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Abstract. Linear waves superimposed on an arbitrary basic state in
ideal magnetohydrodynamics are studied by an asymptotic expansion
valid for short wavelengths. It has not been necessary to introduce
any assumption beyond the usual regularity assumptions on  the
arbitrarily given solution which represents our basic state, it may
even be time dependent. The theory also allows for a gravitational
potential; it may therefore be applied both in astrophysics and in
problems related to thermonuclear fusion. The linearized equations for
the perturbations of the basic state are found in the form of a
symmetric hyperbolic system. This symmetric hyperbolic system 1is
shown to possess characteristics of nonuniform multiplicity, which
implies that waves of different types may interact. In particular it
is shown that the mass waves, the Alfvén waves, and the slow
magnetoacoustic waves will persistently interact in the exceptional
case where the 1local wave number vector is perpendicular to the
magnetic field. The equations describing this interaction are found
in the form of a weakly coupled hyperbolic system. This weakly
coupled hyperbolic system is studied in a number of special cases, and
detailed analytic results are obtained for some such cases. The
results show that the interaction of the waves may be one of the major
causes of instability of the basic state. It seems beyond doubt that
the interacting waves contain the physically relevant parts of the
waves, which often are referred to as ballooning modes, including

Suydam modes and Mercier modes.



I. INTRODUCTION

In a very wide spectrum of applications the problems of linear
wave propagation and stability play a central role. There is a vast
literature available 1in these fields, but still the problems are
solved only in special cases. The conventional approaches to these
problems are the normal mode method and the energy principle. These
methods are not without difficulties and limitations, this author has

therefore looked for other methods 1’2, which have been shown to be

= . . 0 4
useful in fluid mechanlcsz’

At a conference 1in 1984 in Trieste,
Italy Dr.E. Hameiri and the author realized that there were certain
similarities between the latters approach in fluid mechanics and the
approach Hameiri had applied in magnetohydrodynamics (MHD)S’B. Since
the methods applied were clearly different, it was decided that it
might be worthwhile to try to apply the author's approach in MHD and
Hameiri's approach in fluid mechanics in order to see if it is
possible to improve upon the results obtained earlier. The first part
of a contribution to the problems of linear wave propagation and
stability in MHD will be outlined in this paper.

We shall work entirely within the framework of ideal MHD wherc
we shall be concerned with linear waves superimposed on a given basic
state. The given basic state may be any given solution of the funda-
mental MHD equations, it may be with or without flow, and it may be
stationary or time dependent. The linearized equations for the pertur-
bations of this given basic state are found in Sec.II in the form of a
symmetric hyperbolic system. In this paper we limit our study of so-
lutions of this hyperbolic system to asymptotic expressions valid for
short wavelengths and/or high frequencies. The approach applied is

the generalized progressing wave expansion method involving the cha-



racteristic equation and transport equations along the characteris-
tics. The method 1is briefly outlined in Sec.III and follows the ap-
proach given by Eckhoff‘. In contrast to fluid mechanics, the equa-
tions governing 1ideal MHD do not have characteristics with constant
multiplicity. In order +to study all the relevant modes it is there-
fore necessary to extend the approach described by Eckhoff1 to cases
where the multiplicity assumptions are not satisfied. In fact, after
having looked at the different modes 1in the nonsingular cases in
Secs.V-VII without detecting any instabilites, we turn to the singular
cases 1n Secs.VIII and IX. 1In Sec.IX we show that the singular case
where the local wavenumber vector k 1s perpendicular to the magnetic
field, Eu’ always constitutes a persistent property along the rays. As
a consequence of this, the mass waves, the Alfvén waves, and the slow
magnetoacoustic waves may persistently interact along the rays in this
case. The transport equations describing this interaction are derived
in Sec. IX and are seen to constitute a weakly coupled hyperbolic
system.

The system of transport equations derived in Sec.IX may serve as
a starting point for extensive studies of linear waves with short
wavelengths in ideal MHD. 1In particular, Suydam-modes, Mercier-modes,
and ballooning modes must be properly described by this system of
transport equations7—10, as well as analogous waves in more dgeneral
geometries than have previously been studied. Such waves may contain
important information about the stability of the given basic state,
giving both the growth rates and the structure of the unstable modes .
In this paper we restrict our study of the system of transport equa-
tions to some special cases which are especially attractive analyti-

cally in Secs.X-XII. In particular we are able to obtain detailed ana-



lytic results for slabs and screw pinches with constant pitch. It is
not yet known to what extent it is possible to derive analytic results
for more general cases, but it is clear that the system of transport
equations obtained is very attractive for numerical methods. Thus at
least by numerical methods it may be possible to obtain necessary
conditions for stability of far more general basic states by our

approach than by conventional approaches.



II. THE BASIC EQUATIONS
The fundamental ideal magnetohydrodynamic equations are
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where v denotes the velocity, e the density, p the pressure, B the
magnetic field, V a given potential for the external forces acting on
the plasma, and vy is a constant. The initial conditions associated

with (1) always include the equation

V'E = OI (2)

but otherwise it is not necessary to specify any initial or boundary

conditions at this stage.

We shall consider an arbitrarily given basic flow for the plasma,

(XEEY D= po(zs,t).

satisfying the fundamental equations (1) and (2). We want to study the
linear waves which can be superimposed on this basic flow (3). We

therefore perturb it by introducing into (1) the following expressions:



(4)
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Here G4 = (Ypu/go)a denotes the local sound speed and the eightdimen-

sional vector
W= {u,b,n,q} (5)

represents the perturbations superimposed on the basic flow (3). The
transformation (4) is analogous to transformations considered earlier
in fluid mechanics®

By substituting (4) into (1), the linearized equations for the

perturbations are found to be

ok
; . + 6 *B X(VX ik + ur
u, + v vy €, B_0 (Vxb) ¢, ¢ +u e

=t
+1 v ~5}(V><B)><b+1( iy
g g T R S By ¢
_1 i
+ (Cu"o) [(VXBO)XEU R T (6)
e
b_1 t zu'Vb t e, (EOV'Q' B, vu)
‘ 1 )
il PR
y 2y =l VBU 5 € (u VQU)EU
1 LB
o 2' L] . -— - _—
+ . e (BU Ve, )u + bv ¥ Vit = (Z)
e * 20+ e wg = o Vop oy + 8wl = g (8)
i 0 00 0 0 o Sl d
ittt evm+ g ey ol P T L =0 (9)
T e TR e Bl T g 2.\106*-

If we use Cartesian space-coordinates (x,y,z), say, we may write the



system of equations (6)-(9) on matricial form

+ Dw = 0. (10)

The 8 8 matrices A‘, A, A" in (10) obtained from (6)-(9) are

( 1 ) -W
v, 0 0 0 pOZB2 i 0 <,
-3
0 v, 0 0 %8, O 0 0
0 0 v 0 0 b i Bl
1 0 1
: 0 0 0 v, 0 0 0 0
Mk i son )
s, -p;%8, O 0 v, 0 0 0
oite, 0 o728, 0 0 v, 0 0
0 0 0 0 0 0 v, 0
L c, 0 0 0 0 0 0 VIJ
5
( -3
N 0 0 =05 5 0 0 0 0
-3 =% .
0 VA 0 P, Bl 0 P, B3 0 <,
=
0 0 v, 0 0 ofs, 0 0
o8, prfe, 0 v, 0 0 0 0
AZ = ’ (12)
0 0 0 0 v, 0 0 0
0 oits, -o3%B, O 0 v, 0 0
0 0 0 0 0 0 v, 0 |
s c, 0 0 0 0 0 VZJ
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[ X )
v, 0 0 -o7%8 0 0 il
0 v, 0 0 o738, 0 0 0
0 0 i RIS
- Sl e b g
. o7t 0 orde, v, 0 0 0 o
Ad = -é -i ? (13)
0 B By By 1oy v, 0 0 0
0 0 0 0 0 v, ol
0 0 0 0 0 0 =
|0 0 o 0 0 0 0 VaJ

From (11)-(13) we see that A", A, Al are symmetric, hence the basic
system of equations for our study of linear waves and stability

(6)-(9) 1s a symmetvic hyperbolic system.
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III. THE METHOD OF STUDY

The conventional approaches to the problems of linear wave
propagation and stability are the normal mode method and the energy
principle. These methods are only applicable for special basic flows
(3), and they are not without difficulties and limitations. Since the
basic system of equations (6)-(9) is a symmetric hyperbolic system,
however, there are also other methods available. One such method is
the generalized progressing wave expansion method where families of

solutions of the following type are studied

!w(é.t) = gu(x_,t)exp{iww(.x,t)} 3 RGR EpI) (14)

In (14) the phase function ¢ and the amplitude a, are determined such

that the remainder

(ER =N 0(C5) when w = ., (@15

e w

el

If we compare (14) with a conventional plane normal mode, we see that
iwp is analogous to i(k-x - qt). Thus we see that wVy is analogous to
the wavenumber vector k and “wey is analogous to the angular frequency

q. With this background w is called a frequency parameter in (14),

and guexp(iwm) is in view of (15) seen to be an asymptotic expression
for the family of solutions W, valid for short wavelengths and/or

high frequencies.

Rewriting (10) in the following way:

3
Iw=w,+L AW, +Dw=0, (16)

we obtain by substituting (14)
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) 3
wa = (1w(th + I

A\ 5 i
W oLy wva )gu + Lgn}exp(lww)+ 3 = (0), (17)

Letting w + =, (17) implies in view of (15)

3
(p,I + L - Wl (18
t v=1 va 0 )

Since we assume that a4 0, (18) can only be satisfied when the

phase function ¢ satisfies the characteristic equation

det (o I + £1 0, aY) = 0. (19)
V= A\

o

Introducing the notations
3
T TR SN 6 AN R O R T ¢ (20)
(19) shows that A must be an eigenvalue of the symmetric matrix E. If

A= Q(x,t k) (21)

is an eigenvalue of E, we see that (19) is satisfied when

o, + Q(x,t,Vp) = 0. (22)
The eigenvalues of the matrix E are called the characteristic roots
associated with the symmetric hyperbolic system (16). To the different
characteristic roots there correspond different families of phase
functions, which again correspond to different families of solutions
of the form (14).

In our case where the matrices A‘,AZ,A3 are given by (11) - (13),

the characteristic roots are found to be given by Q1, iy Q7 where

Q = kv

It (23)
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o, = k-, + o, KB, (24)
0, = ku - g, % kB, (25)
9, = k-y, + k(P40)", | (26)
0, = key - k(P+Q)%, (27)
o = k-y, + k(P-Q)%, (28)
o, = k-y, - k(P-0)¥, (29)
1 Ly e 2
P = E (QD BU + c0 ) (30)
0= (P - ¢ '(kB)c’ K2, (31)

From (23)-(31) we see that (10) does not have characteristics with
constant multiplicity. In fact, in order that the multiplicity assump-
tions in Eckhoff (Ref.1, Sec.5) will be satisfied for all the charac-

teristic roots (23) - (29), it is necessary to assume that
kxB #0 & k-B # 0. (32)

when (32) is satisfied, we see that Q1 is a double root while all the

other roots @ .,97 are simple roots in the characteristic equation

g ik
(19). The characteristic root Q1 corresponds to the mass waves (inter-
nal gravity waves), Qz and 93 correspond to the Alfvén waves, Q‘ and
Qs correspond to the fast magnetoacoustic waves, and Q8 and 97
correspond to the slow magnetoacoustic waves.

Now let Q be one of the seven characteristic roots (23)-(29) and
let o¢(x,t) be a real-valued solution of (22) which is such that

Vp #+ 0. Suppose that Q(X,t,Ve) for this solution ¢ 1is an eigenvalue



13

of fixed multiplicity p, say, in the considered domain. Equation (18)

then shows that
V]
cl= E OLIL' (§8131)

where r

L. -.L“ are orthonormal eigenvectors associated with the

eigenvalue Q and o ..,ou are scalar functions to be determined.

y
In order to do that, we write the remainder in the following way

1
i | 11(5.t)exp(iww(x.t)} U R (34)
lw

In view of (18), (17) then becomes

3 1 1
{La. + (9T + L o AY)a, + — La_ lexp(iwp) + — Lu = Q, (35)
i T oy=1 Xy 1 iw ! iw
which is satisfied if
3 VI
LQU v (wtl +v£1 wva )g1 =0, (36)
Lu + (Lg1)exp(iww) = 0. (37)

Equation (36) may be considered as a system of algebraic equations for
a, . When ¢ has the assumed properties, (36) therefore has a solution

if and only if
3 S . R T (38)

Substituting (33) into (38) yields

3 v
(00 + I E txoa'ritoy), + £ oty o - o, (39)

Q=108 S

which is a symmetric hyperbolic system for ¢ = (o .,ou}. Proper-

L

ties of this system (39) are studied in Eckhoff'. 1In particular it is

shown that when g 1is determined by (39), such that goexp(iww) is



smooth, then (15) holds. As a consequence of this Eckhoff' also shows
that in order for the trivial solution w = 0 of (10) to be stable it

is necessary for the trivial solution o = Q0 of (39) to be stable.

By studying the system of transport equations (39) corresponding
to the possible phase functions ¢ we may therefore be able to obtain
asymptotic wave solutions and get information about the stability
properties of the basic flow (3). This is the purpose of the present
paper, and we start in the next section by calculating the eigenvec-

tors corresponding to the different characteristic roots.
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IV. THE EIGENVECTORS

In order to be able to calculate the amplitude (33) in the asymp-
totic solution and the associated transport equations (39), we have to
calculate the eigenvectors corresponding to the different charac-
teristic roots (23)-(29). In this calculation we have to distinguish
between the nonsingular case where (32) is satisfied and the singular
cases where either k x Bu =0 or L-gu = 0.

When (32) is satisfied, we may choose the eigenvectors associated

with the double root Q] to be

= (0,0, 1hgh, o e a0 o), (40)

i
il il

The eigenvectors associated with the roots Qz and Q3 may be chosen to

be, respectively,

i
"
DS
2
=
X
0

+ 0, O}, (41)

The eigenvectors associated with the roots QK, k = 4,5,6,7 may be

chosen to be, respectively,

i o= g 5@y O e I (43)
K K K K
where
L e g % hoak -8
B k i co((VK P)(V, R A T (44)
4 =ik om0t ! g (45)
. k B 12TEIEg
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Q
<5
x
'
o
1
<
x
'
L]

Here we have introduced the notation

L

Vo= DM+ (-DMEE G ko= 4,5,6,7,

where p = 0 when « = 4,5 and y = 1 when « = 6,7.

In the singular case where x-§0=0 we see that

16

(46)

(47)

(48)

(49)

hence all the above eigenvectors except Sy L are well defined when

Tl

B # 0. Furthermore we see that 94 and Qs are simple roots, while

in this case. Thus the fast magnetoacoustic waves are the only waves

that can be studied by the theory in Eckhoff (Ref.1, Secs.5-7)

in the

singular case kB =0. A modification of the theory is needed in

=0

order to study the other waves which in view of (50)

be

coupled in this case. In this modified study we shall replace the

eigenvectors

oo L, by the following

r, - 27 %p “'4p,, -, (2P)7 By, O, (2Pg, )" ™ B

0

il
o
1%
w
|
e
les
0
o
NS
o
VI
-
o
(==
()
1
N
o
el
o
VI

(51)

(52)
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In the singular case where L><g0 = 0 we obtain

k539

From (23)-(30) we therefore see that in this case we have to distin-

guish between the following three cases:

-1 2 2
a) 0, Bu > c0 y
-1 2 2
b) % B“ < CO ; (54)
; el
@) go BU = CO

In case a) we have

(1551

and the corresponding eigenvectors r RS airelnettwel ]
J

Q

defined. 1In this case the waves corresponding to the roots 91, Qs’ 4

may be studied by the theory in Eckhoff (Ref.1, Secs.5-7), while a

modification is needed for the waves corresponding to the roots (55).

In this modified study we may replace the eligenvectors : S S S
by the following:
L?" =S {afis=anin0n s Ol (56)
L] " = {g_l él OI O}l (57)
r_‘" = (Ql __d_l 01 0}1 {Site))
I;S" = el olp @, ©OF; (9150
where a,d are arbitrary vectors satisfying
g 7 arby R B A= 0,
(60)
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In case b) we have

(61)

and the corresponding eigenvectors ;2, L, I r, are not well de-
fined. In this case the waves corresponding to the roots Q1, Q‘, Q5
may be studied by the theory in Eckhoff (Ref.1, Secs.5-7) when
En # 0, while a modification is needed for the waves corresponding to

the roots (61). In this modified study we may replace the eigenvec-

tors ;2, ;3 by (56), (57) and the eigenvectors ;E, L, by

b

.«r.ﬁ" = {.d.l —g.l Or O}r (62)
b
.1:-7" & {gl g! OI O}I (63)

where a,d are still arbitrary vectors satisfying (60).

In case c¢) we have
O t=nQna=2Q SRR O =10 (64)

and the corresponding eigenvectors L, Lo Ly Lo Lo

r, are not well
defined. In this case only the waves corresponding to the charac-
teristic root Q1 can be studied by the theory 1in Eckhoff (Ref.1,
Secs.5 7), while a modification is needed for all the other waves. In

this modified study we may replace the eigenvectors L, L L. I by

(56), (57), (58), (59) and the eigenvectors . x, by

!
= o 65
T 2 BO (QU, OE07 BU}, (65)

& G -1
= & = 66
- B(] {BO, GENONEEB Sl (66)

|
N

it



V. THE MASS WAVES

In this section we shall use the procedure developed by Eckhoff'
to study the linear waves superimposed on the basic flow (3) that are
associated with the characteristic root 91. The multiplicity
assumptions in Eckhoff (Ref.1, Sec.5) are satisfied if and only if
k‘&u # 0, we shall therefore limit our discussion to that case here.
The singular case K-EU = 0 will be studied in Sec.IX.

The bicharacteristic equations associated with the characteristic
root 91 are

dx dk
=V ‘ porie 1 ol 100 B (67)
dt 0 dt 0

The transport equations are found to be along the rays

dao

ST, DS I (V'Y. )0 ' (68)
dt 2 o

duZ . =@

ipsion, sl (L dapaliey Bk g

Along the rays governed by (67) we have in view of (1) the relation

ot | g (70)

The equations (68) and (69) may therefore be written in the following

way:
d d
a = _G = ;Y 0 =1 __Q_ﬂ_ y (71)
1 dt f dt
s ko) do 5
g, " ok il S SR co D (k%) . (72)
2 dt 0 dt 2 dt

(73)
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where Cor c, are arbitrary constants along the rays.

The stability equations are found to be

d 1y

EE S1 = —5— (V-!O)S1, (74)
T R PR,

R k. !0)""5‘7'!0)52’ ®&5,)

These equations are directly integrable in a completely analogous way
to the transport equations above, giving

Y-1

(76)

where c,. ¢, are again arbitrary constants along the rays.

From the expressions obtained above we first notice that to
leading order we do not get any local fregency for the MHD-mass waves
resembling the Brunt-Vaisala frequency in fluid mechanics®'* . Second,
we see that the amplitude only depends on % and k along the rays
which from (67) are seen to coincide with the path lines for the
plasma particles in the basic flow (3). On physical grounds 0 must at
least for a steady basic flow be a bounded function. Hence the only
necessary condition for stability that we obtain from the theory in
Eckhoff' for the mass waves is that k must not tend to zero along
the rays. This condition 1is trivially seen to be satisfied in the
static case ¥, = 0 and also in the more general case, where A is
independent of x, since k then is seen from (67) to be conserved
along the rays. In the case of a sheared basic flow of the plasma, k
is no longer conserved and we have to look more carefully at the bi-
characteristic equations (67) in order to settle the stability problem

for the mass waves. We shall confine our study to two speclal cases,

namely slabs and screw pinches.



Slabs are possible basic flows for a plasma if the potential for

the external forces takes the form

V=i z) (77)

in a Cartesian space-coordinate system (x,y,z). With (77) a slab is a

basic flow for a plasma of the following type:

5

{V1(Z): Vz(z)r 0}1 QO i QU(Z)I (78)

=
it

‘PU(Z). Bpi™ {B,(z), Bz(z), 0}.

Here v1, WL (A B

2 B, may be arbitrarily given and P, is then

it

determined to within an arbitrary additive constant by

1
o aiber BRUL 2 b in (79)

0 %) 0
where a prime denotes differentiation with respect to z. With (78) the

solutions of the bicharacteristic equations (67) are readily found to

be

X = X + v1(zn)t. e N vz(zo)t’ T (80)

QUM TR s o R R e
B EO, E &0, B EU {Euv1 (50) + Euv2 (zu)}t,

where the subscript 0 refers to the initial values of the bicharacte-
ristics at t = 0. From (80) we see that k is conserved along the

bicharacteristics satisfying

Ry R P
R PR R (24 =10, (81)

7

while on all other hicharacteristics

~

i (82)

1

k o+ @™ "5 K {(Ea)2 + (Eg)z}
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Thus for a slab 51,52 are clearly seen from (76) to be bounded along

each ray.

Screw pinches are possible basic flows for a plasma if the

potential for the external forces takes the form

V = V(r) (83)

in a cylindricial space-coordinate system (r,0,z). With (83) a screw

pinch is a basic flow for a plasma of the following type

A A
= ve(r)e 2 vz(r)z, 0, Qg(r),
(84)
A
D po(r). B o= Be(r)@ + Bz(r)z

Here v 'BB'BZ may be arbitrarily given and P, 1s then determined

g'Vz' %
to within an arbitrary additive constant by

e
TRARI Vol el - Rl R (85)

1
- i

i p & F TEE r

where a prime denotes differentiation with respect to r. With (84)

the solutions of the bicharacteristic equations (67) are readily found

to be3
AL 0 = 60 + rﬂ_1 ve(ru)t, Z.= & ¥ vz(ro)t,
' =g+ (ru" ag[ru" volr,) - vg'(x)] - BV, ' (rp))t, (86)
€ =g, £ -8, k=£t1+1r €8+ 8%,

0

where again the subscript O refers to the initial values of the bicha-
racteristics at t = 0. From (86) we see that Kk is conserved along

the bicharacteristics satisfying



-1 %) " -1 w l i 3 ) o
5 50[10 "e(ro) Vo (ro)] Eovz (ru) = 0, (87)

while on all other bicharacteristics

1

4.
& -1 g2y2 3121%
kvw & ko> ((x,7" B2)2+ (80)2)7 (88)

Thus 51'52 are also seen to be bounded along each ray for a screw
pinch.

In view of the above discussion it seems natural to conjecture
that to leading order the mass waves never give rise to any
instabilities in MHD, at least not in the case of stationary basic
flows (3). For the slab and the screw pinch we see that the density-
perturbation part of the mass wave, i.e., e is carried unaltered
along each streamline, while the perturbation of the magnetic field,

(0l
Pl

dies out along most bicharacteristics. Only along the spe-
cial bicharacteristics satisfying (81) and (87), xespectively, i.e.,
tor special choices of the phase function, is the perturbation of the
magnetic field conserved along each streamline for the mass waves to

leading order in the nonsingular case where kogo =0,



VI. THE ALFVEN WAVES

In this section we shall wuse the same procedure as in the
preceding section to study the linear waves superimposed on the basic
flow (3) which are associated with the two characteristic roots Qz
and 93, respectively. The multiplicity assumptions in Eckhoff (Ref.f1,
Sec.5) are satisfied if and only if (32) is satisfied. We shall there-
fore limit our discussion to that case here. The singular cases where
(32) is not satisfied will be studied in Secs.VIII and IX.

The bicharacteristic equations associated with the characteristic

root QZ are

gk . "3 89
—d_t = .Y.O g 90 B.OI ( )
il = . 90
5; —(Vzo)'k . (V_BO)'h + = % (L{'EO)VDU. (90)

By a direct calculation of ;Z-ng, the transport equation 1s found to

be along the rays

do 1 it o <49
o= e kB 1T [(k<By) ¥Ry eV (IkxB |7 kxRy)
Lo kx| (k=B )
+ 5 0, |_K’-B_U| (KXEO)'(V_BU) k>~ B
1 K] 3
I & s 3 91
h p 2 Bﬂ VQO y v _\{U}U. (91)

Using (2) and vector identities including the following one, which 1s

valid whenever k ¥ Eo 20,
- ‘2 . « -2 L L]
v Bu s B[J 0-(V§0) B, + |k x EUI (h\ﬁu) (v Eo) (KKBO)
=% -2 . : 2
it B0 |k ~ _Ul ((kw<E0)x§0} (v BU) {(h*\EO)x EO}, (92)

it is possible to show that (91) reduces to



dao 1 L2 3
Et-j = (Z Q BG'VQO » ; V. !0}0- (93)
The stability equation takes the form
g S ] v S (94)
= IR e BV e Vi 8
dt

In a completely analogous way we find that the bicharacteristic

equations associated with the characteristic root 93 are

d& 'i 3
= STl L (95)
ak hy: i
ol N 1 10 S TR (96)

and that the transport equation and the stability equation take the

following forms, respectively, along the rays:

do 1 ¢ _ 3

(;{ = “{:1 Q(] BO'VUO T Z V'lﬂ}cl Sl
d 1

f B Rec ATy e (98)
dt 4 0

From the above expressions we note that it is not necessary to
take into account the equations for k, i.e., (90) and (96), respec-
tively, in order to solve the transport equations and the stability
equations. For the slab and the screw pinch we immediately see that
both o and S are conserved along the rays, and S is in fact con-
served whenever the basic flow is incompressible. Hence there seems
to be no reason to believe that the Alfvén waves ever can give rise to
any instabilities in MHD to leading order in the nonsingular case
where (32) is satisfied, at least not in the case of stationary basic

flows (3).



26

VII. THE MAGNETOACOUSTIC WAVES

In this section we shall use the same procedure as in the
preceding sections to indicate how the linear waves superimposed on
the basic flow (3) and associated with the characteristic roots QK,
k = 4,5,6,7, may be studied. The multiplicity assumptions in Eckhoff
(Ref.1, Sec.5) are satisfied for all these waves if (32) holds. If
ke En = 0, the multiplicity assumptions will only be satisfied for the
fast waves, i.e., for the waves associated with Q‘ and Qs‘ If
5:(50 = 0, the multiplicity assumptions will be violated for all the
magnetoacoustic waves in the case (54c), while they will hold for the
fast waves only in case (54b) and for the slow waves only in case
(54a). Here we shall limit our discussion to the cases where the
multiplicity assumptions hold; the other cases will be studied in
Secs.VIII and IX.

Consistent with the notations introduced in Secs.III and IV, we

may write (for « = 4,5,6,7)

St - g ST -
QK =k . 4 + kVK, VK (=102 <5 (=100 05T (99)
where p =0 when « = 4,5 and p =1 when « = 6,7. The bicharac-
teristic equations associated with  the characteristic roots QK,

Kk = 4,5,6,7 are then easily found to be

dx -1 g oA R S
s A~ ol 2 (k*B . 100
r ¥ k e A Sk} E k ~Q € FG(L LO)QK ( )
dk u 1
== = wp RN T {<1)T TRy VWP
dt -
v o T [ N .3
= Sl ke Qu¥ia &4 4K31BJ (cg Ve, > vp,)

.
+ <-1)”5 k0 eV na. e (KB (VR )l (101)
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After some manipulations the transport equation along the bicharacte-

ristics determined by (100) and (101) is found to be

do

==y 9 T, (102)
dt K K

where DK = € @

o
™
N
[o})
Ll
<
<
o
Q.
I
(]

1 50 1 i
$00R. Earnt 5 e 2 A
- 5> k% e S S P 2 k% So&' Vo
\f -1 -1
L) 5
5 £ip 1% Mo Vpa, (103)
and FK is the focusing coefficient which is given by
3 3 629k
EO e TS i wx 3 W e (104)
f 2 j=1 v=1  %*3*v  3edes

Since the characteristic roots QK, k = 4,5,6,7 are nonlinear with
respect to k, the focusing coefficient (104) will in general be a com-
plicated nonvanishing expression involving the unknown quantities

P o These quantities may also be determined by transport equations
v

along the rays, but in order to close the system of equations (100),
(101), and (102), we then have to introduce six additional complicated
equations in general. We shall not pursue that approach here.

As discussed in Eckhoff1, the difficulty connected with closing
the system of transport equations does not exist if we look at the

stability equation instead. That equation takes the form
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d
EE S = {DK b KK} Sh (105)

where DK still is given by (103) and the compression coefficient KK is

given by
{igd . Bf 0
K=- [ -
9 2 peh Bx BF
p
K Vv +1k‘1 ke -(-D" -k 2 v 'o F c?(k-B)d} (106)
- 5 e g2 iy :

To avoid confusion we note that with the notations used above, the
variable Xk is not affected by the V-operator either in (106), or in
LK)

Since the stability equation (105) and the bicharacteristic
system (100) and (101) do constitute a closed system of equations,
they can in principle be solved. In general the rays will hit the
boundaries of the plasma; thus an investigation of how the wave 1s
reflected/transmitted there 1s required in order to carry the study
further. Whether such a study can reveal anything of interest for the
stability problem, is an open gquestion which we shall not take up
here. We should like to remark, however, that i1t seems possible to
carry out such a study for special cases by numerical methods, while
analytic results presumably are hard to obtain even in speclal cases
such as slabs or screw pinches where the complicated expressions
occurring in (100), (101), and (105) can be shown to reduce

substantially.



VIII. THE SINGULAR CASE WHERE Kx:@n =0

As already seen in Sec.IV, the characteristic root Qz colncides
with Q‘ and/or Qs and the characteristic root Q3 coincides with QS
and/or Q7 i k><§0 = 0. In this case, therefore, the multiplicity as-
sumptions in Eckhoff (Ref.1, Sec.5) are neither satisfied for the
Alfvén waves nor for at least one set of the magnetoacoustic waves.
Those waves cannot therefore be studied by the approach in Eckhoff1 in
a straightforward fashion in that singular case.

In order to get hold of the nature of the singular case x)<50= OF

we calculate along the rays associated with the Alfvén waves

ez gl ot B o iy
e x = ==t + kx - il (=0 §
dt 0 dt 0 A A GRE

i S
T B o B R R
2 1 0 0 t
- v (9B)X k ¥ o, "F B (9B ) K, (107)

where the upper signs hold for the characteristic root Qz and the
lower signs hold for 93. In the case of a homogeneous basic state (3),
the right-hand side in (107) obviously vanishes. The quantity x><§0
1s therefore conserved along the rays in that case, the Alfvén waves
and the magnetoacoustic waves may therefore interact through the sy-
stem of transport equations (39) in the singular case where x><50= 0.
Each of the cases (54) has to be considered separately; the relevant
eigenvectors are given in Sec.IV. Since the case of a homogeneous
basic state is better treated by other methods, we shall not pursue
that approach here.

When the basic state (3) is inhomogeneous, K>:50 = 0 is usually
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not a persistent property along the rays. This can easily be seen,
for example, in the slab geometry (78) where we for simplicity con-
sider the speclal case

=0, o = o (2), pi =apia(z) . SBagiE Brobznier . (108)
0 0 0 0 0 0 X

Here gx is the unit vector along the x-axis. Assuming that at a cer-
tain instant, L><§U = 0, we have k = kgx and (107), (108) implies

that at this instant
. £
— (kxXB ) = +{E c - B CREEE - R E B e (109)

where gy is the unit vector along the y-axis. Since 9, and B0 are ar-
bitrarily given functions, (109) shows that Lx’ﬁo = 0 wusually holds
only at 1isolated points along the rays, if at any point at all. We
therefore normally do not expect the singular points where k)(ﬁo = 0
to be of vital importance either for the problem of linear wave propa-
gation or for the problem of stability. Hence we shall not study that

singular case further here.
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IX. THE SINGULAR CASE WHERE k Bn =0

As already seen in Sec. IV, all the characteristic roots except
Q‘ and Qs coincide if x-go = 0. In this case, therefore, the mul-
tiplicity assumption in Eckhoff (Ref. 1, Sec.5) are only satisfied for
the fast magnetoacoustic waves. Those waves may be studied by the
approach indicated in Sec.VII, while a modification is needed in order
to study all the other waves in this singular case.

In order to get hold of the nature of the sinqular case L-gn = 0,

we calculate

d dk 3B dx
— (k*B ) =—«B + ke—0 4+ —.(VB )k (110)
dt 0 Atiinal ot dt 0

along the rays associated with the various waves. For the mass waves

we obtain from (1), (67), and (110)

d
= AkeB, ) = UgD Iy (i)

Similarly, we get for the Alfvén waves

} ST

ONEB WEEh S V-!u). (112)

1
at 0 e

9" (Ks¥Be )= (R <Rt
where + holds for the characteristic root Q, and - holds for 93- The
bicharacteristic equation (101) 1s seen to be singular for the slow
magnetoacoustic waves, i.e., for « = 6,7, in the singular case K-§0= 0
and so is (110). It is therefore not equally revealing to look at
(110) for the slow magnetoacoustic waves as it is for the mass waves
and for the Alfvén waves; hence we shall omit it here.

If we look at slabs (78) and screw pinches (84), we see from
(111) and (112) that the quantity k- Bu is always conserved along

the rays. For more general basic states (3), the quantity k- Bu is

not necessarily conserved, but it easily follows from the uniqueness
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theorem for the 1initial value problem for ordinary differential
equations that h-ﬁo must vanish everywhere along a ray if it vanishes
at a point on that ray. Hence for any basic state (3), the singular
case L-gn = 0 1is either totally avoided or a persistent property
along the rays.

With this background we may conclude that the singular case
K'Bu: 0 seems to be the "worst" possible case in a stability research,
since in this case all waves except the fast magnetoacoustic waves may
persistently interact along the rays, thus increasing substantially
the possibility that an instability may occur. In order to treat this
case we have to proceed from the transport equations (39) since the

multiplicity assumptions in Eckhoff (Ref.1, Sec.5) are not satisfied.

Recapitulating, the characteristic root

Q=k-v¥ (113)

has multiplicity 6 in the singular case k+B =0, and when B # 0

the associated eigenvectors may be chosen to be

R, =1, = {0,010t R =1, x"'10,k,0,0},

R, =, = = k"BO"n_(xgo, ~kx B, 0, 0},

R k'1BD'1{}_<_v:EO, kxB , 0, O) (114)
R =L, = 7 B, ' (B, -c,(2P) = By, 0, (2Pe)"* B, ),

R =1, = 5F Bl ldbea co(zp)‘igo, 0, -(2990)’5302}.

With these notations, the amplitude in the leading term of a
generalized progressing wave solution of the equations (6), (7), (8),

and (9) takes the following form:

6
i(] = £ 0_}3 y (115)
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where the scalar functions 81 b kO have to be determined by the
symmetric hyperbolic system (39) with M = 6 and where we substitute

L= Bl sl Lo (116)

L 13

Furthermore, Xk = V¢ is determined such that k- Ba =0 by the

characteristic equation
o L T (117)

10)

By a direct calculation of the quantities R - A Bm’ we find that

the system (39) takes the form

6
(01)t b _\j_U-Vo1 i m£1(ﬂ1\LBm)am = 0, (118)
: 0 9
(o )t + yU-VU2 + m£1(gz'LBm)am = 0, (119)
\ r 6 %
\I)‘l1 t (_\LO | L‘ﬂ QU)'VO i m£1(R3‘LBm)Om O, (120)
o 6 ;
(04)t 4 (M“ o ﬂn)'V04 b mEI(BA'LRm)”m = (0 L 124
e 6
(Gﬁ)f i {yﬂ + (ZPQU) COBO} Vo5 + m£1(BS'Lﬂm)Om =0, (122)
- o 6 ) 7
((Jf. )t t (V_U : (ZPQU) LOB‘H I V”E A m£'l (B“G. LBm)Um = 0. (1230

Thus we see that the transport equations in this case constitute a
weakly coupled hyperbolic system. Even though the number of unknowns
in (118)-(123) is only reduced by two compared to the original hyper-
bolic system (6)-(9), the fact that (118)-(123) 1is weakly coupled
makes it substantially more tractable both by analytic and numerical
methods. Since the number of dependent variables is only reduced by
2, it may be expected that essential information about the stability

properties of the basic flow (3) is carried over to (118)-(123).
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In the case where gux'go = 0, we note that the spatial differen-
tiations in (118)-(123) are all along the same direction, namely along
the magnetic fieldlines. This means that the number of independent
variables involved in integrating (118)-(123) essentially reduces to
only 2, namely the arclength along the magnetic fieldlines and the
time t. The other two independent space variables will only appear as
parameters during the integration of (118)-(123) when yox‘gu = 0.

The integration of (118)-(123) is more complicated in the gene-
ral case where yox 50 # 0, since the spatial differentiations are
then no longer in the same direction. In the case where the basic
state (3) has magnetic surfaces such that . * is everywhere tangent to
these surfaces, however, the inteqgration of (118)-(123) may be carried
out on each of these magnetic surfaces separately. The space variable
which 1is perpendicular to these surfaces will only appear as a para-
meter during the integration; hence the number of independent vari-
ables is in this case essentially reduced to 3.

For a stationary basic state (3) the streamlines never hit the
boundary 1if they start within the plasma. In the cases most frequently
studied 1in the 1literature, the magnetic fieldlines do not hit the
boundary if they start within the plasma either. For these cases the
boundary conditions do not cause any trouble, since we can let the
initial values assoclated with (118)-(123) vanish in the neighborhood
of the boundaries. By the properties of (118)-(123) discussed above,
we then see that the solutions of (118)-(123) will vanish 1in the
neighborhood of the boundaries also. Hence the boundary conditions
will obviously be satisfied in these cases. If, on the other hand,
the magnetic fieldlines do hit the boundaries, we may have to

investigate how the waves are reflected/transmitted there in order to
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carry the study further. We shall not, however, consider such cases in
this paper.

In order to study the system (118)-(123) and thus the coupling
of the waves further, the quantities gl- LRm have to be calculated.
These quantities are given in the appendix for the general non-
stationary case, and are séen to consist of relatively complicated
expressions involving of course the basic flow (3). We note that with
the expressions in the appendix, (118)-(123) as well as (117) are all
given in a coordinate-free representation; the Cartesian coordinates
were only used during parts of the derivation of these equations. Fur-
thermore we note that the expressions given in the appendix show that

for any basic flow (3), Eq. (119) takes the form

(Qz)t + ya-Va? + (}32~Lg?)a2 = (0. (WIRTACA)

Thus Eq. (119) can be solved independently of the rest of the systen

(118)-(123). 1In particular we see that

G = 0 (124)

1s always a solution. In the following sections we shall show that
unless we take the solution (124), we normally get linearly growing
perturbations resembling what Grad'' has called anholonomic instabi-
lities (see also Ref.12).

In the special cases of primary interest, namely slabs, screw
pinches, general static plasma configurations, and also some other sta-
tionary plasma configurations with flow, the expressions for EL'LEm
given in the appendix are seen to simplify considerably. We shall
in the following sections look more closely at some such special cases

where the simplifications are substantial.
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X. THE SLAB GEOMETRY

In this section we shall look more closely at the system of tran-
sport equations (118)-(123) when the basic flow is given by (78) and
(79). The phase function @(x,y,z,t) is in this case determined by the

following two equations:

B1(z)tpX + BZ(Z)w = 0, (125)

0, + v1(2)wx + vz(z)(py = 0. (126)

The general solution of (125) and (126) is found by the method of cha-

racteristics to be

9 = w[Bz<z)x = B1(z)y + {B1(z)v2(z) - Bz(z)v1(z)}t, z], (127)

where @[g,h] is an arbitrary function of the two variables g,h. From

(127) we obtain

oy Y . |
k = Vo = B2 gg e, - B1 55 Qy + {[B? o= B1 y
) o AP Y
2 (B1v2 - Bzv1) t]gg & 5H }gz. (128)

Thus in the general slab case k and hence the coefficients gl- LRm may
depend on all the variables x, y, z, t.

In order to make the system (118)-(123) more tractable by analy-
tic methods, we shall in this paper restrict our attention to some
special cases. In the first case we shall not put any restrictions on
the basic flow (78) and (79), but we shall consider the following spe-

cial choice of the function ¢ in (127) and (128):
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¢ = b8z, Jas e (129)

where & 1s an arbitrary constant at our disposal. With (129) the ex-

pressions given in the appendix reduce for the slab to the following:

= grd i e -7 [ N e I8 et 1
53 LR_2 = 2 BIJ “31(V2 0 82 ) }32(V1 (< B1 I (1301
4 - = 1l R : ', ' ' A "5" 1 -
R‘l,. ]:R:’ > g 2 B[] {Bf (V'? t (‘U B/ ) n{: (V1 -+ (._h“ B1 ) } 1 ( ]‘11)
== 6 ~3, f ~ i -1 f ' 3
B‘j' L_R_2 =) -|~6—l. {po BU = C(I (2] BG (B1 V1 gt 82 V2 NIy (61812)
?_ 6 -, f —’ —1 1 1 3 ’;
B_G' LRZ BE LA *l-é“‘l* {UU BU a5 C[_| ((719) = BU (Bl V1 ar BZ V2 IR RN (E18133)

while all the other expressions Bt'LRm vanish. Clearly, the expres-
510ns Ru'LRm depend only on the variable 2z in this special case,
and we may therefore look for solutions of (118)-(123) of the follow-

ing type:

a = o, (z)exp i(K,,X kY - at). (134)

Sl e el e IS e e = (123 Eien ghewe eieie () s &

sroilikenem e eof = aillE) cuel s (o, p © 0) = k(z) satisfy the following

1 258
dispersion relation for each z:
: O A gt gt W
ST L R R M e U At Wi N
. I )L 1 ok ’ o 7z - 1k
x{q - k-[v, + (2Pg ) Zc B 1Hq - k- [y, (2Be.) "¢ B} = O, (135)

and a, is of the form

z, & yla)a() (136)

where e 1s the appropriate eilgenvector corresponding to the chosen
solution g of (135) and x(z) is an arbitrary function. The relation

(135) clearly shows that neither does any interaction between the mass
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waves, the Alfvén waves, and the magnetoacoustic waves occur, nor does
any instability show up in the modes (134) in this special case.

In this special case, however, we may also consider another type
of solutions than (134). In fact, we see that when ¢ 1is given by
(1295

g = glz,t) (137)

is a solution of (118)-(123) if and only if g satisfies the following

system of ordinary differential equations for each z:

da

B s EQ_, (138)

dt
where E = (—Bt-LEm). The 6x 6-matrix E 1s seen to be constant for
each 2z and A = 0 1is the only eigenvalue of E. Thus 1t follows
from the standard theory of stability for ordinary differential equ-

'3 that g = 0 cannot be stable unless all the coeffici-

ations (138)
ents in E vanish. We have therefore shown that the trivial solution
of (118)-(123) will be unstable unless the four expressions (130)-
(133) all vanish. If one or more of the expressions (130)-(133) do not
vanish, it is easily seen that there will be solutions (137) growing
linearly with respect to t. These algebraic instabilities are then due
to the weak coupling between the mass waves on the one hand, and the
Alfvén waves and the magnetoacoustic waves on the other in the system
of transport equations (118)-(123). Clearly these instabilities
resemble the so-called anholonomic instabilities (see Ref.11 and 12).
In order that the slab shall be stable with respect to algebra-

ically growing perturbations, it 1is therefore seen from (130)-(133)

that (78) has to satisfy the following equations:



39

“B1’? % Bt(VZ' S0 i BEa= 0, (139)

FRA% T e m

25 W 0

] ‘i [} o ] =2 (] =
Bz(v1 + e, B1 ) B1(v2 + e 'ZBZ ) 0, (140)

AL gl Ly
oy [ ' 2 7 ' ' =
CO(ZP) (B1v1 + Bzv2 ) % (B1B1 + BZBZ )

|
=)

(141)

1
o

ol o . |
CO(ZP) (B1v1 + Bzv2 ) + % (B1B1 + BZB2 = (142)

Since we assume that B. # 0, it clearly follows from (139)-(142) that
\ /o R R i =Y e 0] (143)

Thus an inhomogeneous magnetic field Eu and/or a flow g% with shear
always imply that the slab (78) is unstable. From (130)-(133) and
(138) we see that this instability is triggered when A 0. By
(115) this is equivalent to giving the perturbation of the magnetic
field a nonvanishing z-component. While (138) shows that this z-com-
ponent of the magnetic field and also the quantity n in (4) will be
conserved for the solutions (137), usually both the other components
of the magnetic field and also the quantity ¢ and the x- and y-com-
ponents of the velocity field will grow linearly with respect to t
when (143) is not satisfied.

In the second special case we are going to consider, we shall

restrict our study to slabs (78) such that

vz(Z) =B (z) = 0. (144)

In this special case (127) is seen to be equivalent to



40

p = x(y,z), (145)

where x(y,z) is an arbitrary function of the two variables y, z. For
our purpose there is no essential loss of generality if we restrict

our choice of phase function (145) to the following:

¢ = ay + 8z, (146)

where o, & are arbitrary constants at our disposal. With (146) we

get

k = Vo = e, + be, . (147)

with (144) and (147) the expressions given in the appendix reduce to

the following for the slab:

= & = ./i 1 - 1
33‘LB1 = 54 LB1 28K GBU B1C0 VN (148)
_:“ Al 1 -i . —-;, '
R -LBz = = S IR 680 B {@U B1 CU(ZP) V1 o (149)
TR PR e g, dy
EE'LRZ = 2ok 690 81{90 B1 27 CU(2P) V1 e (150)
e O 2 P it sl sdee sdd 1G4
R, LB3 = 31-LB‘ = 2 =t uBO B1C0(QO o e o, ) (151)
1 -1 ";{ 1 L '_’(/",B [
°L53 =4 5 AR AL INS CU(2P) ](v1 0 y )
= _i ,
t (QUCO) (ZPQU) B1pU iy {152)
= 1 = ':I 't 'iB |)
BB~L33 = = 5 kK of[1 + cO(ZP) ](v1 % A

- o "2p p 53
("ocu) (2900)28190 by (153)
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i , AT
R IR, = - =k ol 01 '+ papl Wity 90 -8 S
-1 _é k
babealt (2B WER Do} (154)
L P 2P)"%](v ' - g "B, '
R-LR = - i LRI ¢, (2P) ](v1 Wil PR
s -4 j :
= e TR ) KB B U, (155)
RycIB, = R IR, = - R, LB = - R LR
LT €50 1 =8 v (156)
. g g % 1 !

while all the other expressions BL'LEm vanish. Also in this case the
expressions R; Lgm depend only on the variable z. Since the spatial
differentiations 1in (118)-(123) are all along the x-axis, we may
therefore in this special case look for solutions of (118)-(123) of

the following type:

a = gu(y,z)eXP (xSt (157

SRS E BB R GER(E1575) B o R (S5 RN E1(§12 3 ) s Eh e ni s how SEEEh e (HIS78) 8= RS
solution if g = q(y,z) and «k = k(y,z) satisfy a certain dispersion
relation for each z and 9, is of the form

iy v(y,z)e(z), (158)

where e 1is the appropriate eigenvector corresponding to the chosen
solution of the dispersion relation and ¢(y,z) is an arbitrary
function. For arbitrary k the dispersion relation corresponding to
(157) 1s relatively complicated. We shall therefore limit our dis-
cussion here +to the case where k = 0. In that case the dispersion

relation becomes
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4, 2
q- (geg i Mides O, (S1595)
W' = B LB (B IR, - B IR, + R IR,

- B~ LR ) - 2(R-LR )(R IR )

2

V' :
ST e
4

=] Ci=! 2 1
B0 (2P) VA (160)

From (157), (159), and (160) we clearly get the following necessary
condition for stability of the special slabs (78), (79), and (144):

v'{po"gu' LB R e, O, (161)

This is the interchange stability criterion found earlier by

Tserkovnikov in the speclal case where1‘
Wi = @ = EeiGEE . (162)

when (161) is satisfied we see that there are modes oscillating with
the local frequency M given by (160). By (147) and (160) it 1s seen
that M has its maximum value when & = O, and that M resembles the

Brunt-vaisala frequency in fluid mechanics.
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XI. THE SCREW PINCH

In this section we shall look more closely at the system of
transport equations (118)-(123) when the basic flow is given by (84)
and (85). The phase function ¢(r,0,z,t) is in this case determined by
the following two equations:

1
P Bg(rleg + B, (r)e, = 0, (163)

1

0, + ; ve(r)me + vz(r)wZ =0 (164)

The general solution of (163) and (164) is found by the method of

characteristics to be

o = Y[r, rBZ(r)f-:) - Be(r)z cF (B@(r)vz(r) = Bz(r)"m‘”}t]' (165)
where ¢ [g,h] is an arbitrary function of the two variables RS E Y o

(165) we get

1 ] lb a
ki=Vp = {[(BZ 1 rBZ )o - B@ z + (Bﬂvz - Blv_) t]-— + —}

A A 0 A
] BB == . (166)
% 3h dh
Thus for the general screw pinch k and hence the coefficients RL'LBm
may depend on all the variables r,0,z,t.
In order to make the system (118)-(123) more tractable by
analytic methods, we shall in this paper restrict our attention to
some special cases. In the first case we shall not put any restric-

tions on the basic flow (84) and (85), but we shall consider the

following special choice of the function ¢ in (165) and (166):

=, e = @iy (167)
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where o 1s an arbitrary constant at our disposal. This case is
analogous to the first special case considered for the slab geometry
where the phase function was given by (129). With (167) the expres-
sions given in the appendix reduce for the screw pinch to the follow-
ing:
B-IR = 2% T (v ' %o
0 B 7

_éB |)
0 z

7 1
=8, = Be)]}, (168)

v -
o T I

Roh = 2% Y mitn - L e L )]
L a2 0 Z 00 r 0 0 2] r 0
o
- By(v,' +0,7*B ")}, (169)
i o b Kl =t v e '
BS 32 = };' 2 Qo {BG(BO + ; B@) + BZBZ }
e e b + BV ') 170
[a] O “ 0'V0 r Vg) BT Foi
= o gs S g ¥ta-dig fEoste iy BB '
BE = la| 0 Q0 e 0 r G) 4 ZBZ )
piE ¢ Sadpun Lengaping (g e 1 ' 171
ha. o ) 0'Ve 8 Ve) LA by ( )

while all the other expressions BL-LBm vanish. Clearly, the expres-
sions Rt'LBm depend only on the variable r in this special case, we

may therefore look for solutions of (118)-(123) of the following type:

g = go(r)exp i(K19 + K,Z = at) . (172}
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Substitution: of - (172) « into . (118)-(123). .then shows that (172), is a

solution if K, 1s any given integer and if g = g(r) and iy Kz(r)

satisfy the following dispersion relation for each r:

1 2 1 o Lt
Ll r Ve T Ky W il . k, (Vg +igfiEBIPe ppMp o, S8, 1)
h 1 “; o
PP ) ) - o hE 5 o
X {q . K (v0 e, Bg) KZ(VZ € BZ)}
) 1 b e = ;’.
5 g ‘ «, Dvy + (2Re, V7€aBol. - ok, IY, + (2P0 )t B ]
. 2 & »
R vk (vl FeT2Ror e e, Bpld -akg gl "(2Ra JAGE B N =0, . (173)

and g, is of the form

Bls n(tenaie) (174)

where e 1s the appropriate eigenvector corresponding to the chosen
solution g of (173) and i (r) is an arbitrary function. The dispersion
relation (173), which 1s analogous to (135), clearly shows that no
interaction between the mass waves, the Alfvén waves, and the magneto-
acoustic waves occurs, nor does any instability show up in the modes
(172) in this special case.

Analogous to (137) we may in this special case also consider

solutions of (118)-(123) of the following type:

g = alr el il

In fact, when ¢ is given by (167), we see that (175) is a solution of
(118)-(123) 1if and only if for each r it satisfies the system of
ordinary differential equations (138) with the expressions for BL'LRm
found above substituted. As in the case of slab geometry, we may

therefore conclude that unless the expressions (168)-(171) all vanish
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indentically, there will be perturbations of the basic screw pinch
(84) and (85) growing linearly with respect to t. 1In order that the
screw pinch shall be stable with respect to algebraically growing
perturbations, it 1is therefore seen from (168) - (171) that (84) has
to satisfy the following equations:

1 1
ve' - et ek g= Babte B, 8B W% O (176)
r r

Clearly, equations (176) can only be satisfied when

viLE GRT Y. pvEg= C (177)

4] 1 7 2l 0 r 7 4

where C1,CZ,C3,C‘ are constants. The basic flow (84) and (85) with
(177) may be realizable for a tubular pinch, while a columnar Screw
pinch is always subject to algebraic instabilities if we let o, {00
In the second special case we want to let the function y[g,h]
chosen in (165) also depend on h. In order that the phase function @
shall be independent of the variable t, we then see from (165) that we

have to restrict our study to screw pinches (84) such that

Be(r)vz(r) = Bz(r)vg(r) = 0. (178)

Equation (178) simply means that yﬁx 50 = 0, we therefore know from
the discussion in Sec.IX that in this case the number of 1indepen-
dent variables involved in integrating (118)-(123) essentially reduces
to only 2, namely the arclength along the magnetic fieldlines and the
time t. Since (178) implies that k is independent of t, the coeffici-
ents in (118)-(123) are also seen to be independent of t 1in th1's SEes
cial case. Since k normally will depend on the arclength along the
magnetic fieldlines, however, the coefficients BL'LBm will normally
not all be constants along the magnetic fieldlines. Hence the inte-

gration of (118)-(123) is usually not trivial, but at least there

exist very efficient numerical codes for integrating this system of
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equations along each magnetic fieldline'®.

The integration of (118)-(123) will be further considerably sim-
plified in the special cases where the coefficients gl-Lgm are con-
stants along each magnetic fieldline. It is easily verified that this
will be true for the screw pinch if and only if 2-5, ﬁ- k, and '2- k
are constants along the fieldlines. Clearly along each magnetic
fieldline r and rBZ(r)O = Be(r)z are both constant; hence we see
from (165) and (166) that with the assumption (174) the coefficients
BL'LRm will be constants along the fieldlines if and only if
{Bz(r) + rBZ'(r)}G = Bg‘(r)z 1s constant along each fieldline when ¢

is assumed to depend on h. This condition is easily seen to be equiva-

lent to

1 N
" [Eh Y 112 e ] = i Ve
(B, + LB, )r it i By (—EZ) o (179)

which 15 the constant pitch case where the magnetic field is given by

HG = (@elsi((1e)) BZ SRITH (G (180)

Here C,D are arbitrarily given constants and H(r) is an arbitrarily
given function.
In the special case where (84) satisfies (178) and (180), it is

easily seen that (165) is equivalent to

DR (D O =@ 7)) (181)

where y(g,h) 1is an arbitrary function of the two variables iR OT:
our purposes there is no essential loss of generality if we restrict

our choice of phase function (181) to the following:

U = nde S Lt = Cha) . (§li825)
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where a,8 are arbitrary constants at our disposal. With (182) we get

(183)

In this case it 1is seen from the expressions given in the appendix
that the coefficients in (118)-(123) depend only on the variable r.
Since the spatial differentiations in (118)-(123) are all along the
magnetic fieldlines, we may therefore in this special case look for
solutions of (118)-(123) of the following type:

o = -Q“(r,r)exp i(ks - qt), AL

where s is the arclength along the magnetic fieldlines and 1 is the co-
ordinate perpendicular to r,s. Substitution of (184) wpnerey (a2,
then shows that (184) is a solution if q = g(r,t) and k = k(r,7)
satisfy a certain dispersion relation for each r, and g, st of #tthe
form

= Y(r,7)e(r), (185)

where e 1is the appropriate eigenvector corresponding to the chosen
solution of the dispersion relation and ¢(r,7) is an arbitrary
function. Unless additional assumptions are introduced, the dispersion
relation corresponding to (184) 1is relatively complicated. To avoid
excessive algebra we shall therefore limit our discussion of that dis-
persion relation in this paper to the static case where the external
forces are assumed to be negligible. However, we shall in the next
section first show that some general simplifications are then valid

for the system of transport equations (118)-(123).



XII. THE STATIC CASE WITH NO EXTERNAL FORCES
If we assume that the external forces are negligible, we may take
V=0 1in (1). 1In this section we shall, in addition, restrict our

attention to static basic states (€30, i Yol

WIREROR o=oo(z), p=p0(§), §=Bﬂ(§). (186)

With the assumption V = 0, this basic state (186) is seen to satisfy

the fundamental equations (1) if and only if

Vp = (Vxﬂu)x B,

1
o v £ #
; Byt 9B, - V(= B,2) . (187)

From equation (187) it follows that

By VB (188)
i Y
UEB e VB, = Ny REVEILTE (189)
1 . i
B 8 3 IR P B, (vB,) . (190)

In view of (188) and the above assumptions it follows from the expres-

sions given in the appendix that

e TR g0y e 40T R s g (CHEI)

Equations (191) imply that in the system of transport equations (118) -
(123) the equations (119)-(123) can be solved independently of (118)

for O,:95¢...y0.. Equation (118) can then afterward be solved for a,

6

In order to avoid algebraic instabilities we take the trivial solution
(124) for o,. We are therefore left with an independent system of four

transport equations (CGIPAOD]= (12t hdere 919,19, .0 Clearly this system

G5E

will describe the interaction between the Alfvén waves and the slow

magnetoacoustic waves in the singular case where k'ﬂn = 0 when the
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wavelengths are short. The coefficients in this system are found from

the expressions given in the appendix to be

1 .2
R = PR R SO TR (192)
R L |
R BJ = - .Ra'LB,. = Z 0 BU-VQO
gl 3 “Ep T (KB T VB Jo (KX
0, ¥B, * (kxBy)+ (B ) (kxB), (193)
Ll 2 “of Sk ort
wLRGE SH-RBERTiror ok LojTEkedn eBp)

2
e 1 5y
(kxB )+ {Vp - —‘;—04%— [V(-B,") + By* VB, 1t (194)

00
; b i b
R TR, = - R,"IR, = -Ek 0, "k (VXB)
2
. 1(k )" ' (2Po_ ) F(kXB. )+ {Wp. - —ﬂ—g-g C B 9
5 (A % kxB, e 5 [V(EBO ) + Eo'vﬂo]}’ (195)
0
R DR = R LR =¢="RobR. == R LR
v dpoilel (9p )'i'(kxs )eV(p + d B?) (196)
SN 272 i e
R+ LR, = - R-IR = > B-7(c, (2Po) %}, (197)
ReLR = - R-LR _ 1 -dcn2p .vi2p) B %) (198)
Rg LR L TRE TR R T RS ;

The expressions (194)-(196) can be written in different ways by
applying (189) and (190), and we see that for the static case with no
external forces the simplifications are substantial in the system of
transport equations (118)-(123).

In this paper we shall limit our further discussion to the static
screw pinch. When external forces are neglected, it follows from the

above expressions that for a static screw pinch we have
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=
el
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|
70
I

=

gs
(§19.9%)
‘LBB = 0.

=

RE.LRE :BB-LBS =

The rest of the expressions (192)-(198) will usually be nonvanishing.
The system of transport equations (120)-(123) may therefore in this

case be written

(03)t + A(Ga)s - Mo‘ + Go5 - Go8 =0, (200)
(04)t - A(U4)S + Mo3 + Go5 - Gcr6 = 0, (201)
(05)t + vA(as)s + an - Fo‘ = (0] (202)
(06)t = VA(OS)S i Fo3 = Eo4 =0, (203)

where s is the arclength along the magnetic fieldlines and where we

have introduced the notation

Bopioan o sl (om)as (204, 205)
M= B"Lﬂa S BJ LB4. (206)
E = RIR, = - R*LR (207)
F=R'LR = - BIR,, (208)
G = &3' LBS = E" LBS = - B’J.LRE = - Bb. LB’G' (209)

Unless either ¢ in (165) is independent of h or we have the constant
pitch case (180), we saw in the preceding section that the coeffici-
ents M,E,F,G will depend on s. This author does not yet know of any
straightforward analytic method by which one can handle the stability
problem for (200)-(203) when the coefficients depend on s. Hence we
shall limit our further discussion in this paper to the constant pitch

Case,



In the constant pitch case (180), we assume that ¢, k are given
by (182) and (183), respectively. A direct calculation in (193) shows
that in this case M = 0, and the dispersion relation associated with a
solution of the type (184) of the system of equations (200)-(203) is

easily found to be

PR Oy S R R R )

+ 2G6(F + E)A%vi® + ahv3ikt = 0. (210)

A necessary and sufficient condition for exponential stability of the
trivial solution of (200)-(203) in this case is seen from (210) to be
that q2 is real and nonnegative for all values of k. For x =0 (210)
therefore gives the following necessary condition for stability of the

static screw pinch with constant pitch

g = 13) 2 O (211)

By introducing (85), (180), and (183) into (194), (195), (196), (207),

(208), and (209) we obtain

-4 2
LO(ZPQU) EuHp (228

Thus we see that (211) 1is the well-known interchange stability crite-

rion which usually is written in the following way when Be 20

¢ dB
ot el bt (214)

dr BZ dr

For k arbitrary (210) implies
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1
G(EE=RE) S 5 A2(1 i vz) K2 i {F(K)}t. (25
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1
Fik) & 6 (F - B)° + i AT el R

Y GIE(].~ v) - B(1 4 vifinc (216)
Clearly q2 is real for all values of k if and only if
Pl a0 (217)

for all wvalues of k. Hence (207 is R allisola necessary condition for
stability of the pinch. From (216) it is clear that (217) is always

satisfied when |k| is sufficiently large. If

GLR{1 Ll Sl R % (218)

(216) shows that (217) is satisfied for all values of k and (k) has

its minimum value at « = 0. TIf on the other hand

2

G ) I Ty (219)

(k) is found to have its minimum value at

L

. 2 24 SN
S Rold B s - BRIt
Ky = s ; (220)

Al vy
Thus  when  (219) s sontdegubirediyg (247 ), soldsl of axt a1l des oF Ak ol

only if
F(Km) 3 0, (22200
By substituting (220) into (216), (221) is seen to be equivalent to

G’ [E(1 + v)2 - F(1 - v)?]?
e
(1 = )

G*(F - E)® > (222)

In view of (211) we have therefore established the following necessary

condition for stability when (219) is satisfied:
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1 = v2

In view of (211) we also see that (223) is a necessary condition for
stability when (219) is not satisfied. By simple manipulations (223)

can be rewritten in the following way:

GI(ES SRRV GI(E T E) (224)
Analogous to (213) we find that

ESSTAE

i

¥ ipibei-d ey
k % k(VXEM

QLCL:
~ |I'c

=~ k'g Ap ?(xxE Jevp, = -

o By (kXB (225)
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From (205), (212), (213), and (225) it follows that when BO L ON(7:24)

is equivalent to

d dB
Bg 2, Yp d_pIl ‘ (226)
dr BZ dr B0 dr

We have not seen this necessary condition (226) for stability of a
screw pinch with constant pitch in the literature before. Since (2261
is markedly different from the interchange stability criterion (215)
especially for high beta plasmas, we presume (226) is a remnant from
the so-called ballooning modes which are modes with short wavelengths
anq which therefore can be expected to be present in our system of
transport equations. As will be seen below, however, the Suydam cri-
terion is more restrictive than (226). This is probably the reason
why (226) does not appear in the conventional approaches to the stabi-

lity problem for the screw pinch with constant pitch.



From the above calculations it is clear that the necessary condi-
tions for stability (211) and (224) imply that (217) is satisfied and
therefore that q2 1s real. In order that q2 shall also be nonnega-

tive, it follows from (210) that we have to require

4

BB RIS vk b AL ot (a0

for all values of k. Obviously this is true if and only if

G ES RS () (228)

We may therefore conclude that the trivial solution of (200)-(203) is
expanentially stable for the constant pitch case if and only if (224)
and (228) are satisfied. From (212) and (225) it follows that (228) is

equivalent (when Bﬂ 20

dp
0 g (22498
dr

. y i . o i
which 1s the Suydam criterion for the constant pitch case

0f the above necessary conditions for exponential stability of
the static screw pinch with constant pitch, the Suydam criterion (229)
15 certainly the most restrictive one. In fact, 1t ecasily follows

from (85) and (180) that

1 dB 1 dp
e —4 (230)
BZ dr EO dr

Hence (226) and (214) will be satisfied if (229) is satisfied.
Equality in the different criteria (214), (226), and (229) are, how-
ever, the critical values where the character of the local frequency q
given by (215) and (216) changes; they all therefore have signi-
ficance for the modes involved. Clearly the Suydam criterion (229)
cannot be satisfied for a cylindrical plasma surrounded by vacuum, and

hence magnetic shear is definitely necessary in order to stabilize
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such screw pinches. There has been some discussion earlier in the
literature about the necessity of the criterion (229) for a screw
pinch with constant pitch; any doubt about this question has hopefully

now been removed.
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XIII. DISCUSSION

In this work we have been studying asymptotic expansions of
linear wave solutions valid for short wavelengths. The waves are
superimposed on an arbitrarily given solution of the ideal magneto-
hydrodynamic equations. Since we are concerned with waves with short
wavelengths, it would have been desirable to include resistivity and
possibly also other effects, but it is not clear how the asymptotic
method  we apply can be modified to include such effects. Thus we have
been working entirely within the framework of ideal magnetohydrodyna-
mics.

Within this framework the method applied has been shown to be
powerful. The equations describing the propagation of the waves have
been derived in a form which is entirely independent of the coordinate
system, thus we do not have to deal with the special difficulties
associated with, for instance, Hamada coordinates. Tt has not been
necessary to introduce any assumption beyond the wusual regularity
assumptions on the arbitrarily given solution that represent our basic
state, 1t may even be time dependent. Since our theory allows a gra-
vitational potential as well as a flow in the basic state, it may be
applied both in astrophysics and in problems related +to thermonu-
clear fusion.

Plasma flow 1is clearly present in a rotating star. Large flows
have also been observed in fusion devices after heating plasmas hy
neutral beams. The amount of theoretical work on waves and stabhility
done on plasmas with flow 1s quite limited in comparison with static
systems. This 1is mainly due to the increasing complexity of the pro-
blem. The energy principle of Bernstein et al.15, which 15 the domi-

nating approach to the stability problem, is, for instance, usually



not applicable to problems with flow. The methods which have been
applied to waves and stability problems for plasmas with flow are usu-
ally not satisfactory in one way or another, our method therefore
seems very promising for such problems. In the examples discussed in
this paper the effect of a basic flow has barely been touched, but we
hope to take wup such applications of our theory in the near future,
The prospects seem very good since the method has been shown to give
useful results for problems with flow in ordinary fluid dynamics by
Eckhoff & Storesletten®'®.

Our discussion of slabs and screw pinches shows that it is
possible in special cases to obtain detailed analytic results for the
wave solutions. It is not yet known to what extent it is possible to
derive analytic results for more general cases; only future research
can decide that. However, the equations we have derived for the propa-
gation of waves seem extremely attractive for numerical methods. Since
traditional numerical codes do not comprise waves with short wave-
lengths, a numerical code for our transport equations will therefore
amend this deficiency of the traditional codes. It seems reasonable
to believe that our approach will make it possible to get information
about the continous spectrum (the essential spectrum) associated with
the traditional normal mode approach (see Ref.5). However, since our
approach 1is clearly different from the traditional approaches, the
difficulties in applying the traditional approaches are not present
for our method. Only future research can reveal the amount of diffi-
culties involved in our approach.

Even though our method of approach does not depend on symmetries
in the basic state, it must be emphasized that it is a hard task to

obtain a solution of the basic ideal magnetohydrodynamic equations



that is not symmetric. In fact, at least 1if external forces are
neglected, Grad'' claims that nonsymmetric static solutions are virtu-
ally nonexistent. However, even when the basic state is only known
numerically, our method seems well suited to describe superimposed
linear waves numerically. The superimposed linear waves may contain
important information about the stability of the basic state, giving
both the growth rates and the structure of the unstable modes. Thus it
may be possible to get information about the prospects for observing
the calculated solution in an actual experiment.

Due to the complicated equations involved 1in describing the
propagation of the magnhetoacoustic waves, we have not been able to
decide to what extent those waves may describe possible instabilities
when they do not interact with the other wave types. The mass waves
and the Alfvén waves, on the other hand, have been shown to represent
stable perturbations of the basic state as long as they do not
interact. The exceptional case, where instabilities have been detec-
ted, 1s the case where the local wavenumber vector k is perpendicular
to the magnetic fieldlines. In this case we have shown that the mass
waves, the Alfvén waves, and the slow magnetoacoustic waves will
persistently interact, and that this interaction may give rise to in-
stabilities, In view of the asymptotic expansion we have applied,
this means that waves which have short wavelengths perpendicular ta
the magnetic field but long wavelengths parallel to it, appear in our
approach to be the most critical ones in a stability research. These
results are consistent with results found earlier by other methods
(see Refs. 5 and 10).

In the exceptional case where k-« go = 0 we find that the inter-

acting mass waves, Alfvén waves, and slow magnetoacoustic waves are
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described by a weakly coupled hyperbolic system. When the basic state
possesses common magnetic flow-flux surfaces, the structure of that
hyperbolic system shows that there will exist modes which essentially
are localized to these surfaces. This is consistent with the results
found by Hameiri17. Similarly, the structure of the hyperbolic system
shows that for static basic states there will be interacting modes
essentially localized to magnetic fieldlines. This is consistent with
results discussed extensively in the literature® '/~ 10/18

The weakly coupled hyperbolic system found is called the system
of transport equations for the interacting waves, since it is derived
in essentially the same way as we derive the transport equations for
the non-interacting waves in the nonsingular cases. Our calculations
for this system of transport equations show that for almost all
possible basic states it is possible to find perturbations which are
growing linearly with respect to time. These algebraic instabilities
resemble the anholonomic instabilities detected earlier by Lortz &
Rebhan'2 and Grad11. They are excluded from the energy principle by
Bernstein et al.18 since the perturbations are restricted there by the
chosen Lagrange-displacement representation. We can avold these insta-
bilities if we restrict the set of perturbations considered to the
case where @ = 0. We do not claim, however, that algebraic insta-

2

bilities cannot appear when ;e oL BN I At N i de' Yeryr Tikel g TORE

algebraic instabilities can appear in marginal cases analogous to the
cases discussed in ordinary fluid mechanics by Eckhoff & Store-

slettenj"

even when we have S 0. 1In this paper we have not looked
for such instabilities, however; we have restricted our study to expo-
nentially growing modes when e 0. We would like to remark that it

is an open question what physical significance the detected algebraic
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instabilities have, since it seems possible that they may be dominated
by effects we have neglected (nonlinearities, resistivity, etc.).

It is not surprising that the transport equations simplify consi-
derably when we restrict our study to waves superimposed on a static
basic state, compared to more general cases with flow. As mentioned
above, the transport equations will then in the case k-ﬂﬂ = (0 describe
waves which essentially are localized to magnetic fieldlines. By (117)
k = V¢ is in this case seen to be independent of t, and hence k may be
determined by the method of characteristics applied to k- Bo = 0. Thus
k is determined by ordinary differential equations along the magnetic
fieldlines, and these may be solved in conjunction with the transport
equations. As discussed in Sec.XII, the transport equations will be
further substantially simplified if we, in addition, neglect external
forces. If we then take the Fourier transform of the transport equ-
ations with respect to time, we will get a system of equations which

5’10. It must

has a structure similar to the ballooning mode equations
be stressed here, however, that it is not yet clear exactly how our
transport equations are related to the ballooning mode equations. Our
transport equations are derived directly from the fundamental magne-
tohydrodynamic equations (1) by a method which is a generalization of
the WKB method, while the ballooning mode equations are obtained by a
method of WKB type for the variational problem for the potential ener-

qy 6w10.

It thus seems reasonable to conjecture that our system of
transport equations does describe the propagation of the ballooning
modes properly, and hence that our method gives the generalization of
these waves superimposed on arbitrary basic states. In particular it

seems beyond doubt that the Suydam7 and the Mercier®'?® criteria for

stability must be deducible from our transport equations; we hope to
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be able to do that sometime in the future.

The traditional ballooning representation and the associated
Fourier transform technique10 involve as yet unresolved issues related
to the convergence of the series present in such representations and
their connection with the physical eigenfunctions. These difficulties
are not present in our method of approach since we derive our
transport equations directly from the dynamic equations governing the
plasma. Furthermore, we avoid the problems associated with the
spectrum since we consider the initial value problem for the transport
equations along the magnetic fieldlines. Since we are studying linear
waves, this does not cause any problems in toroidal geometry even
though k usually will be multivalued there. We simply have to add up
the waves which have the same toroidal angle modulo 2n. However, if we
take the Fourier transform of the transport equations with respect to
time, we will get a nonstandard eigenvalue problem for a system of
ordinary differential equations along the magnetic fieldlines
involving nonattractive difficulties. Neither from a numerical nor
from an analytical point of view does this eigenvalue problem seem to
have any advantages compared to the initial value problem as far as we
can see, bhut only future research can clarify these points.

Even though gravity hardly is avoidable in earthbound experi-
ments, 1t 1s customary to neglect external forces in studies related
to thermonuclear fusion. Since the timescales involved in most fusion
devices are very short, this may seem a reasonable approximation from
a physical point of view, especially since this approximation leads to
substantial simplifications in the model. Some evidence 1s available,
however, which may call into question the validity of this approxi-

mation, First of course, this approximation affects the problem of
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determining basic states (preferably static ones). Secondi il s
known from fluid mechanics that even an arbitrarily small external
force may change the 5 ity IR R i i substantially‘. In this
connection it is natural to call attention to the interchange instabi-
lities detected for the slab and the screw pinch in Secs.X and X
respectively, At first glance these instabilities may seem completely
analogous, but a closer 1look reveals that the structure of the un-
stable modes is different. The mass wave associated with a, plays a
fundamental role in the interchange instability for the slab where the
external force is the driving force, while the fundamental role is
played only by the Alfvén waves and the slow magnetoacoustic waves for
the screw pinch where the magnetic field represents the driving force,
Only future research can settle the question of how good the appro-
ximation is when we neglect external forces in the model. The approach
we have described in this paper is applicable also without this sim-
plifying assumption.

A a conclusion we may say that the asymptotic expansion applied
in this paper has provided us with equations describing the propaga-
tion of linear waves superimposed on an arbitrary basic state where no
superfluous assumptions are made. For a static basic state we have
seen that the mass waves, the Alfvén waves, and the slow magnetoacous-
tic waves may be localized and interacting along the magnetic field-
lines. Also for general basic states we have seen that those waves may
interact, but they are then usually not localized to magnetic field-
lines but to magnetic flow-flux surfaces if such surfaces exist for
the basic state. The roles played by the asymptotic expansion applied
and the obtained transport equations are completely understood, and

since they describe special perturbations (short wavelength), they may
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be used to obtain necessary conditions for stability. It seems likely
that the obtained transport equations describe the propagation of
ballooning modes without suffering from the difficulties involved in
the traditional description of those waves. Whether the necessary con-
ditions obtained by our approach are also sufficient to insure stabi-
lity of a given basic state, is a problem which can only be solved by
comparing the obtained necessary conditions with sufficient conditions
obtained by other methods. Such results do exist for problems in ordi-

-19

nary fluid mechanics3, and Hameiri'' has discussed that problem in

magnetohydrodynamics.



APPENDIX: THE WAVECOUPLING COEFFICIENTS
In the singular case, where k-go = 0, the expressions BL.LRIH'
L, m=1, ..., 6, may be calculated directly from (114) and (6)-(9).

After a considerable amount af algebra for the general basic flow (2],

we find
v =Ly A1
= B.' = 2 Mol ( . )
Bz . 1«51 =0, (A.2)
'Y = _i =l ° [y -
BJ LB1 = (kBaco) (kxﬁﬂ) (!at g e, ), (i)
K‘ . LB1 = 53 4 LE1, (A.4)
R+ Lgl = = 2 "‘(QOBUCG) EO'Vp ’ (AT5Y)
BG'LR.1 =RS'LB1, (A.6)
,* LR, = 0, (A.7)
— ~ i = e -
Bz U LBZ =V !0 k k (V_\[O) k, (T8N
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2

In the manipulations necessary in order to obtain the above expres-

sions, we have applied the assumption that K-Qﬂ =R0Nand S Na ks (E)
satiafies (1). Furthermore, we have used that k = Vp satisfies the
equation

K, + ¥ VR 0Py e et (A ATy

which follows from (117) in view of the fact that Vk is a symmetric

tensaor.
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