial C_{i}}{i}}-\left(\frac{\partial c_{0}^{1}}{\partial t_{0}}+\frac{\partial c_{0}^{0}}{\partial t_{1}}+\underline{c}_{0}^{0} \cdot \frac{\partial c_{0}^{0}}{\partial \underline{r}}\right) \cdot \frac{\partial f_{i}^{0}}{\partial \underline{C}_{i}}+ \\
& +\frac{e_{i}}{m_{i}} C_{i} \times \underline{H} \cdot \frac{\partial f_{i}^{1}}{\partial_{i}^{i}}=C_{i j}\left[f_{i}^{\circ} f_{j}^{1}+f_{i}^{1} f_{j}^{0}\right] \tag{AB}\\
& \frac{\partial \rho_{i}^{1}}{\partial t_{0}}+\frac{\partial \rho_{i}^{0}}{\partial t_{1}}+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{i}^{0} \underline{c}_{0}^{0}\right)+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{i}^{O} \bar{C}_{i}^{O}\right)=0 \tag{A9}
\end{align*}
$$

$$
\begin{align*}
& +\underline{j}^{1} \times \underline{H}-\frac{\partial}{\partial \underline{Y}} \cdot{\underset{\sim}{P}}^{0} \tag{A10}\\
& \frac{3}{2} n^{\circ} k\left(\frac{\partial T^{1}}{\partial t_{0}}+\frac{\partial T^{\circ}}{\partial t_{1}}+c_{-}^{0} \cdot \frac{\partial T^{0}}{\partial \underline{r}}\right)=\frac{3}{2} k T^{\circ} \frac{\partial}{\partial \underline{r}} \cdot \sum_{i} n_{i}^{0}{\overline{C_{-}^{i}}}_{0}^{o}+ \\
& +\sum_{i} \rho_{i}^{0} \overline{\bar{C}}_{i}^{0} \cdot \underline{F}_{i}+\underline{j}^{0} \cdot\left(\underline{c}_{0}^{0} \times \underline{H}\right)-{\underset{\sim}{p}}^{0}: \frac{\partial c_{0}^{O}}{\partial \underline{r}}-\frac{\partial}{\partial \underline{r}} \cdot \underline{q}^{0} \tag{A11}
\end{align*}
$$

From Eq. (A9) we see that ρ_{i}^{1} has a transient on the τ_{0} time scale due to the evolution of $\underline{c}_{0 \perp}^{0}$ and \bar{C}_{i}^{0}, and in the limit $t_{o}=\infty$ we obtain
$\frac{\partial p_{i}^{O}}{\partial t_{1}}+\frac{\partial}{\partial \underline{r}} \cdot\left(\rho_{i}^{O}-_{O M}^{O}\right)=0$
(8A)

$$
9-\frac{6}{x} y=-1+x+5
$$

where M means expressions in the limit $t_{0}=\infty$.
Similarly Eq. (A.11) shows that T^{1} has a transient on
 $\underline{j}^{0},{\underset{\sim}{p}}^{0}$ and \underline{q}^{0}. In the limit $t_{0}=\infty$ we get
$\frac{3}{2} n^{\circ} k\left(\frac{\partial T^{\circ}}{\partial t_{1}}+\underline{c}_{O M}^{O} \cdot \frac{\partial T^{0}}{\partial \underline{r}}\right)=-p^{0} \frac{\partial}{\partial \underline{r}} \cdot \underline{c}_{O M}^{O}$

From the parallel version of Eq. (A.10) we get that $\underline{c}_{0}^{1} \|$ has a transient on the τ_{0} time scale due to the transients of $\underline{C}_{0 \perp}^{\circ}$ and ${\underset{\sim}{p}}^{\circ}$ and in the limit $t_{0}=\infty$ we obtain

$$
\begin{equation*}
\rho^{\circ}\left(\frac{\partial c_{0}^{0} \|}{\partial t_{1}}+\underline{c}_{O M}^{0} \cdot \frac{\partial}{\partial \underline{r}} \underline{c}_{0}^{0} \|\right)=\sum_{i} \rho_{i}^{0} \underline{F}_{i} \|-\frac{\partial p^{0}}{\partial \underline{r} \|} \tag{A14}
\end{equation*}
$$

From Eq. (A8) we seek bounded solutions for f_{i}^{1} which obey $\frac{\partial f_{i}^{1}}{\partial t_{0}} \rightarrow 0$ as $t_{0} \rightarrow \infty$

Then from Eq. (A.10) we get that ${\underset{-}{c}}_{1}^{1}$ has a transient on the τ_{0} time scale due to the transients of $\underline{c}_{0 \perp}^{0}, \underline{j}^{1}$ and ${\underset{\sim}{P}}^{\circ}$, and in the limit $t_{0}=\infty$ we have
$\rho^{\circ}\left(\frac{\partial c_{O M \perp}^{O}}{\partial t_{1}}+\underline{c}_{O M}^{O} \cdot \frac{\partial c_{O M \perp}^{O}}{\partial \underline{r}}\right)=\sum_{i} \rho_{i}^{O} \underline{F}_{i \perp}+\rho_{e^{O} C_{O M}^{O}}^{O} \times \underline{H}+$

$$
\begin{equation*}
+\underline{j}_{M}^{1} \times \underline{H}-\frac{\partial p^{0}}{\partial \underline{r}_{\perp}} \tag{A16}
\end{equation*}
$$

(: $\cdot a)$

(diAB),

$$
\pi=\left(10 \frac{0}{0}+\frac{1}{0}+(x)\right.
$$

\qquad
20:

(.) (8)

$$
1+-1+0
$$

Here we find \dot{j}_{M}^{1} from f_{i}^{1} in the limit $t_{o}=\infty$. The equation for $f_{i M}^{1}$ is, substituting from Eqs.(A.14) and (A.16)
$\frac{\partial f_{i M}^{O}}{\partial t_{1}}+\underline{c}_{O M}^{O} \cdot \frac{\partial f_{i M}^{O}}{\partial \underline{r}}+\underline{C}_{i} \cdot \frac{\partial f_{i M}^{O}}{\partial \underline{r}}+\underline{F}_{i} \cdot \frac{\partial f_{i M}^{O}}{\partial C_{i}}+\frac{e_{i}}{m_{i}} C_{O M}^{O} \times \underline{H} \cdot \frac{\partial f_{i M}^{O}}{\partial \underline{C}_{i}}-$

$+\frac{e_{i_{C}}}{m_{i}}-i=\frac{\partial f_{i M}^{1}}{i M}=\sum_{j} C_{i j}\left[f_{i M^{f^{1}}}^{0}{ }_{j M}+f_{i M^{f^{\prime}}}^{1}{ }_{j M}\right]$
or, substituting further from Eqs.(A.6), (A.12) and (A.13)

$$
\begin{align*}
& f_{i M}^{0}\left(\frac{m_{i} C_{i}^{2}}{2 k T^{0}}-\frac{5}{2}\right) \frac{1}{T^{0}} \frac{\partial T^{0}}{\partial \underline{r}} \cdot \underline{C}_{i}+f_{i M}^{0} \frac{m_{i}}{k T^{0}}\left[\frac{1}{\rho}\left(\sum_{j} \rho_{j}^{0} F_{j}+\rho_{e}^{0} c_{o M}^{0} \times \underline{H}-\frac{\partial p^{0}}{\partial \underline{r}}\right)-\right. \\
& \left.-\underline{E}_{i}+\frac{k T^{0}}{m_{i}} \frac{\partial}{\partial \underline{r}} \ln p_{i}^{0}-\frac{e_{i}}{m_{i}} C_{O M}^{0} \times \underline{H}\right] \cdot \underline{C}_{i}+f_{i M}^{0} \frac{m_{i}}{k T}\left({\underset{-}{C}}_{i} \underline{C}_{i}-\frac{1}{3} I C^{2}\right): \frac{\partial C_{O M}^{0}}{\partial \underline{r}}= \\
& =\sum_{j} C_{i j}\left[f^{0} i M^{f} j M+f_{i M^{f}}^{1} j M\right]-\frac{e_{i}}{m_{i}} \underline{C}_{i} \times \underline{H} \cdot \frac{\partial f_{i M}^{1}}{\frac{\partial C_{i}}{-}}- \tag{A.17}\\
& -f_{i M}^{0} \frac{m_{i}}{\rho^{O_{K T}}{ }^{0}} \underline{C}_{i} \cdot\left(\underline{j}_{M}^{1} \times \underline{H}\right)
\end{align*}
$$

Eqs. (A.12), (A.13), (A.14), (A.16) and (A.17) are the "second order" equations of Chapman and Cowling [1]. Eq.(A.7) in the limit $t_{0}=\infty$, i.e.

$$
\begin{equation*}
\sum_{i} \rho_{i}^{0} \overline{\mathrm{C}}_{i M}^{1}=0 \tag{A.18}
\end{equation*}
$$

has to be fulfilled when solving Eq. (A.17) for $f_{i M}^{1}$.

(3).8)

 $2 x+2086$ Lan
(7 2 +3.8$)$
$(8, \ldots 4)$

Appendix 2.

Till now the electromagnetic field has been assumed stationary and uniform, imposed on the plasma by external means. However, the generation of a field by the evolution of the plasma itself may also be taken into account with only small modifications of the results obtained in sections 2 and 3. For such a model we study the kinetic and macroscopic equations of the previous sections together with the Maxwell equations for the total electric field E and magnetic field B :

$$
\begin{align*}
& \frac{\partial}{\partial \underline{E}} \cdot \underline{E}=4 \pi c^{2} \rho_{e} \\
& \frac{\partial}{\partial \underline{r}} \underline{B}=0 \\
& \frac{\partial}{\partial \underline{r}} \times \underline{E}=-\frac{\partial \underline{B}}{\partial t} \tag{A.21}\\
& \frac{\partial}{\partial \underline{r}} \times \underline{B}=4 \pi\left(\rho_{e} \underline{c}_{0}+\underline{j}\right)+\frac{1}{c^{2}} \frac{\partial \underline{E}}{\partial t} \tag{A.22}
\end{align*}
$$

$8(0 a)$

$$
920 x+5=-6
$$

(09 (a))

$$
a=0
$$

$$
50-\cdots=\div \frac{6}{76}
$$

As in section 1 we assume that

$$
\begin{gather*}
\frac{\bar{c}_{1} \tau_{2}}{L} \sim \varepsilon \\
\frac{E_{0}}{\bar{c}_{1} B_{0}} \sim \varepsilon \tag{A.23}\\
\tau_{2} \sim \frac{1}{\Omega_{1}}=\frac{m_{1}}{e_{1} B_{0}}
\end{gather*}
$$

where E_{O} and $B_{O}=H$ are the magnitude of the externally imposed fields. New assumptions on the sources of the fields now have to be made: Since the fields shall not be stronger than before the sources must be weak to a certain extent. Also to solve the Maxwell equations requires additional assumptions. We therefore parametrize the Maxwell equations as we did with the kinetic and macroscopic equations and make the assumptions when we need to make them.

The order of magnitude of the terms in Eq. (A.19) thus become

$$
\frac{E_{L}}{L}: 4 \pi c^{2} \rho_{e}
$$

Here E_{L} is the part of E that varies in space. We further get, dividing by $\frac{\mathrm{E}_{\mathrm{L}}}{\mathrm{L}}$:

$$
1: \frac{4 \pi c^{2} n_{1} e_{1}^{2}}{m_{1}} \cdot \frac{m_{1} \rho_{e}}{n_{1} e_{1}^{2}} \cdot \frac{L}{E_{L}}
$$

$$
\begin{array}{r}
4 \\
\vdots \\
\hdashline+6
\end{array}
$$

$(\therefore 8,4)$

$$
\cdot \quad-\quad \cdots
$$

$$
\begin{array}{ccc}
\therefore & \ddots & \ddots
\end{array}
$$

$$
\begin{aligned}
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
2 \\
\cdots
\end{array} \\
& \frac{\square}{\square} \frac{-}{\square}+\square \square \square
\end{aligned}
$$

and using the relations Eq. (A.23) and $\omega_{p 1}=\left(\frac{4 \pi c^{2} n_{1} e_{1}^{2}}{m_{1}}\right)^{\frac{1}{2}}$, the electron plasma frequency,

$$
1:\left(\frac{\omega_{p 1}}{\Omega_{1}}\right)^{2} \frac{1}{\varepsilon^{2}}\left(\frac{E_{0}}{E_{I}}\right)\left(\frac{\rho_{e}}{n_{1} e_{1}}\right)
$$

Since for the model we consider $\omega_{\mathrm{p} 1} \gg \Omega_{1}$ and we allow $E_{L} \sim E_{O}$, for a balance of the terms of Eq. (A.19) we must have

$$
\rho_{e} \sim\left(\Omega_{1} / \omega_{p 1}\right)^{2} \cdot \varepsilon^{2} n_{1} e_{1}
$$

i.e. charge neutrality to a certain extent.

In a similar way we estimate the terms in Eq. (A.21)

$$
\frac{E_{L}}{L}: \frac{B_{t}}{\tau_{2}}
$$

where B_{t} is the part of B that varies in time. We further get

$$
1: \frac{B_{t}}{B_{0}} \frac{1}{\varepsilon^{2}}
$$

We have used the relations Eq. (A.23) and $E_{L} \sim E_{O}$. For the terms in Eq. (A.21) to balance we have $B_{t} \sim \varepsilon^{2} B_{o}$.

The order of magnitude of the terms in Eq. (A.22) becomes

$$
\frac{B_{I}}{\bar{L}}: 4 \pi n_{1} e_{1} \bar{c}_{1}: \frac{1}{c^{2}} \frac{E_{t}}{\tau_{2}}
$$

anden

$$
\begin{array}{rrrr}
4 & \vdots \\
\ddots & \ddots & \vdots & \vdots
\end{array}
$$

where B_{L} and E_{t} denote the parts of \underline{B} and E that vary in space and time. We have set $|\underline{j}| \sim n_{1} e_{1} \bar{c}_{1}$. We further get

$$
1:\left(\frac{\omega_{p 1}}{\Omega_{1}}\right)^{2} \frac{1}{\varepsilon} \frac{B_{0}}{B_{L}}\left(\frac{\bar{c}_{1}}{c}\right)^{2}:\left(\frac{\bar{c}_{1}}{c}\right)^{2}\left(\frac{E_{t}}{E_{0}}\right)\left(\frac{B_{0}}{\bar{B}_{L}}\right)
$$

We assume that $\left(\frac{\omega_{p}}{\Omega_{1}}\right)^{2} \frac{1}{\varepsilon}\left(\frac{\bar{c}_{1}}{c}\right)^{2} \ll 1$. More specifically, let $\left(\frac{\omega_{\mathrm{p} 1}}{\Omega_{1}}\right)^{2} \frac{1}{\varepsilon}\left(\frac{\bar{c}_{1}}{c}\right)^{2} \sim \varepsilon^{2}$. Then $B_{L} \sim \varepsilon^{2} B_{o}$ for the first and second term to be of equal order of magnitude. The third term will always be vanishing small when $E_{t} \sim E_{o}$, which is the order of magnitude of E_{t} that we can permit. We shall therefore neglect the last term (displacement current) of Eq. (A.22), and the approximative Maxwell equations for the gas model are

$$
\begin{gather*}
\frac{\partial}{\partial \underline{r}} \cdot \underline{E}=4 \pi c^{2} \rho_{e} \\
\frac{\partial}{\partial \underline{r}} \cdot \underline{B}=0 \\
\frac{\partial}{\partial \underline{r}} \times \underline{E}=-\frac{\partial \underline{B}}{\partial \underline{t}} \\
\frac{\partial}{\partial \underline{r}} \times \underline{B}=4 \pi\left(\varepsilon^{2} \alpha \rho_{e} \underline{c}_{0}+n_{1} e_{1} \overline{\bar{C}}_{1}+\alpha_{2} e_{2}{\overline{C_{C}}}_{2}\right)
\end{gather*}
$$

where E and B are sought as

$$
\begin{aligned}
& \underline{E}(\underline{r}, t)=\underline{E}^{0}(\underline{r}, t)+\varepsilon \underline{E}^{1}(\underline{r}, t)+\ldots \\
& \underline{B}(\underline{r}, t)=\underline{H}+\varepsilon^{2} \underline{B}^{2}(\underline{r}, t)+\ldots
\end{aligned}
$$

 tog taditem?

 048 I. abost eas entl.
(: $\cdot+\cdots$
$(10 \cdot x)$
$(4+5, A)$

$$
5_{9}^{2} 0+0+0=\frac{5}{6}+\frac{6}{25}
$$

$$
\begin{aligned}
& 4 \\
& 0=5: \frac{6}{x 5}
\end{aligned}
$$

-

$$
\begin{aligned}
& 0=5: \frac{6}{x 5}
\end{aligned}
$$

$$
\begin{aligned}
& (x+1-6)+18=\left(\frac{1}{2}+\frac{1}{2}\right)=
\end{aligned}
$$

Making the multiple time scale expansion of $\frac{\partial}{\partial t}$, we obtain as the lowest order sets of equations in the parameter ε :

$$
\begin{gather*}
\frac{\partial}{\partial \underline{r}} \cdot \underline{E}^{0}=4 \pi c^{2} \rho_{e}^{0} \\
\frac{\partial}{\partial \underline{r}} \cdot \underline{B}^{2}=0 \\
\frac{\partial}{\partial \underline{r}} \times \underline{E}^{0}=-\frac{\partial \underline{B}^{2}}{\partial t_{2}} \tag{A.24}\\
\frac{\partial}{\partial \underline{r}} \times \underline{B}^{2}=4 \pi\left(n_{1}^{0} e_{1} \bar{C}_{1}^{0}+\alpha n_{2}^{0} e_{2} \bar{C}_{2}^{0}\right)
\end{gather*}
$$

and

$$
\begin{gathered}
\frac{\partial}{\partial \underline{r}} \cdot \underline{E}^{1}=4 \pi c^{2} \rho_{e}^{1} \\
\frac{\partial}{\partial \underline{r}} \cdot \underline{B}^{3}=0 \\
\frac{\partial}{\partial \underline{r}} \times \underline{E}^{1}=-\left(\frac{\partial \underline{B}^{3}}{\partial t_{2}}+\frac{\partial \underline{B}^{2}}{\partial t_{3}}\right) \\
\frac{\partial}{\partial \underline{r}} \times \underline{B}^{3}=4 \pi\left(n_{1}^{0} e_{1} \bar{C}_{1}^{1}+\alpha n_{2}^{0} e_{2} \bar{C}_{2}^{1}\right)+4 \pi\left(n_{1}^{1} e_{1} \bar{C}_{1}^{0}+\alpha n_{2}^{1} e_{2} \bar{C}_{2}^{0}\right)
\end{gathered}
$$

Necessary conditions for existence of solutions are
$\frac{\partial}{\partial \underline{r}} \cdot\left(n_{1}^{0} e_{1} \overline{\bar{C}}_{1}^{0}+\alpha n_{2}^{0} e_{2} \overline{\bar{C}}_{2}^{0}\right)=0$
$\frac{\partial}{\partial \underline{r}} \cdot\left(n_{1}^{0} e_{1} \overline{\underline{C}}_{1}^{1}+\alpha n_{2}^{0} e_{2} \overline{\underline{C}}_{2}^{1}\right)+\frac{\partial}{\partial \underline{r}} \cdot\left(n_{1}^{1} e_{1}{\overline{{ }_{C}^{C}}}_{1}^{O}+\alpha n_{2}^{1} e_{2} \overline{\mathrm{C}}_{2}^{0}\right)=0$

$$
\begin{gathered}
0-8=0 \\
0
\end{gathered}
$$

(HA.A)
($\mathrm{ES} . \mathrm{A}$)
(8s, A)

$$
\square
$$

$$
\begin{aligned}
& \frac{9}{9}-9+8=-\frac{6}{8}
\end{aligned}
$$

$$
\begin{aligned}
& 48: \quad: \quad=6
\end{aligned}
$$

$$
\begin{aligned}
& 0-6+8+0+0-10) \cdot \frac{6}{4}
\end{aligned}
$$

which also can be sufficient conditions.

The sets of equations (A.24) and (A.25) now have to be solved together with the zeroth and first order equations of section 1, Eqs. (18)-(29) and Eqs. (30)-(41). The zeroth order equations (18)-(29) are uncoupled with the Maxwell equations, so the evolution of the zeroth order distribution functions and macroscopic quatities are the same as before. The first order equations (30)-(41) are coupled with the zeroth order Maxwell equations (A.24). Due to the zeroth order evolution the electric field E^{0} and magnetic field \underline{B}^{2} show a transient variation on the τ_{2} - time scale. The transient of \underline{E}° give rise to new transients in the first order kinetic and macroscopic equations in addition to the transients studied before. The transient of \underline{B}^{2} is too small to be seen in these equations. In the limit $t_{2}=\infty$, however, the first order kinetic and macroscopic equations are the same as before, the electric field E° now obeying the Poisson equation.
 uis :

 4. 20.

［1］S．Chapman and T．G．Cowling，＂The Mathematical Theory of Non－Uniform Gases＂（Cambridge University Press，Cambridge，（1958）），Chap． 18.
［2］G．Sandri，Ann．Phys．（N．Y．）24， 332 and 380 （1963）．
［3］E．A．Frieman，J．Math．Phys．4， 410 （1963）．
［4］C．H．Su，J．Math．Phys．5， 1273 （1964）．
［5］J．Naze Tjøtta and A．H．申ien，Rep．No．20，Dept．Appl． Math．Bergen（1969）．
［6］J．Naze Tjøtta and A．H．申ien，Proceedings of the Ninth International Conference on Phenomena in Ionized Gases 1969，p．363，Bucharest，Romania，Sept．1－6， 1969.
［7］J．Naze Tjøtta and A．H．Øien，J．Math．Phys．November or December 1973.
［8］L．Landau，Physik．Z．Sovjetunion 10， 154 （1936）．
［9］A．H．Øien，Proceedings of the Tenth International Conference on Phenomena in Ionized Gases 1971，p．248， Oxford，England，Sept．13－18， 1971.
［10］D．C．Montgomery and D．A．Tidman，Plasma Kinetic Theory （Mc Graw－Hill，New York 1964）．
［11］T．Leversen and J．Naze Tjфtta，Rep．No．29，Dept． Appl．Math．，Bergen（1971）．
［12］A．H．申ien and J．Naze Tjøtta，Phys．of Fluids 14， 2373 （1971）（see also Rep．No．18，Dept．Appl．Math． Bergen（1969））．
 (9]

 [S]
 [8]
 (1)

 12
ams ar :[3]

 - 0 . (a) a : a a co.
[. I]

4.
48

 [0t1]

 \square-4(300t)4.3

