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PREFACE

Flow of single-phase oil through porous media is generally accepted to

be described by a linear diffusion equation, and in well-test

analysis, which is a special case of the inverse problem, a number of

methods have been developed based on Solutions of this equation. Gas

flow and two-phase flow is, however, much more complicated, and even

though several methods have been proposed to analyse gas and two-phase

well tests, the mathematical verification is often limited.

This report is a major part of my work for the degree Dr.Scient., and

the background for the project was research on two-phase flow

performed at Rogaland Research Institute in Stavanger. The object has

been a study of the non-linear equations governing two-phase flow of

oil and gas through porous media with emphasis on obtaining analytical

Solutions applicable to well-test analysis. However, since the

problems occuring in two-phase pressure-test analysis are very similar

to those encountered when analysing gas-well tests, and several

questions in connection with gas flow was unanswered, a natural

approach to the problem was to start with the nonlinear equation

describing real gas flow. The different nonlinear effects in two

phase flow could then be identified. For that reason my research has

been concentrated on two different problems which is discussed in Part

2 and Part 3of this report, respectively. Part 2 describes single

phase gas flow, and in Part 3, two-phase flow is considered with

emphasis on investigating whether the theory for gas flow can be

applied also to that case. To present a basis for part 2 and 3, the

general model equations are presented in Part 1. In addition, I also

felt it useful to review some of the basic theory for single-phase

flow of slightly compressible liquids.

For practical reasons, a separate list of references is placed at the

end of each part. The same is done with the list of symbols. However.

as far as possible the use of symbols is consistent throughout the

report. Unless otherwise stated, all equations are written in

absolute units.
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PART 1 3

Reliable information about in-situ reservoir conditions - rock, fluid,

and well properties - is important in many phases of petroleum

engineering. Pressure transient testing techniques. which includes

generating and measuring pressure variations with time in wells, are

an important tool for obtaining such information. Of the practical

information obtainable from transient testing is wellbore volume,

damage, and improvement; average reservoir pressure; permeability;

porosity; reserves; and reservoir and fluid discontinuities.

Of the several hundred publications considering the subject of

pressure tests in oil and gas wells, all but a handful assume that the

reservoir fluids obey the linear diffusivity equation; an assumption

which is strictly valid only for slightly compressible fluids. Most

of the testing techniques are thus based on the constant terminal rate

solution of this equation, together with the principle of super

position. Detailed description of these Solutions and the different

techniques may be found in Refs.[1,2,3.4].

For gas reservoirs and reservoirs where multiphase-flow effects are

prevailing, the assumption of a slightly compressible fluid will not

be valid, and the main object of this report is to study the nonlinear

effects that arrise in these cases. The validity of and connections

between previous theories are discussed, and some new Solutions and

methods are presented. Part 1 states the basic model equations

describing the fluid flow in the reservoir, and some general

considerations are discussed. In Part 2, single-phase gas flow is

studied, and Part 3 is concerned with the special problems occuring

when both oil and gas are flowing simultaneously in the reservoir.
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In the general compositional model describing fluid flow in porous

media, three distict phases; gas, oil, and water, each satisfying

Darcy‘s law, is assumed to exist in the reservoir. The reservoir

fluid is assumed to consist of n Chemical components; n-1 hydrocarbon

components and water. In principle, a finite amount of each Chemical

component can be in the gas phase and the two liquid phases. However,

the water phase will consist mainly of the Chemical component water,

and usually mass transfer between the water phase and the two

hydrocarbon phases is neglected.

The model is described for instance by Peaceman [5] , and will be

presented only briefly here.

The system is assumed to be described by 3n +24 unknown variables

(Large letter subscripts will be used for the phases, and small letter
3

subscripts for the Chemical components. Vector functions in R are

underlined):

The filtration velocities of the three phases, jj. , u , u (9)
GOM

Phase densities, Q , Q , Q (3)
G 0 W

Viscosities, m . M , M (3)
G 0 W

Saturations, S , S . S (3)
G 0 W

Relative permeabilities, k , k
rG rO

k (3)
rW

Mass fractions of the individual components of the total mass of

gas, oil, and water phase, respectively, C , C , C On)
1G 10 iW

Pressures, p , p , p (3)
G 0 W
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The corresponding equations are:

Continuity equations for each component:

(1.2.1)

Oarcy's law for each phase:

Elementary relations:

(1.2.3)

n
(1.2.4)

Ci °  1

Equations of State:

(1.2.5)

V * { C iG p G~G + C iOe Ou O + C iW G WM W }

3

* C iG°G S G ' C iO»0 S 0 * C lWVW 1 ) • 0

i = 1.2 n

% = - — «•{ vp G - B a )
y G

n.2.2) M 0 = - k• { vp 0 - Q a )M 0

%= ' — K *< ?PW - >
M W

S G + S 0 + S W = 1

n
r c. r = i

i=1 16

n

Z C iW = 11=1 lw

f 1 {pG’ PG' C 1G ' •*• C nG ) = 0

f 2 (e0' p0* C 10 ’•*' = 0

f 3 (e W ,pW’ C 1W’ ‘’ ' C nW ) = 0
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(1.2.6)

Relative permeabilities:

(1.2.7)

Capillary pressures:

(1.2.8)

Phase equilibrium:

(1.2.9)

The temperature T is assumed to be constant. The tensor K gives the

absolute permeability of the formation.

The fractions K and K in Eq.(1.2.9) are called K-values,
iGO iGW

equilibrium ratios, or equilibrium constants, even if the quantities

are definitely not constants; and in this model it is assumed that the

mass transfer in the reservoir is rapid relative to the fluid

movement. A thorough discussion of State equations and relative

compositions of petroleum fluids may be found in Ref.[6]. Relative

permeabilities and capillary effects are described in Ref.[7] or [8],

e.g., and Standing presents correlations for relative permeabilities

in his notes from 1974 [9].

f 4* p G ,p G ,C 1G* * * • ,C nG* = 0

f 5 'p0 ’ C 10 '•* • ' C nO = 0

f 6 (p W' p W C 1W c n W ' - 0

k rG = f7* S G' S 0 ,S W*

k rO = f Ø* S G' S 0' S W*

k rW = f 9 (S G ,S 0 ,S W )

P G p 0 = p c60* S G ,S 0' S W*

p 0 - P W = p c0W (S G ,S 0* S W }

c i6
P = K i60 (T ' p G’ p0' C 1G C nG ,C 10‘•' ‘
L iO

c iG
r = K i6W T ' P G * P W ' C 1 G' * *' ,C n6 ,C 1W
L iW

C nW )
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Numerical methods to simulate these equations have been presented, and

much effort is made to improve the efficiency of compositional

simulators. However, to date most work - numerically, and some

analytically - has been on a simplified three-component system. Three

Chemical components, gas, oil, and water, are then defined as the

parts of the reservoir fluid being in the respective phases at

Assume that the gas component consists of the Chemical components

1,2,...,j, the oil component of the components j+1 n-1, and that

component n is the water component. 9 new mass fractions may then be

defined as:

j

C gG * C i3

(1.2.10) C

Eqs. (1.2.2), (1.2.3), (1.2.7), and (1.2.8) are valid also for this

simplified system. Eq.(1.2.1) reduces directly to three new

continuity equations for the new components by summation, and

Eq.(1.2.4) simplifies to sums of three terms. However, it is not

generally possible to generate new state equations and phase

equilibrium equations from the old ones, and these have to be

determined independently for the new system assuming that they can be

written as functions only of the new reduced number of mass fractions.

o o
Usually, p and T are taken to be 1 atm and 520 R («16 C).

standard conditions, p = p and T = T <1>
sc sc

C g° = C iO C gW = C iW

n-1 n-1

oG = . E C iG C o0 = . E C i0
i=D+1 1=3+1

n-1

C oW =. 1 C iW
i = D+1

c = c
wG nG c = c

wO nO c ,, = c ,wW nW

<1>
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The new gas/oil phase equilibrium equations become:

(1.2.11)

The so-called "p-model M may now be obtained by introducing the

formation volume factors for gas and oil, 8 and B and the solubility
G 0

factors R and r , where R is the solubility of gas in oil phase,
so sg so

and r is the volatility of oil:
sg

s s
q and q are densities at standard conditions.

g Oo

In the following, gravity, capillary effects, and mass transfer

between the water phase and the two hydrocarbon phases will be

neglected. In addition, the water phase is assumed to be

incompres sible with a constant saturation S . However, all these
iw

effects can easily be included in the Ø-model

= K g ( P* C g6 ,C gO ,C oG ,C oO ;T)
go

 !2£ = K o'P’ C gG' C gO' C oG' C oO’ T)
L oO

b = £a! _L
G °G C gG

B S £°l _!_

0 Po C oO

11 '* ' ' £} K so - ~“s L gO " s r
Q g e g C oO

. q G B G r _ C oG
r sg ~ „ s l o6 „ s -

e o ®o c gG
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The following equations are then obtained;

_U r u n 3
—  R so— }  — {
b G b o 3t

(1.2.13)

gas phase

oil phase

or

(1.2.14)

If the phase densities, viscosities, and K-values are independent of

composition, R so , and r gg will be functions of pressure and

the parameter T only. Eq.(1.2. 14 ) is then a system of three equations

in the three unknowns ,S , and p.

For solution gas drive reservoirs, this simplified model is generally

accepted as a good description of the reservoir processes. r is
sg

then set equal to zero, i.e., no oil component (also called stock tank

oil) is assumed to exist in gas phase. The model is then usually

called a black-oil" model, or also a Ø-model. According to Muskat

[10] p.302, these equations were stated by Muskat and Meres as early
as in 1936.

S G S 0
~ + R so— )} = 0 gas component
B G B 0

p * r sg D * rr { *1 ~ * r S g~ )1 = 0 oil component
B 0 b G 3t B o 9b g

k r
u G = - -L1L K• Vp

u 0 = - K• Vp

S r + S n = 1 - s •b 0 1W

7 ‘ { { ~£i + R so — ,K#V P >= — { (p(  R )}
m 6 B G m 0 B 0 9t b G S ° b q component

V{ + r }= —{ <p( + r )} 011
M 0 B 0 9m G B G 3t B 0 S9b g component

s r + s n = 1 - s« 0 iw
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Other important examples of reservoirs exhibiting two-phase flow is

gas condensate and volatile oil reservoirs where both hydrocarbon

components can exist in both gas and oil phase. Generally, these

systems are much more complicated than black-oil reservoirs, but for

some reservoir processes the equilibrium ratios may be assumed to be

independent of composition also in these cases. In 1973, Cook et al.

[11] presented a generalized black oil model very similar to

Eqs. (1.2.14) which accounted for compositional effects in volatile oil

and gas condensate reservoirs. The fluid properties were then assumed

to depend both on pressure and a compositional parameter. Spivak and

Dixon [12] suggested that gas condensate reservoirs could be

represented by a model which included a volatility-factor r . but
sg

with = 0; and Fussell [13] presented a study showing that the K

values and phase densities could be considered unique functions of

pressure for many single-well performance predictions for gas

condensate reservoirs.

The boundary conditions imposed on the flow equations at wells

produced with a surface volume rate of for instance gas component,

q (t) , is found to be;
9

(1.2.15)

or

Vi!(1.2.16)

S is the perforated part of the well, ri is unit normal into the well,

rw is the well radius, and h the perforated height. The boundary

conditions at the rest of the reservoir boundary can be a specified

pressure or flux, or a combination of both. Usually in well test

analysis only one well is considered, and the perforated interval is

assumed to be equal to the reservoir height, which in turn is assumed

k k
J ( (— + R — )K• Vp }• n dS = -q (t )
S m G B G p 0 B 0

{ (— + R — )K-Vp»n }

M G B G m 0 B 0 S 2rrw h
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to be constant. The flow is assumed to be purely radial and K and <p
to be independent of the radial distance from the well.

If only one single phase is flowing in the reservoir, the flow
equations reduce to;

(1.2.17)

or

(1.2.10)

where j
flow.

G or 0. and k is the component of K in the direction of

id k dp d u)
— i r- } = -{—}
ror PjBj dr dt B^

13 ko_j dp d
—1 r— } = — (Q i tp>

r9r Pj 3r dt 3
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T

Before studying the nonlinear flow equations in detail, it may be

useful to take a look at some of the well-known Solutions of the

linear diffusion equation. The term "liquid solution" will be used

for these Solutions, since they apply to flow of slightly compressible

fluids, including oil.

If the permeability k and the porosity are constants, Eq.(1.2.18)

may be written, with the subscripts omitted:

(1.3.1)

For liquid flow, the first term in this equation is usually neglected

based on the following assumptions (Dake [3]):

The viscosity p is practically independent of pressure and may be

regarded as constant.

The pressure gradient 9p/9r is small and therefore, terms of order
2

(9p/9r) can be neglected.

However, this simple linearization must be treated with caution, and

Dake refers to a paper by Drauchuk and Quon (Ref. 2 p.39 in Ref [3])

who show that a necessary condition for linearization is that the

product of pressure change and compressibility is small. It is here
2

important to realize that it is the factor multiplying (9p/9r) that

makes the total term negligible, and not a small pressure gradient.

As will be seen, the relative magnitude of the pressure gradient

compared to the time derivative or Laplacian, will change considerably

with time and space and depend on the type of flow considered.

p
1dg 1dp 9p 1 8 9p (ppc 3p

( )( —) + - — ( r— ) = —
pdp [i dp dr ror or k ot
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To examplify this. we assume that Eq.(1.3.1) may be linearized and

that pc * constant. Assume further that the reservoir is circular

with a closed outer boundary. that a single well at r = 0 is produced

with constant rate q, and that the initial pressure is constant. This

imply the following initial and boundary conditions:

(1.3.2)

(1.3.3)

(1.3.4) 0
r — r 9r

For early times, the reservoir may be assumed to be infinite in

extent, and Eq. (1.3.4) is replaced by:

(1.3.5)

As long as the reservoir is infinite-acting, the pressure is varying

only over a single scale in r and t, respectively. Radius and time

may then for instance both be scaled with the radius of the well, rw
as a basis. Oimenslonless variables may be defined as:

r
(1.3.6) r D

rw

The pressure drop depends on the production rate q, and a

dimensionless pressure drop is therefore defined as:

(1.3.7)

p(r,t =0) = p i

9p qBp
lim r— =

r -* r 9r 2irkh

8p
lim —

lim p = p.
r -+ «> x

k t

= 2
VMcr/

2irkh
p 0 = —(Pj - pi

qBp 1



PART 114

In the infinite-acting period, the well may be approximated by a line

source, an approximation which gives a uniformly valid solution except

for very small r and t.

The solution of the linearized form of Eq.(1.3.1) with the proper

initial and boundary conditions, is then the well-known line-source

solution, also named the Theis solution [14]:

(1.3.8)

where is the first order exponential integral function [15], and -y

is Euler's constant.

9 p 0 3p 0 1 9 9P 0
Compute now , , and (r n ):

3r 0 3t 0 r 0 3r 0 9r D

(1.3.91

(1.3.101

1 3 9p n
(r n —" J

r 0 3r 0 3r D
(1.3.11)

At least in a region near the well, the gradient is not small compared

to the other quantities. On the contrary, it is much larger except

for very small times.

1 1 r D 2
•WV = - E i lyl = 7 E 1 ( — 1

1
—( Iny + y )
2

y << 1

:-l exp{ -^ }

3r D r D 4t 0

1 r Q 2
—exp{- }
t o 4t o

3Po

at o

1 r Q 2— exp{- —}
t D 4t 0
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Now consider the effects of an outer boundary. In this case, there

will be two scales for r; namely r and r , and correspondingly two
w e

scales for t. We may define r and t by:DA DA

(1.3.12)

If r << r , the difference between the two scales will be larqe. andw e

if the small quantity e = r /r is introduced, we get:w

(1.3.13)

The end of the infinite-acting period occurs approxima tely at

t 0A = °* 1 ' Hence * we may say that we already are on the second time

scale when the boundaries are felt.

The pseudosteady State (PSS) solution, which is obtained by assuming

constant pressure decline at every point in the reservoir, is [3]:

(1 .3. U)

Note that Eq.(1.3 .14)is an exact solution of the linearized flow

equation. The boundary conditions are almost exactly satisfied if

If now the derivatives are computed as in the infinite-acting case, it

will be seen that the gradient near the well is still much larger than

both the time derivative and the Laplacian.

As shown on Fig. 1.1, the r-t plane may be divided into 4 different

flow regions. Region 1 corresponds to the part of the infinite-acting

period where y << 1, and Region 2 to the part where this assumption is

invalid. Note that Region 1 corresponds to the region where the

logarithmic approximation to is valid. Somewhat loosely it may

r kt kt

0A r 0A «ppcA (pMcirr 2

2

r 0A = £r 0 ’ t 0A = ~ t0

r r 2

p 0 ,r0 ,t 0A’ * 2l,t 0A * ln— *—2 - 7
r 0 2re0 *

r << r
w
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be said that both in Region 1 and 2, r and t are on the r -scale. Inw

region 3, r defines the r-scale and r the t-scale, and in Region 4,w e
r defines both the r- and t-scales.

The linearized flow equation may then be written in Region 3 and A,

respectively:

(1.3.15) Region 3

, r
r DA 3r DA ° ASr DA 3t 0A

(1.3.16) Region 4

In Region 4 the terms in the equation are of the same order, but in
2

Region 3 the right hand side is multiplied by e , which usually is a

very small quantity. The expansion term on the right hand side of

Eq .(1 . 3.15 ) may therefore be neglected in this region. Together with

the inner boundary condition this then yields an inner solution given

by:

f is a function of time that has to be determined by matching with an

outer solution valid in Region 4. Note that neglecting the term on

the right hand side of Eq.(1.3.15 ) is not the same as assuming steady

State flow, since the function f may have a general time dependence.

In principle, an estimate of the size of Region 3 could be found by

introducing a characteristic radius R and defining another

dimensionless radius r = r/R. If this is inserted in Eq.(1.3.15).OR
2 2

neglection of the right hand side requires R << irr . Numerical

results indicate that a reasonable estimate of R is about r /3. On ae
logarithmic scale, this corresponds to Region 3 occupying

significant part of the reservoir, confer Fig. 1,1.

1 9 9p n e 2 8p
( r n —- ) = -

r O dr D 3r 0 11 8t 0A

n-3.tT) P 0 'r 0 .t 0A l = - lnr D * m0A )
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The same may be done with the gas flow equation, Eq.(2.2.1), implying
the condition:

11.3.18)

Hence, if the reservoir is not too small, Region 3 will still exist

but the size is decreased because pc > (pcL. Since pc is varying

over the reservoir, it is difficult to estimate R from Eq.{1 .3 . 1 8),

but it is useful as an illustration of the process.

Note that for steady state flow, Region 4 will not exist, and the

solution profile will be logarithmic for all r.

Now turn to the case of buildup where the well is shut in. and assume

that the reservoir is infinite with a logarithmic pressure profile for

all r at At = 0 (this is just a theoretical case that never will

occur in practice). That is, we have the following problem for the

dimensionless pressure rise during buildup p ;Os

(1.3.19)

(1.3.20)

(1.3.21 )

It is assumed that the presence of the well may be neglected. An

exact solution of Eqs.(1.3.19) - (1.3.21) is:

(1.3.22)

_ 2 2 (Mc) i
R << titJ i

pc

19 9 9
f ( r n— ) - } p nc = 0
Vr D 9r 0 3t 0

PM

p Os ,r O’ At D =01 = — < P ,r - t p> - PW IV> = lnr 0

9p Dslim til = 0
r-* 0 ar D

1 r n 2
p Os (r D' At D ) = 7 E l ( } + ln r D

2 4Åt 0
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and if the denvatives are calculated, it follows that in this case

the pressure gradient, except for very small At or large r. will be

smaller than the time derivative and the Laplacian, the difference
2

increasing with decreasing values of r /At.

Except for very small At, Eq.(1.3.22) for r

Miller-Oyes-Hutchinson (MDH) solution [16]:

r is equal to thew

(1.3.23)

This shows that the loganthmic time dependence for the buildup

solution only depends on the drawdown solution profile in Region 3.

The deviation from the MDH straight line for large At is due to the

deviation from the logarithmic profile of the drawdown solution in

Region 4 in addition to the reservoir boundaries. That is, we may say

that the domain of dependence for the buildup solution for At < At
eMDH

(end MDH half-log straight line) is included in the part of the

drawdown solution at shut-in which lies in Region 3. This is

illustrated in Fig 1.1 where the curve between the points A and B is

drawn arbitrarily. Note that since the propagation speed is infinite

for a parabolic equation, this is rather a numerical and not a

strictly mathematical concept.

A consequence of this is that if we are mainly interested in obtaining

a buildup solution in the semilog straight line region, we do not have

to consider the drawdown solution in Region 4.

This discussion may be summarized as follows;

i) It is misleading to say that the flow equation for liquid flow

may be linearized because the pressure gradient is small. As

demonstrated, the relative magnitude of the different terms in

the flow equation will change considerably from point to point,

and with the type of flow considered. The reason for the

successful linearization is solely the factor multiplying the
2

term involving (dp/dr) in Eq.(1.3 .1 ) .

1
p wOs (At) =“ * lnAt 0 + ln4 - y }
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ii) For drawdown the r-t plane may be divided into two regions. each

with two sub-regions: The first consisting of Region 1 and 3

where the expansion terms in the flow equation may be neglected,

and the second which consists of Region 2 and 4 where all terms

in the flow equation are of the same order.

iii) For buildup too, the r-t plane may be divided into two regions:

One which is influenced only by the drawdown profile in Region 3

(or Region 1 if the well is closed in before the boundary is

felt) and a second which is influenced both by the drawdown

solution profile in Region 4 and the reservoir boundanes (or

Region 2). The part of the line r = mcluded in the first of

these regions corresponds approximately to the time interval

where the MDH-approximation is valid.

In this section only liquid flow has been considered. However, it is

temptating to assume that the statements i) - iii) are generally valid

also for gas flow and cases where oil and gas are flowing

simultaneously, at least if the coefficients in the equations behave

relatively nice . In fact, it will be demonstrated in Part 2 and 3

that several of the commonly used methods for analysing gas well tests

and two-pha se tests are essentially based on these assumptions and the

additional assumption that:

iv) Quadratic gradient terms may be neclected during buildup
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A Drainage area

B G* B 0 Formation volume factors for gas and oil

C iX Mass fraction of component i of the total mass
of phase X

1 dp

q dp
c Compressibility

h Reservoir height

K, k Absolute permeabilities

k rX Relative permeability of phase X

K iG0‘ K iOW Kg’ Ko Phase equilibrium ratios (see Eqs.(1.2.9,11))

H Unit outer normal to reservoir boundary

p , px Pressure, pressure of phase X

px Initial pressure

pw Wellbore pressure

2irkh , . .. .
—— (Pi - p(r,t))qBp L

p 0 Dimensionless pressure fall

P 0s = (p(r,t +At) - p(r ,t )) Dimensionless pressure
W p rise during buildup

p cGO' p cOW Capillary pressure functions (see Eq.(1.2.8))

00

= / dt Exponential integral function of order 1 [15]
z t

.3 Gravity vector
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q. q A

R

r

rw

r

r D = r/r: w

r 0A * r/r

R so

r cnsg

S

s x

S iw

T

t

t
P

At = t - t
P

kt
t 0 = 2

<PMcr w

kt
t DA

(ppcA

%

r 2r D

' 4t 0

Production rate, production rate of component i

Characteristic radius of Region 3

Radius

Radius of well

Radius of outer boundary

Oimensionless radius based on r,
W

Oimensionless radius based on r

Solubility of gas component in oil phase

Volatility of oil component

Surface of perforated part of well

Saturation of phase X

Irreducible water saturation

Temperature

T ime

Production time

Shut-in time

Oimensionless time based on rw

time based on drainage areaOimensionless

Filtration velocity of phase X

Boltzmann variable
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Euler's constant

M x

ex

D Dimensionless

External

g. o.w Gas, oil, or water component

i

G,0 , W Gas, oil, or water phase

X G, 0, or W

sc Standard conditions

w Well

 Y = 0.5772

e ' rw /r

Porosity

Viscosity of phase X

Density of phase X

«i s Density of component i at standard conditions

Chemical component; in Ø-model i = g, o, or w
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Fig. 1.1 Oifferent flow regions for a drawdown/buildup process.
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PART 2

REAL GAS FLOW
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In contrast to flow of a slightly compressible liquid, the equation

describing isothermal flow of real gases through porous media, is not

easily linearized. Several approaches have been used to generate

Solutions of the nonlinear gas flow equation from the known liquid

solution. The work of Aronofsky and Jenkinstl] in 1954 lead to the
2

use of p as the variable for analysing gas flow. Al-Hussainy et al.

[2] introduced in 1966 a Kirchhoff integral transformation of

pressure:

(2.1.1)

Applying the equation of state for a real gas:

(2.1.2)

it is easily recognized that Eq.(1 . 2.18) together with Eq.(2.1.1)

transformes to an equation similar to the flow equation for a slightly

compressible fluid:

(2.1.3)

The new function m(p) was called "the real gas pseudopressure". In

Eq.(2.1.3) k and are assumed constant. but a variation in these

quantities with pressure can be accounted for in the definition of m

C33.

p p dp
m( p) = 2 J

n M(P) Z ( P )
0

p . p sc T
Q(p)Z ( p) o sc T sc

2 <p m c 9m
7 m =

k dt
m = m(p)
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Since pc is not constant in Eq.(2.1 .3 ) , the equation is still not

linearized. However, equally important may be that it linearizes the

inner boundary condition when this is given as the surface production

rate. We get the following boundary condition for m(p) corresponding

to Eq.(1.3.3):

6m
lim ( r — )

r  * rw 3r

(2.1.4)

Al-Hussainy et al, [2] assumed pc to be constant, pc = (pc) , whichi

gives an equation for m that is identical to the linear equation for

liquid flow. A non-Darcy component is also often taken into account

as a skin factor proportional to flow rate when analysing gas well

tests (see Ref.[18] or [25], e.g.) ( but this effect will not be

discussed here. However, the variations in pc with pressure, which

are substantial for low pressures, may lead to serious errors and

misinterpretation if the theory for liquid flow is used uncritically

[4.5.6].

Agarwal[4] introduced in 1979 a transformation called "real gas

pseudotime" to account for the variations in the pc-product when

analysing buildup tests in massive hydraulic fractured (MHF) wells.

However, this transformation still do not linearize the flow equation

exact. Lee and Holditch [6] formulated in 1982 the correction terms

that appear in the flow equation when pseudotime is used, but made no

attempt to estimate their relative magnitude. In a recent paper,

Finjord [7] gives an analytic study of the pseudo-time transformation,

and shows that for drawdown in an infinite reservoir the correction

terms will not be small. Hence, the transformation will not linearize

the equation effectively in this case. The validity of pseudotime for

buildup is not affected by this result, and pseudotime has been used

to analyse buildup tests with good results [4,6,8,91. However, a

theoretical verification of pseudotime for the various cases is still

missing.

Kaie and Hattar [10] obtained in 1980 a solution of Eq.(2.1.3) that

takes into account the variations in pc by using a regular

2T p sc

T sc 2irkh
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perturbation method. Only the case of drawdown in an infinite

reservoir was studied. and the solution was given as an integralan integral

expression for the difference between the solution of the nonlinear

equation and the liquid solution. They also showed that this

correction term rapidly approaches a small constant value.

In Sec. 2.2 a similar solution is obtained by expanding pc in a Taylor

series in the pseudopressure. We then get a correction term as an

infinite sum involving the derivatives of pc with respect to pressure.

This term approaches a slightly different value than the one obtained

by Kaie and Mattar [10] for large times. This is because they neglect

a second order gradient term, which is not necessarily small (see

Appendix 2.1). However. for the case of gas flow, the correction

term, which can be seen as a constant negative skin, will usually be
small and negligible.

The same procedure is used to find Solutions for buildup, and it is

shown that under certain conditions the wellbore pseudopressure will

follow a straight line on a half-log plot with a slightly larger slope

than the liquid solution. Hence. the superposition principle is not

stnctly valid. Analytic expressions are given for the slope if the

pc-product can be approximated by a linear function of m.

The perturbation solution obtained for drawdown and buildup is in Sec.

2.3 compared with Solutions based on Agarwal's pseudotime solution

[4]. It is shown analytically that when the perturbation solution is

valid. the pseudotime solution. to the leading order, is consistent

with the perturbation solution for buildup, but not for drawdown. Thus

the results of Finjord [7] for drawdown is verified.

The validity of the perturbation solution is studied in Sec. 2.4.

Several functional dependences of pc(m) was considered with good

results. Problems arise, however. for buildup when the perturbation

solution is applied to real gas flow. This is due to the extreme form
of pc(m) for low pressures.

In Secs. 2.5 and 2.G a reservoir with finite size is considered. It

is shown that an exact material balance equation may be used to
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gønerate a solution valid in the whole reservoir after the boundaries

are felt. A new method to estimate reservoir size and shape is

proposed, and problems in connection with the estimation of average

reservoir pressure in a gas reservoir are considered. Several methods

have been proposed to account for the variation in pc when average

pressure is estimated from a buildup test [5,11,12]. These methods

are rather complicated, but it is shown in Sec. 2.6 that the standard

methods for liquid flow may be used if shut-in time is replaced with

pseudotime in the buildup plots.

The presented results are supported with several numerical simulations

of drawdown/buildup in a gas reservoir. The simulations are, however,

limited to the case of a single well producing from the center of a

circular, homogeneous reservoir. Data for the simulations are given

in Appendix 2.3.
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Assume that the initial pressure is constant and that one well in the

center of an infinite reservoir is produced with a constant surfarpconstant surface

volum rate q for a time tp before it is shut in. In terms of the

dimensionless quantities defined in the nomenclature, the following
system is then obtained:

r D 9r 0 ° 9r D <MC» i

9m P

9tPi

(2.2.1)
r D > 0

(2.2.2)

(2.2.3)

(2.2.4)

The basic assumption is now that the nonlinear terms in pc are small.

Solutions are then obtained by expanding pc in Taylor series about the

initial and shut-in values respectively and assuming that all terms

except for the constant term is of order e in magnitude, where e is a

small parameter. At shut-in, the buildup solution is matched with the

drawdown solution to every order in e.

A solution of the dimensionless form of Eqs.(2.2.1) - (2.2.4) is then

searched as an asymptotic series in e:

m - m (0 1 (II
m0 " m0 + e %

(2.2.5)

For t < t p (drawdown) exact Solutions may be obtained for m (0) and

m 0 (r 0 ,0) = 0 r 0 > 0

lim m0 (r 0 ,t 0 ) = 0
r D t D > 0

dm D ( 1
l lm ( r _P } . J

r 1 dr D ( 0

0 < t D < t pD

t D > t pD
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M)
mQ if we assume the well to be a line source. pc is then expanded
about the initial value;

a n . n = 1 2 ... are similarity coefficients of order 1. e may for

instance be chosen equal to the first order derivative term implying

Substituting Eqs.(2.2.5) and (2.2.6) into Eq.(2.2.1), and identifying

terms of the same order in e. the result becomes for m (0) and mM>
0 D

(See Appendix 2.1):

2
where y =rQ /4tQ . Note that the zeroth order solution is the usual
line source solution or Theis solution [14], and that the limit of

(1 )
m0 as V approaches 0 gives the correction term to the line source

solution at the well for large times:

It can be shown that these integrals converge, and they are easily

calculated numerically. We assume that the derivatives a behavei

PC 1 d( M c) 1 1 d 2 (Mc)
: .= 1 + C — hmD + - [ r]• m n 2 + ...

MC dm D 1 u 2 pc dm 2 1 0
(2.2.6)

00
= 1 + e Z a n mn n

n= 1 n 0

a 1 = '•

(2.2.7) m 0 ,0) (y) = - E,(y)

oo a y oo

(2.2.81 m 0 M, (y) = - Z {E, (y) J E, n (y)dy * J E, nM (y)dy )
n=1 2 0 y

OO 00

lim em0 m (yl = - [ I J E, nH (y)dy }
y" 0 n= 1 2 0

(2.2.9)

1 1 d n (pc) 00 .
1 1 —ir J i ; E i •»'« » >n=1 2 dc dm D 0
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nicely enough for the infinite series to converge uniformly and

absolute. If that is not the case, the nonlinear terms will not be

small, and the perturbation solution will not be valid anyway.

Numerical calculations show that at the wellbore. mQ M 1 approaches the

asymptotic value given by Eq.(2.2.9 ) relatively quickly. The line

source solution approaches a logaritmic dependence of time for large

times. Me have thus confirmed the well known fact that the wellbore

pseudopressure follows the same straight line on a half-log plot as

the solution of the linearized equation, only with a slight shift

along the logt axis. This is also the conclusion of Kaie and Hattar

CIO].

The fact that the first order correction term, mo M1 quickly reaches

a constant value implies that only the variations in pc near the

initial value will affect the solution of Eq.(2.2. 1) . If the

variations in pc with pseudopressure may be assumed to be linear in

this region, we get a very simple expression for the perturbation

solution at the well for large times:

(2.2.10)

where t is Euler‘s constant, and

Van Everdingen [19] introduced in 1953 the concept of a constant skin

factor to describe the additional pressure drop due to formation

damage around the well. In Eq.( 2 . 2 . 10 ), emo M ’ may be considered as

an additional skin factor and may also be written in terms of the

derivative of pc with respect to pressure:

mwO (t Di ) * mwO * emwD

a
—{ In t D .  ln4 -?} - — ln2
2 01 2

ev
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1 d(pc ) 1
[ ] . - in 2
pc dm D x 2

S

(2.2.11)

q g, r d(pc) 1
- In 2

2irkh dp 1 2

Note that S for a given initial pressure is proportional to production
rate.

For buildup it is not evident what value pc should be expanded about.

At the instant of shut-in pc varies from the initial value (at

infinity) to the shut-in value at the well, (pc) . As could bes
expected, expansion about the shut-in value gives the best result

shortly after shut-in. and expansion about the initial value the best

result at late times when the pressure approaches the initial value.

Which value that gives the best result will also depend on the form of

pc, and generally the best point to choose would probably be a point

between (pc), and (pc) g . However. since it is difficult to find such

an optimal point, and since we intend to use asymptotic Solutions for

small At/t , the shut-in value is chosen (see also Sec. 2.4).p

Another possibility would be to approximate pc with a straight line

between (pc), and , and still use an expansion about the shut-in
value.

Define dimensionless pseudopressure rise during buildup as [23]:

(2.2.12)

q 2Tp 1 d ( jjc ) 1
—t ),• - In !

2irkh T gc pc dm 1 2

2irkh T
m n s = { m(r,t +Åt) - m(r liJ( At =0) }

q 2Tp sc P

m o (rw( At=0) - m 0 (r,t p +At)
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The procedure for solving the equations for buildup is the same as for

drawdown, and the buildup solution is matched with the drawdown
solution to each order in e. However. the use n-f tho Bolt™*™However, the use of the Boltzmann

transformation is no longer valid, and the equations become much more

complicated. The detailed calculations are shown in Appendix 2.1. The

zeroth order solution becomes the usual liquid solution, and the first

order solution can be shown to be a linear combination of the

functions and V k defined in Appendix 2.2. This full solution
is very complicated. However, as shown in Appendix 2.1, the solution

can be simplified if pc can be approximated with a straight line. If
in addition At satisfies the condition:U 8

(2.2.13)

the wellbore solution will be given by the analytic expression:

mwO S (tDs' * mwOs (01 * emwDs
(2.2.14)

where bis the derivative of pc/(pc) with respect to m at shut-in,8 0
Note that the condition, Eq.(2.2.13), is similar to the condition for

the MDH-solution [15,20] to be valid in the oil reservoir case. Since

pc is decreasing with increasing pressure, b will be positive. Hence,

the wellbore solution will follow a straight line on a half-log plot,
but with a slightlv laroer slone tha n the» 1 inihh cnuf i »slightly larger slope than the liquid soution, and the

superposition prinsiple is not strictly valid. However, the deviation

will not be very large for gas flow, and as will be demonstrated in

the following sections, Eq . ( 2.2.14) will over-estimate the change in
slope for low shut-in pressures.

If s is the slope of the m -curve on MDH or Homer plot,
Eq.(2.2.14) gives for the permeability-thickness product:

t Ds
« 1 « At os

1 b y
7 * (1 +7) In At 0s + (ln4 -t) + b{2 ln2 1)}22 2
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(2.2.16) B- - JSS- - . [-1
2Tp sc q pc dm s pc dm dp s
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Application of the pseudotime transformation introduced by Agarwal in

1979 [4] is based on the assumption that the solution of the nonlinear

equation, when plotted against pseudotime, is identical to the

solution of the linear equation. To investigate the validity of this

assumption, the perturbation solution obtained in the previous section

was compared with a solution based on this pseudotime approximation.

Agarwal defined the pseudotime transformation by the equation:

t dt
(2.3.1)

t pc(p{r,t) )
0

Since pc is a function of both r and t through pressure, this is not a

pure time transformation, The transformed equation will consequently

get additional terms containing the derivative of t with respect to

r, as noted by Lee and Holditch [6]. The usefulness of the pseudotime

transformation will then depend on the relative magnitude of these

terms. Finjord C7] found that these terms are not small for drawdown,

hence the pseudotime transformation will not linearize the equation in
that case.

In practice the wellbore values of pc is used when t is calculated.a

The correspondence between t>Q and t may then be obtained to first

order in e retaining only two terms in the Taylor expansions for pc.
The result is for drawdown:

t a = I
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(2.3.2)

2
If terms of order e are neglected, and Eq . (2.3.2) is expanded for

large times, we get:

i.e., the correct solution of the nonlinear equation is found by

form:

(2.3.4)
1
- {lnt0i  In* -

mw0 ° ‘oi' * E mwO (,l(t Di )

2
where terms of 0(e ) are neglected. It follows that the application

of pseudotime for drawdown implies a correction term which increases

t Di dr
a 0 = /

0 1 + ea l rnwO (T)

Di / n \ 2
J [1 - ea 1 mwD U ( T)]dT + 0(e )
0

t 0i 1 7
t Di ’ ea 1 J C~ E 1 (1/4i)]di + 0( e )

0 2

‘Di - * oi )(f*toi l - E 0 (t/4toi )} * 0( £ 2 1

(2.3.3) t a0 = t Qi { 1 - ea,(- lnt D1  ln2 -—t )

Assume now that the oseudotime transformation linearizes the eauation.

replacing with t in the liquid solution. This implies that the

solution of the nonlinear equation is (to first order in e) of the

1

mwO (t) = ~ {lnt aD * 1|U ‘

1 1 y+ 1
— {lnt Qi + ln[1 - lnt Qi + ln2 - )]

+ ln4 - “y} + 0 (e2 )

1 f+1 2
eaj— Int + ln2 - ]} + 0(e )

1 2 Di 2
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with time for large times. This result is in sharp contrast to the

constant asymptotic correction term predicted by the perturbation

method, an effect which also is verified by all numerical

calculations. The conclusion must then be that the pseudotime

solution is not valid for drawdown, at least not for large times. This

is also in accordance with Finjord’s result [7].

For buildup the definition of dimensionless pseudotime must be:

(2.3.5)

1 0 P(P W s (T,,c( Pws (T,)

didi
(MC) f

S 0 P ( Pws (T),c( Pws (Tn

which, under the condition given by Eq. (2.2.13). gives relations very
similar to Eqs.(2.3.3) and (2.3.4):

(2.3.7)

compared with the perturbation solution, Eq.(2. 2.14), it is seen that

except for the small quantity b/2(ln2 - 1/2) the two methods give

identical results to first order for buildup. The time dependence of
(1) . .

em0 8 ' whlch gives rise to the change in slope, is exactly equal.

From this we draw the conclusion that, at least for the cases where

kAt k At di

a D = T = 5 J"
<P rw <P rw 0 M(PWS ( T ) )c(pws (t) )

, . >= (mc), j

(2.3.6) 4t l0 = At 0s< , * e bl (llnAt 0s * ln2 -—) )

mwOs* At) = mwDs (At 0s* + e mwDs ,(At 0s )

1 1 7+1
— tlnAt + ln4 - y + eb,(— InAt + ln2 )}
2 Ds 1 2 Ds 2

1 b y+ ]
— Hl + —JlnAt + ln4 - y + b( ln2 )}
2 2 Ds 2

b = eb i where is defined in Eq.(A2. 1 .14). If Eq.(2.3.7 )is
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the perturbation solution is valid, pseudotime effectively linearizes

the pseudopressure equation for buildup.

The reason for the slight shift between the perturbation solution and

the pseudotime solution is not quite clear, but may be due to the use

of the line source solution as the zeroth order solution in the

calculation of the correction term, rn <1) in Eq . (2.2.14) (see alsoD s
Sec.2.4).

The validity of the pseudotime solution is based on an assumption of

small gradients [6,7]. This assumption is independent of the

assumptions on the variations in pc, and it is reasonable to believe

that this is a characteristic feature of the buildup prosess itself.

The fact that pseudotime produces the correct correction term to the

liquid solution for small variations in pc, may therefore be taken as

an indication that pseudotime gives good Solutions also for stronger

nonlinearity where the perturbation solution breaks down. This is

also verified by all our numerical calculations.

Pseudotime has mainly been used to study problems concerning

storage/afterflow and fractured wells [4,6,8,9]. These phenomena are

not considered in this report, but generally the pseudotime

approximation will be less good the more flow there is in the

reservoir after shut in.

As stated by Finjord [7], not only the equation, but also the inner

boundary condition will be changed when pseudotime is applied.

However, the extra terms in the boundary condition will also involve

the factor 6t /ør. Hence, if these terms can be neglected in the
a

differential equation, it is reasonable to believe that they are

negligible also in the boundary condition.

If the solution in terms of pseudotime is to follow the liquid

solution for buildup, it is equally important that the initial

condition for the buildup equation, i.e., the solution profile at the

instant of shut-in, is equal to the liquid solution profile. We have

shown that the correction term for drawdown in the well quickly

approaches a constant value. Since the solution is given in terms of
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2
the Boltzmann-variable, y = r /4t , this implies that the correction0 Di
term as a function of radius at shut in will also be constant, except

for large (on a logarithmic scale) distances from the well. The

initial condition for the pseudopressure rise during buildup will

therefore be almost identical to the initial condition for the liquid

solution. The discrepancy for large distances will only affect the

solution for large shut in times, and for gas flow this deviation will

usually be negligible.
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To investigate the validity of the perturbation solution, Eqs.(2.2.1)

- (2.2.4) was solved numerically using a routine for solving parabolic

equations in the NAG library [17]. Several different functional

dependences of (pc)/(pc). on was used. The numerical Solutionsi 0

were then compared with the simplified perturbation solution; i.e.,

the solution obtained with only two terms retained in the Taylor

series for pc (second order derivative terms and higher neglected).

For buildup, expansion about shut-in value was compared with expansion

about initial value.

Even if the perturbation solution is based on the assumption that the

nonlinear terms are much less than unity, it was found that this

solution was quite good even with a = ea i and b = eb i as high as

about 0.5, provided the higher order derivatives were of the same

order or smaller.

Fig.2,1 shows the first order correction term for drawdown, m (1)w D
calculated from Eq.(2.2.8) with only one term retained in the series

and = 0.1. Also shown is the asymptotic correction term, and it

is seen that m * * reaches this constant value relatively quick (at«0

about the same time as the liquid solution approaches the logarithmic

time dependence). It is also seen

on the pseudotime approximation is

"pseudotime correction term" is

times, the pseudotime approximation

for drawdown.

that the asymptotic solution based

incorrect. However, since this

an asymptotic solution for large

may for small times be valid also

The correction term for buildup, m <1> , calculated fromw D s

Eq.{A2.1.45 ) , is shown in Fig.2.2 as a function of dimensionless shut

in time based on (pc) for different production times. This solution

are compared with m n from Eq.(2.2.14) and Eq.(2.3.7). In thesew 0 s

calculations the drawdown correction term, i.e., the initial condition

f° r m08 m is set equal to zero, an approximation that only affects
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the solution for large times. By looking at Fig.2.2 a rough estimate

of the time interval where Eq.(2.2.14) is valid may be found to be:

(2.4.1)

Shown in Figs. 2.3 and 2.4 are the Solutions for two different

functional forms of (pc)/(pc) , 1 + 0.5m and exp{0.5m }. The drawdowni 0 0
Solutions are compared with the solution obtained by Kaie and

Mattart10], and it is seen that Eq.(2.2.9 ) , even with only one term

retained in the Taylor series, corresponds better to the numerical

solution than the solution of Kaie and Mattar.

The plots also show the difference between the Solutions based on a

Taylor expansion of pc about initial and shut-in value. For the linear

case (Fig.2.3) the straight line used is the same whether pc is

expanded about initial or shut in value, but the validity of the

solution based on an expansion about shut in value depends on the

factor b, which in that case is smaller than a. For the exponential

case (Fig.2.4), a = b = 0.5, and the two Solutions are of about the

same overall quality. but an expansion about initial value gives best

result for large At, and an expansion about shut-in value best result
for small At.

Note also that the solution plotted against pseudotime almost

perfectly follows the liquid solution in both cases, the discrepancy

for large times being due to the drawdown correction term as mentioned

in the previous section. The constant deviation between the

perturbation solution and the pseudotime solution in Fig.2.2 seems to

be due to an inaccuracy in the perturbation solution. The reason for

this is not evident, but as mentioned in the previous section, one

explanation can be that the line source solution is used as the zeroth

order solution in the equation for m * 1 1
Os

At (MC)
< §—

t p ~ 100(pc) i
*D. i ,0
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Even if the simplified perturbation solution, Eq.(2.2.U), seems to be

reasonably good for quite large values of a and b, restrictions are

imposed on the solution when applied to real gas flow because of the

extreme form of pc. As mentioned by Dake [18], for high pressures

pcc p and ccc i/ p approxima tely. That is. the variations in pc are

small for high pressures, and the liquid solution will in most cases

be sufficiently accurate. When the pressure drops below about 1000

Psia, however, pc increases very rapidly (see Fig.2.5). The higher

order derivatives will be large, and more terms will have to be

retained in the Taylor series if the perturbation solution is to be

used. It can be shown that the next term in the Taylor series for

buildup will give a negative correction term. The correct straight

line (on a half-log plot) will lie between the liquid solution and the

one predicted by the simplified perturbation solution Hence,

Eq.(2.2.15 ) and linear theory will give upper and lower bounds on the

absolute permeability, respectively.

Note that the degree of nonlinearity is given by pc/(pc) asi
function of dimensionless pseudopressure and will depend both on

initial pressure and production rate as shown in Fig. 2.6

Results from the simulated examples 1, 2, and 3 are shown in Figs.

2.7, 2.8, and 2.9. It is seen that the drawdown correction term is

negligible in all cases. Since B given in Eq.(2.2.16) is less than

zero, it follows that for buildup, absolute permeability estimated

from linear theory will be too small. In the examples, the error

varies from about 3 X to about 7 . The perturbation solution gives

best result in example 1, but is worse than the liquid solution in the

other two examples.

A Homer[16] analysis of examples 1, 2. and 3 gave the following

results (exact k-value is 1.5 mD):

Heasured

slope, s:
2

(psi /cp-log-)

k from linear

theory;

(mD)

k from

Eq.(2.2.15):

(mD)

Example 1 : 7.50-10 7 1 .46 1.51

Example 2: 1 5.63 * 1 0 7 1 .40 1 .94

Example 3: 2.06*10 ? 1.46 1 .62
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In some cases a better estimate of permeability from Eq.(2.2.15) may

be obtained by approximating pc by a straight line from (pc) to

(pc) g , but the general conclusion is that for real gas flow the liquid

solution usually is equally good or better than the perturbation

solution. In those cases where the perturbation solution gives better

results, the error in the liquid solution is so small that it may be
neglected in practice.

However, in all cases pseudotime will give the best result when

analysing a buildup test, and if k has been determined from a standard

procedure, the factor b in Eq.(2.2.14) may be calculated to check if

the nonlinearity is significant and pseudotime should be applied.

The calculated skin factor will also be affected by the variation in

pc. The error will depend on the value of pc and the point on the

buildup curve used in the calculations, but the error will rarely be
larger than about 1.
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N

The exact material balance equations for one-phase flow may be found

by integrating the flow equation, Eq .( 1 .2.18) over the reservoir and
applying the theorem of Gauss:

(2.5.1)

(2.5.2)

S is the reservoir boundary, V the reservoir volume, and ji unit outer

normal to S. If k is constant, and the reservoir has a constant

thickness h, the surface integral on the left hand side may be written
a s :

(2.5.3)

is the flow rate intg the reservoir through the well and q is thee
flow rate into the reservoir through the outer boundary, If the flow

in the well is assumed to be incompres sible (storage neglected) we
get:

(2.5.4)
Sw d w " e sc q

where Qgc is density at standard conditions, and qis production rate
at standard conditions.

r f kp a
; v• { — vpHv = f —(«pg)dv
V M y

r kQ d
J —Vp-ndS = — J ipQ dV
S M dt v

, _ q 6p q 9p
I — Vp-ndS = -2irkh{[— r —] - [— r— ] }
S M M 6r

w r e

{ew q w * <>e q e }
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If (p is constant, the right hand side of Eq.(2.5,2) becomes the change

in volume-averaged density times the porosity. The result is then the

material balance equation:

(2.5.5)

(2.5.6)

Introduce now the pseudopressure corresponding to average densityrw
m(t) = m{p(q(t))). If we use the equation of State to express

pseudopressure in terms of density rather than pressure:

(2.5.7)

it follows directly from Eq.( 2.5.6) that

Correspondingly for the volume averaged pseudopressure:

It is seen that if pc is constant these expressions reduce to the

usual linear material balance equations with decline of average

pseudopressure being constant. Similar expressions may also be

obtained for the pressure. Eqs.(2.5.8) and (2.5.9) may also be

expressed in dimensionless forms:

— = .£sc?,
dt <pV <pV

or if q is constant and q = 0

e, r q t
Pi - p(t) = —

ipV

2Tp 0(P) dp
m( ø) = — /

T sc Q(P Q ) MC

(2.5.8) mx - m(t) = --TPsc Qt - J 1 PC ' <Mcl i dm
T sc •v( t' c >i (mc) a

(2.5.9) mr m(t) * -1 J { J 1 JLC .~ (pc) i dm }dV
T sc vV(MC, i V v m(r(t) (mc^
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(2.5.10)

and

(2.5.11)

Al-Hussainy et al.[2] state without proof that the volume - averaged

pseudopressure, m, for all practical purposes will be approximately

equal to the pseudopressure corresponding to average pressure m(p).

Our numerical results indicate that this will be the case also with m

and m(p), although it is not evident how to show this analytically.

The advantage of m compared to m or m(p) is that m. as long as pc is

known as a function of m, can be calculated from Eq.(2.5. 8 ) for all t

without knowing the solution m(r,t) in the reservoir. Eq.(2.5.8) is

easily solved numerically if a table of pc(m) is given.

If pc is approximated by an average value pc « (pc) , the relation
a v g

used by Al-Hussainy et al., with m(p) replaced by m. is obtained:

(2.5.12)

or

~ (pc).
 0“oAi» * 7—— 2 »‘0Ai

'avg

(2.5.13)

The problem now is how to calculate (pc) . One way is to use thea v g
average between the initial and wellbore value. Another possibility

is to use (pc)(m). These two methods yield the following expressions
r **
for m0 , respectively;

v m D MC - (MC):
m o (t OAi } = " / —:—: c* m0

0 c i

1 m D (jc - (pc).
m D (t OAi ) = mOAi " T7 f * -f ;—; — dfno } dV

v V 0

~ 2T P. r q t
m- - m(t) = -= av —rn 5

1 T SC 'f,V( MC) aug
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(2.5. U)

and

(2.5.15)

Note that and (pc)(m ) will not be constant except for steady

State flow, so these equations are still not linear. Fig. 2.10 shows
V A>
m(t ) for the simulated example 6. m are calculated from

0 DA i q
Eqs.(2.5.14) and (2.5.15), respectively and compared with the solution

of the exact equation, Eq.(2.5.10). The difference is significant for

long producing times, and for this example a difference in m equal to
D

one corresponds to a pressure difference of about 250 psi.

A closed reservoir with a slightly compressible fluid (liquid oil)

that is produced at constant rate will eventually reach pseudosteady

state or PSS. This state is characterized by a constant pressure

decline at every point in the reservoir and will never be reached for

gas flow. As shown by Al-Hussainy et al. [2] the solution of

Eq.(2.2.1) for large times will deviate significantly from the

solution of the linear equation. However, a gas well will reach a

state that resembles PSS in the way that the pseudopressure profile

will be approxima tely independent of time. The reason -for this can be

seen from the discussion in Sec. 1.3, and the form of the pc-curve:

The variations in pc mainly occurs for large , but the region where

mD is large is the region dose to the well where the right hand side

of the flow equation, Eq.(2.2.1). may be neglected (called Region 3in

Part 1). In Region 4, where the

account, pc is essentially constant

becomes approximately equal to the

equation which is constant in time.

corresponds to Region 1 where the

solution.)

expansion terms must be taken into

Thus, the total solution profile

solution profile of the linearized

(For an infinite reservoir this

solution is parallel to the liquid

/v 2
= 7 5— 2irt_ . .D OAi (pc) - DAl

1 + —

(pc) i

A/ (mc).
m n ( t nAi) = — 2irt ni .

0 0Al (uc)(m0 ) DAl
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That is:

(2.5.16)

which implies f(t) = (t) - 3/4 if we integrate over the reservoir

and neglect terms of 0((r /r ) 2 ). The result is thén the well-knownw e
inflow equation:

r 2 r 3
5- -In — - —

2r„ r 44

Inserting Eq.{2.5.17) on the left hand side of the flow equation

yields 9g/9t equal to dg/dt, which is constant. This is the usual way

of deriving Eq.(2.5.17); starting with the assumption that

8g/9t * dg/dt at all points in the reservoir. It is, however,

important to realize that this is not correct, even if the result is

very good. In fact, there may be a large difference in 9g/9t from

point to point. For instance. at t = t in example 6, 9g/9t at r = r
_ P w

is more than 10 times dg/dt. The good result is solely due to the

region of large variations in 9g/9t being included in Region 3.

The right hand side of Eq,(2.5.17) may also be written in terms of the

liquid solution p :
DL I N

where m0 (t0Ai J ma V be obtained by approxima ting mQ with mQ given by
Eq .(2.5. 10 ) . Note that the value of pc used in the definition of

dimensionless time in Eq .{2. 5. 18 ) is arbitrary as long as the same
value is used in all terms.

r 2
WV = f(t) * p ' ln7

T 2irkh

7Z~—{"(tl - m(r.t)} = mD (r 0 ,t 0 ) - m D (t 0 )
(2.5.17) sc q

(2.5.18) m 0 (r D' t OAi ) " m D (t OAi ) = P DLIN {rD ' t OAi } ’ 2ir t DAi
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Eq.(2.5 .1 8) has only been verified for a circular reservoir with the

its center, and its validity also for a general geornetry
should be investigated.

mo (ro ,tDAi ) calculated from Eqs. (2.5.10) and (2.5.18) is plotted in

Fig.2. 11 and compared with the simulated example 8. The analytical

solution is in perfect agreement with the simulated solution for all r

and t except for very low pressures. The pressure will then become

approximately constant because pc approaches infinity, and Eq.(2.5 .1 8 )

will predict a negative pseudopressure. However, in practice other

constraints on the pressure will probably imply a decrease in

production rate before the pressure has reached this limit.

When approxima ting m with mit follows from Eqs.(2.5.10) and (2.5.18)
that:

(2.5.19)

or

(2.5.20)

where C a is the Dietz shape factor [21], and

(2.5.21 )

That is, a plot of f- I v.s. time will give a straight line with
slope s, given by:

 V

. . m D pc - (pc) 
m D r D 1 t OAi ‘ p DLIN (rD' t OAi ) ~ $ T : dm D

0 (pc, i

T 2irkh

2Tp sc (mi ~ mw (t) + I(t,) = PwDLIN (t OAi )

Zirt; - * — In ——
1 2 A w

pc - (pc)-
I {t) = / dm

m(t) (MC, i
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Absolute units

Field units

Reservoir limit tests for an oil reservoir is described in Refs.

[18,20]. Generally, the usefulness of conducting such tests may be

questionable due to the ideal conditions that the theory relies on.

However, in some cases it may be possible to estimate drainage area

using Eq.(2.5.20) provided the equation is valid also for a general

geometry. Since the drainage area has to be known to calculate the

integral in Eq.(2.5.21), an iterative procedure has to be used. A

possible algorithm for this is then:

1) Make an initial guess on the drainage area.

2) Calculate m(t) and I(t) from Eq. (2.5.8). Note that this requires

an estimate of initial pressure.

3) Plot m - I(t) v.s. time on a linear scale.

4) If this gives a straight line, control the result by calculating A

from the slope using Eq.(2,5.22). If not, start again from 1).

Note that if the plot curves upward, the guess was too large, and

if it curves downward, it was too small.

As for an oil reservoir, C can be found by extrapolating the straightA
line to t = 0:
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Absolute units

(2.5.23)

Field units

where m_ is the extrapolated value of m - I,o w

Fig. 2.12 shows plots of m (t) - I(t) together with m (t) for the« w
simulated examples 6 and 7. One correct and two incorrect values of A

are used in the calculation of I. Unfortunately, the drainage area

used in the calculation of I has to be quite different from the

correct value before the deviation from a straight line is clearly

seen. Data for several time units measured with t is needed, and
0 A i

for example 6 this corresponds to several years of production with

constant rate.

Straight lines were drawn through all 3 curves of m - I for the two
w f

examples, and A and InC calculated from Eqs.(2.5.22) and (2.5.23).A

These estimates were then compared with the area used as input to
6

21.9*10 sq.ft for example 6, andEq . (2.5.8). Correct values are A
6

1.37*10 sq.ft. for example 7

results are:

Example 6 Example 7

Curve 1 2 3 1 2 3

Slope, s
(•10 psi2 /cp-hr) 75.83 86.80 96.04 247.9 286.7 369.7

136 12.82 13.64 15.00mQ (•10 7 psi2 /cp)

Area calculated

from Eq.(2.5.22)
(• 10 sq.ft. )

1.58 1.37 0.989

In C 0.54 3.53 8.39A

Area used in the

calculation of I 1.77 1.37 0.950
( * 10 sq.ft.)

4 A T 2irkh
InC. = In——- —s-c (m- - m n )

e’r c Tp q 1 uw M sc M

A kh
2.3 log-— = (m. - m n ) + 0.81

V 711ql 1 0

InC = 3.45 in both cases. TheA
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For buildup the pressure behaviour is determined by the solution

profile at shut-in. In the previous section we showed that the

pseudopressure profile is approxima tely equal to the profile of the

liquid solution in pseudosteady State. That is, the initial condition

for the buildup solution is equal to the linear case, and the

discrepancy between the pseudopressure rise and the corresponding

liquid solution is only due to the variations in pc during buildup.

Consequently, we may find a perturbation solution as for the infinite

reservoir case. The procedure will be identical, except that the

initial condition for 1 will be zero for all r. Thus both the

perturbation solution and the pseudotime solution will be as in Sec.

2.2 - 2.4. The only difference being that m will approach the liquid s

solution when At •* °°, and the difference between m (At ) and
Os a 0

or iarge At will disappear.

Dimensionless pseudopressure rise for example 4. 5, and G simulating

buildup from PSS are shown in Fig, 2.13,

A standard MDH analysis [15,20] of pseudopressure for these examples

gave k equal to 1.42. 1.42, and 1.41 mD, and an analysis using

Eq.(2.2.15), 1.52. 1.69, and 2.99 mD, respectively. The perturbation

method gave the best result in example 4, but as the pressure

decreases, this solution becomes worse than the liquid solution. which

gave a result within 67. in all cases. Note that the pseudotime

transformation gives excellent results in all cases (example 6 is also

analysed in more detail on p,62).

Several methods have been proposed to correct for the variations in pc

when average pressure is estimated from a buildup test in a gas well.

Kazemi[5] presented a plot (his Fig.1) showmg a dimensionless

pseudopressure function, , corresponding to the liquid Hatthews-
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Brons-Hazebroek function, p [22]. On the plot, m (t ), starts
DMBH k OMBH 0A i

deviating from p approximately at t= t . Based on this, Kazemi
UnDn p 8 s

presented an iterative algorithm to estimate average pressure by using

t instead of production time in the Homer plot. Ziauddin [11] andp S 3

T°h et al, [12] used the perturbation solution of Kaie and Mattar [10]

to correct m for variations in pc. This is done by first obtainingUn d H J

corrected dimensionless pseudopressure Solutions for finite

reservoirs.

In Sec 2.2, we showed that the pseudopressure profile very closely

follows the solution profile of the liquid solution in the infinite

acting period. In Sec 2.5, it was demonstrated that this is the case

also in pseudosteady state. A circular reservoir with the well in its

center has a very short transition period between infinite-acting and

PSS, and it is reasonable to assume that Eq.(2.5.18) is valid for all

times (in the inf inite-acting period m « 2tt t «0). If this is the
00A i

case also for a general geometry, Eq. (2.5.18) has the important

implication that the error in estimated average pressure is only due

to the inaccurate buildup solution and is independent of the foregoing

drawdown. This may be the reason that the numerical results in Refs.

C11], and seems to be correct despite several questionable

assumptions.

Note also that the validity of Eq.(2.5.18) for all times is equivalent

to the validity of the drainage-radius concept introduced by Aronofsky

and Jenkins [1] with pressure replaced by pseudopressure.

Eq.(2 .5. 1 8) may be written:

(2.6.1)

Replace now At by in the liquid solution for buildup, and utilize

the normal Horner approxima tion:

T gc 2irkh

2Tp sc q{m ' mwfs> = pwOLIN (tDAi ) " 27rt OAi

2 {lntDAi * In —J  1"4 - Tf - PoMBH (tOAi ,}W
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(2.6.2)

*

m is defined as the limit of m when At  + “ in Eq. (2.6.2) , i.ews a 0

T 2 tt k h *
(m*

1
"Vifs 1 5 “ llnt 0i * ln4 '

2Tp sc q
(2.6.3)

It now follows directly from Eqs.(2.6.1) and (2.6.3) that:

(2.6.4)

Note that this result is independent of the difference between m
w0 f s

and PwDLINf s * Hence < if the drainage area is known, and the correct

HBH-function can be chosen, the standard MBH method [22] can be used

to estimate average pseudopressure. No iteration procedure is then

necessary. The only assmptions made in the derivation of Eq.(2.6. 4) is

that Eq.(2.5.18) is generally valid, and that the pseudotime

transformation linearizes the flow equation for buildup. Similar

arguments may also be used to show that other standard methods to

estimate average pressure can be used as for an oil reservoir with At

replaced by At .

All our simulation runs indicate that even when the perturbation

solution is not valid, the buildup pseudopressure in a certain time

interval will be of the form:

T 2 TTkh 1 At n
— lmws " "Ws 1 =— < ln 3 * lnt Di * ln4 ‘
2Tp sc q WS WfS 2 t 0 -Ata0 Dl

1 At
Un j a + lnt()i  ln4 - -y}

2 f—S” + At(pc a

1 A

7 Unt DAi * lR — * ln * -
rw

T s c 2ttkh * _ 1

7j“ ~ (m -m) : yPDMBH (t0Ai )
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(2.6.5)

As seen from Fig. 2.13 , b’ will, for low pressures be less than, and

a larger than the values predicted by the perturbation solution.

The same procedure that lead to Eq.(2.6.4 ) now gives:

T 2irkhs c 1
(m’ - m)

2 m 0MBH2T Psc P
(2.6.6)

1 1

2 P DMBH (t DAi ) “ ~ 3

_ *
where m‘ is the extrapolated value from a plot of m v.s.w s

At/(tp + At), and is the quantity shown in Kazemi’s Fig.1 [5]. a‘‘

generally be a complicated function of initial pressure,

production rate and production time, but will be approxima tely equal
to zero before the boundaries are felt.

Note that what one obtains from an analysis of a buildup test is the

average p.seudgpressure f All our numerical results indicate that the

three quantities m, m(p), and m = m(g) will be approximately equal.

However, it still remains to show this analytically. An interesting

implication if m # m(p) t m(g) when the well is shut-in, is that m and

p will change during buildup. This is seen from the fact that g has

to be constant during buildup in a closed reservoir, and that in the

limit when At -»«<>, m = m(p) = m(g) since all three values, m, p, and
g, then will be constant in space.

T 2irkh 1

2 Tp p {mws - "Ws* '- { (>*b')lnat Ds  int -Tf  )

1 (pc)
-{ (1+b')lnAt n . + ln4 -y+ a‘ -(1 + b’)ln }
2 <MC) i

= -{(1+b ‘)InAt-. + ln4 - y + a'*}
2 ui
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As mentioned in Sec 2.5 the validity of Eq . (2 . 5 . 18) has not been

proven for a general geometry. It is also important to realize that

the method proposed here will not be valid for very low pressures

where Eq.{2.5.18) predicts a negative wellbore pressure. This may be

checked by computing m from Eqs. (2.5.18) and (2.5.8). However, it is

doubtful that any of the other proposed methods will cover this case
either.

Fig, 2.U shows Homer plots for the simulated examples 6 and 7.

Example G is similar to the example used in Refs. [5,11,12], but the

production rate is constant in the whole production period. The

results from an analysis of the Homer plots are (exact values are

given in parenthesis ) :

1. Standard procedure:

Example 6 Example 7

2
s (psi /cp-log*-) 10.66-107

45.21 • 10 ?

9 1 . 09 • 1 0 ?
* 2

m (psi /cp)

k (mD) 1.41 (1.50) 97.6 (100)

S -0.85 (0.00) -0.42 (0.00)

t 3.36 4 . 670 A i

- i 2 / *m (psi /cp) 6 9.2 -1 0 ? (74.0-1 0 7 ) 4.56 * 10 ? (4.74*1 0 ? )

0.618 • 10 7

4 . 2 1 7 -1 0 7

5,921 -10 7

m (At=1 hr) (psi2 /cp)<* s

= >
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2. Pseudotime procedure:

Example 6 Example 7

, 2
(psi /cp-log~)

7 710.00-10 0.5966- 10
* 2

(psi /cp)
7 7m 93.95-10 6.0227 - 10

The error in average pseudopressure calculated with standard procedure

corresponds to about 112 psi for example 6 and 12 psi for example 7.

Relative errors about 5 7 and 3 7., respectively. For example 6 this

corresponds to the results of Kazemi [5].

The following expressions were used in the calculations (field units):

(2.6.8) S- i . 15H-WS ( 1hr) ' mwfs

m.

s

= = >

/rt 1637 qT
(2.6.7) k = —

hs

k
log » + 3 23} Standard

<p (Mc) i rw 2 * procedure
*

(2.6.9) S = 1.151{ —
kt

log -fi—~ + 3.23} Pseudotime
«p ( M c, i rw2 procedure

(2.6.,0) ». - 0 - QB0263T kt
UAl , .

tp (|j c ) A

k (mD) 1 .51 (1.50) 101 ( 100)

S CSJo01 (0.00) 0.04 (0.00)

0 A i 3.60 4.84

_ 2
m (psi /cp) 73 . 1 1 •10 7 (74.0*10 ? ) 4.70•10 7 ( 4 . 74 - 1 0 7 )
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Values for Pg hB H A i were taken from Ref.[20].

(2.6.11) <" =m* - -I— p 0MBH (t DAi )
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1) Solutions of the nonlinear gas flow equation that takes into

account the variations of the viscosity-compressibility product

are obtained by using a regular perturbation method and expanding

pc in Taylor series about the initial and shut in values,

respectively.

2) If the variations in pc are relatively "nice", all but the two

first terms in the Taylor series may be neglected. In this case,

simple asymptotic expressions are found for the first order

correction terms to the liquid solution.

3) For drawdown in an infinite reservoir, it is shown that the

correction term relatively quickly approaches a constant value.

That is, the solution of the nonlinear equation becomes parallel

to the liquid solution.

4) If the production time is sufficiently large, the solution of the

nonlinear equation for buildup is a linear function of log(At) in

a certain time interval (conf. Eq.( 2,4.1)). This interval is

included in the time interval where the Miller-Dyes-Hutchinson

(HDH) [15,20] solution is valid for an oil reservoir. However,

this semi-log straight line will have a slightly larger slope than

the liquid solution implying that the absolute permeability

obtained from standard analysis of the buildup pseudopressure

curve will be too low.

5) The Solutions are applied to flow of real gases, and it is shown

that for drawdown the nonlinear terms normally are negligible. Due

to large variations in pc for low pressures, the simplified

perturbation solution for buildup will estimate too large slope

for the pseudopressure if the shut-in pressure is low. However,

the slopes of the linear solution and the simplified perturbation
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solution will give lower and upper bounds on the correct slope,

and hence the permeability-thickness product.

6) For buildup it is shown analytically that when the perturbation

solution is valid, it is equivalent to a solution based on

Agarwal's pseudotime transformation [4] in the semilog straight

line interval, except for a very small constant term. This is not

the case for drawdown where the pseudotime approximation implies a

first order correction term that increases logarithmically with

time for large times. The conclusion that pseudotime is not valid

for drawdown, which is also the conclusion of Finjord [7], is

reasonable since the validity of this approximation relies on an

assumption of small gradients (Lee and Holditch [6]). Even if the

pseudotime transformation effectively linearizes the flow equation

for buildup, a necessary condition for the pseudopressure solution

to follow the liquid solution is that the initial condition for

buildup is the same as for liquid flow. We hawe shown that the

pseudopressure profile is approximately equal to the profile of

the liquid solution both for an infinite and finite reservoir.

7) The well-known result that the pseudopressure profile in

pseudosteady state is independent of time and approximately equal

to the liquid solution profile, may be explained by introducing

different flow regions.

8) For a circular reservoir with the well in its center, the

transition between the infinite acting period and PSS is very

short. That is, the-pseudopressure profile is approximately equal

to the profile of the liquid solution for all t. This, in turn,

implies that an application of Aronofsky and Jenkins’ drainage

radius corrélation ti] to pseudopressure is valid.

9) Exact material balance equations can be used to find the time

variation of the solution in pseudosteady state. The possibility

of using this to estimate drainage area from a reservoir limit

test is investigated, and it is demonstrated that a reasonable

estimate of drainage area may be obtained under ideal conditions.

However, this requires a test interval, with the production rate
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being constant, of several time units measured with t
DA i

10) It is shown that the Matthews-Brons-Hazebroek (HBH) functions [223

may be used to estimate the average pseudopressure from a buildup

test exactly as for an oil reservoir if pseudotime is used in the

Homer plot. No iteration procedure is then needed.
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b

C

E„(z)

H( t-t

I . K

m = m( q )

Drainage area

[ _1 , j Oimensionless derivative of pc with respect
pc dm 0 1 to pseudopressure initially

Similarity coefficients (see Eq.(2.2.6))

Defined by Eq.C 2.2.16)

b=[ _1 !!_ j Oimensionless derivative of pc with respect
pc dm 0 s to pseudopressure for r=r at shut in

Similarity coefficients (see Eq.(A2.1.14))

Dietz shape factor [21]

Compressibility

e~ z
Exponential integral function of zeroth order [13]

z

“ e'*
E 1 (z) = J dt Exponential integral function of order 1 [13]

1 z t

Green's function for an infinite region
defined by Eq.(A2.2.10)

0. t < t 0
Heaviside unit step functiono

1. t > t
Q

Material balance correction term defined by Eq.(2

Modified Bessel functions [13]

5.21 )

Absolute permeability

Reservoir height

Pseudopressure (see Eq.(2 ) )

Oimensionless pseudo
pressure fall

Volume averaged pseudopressure

Pseudopressure corresponding to average density

E (r, t: |r0 ,t0

T 2irkh
m n = (m- - m(r,t))

2T P SC Q

T 2irkh Dimensionless pseudo-

m ° s 2T p q , tp+Åt) rn(rwl t p )) pressure rise during
sc buildup
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* *
m , m ‘ Extrapolated values on Homer plots (pp.60-61)

Extrapolated value on linear plot (p. 57)

N'th term in asymptotic expansion (see Eq.(2.2.5))

Unit outer normal to reservoir boundary

m,
0
( n)

m

n

P Pressure

Oimensionless solution of the linear heat

equation (liquid solution)
P D LI N

P Volume averaged pressure

Surface production rate

Radius

q

r

r Radius of well

Outer radius of reservoir

Oimensionless radius

r

S Skin factor (except in Eqs.(2.5.2) and (2.5.3))

Slopes

T Temperature

T imet

t Production time

Shut-in time

Oimensionless time based on initial value of pc

t. Pseudotime, defined by Eq.(2.3.1)

Oimensionless pseudotime

At . At Shut-in pseudotime, dimensionless shut-in pseudotime

(see Eq.(2.3.5)
i0

r = r/r0 i

p

At = t - t
P

kt

tDi ' (Plud^2

k(t-t )
At n = 6—s Dimensionless shut-in time based on uc at shut-in

t =30
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Dimensionless time based on drainage area

Functions defined in Appendix 2.2

Reservoir volume

Boltzmann variable

Gas law deviation factor

Euler's constant

Small parameter (see Eqs.(2.2.5) and (2.2.6))

Porosity

Viscosity

Oensity

Volume averaged density

Initial value of pc

Wellbore value of pc at the instant of shut-in

D Dimensionless

External

f Flowing

Initial

Shut-in

i

sc Standard conditions

Wellw

wf s Wellbore value at shut-in
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The non-linear problem given by Eqs. (2.2.1) - (2.2.4) is studied. In

this appendix all variables will be dimensionless. The subscript 0is

therefore omitted for simplicity.

p

Assume now that pc can be expanded in a Taylor series about the

initial value as shown in Ea . ( 2.2 .fi ) . anri that tho i
shown in Eq . ( 2.2.6 ) , and that the well may be

approximated by a line source. If we in addition assume that the

solution is a function only of the Boltzmann variable y = r*/4t thei '

problem is transformed to a boundary value problem for an ordinary

differential equation:

(A2.1.1)

(A2.1.2)

(A2.1 .3)

Insert now in Eq.(A2.1.2) a trial solution written as an asymptotic

series in e, Eq.(2.2.5), and identify terms to each power in The

result is then to the two lowest orders:

(A2.1.4)
0 (e° )

and

1 d dm eo dm
(y—) = -(1 + e L a_mn )

V dy dy n= 1 n dy

lim m = 0
y -» oo

dm 1
lim y — = - —

y •* 0 dy 2

d 2 1cl /n ,
[—, + {!+-)—] m 0 = 0
dy y dy

d 2 1H 00 ( 0 )

(A2.1.5) t—j *(1 —)—] m 111 =- E a (m <0) ) n — 0(e 1 )
dy y dy n =1 dy
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The standard procedure is to let the zeroth order solution satisfy the

boundaiy conditions if possible, thus getting homogeneous boundary

conditions to higher orders. Eq.(A2.1.5) together with the boundary

conditions Eqs.(A2.1.3) and (A2.1.4) have the well-known solution:

(A2.1.6)

If the second derivative of nr/ 1 * is neglected in Eq.(A2.1.5), as done

by Kaie and Hattar [10], Eq.(A2.1.5) may now be directly integrated to
give their Eq.(9):

(A2.1.7)

However, a general solution of Eq.(A2.1.5) may be found by the method

of variation of parameters. The result is then;

A and 8 are arbitrary constants, which may be determined from the

boundary conditions:

(A2.1.9)

(A2.t.10)

Here it is assumed that the series converges uniformly and absolute

and hence may be derived term by term. This gives for m M 1 :

(0) 1 1 “ e-‘
m U (y) -— E 1 (y) = - S dt

2 2 t

/1 j 1 y ae" y
em = — / dy

2 .0 i v

where a = (mc-(mc) )/(pc)i i

00 a 00 00

(A2.1.8) m (,, = AE, ly)  B . E {E,(y) J E, n (y)dy - J E,"* 1 (y)dy>
n=l 2 y y

0 = lim 1 *{y) = B
y - ••

dm 11 ' " a >
0 = lim y— *-A - r —f. J E, n (y)dy

y- 0 dy n>1 2 nt1 o 1
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(A2.1.11) m {1, (y)

By using properties of the exponential-integral functions, it can be

shown that the integrals in Eq .( A2 . 1. 1 1 ) exists for all y e [0 ( «).

Note that in the variables r and t the equation for m* 1 * becomes:i

(A2.1.12)
oo - y

t -ffry- {—E, n (y)}
n.1 2 4t i

It follows that in terms of the functions U. , and V, , defined ink,1 k , 1
Appendix 2.2, the drawdown correction term may be written as:

(A2.1.13)

It may be shown that the limit of 8m /dr when r 0is zero with
J1I U.. r-_ . „ . m . .
m given by Eq.(A2 .1 . 11), even if dm /dy approaches infinity when

y 0. Thus, the boundary condition, Eq.(A2.2.5), used in the

definition of U and V is consistent with the solution obtained
k, 1 k, 1

with the Boltzmann transformation.

p

The procedure for buildup is quite similar irrespectively of the

chosen value for expansion of pc is expanded about. The presentation

will consequently be restricted to the case where the shut in value is

chosen (p and c is here dimensional variables):

00 y oo

1 { E,(yl J E, n (y )dy * f E, nt1 (y)dy }
n=1 2 0 y

1 9 9 9 (1 j *° m n 9m (0)[- — (r—) ] m (1, = E a (m (0, ) n
rdr dr n=1 n 9^

m ‘ 11(r ' t i> * r Vn 0 (r. ti )
n= 1 *
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where = (m(l,t ) - m(r.t)) is pseudopressure rise during buildup as

defined by Raghavan[23], and b , n=l,2 are similarityn
coefficients.

In terms of m , the flow equation, Eq.(2.2.1) then becomes:s

with initial and boundary conditions:

(A2.1.16)

(A2.1.17)

(A2.1.18)

At # = C (|jc) i / (mc) ]At is dimensionless shut-in time based on the
value of pc at r = and t = t . Thé boundary condition,

Eq.(A2.1.18) corresponds to the line source condition for drawdown,

and expresses the assumption that the well may be neglected after
shut-in.

As for drawdown solution written as an asymptotic series in e is
tried:

Mc = McCm(1,t p )] + [m( 1. t p ) Hm(r,t) - m(1,t p )} +

pr=i(pc) [m( 1, t ) ]
(A2.1.U) = Mc[m( 1, t ) H 1  -aæ P_{ m(r|t ) - + ...}

p McCmd.tp)] P
oo

= ( Mc) { 1 + £ E (-1) n b m n }
s n= 1 n s

1 3 3m (pc) c °* _ _ 3m e
(r— s ) = +e z (-1 ) n b m n }

r dr 3r (pc)n=1 n s ø(At i )
(A2.1.15)

•° 3m
=(1 e E (-1 ) n b m n } -— r>0.At > 0

n=1 n s 8(At s )

m (r,At=0) = m(1,t 1 - m(r,t )s p p r > 0

lim m = m(1,t )
r - M ® P

At > 0

9m
lim = 0

r 0 9r Åt > 0
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Øm •«'
lim —L_

r -» 0 3r
0

with solution;

(A2.1.23)

To the next order:

(A2. 1 .24)

{
4At s mp.At s i

m = m ( 0 * + c m (1) +s s s
(A2.1.19)

= {m (0, (1.t p ) - m (0, (r.t)} + e{m {1, (1.t p ) - m {1, (r.t)} +

This gives to 0(e°);

136 3 i n}
(A2.1.20) [ {r —) ] m (0) = 0

r3r dr 3(At) s s

m s (OI (r,at=0) =m 10l (1,tp ) -m(0, (r,tp )
(A2.1.21)

' 1 ?
*7 E 1 I,MV ' 7 E 1 (r2/4t p )

(A2.1.22) lim m < 0) = m (0) (1,t I,r oo * P

(01* * *
ms - - E l'V - - E i<y)  - E,(Ay)

y P = 1/4tp = constant , y = r 2 /4(tp ) , and Ay = r2 /4At

'33 3 am (0)
l~ r lrr' ‘ rrrr ]ms = 1 i-DVim. 101 )" —?—
r3r 3r 3(At) s n=1 " s 3(At) s

n b n n e‘Ay e" y
1 ( " 1) Tn {E l<V - E t (y)  E 1 (Ay)} { }

n=1 2 2At s 2 (t p +At s )
“ni

l L [|-ll n,H-JL,«ni| E n-i (( |£ Hujju ,
n.t i.0 3=0 2"' 1 1 P 1 1

. e-y
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(A2.1.26)

A particular solution of Eq.(A2.1.24) that satisfies homogeneous

initial and boundary conditions is:

{ Vj, i_j( r .) - ui-j,j(r.) }

Oefine now f(r,At ) by:8

It is seen that ftr.At ) satisfies the initial and boundary

conditions, Eqs.(A2.1.25) and (A2.1.26), and that:

ia a a
(A2.1.29) [ (r —) - -

Hence, a solution of the homogeneous equation corresponding to

Eq.(A2.1.24) satisfying the initial and boundary conditions is:

m (1} {r,At=0) = m (1, (1.tn ) - m (1) (r,t )5 P P
(A2.1.25)

= n5l lVn.O (1 -V - Vn.O ,r ’ t p 1 >

1 )
(i) /1 i

lim m ' ' = . lim = 0
r- - s P r -» 0 3r

«•ni .
_ (1) . r r vi i»n+i-j p n , n wi . c n-i /w .
m sp -III 1-1) * i 11 j) E, (yp )

n=1 i=0 j=0 £
(A2.1 .27)

00 3
(A2.1.28) f(r,At ) = E {Vn n (1,t )- V n n (r.t +At c ) }

s 2 n n,0 P n,u P S

10 9 9 **3
- -Ir —I - lt flr.it ) E -Xll .(r,it )] = 0
r3r 9r 8(it s ) 3 n>1 2 n 1 n '° 3

(A2.1.30) msh (, > = 0 (1,tp ) -Vn 0 (r, V4t s l * UBi# (r.4t,»J
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The complete solution of Eqs. IA2.1.24 ) - (A2.1.26) then becomes:

m

00

a n {Vn,o"’V - Vn.O ,r -Vat s’ * Vo (r ’ AV }
(A2.1.31)

•( V j(i ..(r.At # , - U (r,At ) } }s1-3.3

One disadvantage with Eq.(A2.1.31) is that the production time is

given implicitly through the functions U and V . However. if the
k, 1 k, 1

shut-in time is much shorter than the production time, the solution

may be simplified considerably. For simplicity, the calculations will

be performed with only one term retained in the Taylor series.
Eq.(A2.1.24) then becomes:

9

Assume now that At << t . For small values of At the disturbance8 p 8
caused by the closing of the well will not have reached far out in the

reservoir. We may therefore also assume max{1/4t , r 2 /4t }<< 1, and

the right hand side of Eq.(A2.1.32) may be approximated by:

When Atg << tp and r2 << 4tp we may assume that only the constant part

(II - m (1) * m (1)
- msh * msp

+bn E L l-1) nn ' j (")(*) E 1 n " 1 (y )
i=0 j=0 M

. 1 3 (1) /n ) m c
c— — (r—) - ]m (1 = -b 1 5
r3r dr 3(Åt) s s 1 s d(At)

(A2.1.32) s

g -Ay -y
=-b { HE(y ) - E (y) + E (Ay) }

1 4At s 4(t p +At s ) 1 p 1 1

e -Ay
U2.1.33) 9 = - b 1 { E 1 (Åy) + 2 Inr }1 4Åt 1
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of the drawdown correction term, m M * , will affect the solution.

Hence, we assume both the initial and boundary conditions for

Eq.(A2.1.32) to be homogeneous.

The first term in Eq.(A2.1.33) is identical to the first term in the

drawdown equation, Eq.(A2.1.12) with t and a replaced by At andi 1 s

'b, . respectively. The solution of Eq.(A2.1.33) will then be equal to

b {u - V } where u(r,At ) is the solution ofs

with homogenous initial and boundary conditions.

For the Laplace-transformed of u, U(r;s) # we get the following
problem:

(A2.1.36)

(A2.1.37)

The general solution of Eq.(A2.1.35) is:

1 r x
- K (z) / xln— K (t)I (t) di
s 0 z /F 0 0

(A2.1.30)

1 9 9 9 exp{-r2 /4At }
(A2.1.34) [- —(r —) - — ] u = -Inr —

r 9r dr d(At) 2Ats s

1 d dU
(A2.1.35) (r )-sU = -lnr»K (r/s) , r> 0

r dr dr 0

lim U(r;s) = 0
r 4 o»

lim l)' (r; s ) = 0
r •+ 0

oo1
U(r;s) = AIq( z )  BK Q (z) + - I Q (z) J Tln — K q 2 (t) dis JT

AI 0 * BK 0

z 2 z , i
'17 I o { iln7r' 1,IK o -Ki1-7 Vi >

Z 2 2 1
* !7 k o { ,ln7f '""Vo * V,' * ~'V, - M 0 > >
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Here Kq , , and are modified Bessels functions of zeroth and

first order, all with argument z = r/?. The integrals are found from

formulas given by Luke [24] together with partial integration. The

boundary conditions imply A = 0 and B = 1/4s, and the complete

solution of Eqs.(A2.1.35) - (A2.1.37) becomes:

1
— K (r/T)
4s u

U(r;s )

2r

 —Unr - 1}{K 0 (r/i)K 1 (r/?)  K1 2 (r/F) I Q (r/?) }
(A2. 1 .39)

From asymptotic properties of the Laplace transformation found in

Ref.[26], e.g., it follows that a solution valid for large t and small

r may be obtained by expanding Eq.(A2.1.39) for small r/s before it is

inverted. The result is:

(A2.1.40) U (r; s )

i. e

(A2. 1 .41)

From Eqs.(A2.1.11) and (A2.1.13) it follows that:

A solution for m valid for small r and 1<< At << t is then
8s p i

r ?
+ -^F|{Ko i: (r/T)I 1 (r/s) +K0 ( r/s )K-j ( r/T) Iq {r/F) }

1 1
— { — Ins - ln2 + y + 1 }2s 2

r/T << 1

. . 1,1 V
u (r, t) »— { — InAt + ln2 1 }

22 s 2
Åt >> 1

1 00
(A2.1.12) V, o‘r,At s ) *- -! E. 2 (Ay)dAy =- - ln2 -=£*>>,

4 0 2 r2
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(A2. 1 .43)

Note that the solution is independent of r.

The convergence of the various integrals and limits used in developing

this solution may be shown using properties of Bessel functions found

in Ref. [13], e.g., and will not be presented here.

For reference, the solution corresponding to Eq.(A2.1.31) when pc is

expanded about the initial value, and only one term retained in the

Taylor series, is:

(A2.1.44)

When only one term is retained on the right hand side, Eq.(A2.1.31)
becomes:

* b , « E,Cyp U “0,0'^^s 1 - V 0,0 (r ' at S > *

(A2 . 1 .45)

 {
Vl (r,AV - U 1.0 (r ' At s ) }

- { V 1 l 0 (r - At s ) " u 0.1 (r - At s ) } }

(i) b i f 1 y
ro. ' = —L { — InAt + 2 ln2 1 }

5 2 2 s 2

m s (,) =a1< V 1 ,o M -tp* - v 1 1 0 (r 'VAti l -V 1 ,o ,r ' At i’

* Vi lr ' AV * Vi lr>4V >

"s m =a 1 { V, i0 n.tp) - V 1|0 (r.tp *At s l  u, (r ,At s ) )
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APPENDIX 2.2 DEFINITIONS OP THE FUNCTIQNS II AND V
k. 1 ”,k, 1

The functions « and are defined as the Solutions of the
following linear, nonhomogeneous problems:

(A2.2.1 )

(A2.2.2)

(A2.2.3)
U k| l(r,0)

(A2.2.4)

(A2.2.5)

where

(A2.2.6)

(A2.2.7)

Solutions of these equations may be found on integral form in terms of

the Green 1 s function for an infinite region corresponding to the
radial heat equation:

t »
(A2.2.8)

Vl  S f <i k , 1 (r0 ,t0 )E(r,t|r() ,t0 )dr() dt0

13,3 d
C ~ r lr T 1 'V 1u k 1 < r - = u„ ,(r,t)

rdr dr dt k(1 k.l ' r> Q
Id 3 d f v n

I 7rr ,r Tr’-7t 1 Vl ,r>t) 'Vl , '- t '

V k,l {r,0) = 0

lim U. , = lim v, . = or -» oo *'»-L r-*«x> K< 1

3u k i ,
Um - k ' 1 = lim !<J; = o

r * 0 dr r -» 0 3r

k.1 = 0,1,2

exp[-r2 /m +tn , r 2 r 2
Uk.l (r ' t) = — f }£/{-}

4(tp +t) m +t) 1 U

exp[- T 2 /it],r2 , r2
vk,l ,r - t > = — E, k (—} E /{ )

4t 4(tp+t)
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(A2.2.9)

where E(r,t|r ,t ) is defined by;

equations directly, or from the integral forms given in Eqs.(A2.2.8)

(A2.2.10).

t "

vk,l = 1 ! 2 " ro vk.i ( VV E(rit IV to ,dro dto
0 0

H(t -1 ) I (rrJ2( t-t ) ) r2+r n 2
E (r, 11 r,t ) = 9 9 0 9— exp{ — >

1 0 0 4ir (t - t Q ) 4 (t" tQ )
(A2.2.10)

H(t-t ) is the Unit step function.
0

Numerically. U and V may be found either by solving the defining
k,I k,l
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To examplify the theory presented in this part, 7 examples of drawdown

and buildup in a gas reservoir were simulated. Except for example 7.

reservoir and fluid properties are as in the example of Ziauddin [11]

and are presented in Table 2.1 and 2.3. pc as a function of pressure

is shown in Fig. 2.5, and to illustrate the effect of different

initial pressures and rates, pc/(pc) v.s. m is plotted in Fiq. 2 8i0 3 *
for the simulated examples 1, 2, and 3.

The simulations were performed by transforming the problem to the

dimensionless formgiven by Eqs. (2.2.1) - (2.2.i). This system was

then solved numerically using a routine for solving parabolic partial

differential equations from the NAG-library [17].

Data for the different simulations is:

Example 1;

p = 4000 psi. q = 4000 Hscf/d, t = 27 hrs. p = 2698 psi
- 6 P _ .f»

(pc). = 4.47-10 cp/psi, (pc) = 6.72*10" cp/psi,
7 2

m. = 95.3*10 psi /cp, m = 50.6-10 7 psi 2 /cp,
t = 6.3 •1 05 .pO i

Example 2:

p = A000 psi, q = 8000 Mscf/d, t = 27 hrs. p = 876 psi
-BPc w f 8

(pc). = A.A7-10 cp/psi. (pc) = 1.72-10 cp/psi,
7 2 8 7 7

m. = 95.3-10 psi /cp. m = 6.13*10 psi /cp.

t = 6.3*1Q5 .
pG i

Example 3:

P = 1500 psi, q = 1100 Mscf/d, t = 240 hrs, p = 691 psi
-5 p q wf8

(pc). = 1.11-10 cp/psi, (pc) = 2.11-10" cp/psi,
7 2

m. = 17.3-10 psi /cp, m = 3.89-10 7 psi 2 /cp.rWt 8
tn . = 2.3 *1 0 6 .p 0 i
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For example 1, 2, and 3, the reservoir may be considered infinite in

extent. Example 4, 5, and 6 demonstrate depletion of a closed

reservoir and buildup from PSS.

In addition an example with a small reservoir and high permeability

was run to simulate a reservoir limit test. The reservoir parameters

are shown in table 2.2. The fluid properties were as in the other

examples and are shown in Table 2.3.

Example 4:

p. = 7000 psi. q = 5500 Mscf/d, t = 16000 hrs, p = 1943 psi
1 -G P e

(pc). = 2.29*10 cp/psi. (pc) = 8.94*10 cp/psi,
1 7 2 * 7 2

m. = 203*10 psi /cp, = 28.2*10 psi /cp,

t ni . =2.52pO A i

Example 5:

p. = 7000 psi, q = 5500 Mscf/d, t = 20200 hrs, p = 1127 psiipWf 8
(pc). = 2.29 *1 0 6 cp/psi. (pc) = 1.39 • 10~ 5 cp/psi,

1 7 .2 8 72
m. = 203*10 psi /cp, m = 10.0*10 psi /cp,iwf 8

t n4 • =3.19p0 A i

Example 6;

p. = 7000 psi, q = 5500 Mscf/d, t = 22700 hrs. p = 202 psi
1-GP c w f 8

(pc). = 2.29*10 cp/psi, (pc) = cp/psi,

ro. = m f = 0.502*10 7 psi 2 /cp,
t . =3.58.p0 A i

Example 7:

p. = 1500 psi, q = 5500 Mscf/d, t = 550 hrs, p = 352 psi
1 -5 p -5 * fs

(pc). = 1.11-10 cp/psi. (pc) = 4.10*10 cp/psi ti $
m. = 17.3*10 psi /cp, m = 1.05'IQ 7 psi2 /cp,iwf 8
t = *-82

p0 A i
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Well radius 0.276 ft

2640 ftRadius of reservoir

Reservoir height

Absolute permeability

Porosity

40 ft

1.5 mO

0.05

0
670 RT empera ture

Well radius 0.276 ft

Radius of reservoir

Reservoir height

Absolute permeability

Porosity

660 ft

10 ft

100 mD

0.2

670° RTemperature

Table 2.2 Reservoir properties. Example 7.

Table 2.1 Reservoir properties. Examples 1 - 6.
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Table 2.3 Gas properties corresponding to a natural gas with
gravity *y = 0.7 (from Ziauddin [11]).

p(psi) m(psi2 /cp) M (cp) c(1/psi)

200 .32233E7 .01265 . 50944E-2
400 .12865E8 .01295 .259 1 4 E-2
600 ,28808E8 .01333 .17539E-2
800 .50834E8 .01377 . 13316E-2

1000 .78731E8 .01419 .10744E-2
1200 .11229E9 .01464 .89907E-3
1400 .15118E9 .01514 .76989E-3
1600 .19507E9 .01565 .66927E-3
1000 .24361E9 .01619 . 58766E-3
2000 .29635E9 .01677 . 51 954E-3
2200 .35174E9 .01743 . 461 58E-3
2400 .41223E9 .01013 .41168E-3
2600 .4 7 4 34 E9 .01887 . 36842E-3
2800 .53862E9 .01961 . 33077E-3
3000 .60477E9 .02035 . 29790E-3
3200 .67245E9 .02110 . 269 1 7E-3
3400 .74140E9 .02185 . 24400E-3
3600 .81 134E9 .02260 . 22191E-3
3800 .88206E9 .02336 . 20247E-3
4000 .95336E9 .02412 . 1 8533E-3
4200 .10251E10 .02485 . 17017E-3
4400 .10972E10 .02558 . 1 5672E-3
4600 .11695E10 .02629 . 14476E-3
4000 .12419E10 .02700 . 13409E-3
5000 .13144E10 .02770 . 1 2455E-3
5200 .13069E10 .02839 . 1 1 599E-3
5400 .14593E10 .02906 . 1 0828E-3
5600 .15317E10 .02970 . 10134E-3
5800 .16040E10 .03033 . 95050E-4
6000 .16762E10 .03095 . 89351 E-4
6200 .17482E10 .03155 . 84 1 7 0E-4
6400 .1 8201 El 0 .03214 . 79449E-4
6600 .18918E10 .03273 . 751 36E-4
6800 .19633E10 .03332 .71188E-4
7000 .20346E10 .03389 .67565E-4
7200 .21056E10 .03447 .64234E-4
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CO

•n ! 1 1 1 i 1

- Eq. (A2.1.45) //'

I Eq. (2.2.14) y/ V- ‘ 106

Eq.(2.3.7) \

//' VpDi “ 1° 5 \ISO \ \

' jT \^PDi " 10A \

o' V —
—Y—i—i rmw| 1—i 11 ftwj 1—i ii mq i—m rmj 1—i i rrmj rn >1111; "I rrmn

1 .E+OO 1.E+01 1.E+02 1 .E+05 1 .E+0+ 1 .E+05 1.E+06 1 .E+Ol

r—4

CO

Q

i

IsO

CNJ

AtDs

Fig. 2.1 Drawdown correction terms; = 0.1, an = 0, n >2

r = rw

Fig. 2.2 Buildup correction terms: a = 0, n = 1,2,

eb l = 0.1, bn =0, n >2. r =rw
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DRAWDOWN SOLUTIONSDRAWDOWN CORRECTION TERMS

BUILDUP SOLUTIONSBUILDUP CORRECTION TERMS

Fig. 2.3 Numerical and analytical Solutions for r = rw ° f

Eqs.(2.2. l)-(2.2.4) with |jo/(pc) i = l+0.5mD} tpDi = 10 5

-[    w.- 1 1 1 1 1 -- I r 1 '
-S. \ j PwDLIN
; z : “wD^Dl 5 simulated

\ Eq. (A2.1.7) _ | mwD^ t Eq-( 2 - 2 - 10 >
1 - v 'v s“'* (Kaie & Mactar) a +++ simulated

' \ O co _I i

8 ; \ \ J I- i

i Eq.(2.2.9)\ Slmulated X
B_ s s = ;
1 n s *x —

Eq. (2.2.10)

?.L ..^.'.'.é-o; 1 i.L ini-fA. tL,
tDi CD1 or c aD

1 .E-01 V.EtOO * I.EtO1 1 ,E+02 1 .Ei-OS 1 .EtCM < .E-tOS 1 .E-K56 I.E-OI 1 .E+OO 1.E-K51 1.E+02 i .Et05 1 .E+O-t 1 .E+05 1 .E-f06

Atm or Atno AtDi> AtDs> or At aD
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DRAWDOWN CORRECTION TERMS DRAWDOWN SOLUTIONS

C D1 tDl or c aD

BUILDUP CORRECTION TERMS BUILDUP SOLUTIONS

Fig. 2.4 Numerical and analytical Solutions for r - rw of

perturbation Solutions only two terms are retained in the

Taylor expansion of i.e. , = = 0.5,

an =bn = 0 for n> 2. tpD1 = 10 5 .

•—r— r- 1 1 1 r -| s-q 1 1 1 i i

! z PwDLIN

\N. 2 j slmulated

\ \\.s - c? *1 Eq. (2.2.10)

\ \ Eq.(A2.1.7) £ \ ++• slmulated

'N \ (Kaie & Mattar) 0æ J +

= J N. ... £ ; + ++^^^:'_

S _ s

1—( I 111 m lill mi| 1—i i mii| 1—i i i iiiif 1—r i rrm] 1—i ii nu 0 1—i ii mq 1—r-r-rmtj >• * - >*>*| ' 1i i n.i( l r-r-rrm] i i—i-rrm
I.E-OI l.E+OO i.E+01 1.E+02 1 .E+03 I .E+04 1 .E+OS 1.E-0) 1 .E+OO 1 .E+01 1 .E+02 1 .E+OS 1 .E+0+ \ .E-HJS

i.E-OI i .E-H30 1.E+01 1.E+02 1.E+03 i .E+0-» 1 .E+OS 1 .E+OS I.E-Oi ( .E+OO 1.E-H31 I .E-KJ2 1 .E+OS 1.E+0+ t.E+OS i.E+06

AtDl or > AtDs’ or AtaD

Eqs.(2.2.1) - (2.2.4) with |ic/(nc) i = exp(0.5mD >. In the
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Fig. 2.6 vs. dimensionless pseudopressure fall, example 1, 2,

and 3. The vertical lines corresponds to zero pressure for

the respective examples.
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S3M

i”a r—
u
o

CD

CD

BUILDUP

AtDs or AtaD

Fig. 2.7 Example 1.

Perturbation solution and pseudotime solution, compared

with simulated pseudopressure and liquid solution

respectively. r = rw .

I.E-OI 1.E+00 l.E+01 1.E+02 1.E+03 1 .E+CH 1 .E+05 i .E+06

S-T11 1 1 1 1

cni pwDLIN

3 ro J “wDs AtDs simulated

J =+ + m AtaD) simulated

S

0 — 1—1 11 t 1111 1—1 1 mii| r1 1 1 mi[ 1—1 1 1 mi| 1—1 1 1 mi| 11 1 1 mt[ 1—tinnr
I.E-OI 1 .E+00 1.E+01 1.E+02 1.E+05 1 .E+CH 1.E+05 1 .E+06
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f

Fig. 2.8 Example 2.

Perturbation solution and pseudotime solution, compared

with simulated pseudopressure and liquid solution

respectively. r = r ,

I.E-OI 1 .E+00 1.E+01 1 .E+02 1.Et05 1 .E+CM 1 .E+05 i ,E+06

I.E-OI 1 .E+00 1.E+01 1.E+02 \ ,E+05 i.E+CH 1 .E+05 1 .E-H36

AtDs or AtaD
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DRAWDOWN

AtDs or AtaD

Fig. 2.9 Example 3.

Perturbation solution and pseudotime solution, compared

with simulated pseudopressure and liquid solution

respectively. r = r ,

i.E-01 1.E+00 1.E+01 1.E+02 1.E+05 1 .E+0+ 1 .E+05 < .E+08

!Z
i-i

i’
a r—
U
o

4.E-04 4.E+00 4.E-H34 4.E+02 4.E+05 i.E+CM 1 .E+OS 4.E+06
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tDAl

Fig. 2»10 Pseudopressure corresponding to average density for the

simulated example 6.

PdLIN tDAi“ 1^

Fig. 2.11 Simulated pseudopressure compared with analytical solution

and liquid solution for example 6. The horizontal line at

= 23.3 corresponds to zero pressure.
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EXAMPLE 6

0 1(30 200 500 -100 500 600 700 800 900 1000

Fig. 2.12 Reservoir limit tests example 6 and 7.

is value of external radius used in the

calculation of I(t).
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EXAMPLE A

pwDLIN

AtDs^
simulated

At
simulated

At
simulated

At

Eq.(2.2.14)

EXAMPLE 6

Fig. 2.13 Dimensionless pseudopressure rise during buildup.

Perturbation solution and pseudotime solution, compared

with simulated pseudopressure and liquid solution

respectively. r = rw .

i.e-oi i.e+oo i.e-toi i.e+02 i.e+os i.Etw i .e+os i.e-h»
AtDi’ AtDs> or At aD

EXAMPLE 5

+ + +

i.E-oi i.e+oo <.e+oi i.e+æ «.e+oe i.e+o* i.e+os i.e-h»

AtDi» or AtaD

1.E-01 1.E+00 1.E-HH 1 .E+OZ 1.E+05 I.E+tM 1.EfOS 1.E+08

AtDi* AtDs» or At aD
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EXAMPLE 6

1.E-08 i.E-OS 1.EHM \ .E-05 i .E-02 l.E-01 1 .E+00

At At
Inverse Horner time or “

c p +

Fig. 2.14 Homer plots example 6 and 7.

1.E-06 1.E-05 i.E-CM i .E-05 1.E-02 l.E-01 1 .E+00

At At
Inverse Horner time or ——— “

t p + At t p/( Mc) 1 + Ata
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PART 3

TWO-PHASE FLOW
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Undoubtedly. one of the most important tools in well test analysis has

been Solutions of the linear diffusion equation. This also apply to

two-phase pressure tests. Muskat [1] solves the model equations for

two-phase flow in a few special cases, but most of the work so far has

been concentrated on how these complicated equations can be

transformed to the familiar diffusion equation, and how the well-known

Solutions of this equation can be used to analyse well tests where

both oil and gas are flowing simultaneously in the reservoir. This

approach will form the basis also for this report.

Perrine [2] suggested in 1956 that the mobility term in the diffusion

equation should be replaced by adding the mobilities of the individual

phases, and the total system compressibility by weighting the

individual compressibilities by the average saturation of that phase.

Martin [3] gave Perrine's empirical approach a theoretical basis by

showing that these modifications could be justified if quadratic terms

in Vp were negligible. Later Perrine’s approach was studied

numerically by Weller [4] and Earlougher et al. [5] who demonstrated

its validity for small gas saturations. However, Weller showed that

the analysis becomes less accurate with increasing gas saturation.

In 1961, Levine and Prats [6] made numerical studies of the

performance of solution-gas-drive reservoirs and compared the

numerical Solutions with a semisteady-state solution. This

approximate solution was based on the assumption that the decline rate

of the oil component (stock tank oil in place) at a given time is the

same at every point in the reservoir. The saturation profile was

calculated from the gas-oil ratio (GOR), which was assumed to be

constant for all r and correspond to the pressure and saturation at
the outer boundary.
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The concept of pseudopressure was introduced to two-phase flow by

Fetkovich in 1973 [71, and Raghavan [8] presented in 1976 methods to

obtain the pressure-saturation relation needed in the calculation of

the pseudopressure function for drawdown and buildup. For drawdown

the producing GOR as a function of time was used, and for buildup the

producing GOR at the instant of shut-in. The method was also applied

to fractured wells [9]. In Ref.[10], Raghavan's method was used

together with Agarwal s [12] pseudotime transformation.

In 1981, another approach to pseudopressure was presented by

Bøe et al.[11]. An analytical expression relating pressure and

saturation was developed, assuming that saturation is uniquely

defined function of pressure. This relation, which is valid for

infinite reservoirs, was used to calculate the pseudopressure

function. The wellbore S(p) relation was used both for drawdown and

buildup. Bøe et al. claime that when pseudopressure is calculated

with their method a good adaption to the liquid model is achieved both

for drawdown and buildup. However, later results show that the

buildup solution is highly rate sensitive and not as good as may be

inferred from the results in Ref.[11] (Skjæveland[13] and Whitson[14]

p.123). This is also confirmed by our simulation runs.

As noted by Whitson [Ul, most of the contributions involving a

pseudopressure function are closely related to an approach suggested

by Evinger and Muskat as early as 1942 [ 15](or Ref.[1] p.336 ff.)

based on steady State flow. Whitson concludes that most of the work

done after 1942 could have been saved if the work of Evinger and

Muskat had been considered more seriously. and that it is questionable

trying to solve the fully diffusion equations given the uncertainties

associated with the definition of realistic relative permeabilities.

However, even if it turns out that the Evinger/Muskat method is

satisfactory from an engineering point of view, one has to start with

the exact equations to explain why a method based on steady State flow

seems to work also for semisteady and transient flow included buildup.

Hopefully, the validity and connections between the different theories

are made more clear through this report.
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In Sec. 3.2 the model equations are discussed and presented on forms

suitable for studying. Then the special cases of drawdown and buildup

in solution gas drive reservoirs - both infinite and finite - are

studied in Sec.3.3 and 3.4. For buildup the applicability of the

pseudotime transformation is considered.

One of the main problems concerning two-phase flow is the relative

permeability curves. Models exist for relative permeability based on

the characterization of the porous media and the flowing fluids, and

in Ref.[16], Standing has developed correlations both for drainage and

imbibition processes. Very often, however, the relative permeability

relationships in the reservoir is not well known. Based on the

pressure-saturation relation developed in Re f.C113, attempts have been

made to estimate relative permeabilities from drawdown tests with

varying success [17]. To investigate the possibility of estimating

the parameters used in Standing’s correlations, one of the simulated

examples was analysed using several incorrect relative permeability

relations to see the effect on the drawdown and buildup pseudopressure

curves. The results are presented in Sec. 3.6.

The theory is examplified by several simulated drawdown and buildup

tests, and seven simulation runs are presented. Example 1-6 simulate

a solution gas drive reservoir, and one simulation of a gas condensate

reservoir is presented to demonstrate the general applicability of the

theory. The results from this simulation are presented in Sec. 3.5.

Reservoir and fluid properties are the same for all solution gas drive

examples. only initial pressure. production rate, and production time

are varying. Initial bubble point pressure is assumed to be 4000 psi,

and initial pressure is equal to initial bubble point pressure except

for example 1, which demonstrate the case where bubble point pressure

is passed during production, Example 2, 3. and 4 show the effect of

different production rate in an infinite-acting reservoir (q =50.0
100, and 200 stb/d, respectively), while example 5 and 6 demonstrate

effects of a closed boundary and buildup from pseudosteady state.

Production rate is 100 stb/d for example 5 and 200 stb/d for example

6.
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All simulation rgns were performed with a 2-dimensional, 3-phase

reservoir simulator capable of handling both variable bubble point and

variable dew point pressuret18]. The data for all simulation runs are

presented in Appendix 3.1.
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We assume that the fluid flow can be described by the Ø-model

described in Sec. 1.2. The flow is then given by Eq.(1.2.14), which

in the notation of Bøe et al. [113 may be written:

(3.2.1) gas component

(3.2.2) oil component

(3.2.3)

where a, b, a, and P are functions of pressure and saturation defined
by:

(3.2.4)

 r
Mo B o 59 M g Bg

(3.2.5)

(3. 2.6)

(3.2.7)

One main question now is whether it is possible to reduce the system

of equations, Eqs.(3.2.1) and (3.2.2) to one single diffusion equation

of the same form as the real gas equation. Eq.{2.1.3 ) ; and eventually.

h°w should it be done? Further, will the results from Part 2 be

applicable to account for the nonlinearities in this equation?

<p d
V*{ a(p , S )Vp } = b (p, S )

k dt

<p 3
V'{ a( p,S ) Vp } = p(p.S)

k 3t

S=S = 1 - S- -s
o iw g

k k
a = -xa_ „ r

MgB g 50 P 0 B

S
b = + R —5L

B 50 Bg o

S„ S
P * -2.  r t.-l

B 0 59 Bg
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Based on the results in Refs.[7-11], a pressure transformation seems

to be a reasonable approach to the problem. However, since different

methods of calculating this transformation have been presented, a

general integral transformation of pressure is considered:

P
J f(p’)dp‘

Pi

(3.2.8) m(p)

f is a function of pressure not yet defined. The choise of reference

pressure is arbitrary, and p is chosen for practical computationali
reasons. Note that this choise results in a negative pseudopressure
when applied to a drawdown/buildup process.

For constant rate drawdown, pressure will be a strictly monotone

function of radius and time. This will not be the case for buildup

since the pressure, except for points dose to the well, will continue

to drop for some time after shut-in. This pressure drop will be very

small, however, and it should be a reasonable approximation to assume

that pressure will be a strictly monotone function of r and t both for

drawdown and buildup separately. Saturation may then be written as a

function of pressure and time or pressure and radius, respectively:

(3.2.9)

Note that this relation may be different for drawdown and buildup.

Note also that for a general rate history this approximation will not

be valid, and each case then has to be considered separately.

Using Eq.(3.2.9), Eq.(3.2.8) inserted in Eqs.(3.2.1) and (3.2.2) then
yields the following equations:

S = S(r.t)

= S(r,t(p,r)) = S(p,r)
= S{r (p. tJ, r) = S( p, t)
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(3.2.10)

(3.2.11)

or by introducing the generalized compressibility-mobility ratios

(c/A) (defined in Ref.[11]) and (c/A) * *:

(3.2.12)

(3.2.13)

is defined as the derivative of S with respect to pressure

when written as a function of pressure and radius, i.e., along a linealong a line

parallel to the time axis in the r-t plane for radial flow.

As pointed out in Part 2, one of the most important objects of the

pseudopressure transformation is to linearize the inner boundary

condition, which in this case may be a specified surface oil or gas

production rate or a specified linear combination of both. If the well

is located at r = 0, we get, respectively:

(3.2.14)

or

(3.2.15)

2 ' C *fe1 8n f

k a dt a f

2 » [ W»r - i an, f
k a 8t a 7( f } ' Vm

* *
2 <p c dm f a

V m = -(-) — - - V(—) •7m
k A 6t a f

*
2 (pc dm f a

7m = - ( -) —- - — v(-).Vm
k A 9t a f

dp q n
lim {a r— } = —3—

r -» r dr 2irkh

3p q
lim {a r— } = ——

r -» rw dr 2irkh
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Hence, if an oil production different from zero is given, f must be

chosen so that:

(3.2.16)

This is possible as long as pressure is a strictly monotone function

of time at r = r .

The boundary condition for m then becomes:

(3.2.17)

Note that if the well is closed in and both q and q are equal to° 9
zero, the boundary condition is linearized irrespectively of f.

In the rest of this report, except for Sec 3.5, it will be assumed

that the reservoir is an oil reservoir with a given oil production

rate. but as noted by Bøe et al. [11] any linear combination of a and

a corresponding to a given linear combination of q and q can be used
o 9

in Eq. (3.2.16).

Equations similar to Eqs.(3.2.10) and (3.2.11) may also be obtained

for pressure, and if quadratic gradient terms can be neglected both

equations reduce to the equation (12) of Martin [3] with c/Å
* * * t t

replaced by (c/A) and (c/A) , respectively. In this case the

quantities are identical and reduce to:

c c
'x 1  ‘X’

(3.2.18)

f(pw (tn = ot( pw ( t), s w ( t))

dm q.
lim { r— } = ——

r -* dr 2irkh

c

\

B dR B dr

S o r sg (1 " 8 0 R so 1 dp * S g R so (1 " B^r sg l dp 19,

At " - R so r sg>
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where

*
Note that (c/A) simplifies to c/Å if R or r are identicallvt t s o s g
zero.

Since a too may be written as a function of pressure and radius or

pressure and time when Eq.(3.2.9) is valid, two natural possibilities

of defining the pseudopressure function is:

P
(3.2.20) mr (p) f ol( p r) dp'

pi

or

(3.2.21) mt (p)

That is, we may integrate over time at a given point or over radius

for a fixed time. A combination of these two definitions may also be

used, and one choise which linearizes the inner boundary condition for
all t is:

m(r,t)

(3.2.22)

Note that Eq.(3.2.22) combines both the pseudopressure as defined by

Fetkovich [7] for pseudosteady and steady state flow and the

pseudopressure as calculated by Raghavan [8].

c f dR dB„ S dr dB k k
(3.2.19) —— 5 { —(B_—*2- + —SL(B — Sl, }/{ _ro + _ra }

A t B q 9 dp dp B g °dp dp p Q p g

p
/ a(p’;t) dp'

Pi

mr ( Pw <t) ) + mt (p{r,t) )

Pw, (t) p(r .t)
J cx(p‘;rw ) dp* + J a(p‘;t) dp

Pi Pw (t)
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Since a generally will be a different function of pressure at

different times will be a function of both r and t, and the

equation for m (when defined by Eq.(3.2.22)) becomes;

(3.2.23)

If saturation is uniquely defined by pressure, all these definitions

of pseudopressure are equivalent. In that case, a and a will also be

uniquely defined by pressure, and the last term in Eqs.(3.2.13) and

(3.2.23) dissappears by choosing f(p) = a(p). If, in addition,

saturation and pressure are functions of the Bolzmann-variable

y = «pr 2 /4kt. Eqs.(3.2.13) and (3.2.23) reduce to the single equation

presented by Bøe et al. [11] (their (Eq.{10)). Following the

procedure of Bøe et al., it is in this case easily shown that the

relation between pressure and saturation is:

da da dp 2 db dø «p dp
( a— - a— )( — ) - ( a— - a— ) — -i

dS _ QP dp dr dp dp kdt

dp da da dp d|3 db «p dp

1 a ai ' °as a7 1 a al ' “as ’T at

(3.2.24)

Eq.(3.2.24) reduces to the equation of Bøe et al. (their Eq. (1 7)) if

the Bolzmann-variable is introduced.

Based on the fact that both the pseudopressure function presented by

Raghavan and by Bøe et al. behave very similar to the real gas

pseudopressure function, one could be tempted to seek a perturbation

solution of Eq.(3.2.13) by neglecting the last term to zeroth order.

If the magnitude of Vm is of the same order as the time derivative and

the Laplacian, f then have to be equal to a to zeroth order. This in

turn requires that saturation to zeroth order is a function of

pressure only. It is possible to show that a perturbation procedure,

where p and S are expanded in asymptotic series with S = S(p) to

zeroth order, will produce a sequence of linear diffusion equations

y vc* dm ipc* p^r,t *9a
7m = -<—> T- - -«-> J { —(p':t)) dp'

k A 3t k A Pw (t) 3t
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for pressure under certain conditions on the coefficients a, b, a. and

0. The saturation is then determined from conditions on the

coefficients in the corresponding pressure equation. To zeroth order,

the relation between pressure and saturation reduces to Eq.{3.2.24).

However, since the equations quickly become very complicated and the

application to well test analysis is not evident, this idea will not
be pursued here.

Due to the nonlinearities of the flow equations, it is not possible to

generate Solutions corresponding to a general rate history directly

from the constant terminal rate solution for two-phase flow as for

flow of a slightly compressible liquid where the flow equation is

linear and the superposition principle is valid. Hence, if we want to

make use of the well-known liquid solution. it is necessary to study
each situation separately, and hopefully be able to utilize the
characteristics of flow in each case.

Based on Eqs.(3.2.13) and (3.2.23). together with the assumptions

stated at the end of Sec. 1.3, the possibilities of reducing the flow

equations to the familiar diffusion equation for drawdown and buildup

will be investigated in the following sections. However, note that

even if the flow equations are reduced to an equation similar to

Eq.(2.1.3) with pc replaced by (c/A) , we are still left with the

problem that (c/A) is not uniquely defined by pressure or

pseudopressure, but rather is a function of two independent variables:

(3.2.25)

or if pressure is a strictly monotone function of time or space,
respectively:

(3.2.26)

(3.2.27) ( P(r,t) , t )

* * *

y = ( A J * p ' S * = r <t )

( f J = {x ) ( p (r ' t, ' r )
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This additional problem, which was not present for gas flow, will be

discussed for each case separately.

When passing pubble point pressure or dew point pressure, the

derivatives of pressure and saturation may be discontinuous, thus

introducing further difficulties. One of the simulated examples has

initial pressure above the bubble point pressure, and for most of the

examples. parts of the reservoir become single-phased shortly after

shut-in. However, this does not seem to seriously affect the
calculated pseudopressure.

Host plots show dimensionless pseudopressure as a function of

dimensionless time. The dimensionless variables are defined similarly

to the corresponding quantities for gas flow. confer the list of
symbols on p.143.
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In this section production with constant surface oil rate is studied.

Pressure and saturation are assumed to be uniformly distributed

initially. First, the reservoir is assumed to be infinite in extent,

then the effect of a closed outer boundary is considered.

If saturation is uniquely defined by pressure at all points, a and
*

(c/A) will be functions only of pressure. As mentioned previously,

the undetermined function flp) in Eq.(3.2.8 ) may then be chosen equal

to a(p), and it follows that Eq.(3.2.13) becomes identical to
*

Eq.(2.1.3) with pc replaced by (c/A) . Hence, the results in Part 2

concerning the variations in pc will be valid also for two-phase flow.

Bøe et al.[11] argued that saturation is a unique function of pressure

in the infinite acting drawdown period because both saturation and

pressure are strictly monotone functions of the Boltzmann-variable
2

y = (pr /Akt. This statement would be correct if the flow equations

were linear, but for a system like Eqs.(3.2.1) - (3.2.2) one cannot be

sure that all Solutions are found when one solution being a function

of y is found. However, it may also be argued from a physical point

of view that saturation is a unique function of pressure as long as

the resevoir is homogeneous and infinite, and both pressure and

saturation are uniformly distributed initially:

A given pressure drop in a saturated oil will result in a change in

saturation. Since the permeability of free gas is different from the

permeability of the oil phase, this may also result in a change in

composition, but as long as there are no constraints on this process
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and the initial oil saturation and composition are the same at all

points, there is no reason to believe that the process should be

different from point to point. However, if there is a no-flow

boundary present, the composition is forced to be constant along this

boundary. At r = r^, the saturation corresponding to a given pressure
will therefore be given by the pressure-saturation relation of the

initial fluid composition, and may be different from the saturation at

other points håving the same pressure, but a different composition.

This is clearly demonstrated in Fig. 3.2 where saturation is plotted

as a function of pressure at different points, and in Fig. 3.3 where

lines of constant pressure and saturation are drawn for the simulated

example 5. Before the boundary is felt the pressure and saturation

lines coincide and are straight lines with slope 1/2 on a log-log

plot. This corresponds to both pressure and saturation being
2

functions of r /t. After the boundary is felt, however, the curves

immediately start departing.

Based on this, we conclude that in the infinite acting period

saturation is a unique function of pressure, at least to a very good

approxima tion. As pointed out by Bøe et al. [11], the pseudopressure

function can then be evaluated simply by using the correct pressure

saturation relation at wellbore. This relation may be found from the

producing gas-oil ratio (GOR) as suggested by Raghavan [8], or from

the relation of Bøe et al. (Eq.(3.2.24)).

(3.3.1)

(3.3.2)

k ro *J 0 S 0 1 - GOR rsg

GOR can be defined at any point in the reservoir by:

GOR 2- = k rg LM 9 B g * R so k ro 7 M o B o

a k ro ' M 0 B 0 * r sg krg / y g B g

i. e

k rg .Va 60R - R so
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Eq.(3.3.2) simplifies to the usual GOR-relation for a solution gas

drive reservoir if r =0. The producing GOR is given by a/a at* 9
wellbore, and if k /k is a known function of saturation. Eq.(3.3.2)rgro
can be used to calculate S(p).

Theoretically, both Raghavan‘s method and the method proposed by Bøe

et al. will give the correct S(p). However, Raghavan's method is

simpler and also more stable numerically since the method of Bøe et

al. implies solving a differential equation. Note, however, that when

Sg < S^ c , GOR = R so . and cannot be determined from Eq.(3.3.2).

Saturation will then be given by the relative permeability of oil and

may be found from the relation of Bøe et al.

Whitson [14] mentions as a problem that k /k may become negativergro
for early times when calculated from Eq.(3.3.2). A negative

permeability is of course not possible physically, and if this

situation occurs in practice the explanation has to be either that the

measured GOR is different from a/a or the PVT data is incorrect.

Another possibility can be that the Ø-model is invalid. In our

calculations of saturation using the gas-oil ratio, the gas saturation

is set equal to zero if the ratio k /k becomes less than or equalrgro
to zero, and any occurence of large negative values for the right hand

side of Eq.(3.3.2) is not checked. In addition, this results in an

error in calculated saturation when S < S , but for drawdown the
9 9 c

only effect on pseudopressure will be a constant difference for late

times as demonstrated in Fig.3.10.

The problem with k /k <0 may also occur for buildup, whenrgro
saturation is calculated from Raghavan's method, This case will be

discussed in Sec. 3.4.

One important result of Bøe et al. is that GOR relatively quickly

stabilizes at a constant value.

corresponds to Region 1 on Fig. 1.1

The region of stabilized GOR

and is also identical to the

no well effects are present. That

to as the Evinger-Muskat method

"half-log straight line region" when

is, the constant GOR-method, refered

by Whitson[14], will also give the correct wellbore pseudopressure for

late times, except for a constant term. Whitson analyses example 1 of
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3øe et al. using this method and GOR equal to the initial gas

solubility, . He obtains an estimate of absolute permeability

about 18 i larger than the model input permeability. A better result

is obtained if the stabilized GOR is used.

The variations in (c/A) with m will, as shown in Part 2, result in a

slight shift in wellbore pseudopressure on a half-log plot. To
estimate the magnitude of this shift, (c/A)* may be calculated as a

function of pseudopressure when saturation and pseudopressure are

known as functions of pressure. However, (c/A)* has, for the solution

gas drive case, the characteristic form shown in Figs. 3.7 and 3.8,

and it would probably be better to assume a quadratic form initially

mstead of a linear form as done in Part 2. Note also that the

variations in (c/A) with rate in this case are much more complicated

than for gas flow. The irregularities in Figs. 3.7 - 3.9 corresponds

to the pressure points in the PVT table. and show how sensitive (c/A)*

and are to the calculated derivatives of b and 0.

Another interesting feature with the (c/A) -function is that it

becomes negative after some time. Since dm/dt always is negative,

this implies that the pseudopressure profile must change from being

concave to convex. However. this always occurs in Region 1 where the

expansion terms are small, and the effect will usually be negligible.

Fig. 3.11 shows dimensionless pseudopressure and pressure compared

with the liquid solution for 5of the simulated examples. Pseudo

pressure is in all cases calculated from the simulated pressure

saturation relation in block 1. Note especially that the

pseudopressure follows the liquid solution almost exactly in example 1

despite the discontinuity in compressibility when passing bubble

point. Note also that due to the different relative permeabilities

used, dimensionless pressure in example 3 and 4 is different from

example 5 and 6. respectively. but that the pseudopressure functions
are almost identical.



PART 3 123

Like a gas reservoir, a reservoir with simultaneous flow of both oil

and gas will not achieve a condition where the pressure drop is

proportional to flowing time. With "pseudosteady State" we will

understand a stabilized condition in a closed reservoir where the

effects of all boundaries have reached the well.

The most common pseudosteady State assumption is that the decline rate

of stock tank oil is the same for all r when the reservoir is produced

with constant surface oil rate, i.e., 3ø/8t « dj3/dt [6]. However. the

discussion in Sec. 2.5 concerning gas flow will apply also for this

case. That is, the assumption of constant dp/8t will not be correct

near the well, but in that region (Region 3 on Fig. 1.1) the expansion

terms will be negligible, and a solution may be found as for steady

state flow. In addition, most of the variations in pressure and

saturation occur in that region, and the effect of errors in the

calculated Region 4-solution will be limited. As for gas flow, the

final conclusion is that a good approximation to the solution in

pseudosteady state may be found by setting the right hand side of

Eq . ( 3.2.2 ) equal to dj3/dt. d(3/dt and db/dt are given by the material

balance equations for the oil and gas component, respectively, and may

be found by integrating the flow equations, Eqs.(3.2.1) and (3.2.2)

over the reservoir;

db

dt
_q.g
q>Ah

(3.3.3)

dt mAh
(3.3.4)

<pAh

Define now pseudopressure by Eq.(3.2.22) and approximate the right

hand side of Eq.(3.2.2) by Eq.(3.3.4). When terms of 0(r 2 /r 2 ) are
w e

neglected, the result is then the equations given by Fetkovich [7],

which is identical to the equations for real gas pseudopressure and

pressure in a slightly compressible fluid:
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(3.3.5)

and

(3.3.6)

If these equations can be generalized to an arbitrary geometry and to

\i a * p|| * Eq . (3.3.6) may be written in a form corresponding to
Eq. (2.5.18):

(3.3.7)

The saturation profile has to be known to calculate the pseudopressure

profile as defined by Eq.(3.2.22). However, in Region 3 the flow is

approximately steady State, and the expansion terms may be neglected.
It follows that:

where C.(t) are arbitrary functions of time. That isr

(3.3.10)

C 2 (t)

2 tt kh r
(mlr.t) - m (t) } = In—

q0 rw 2re

2trkh r 2 r 3
(m(t) - m( r, t) } = - in —

Q o 2re rw 4

2irkh

~ = POLIN lrO' t Oi ) - fftOAi
H o

C 1 (t)GOR
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Consequently, in Region 3 the gas-oil ratio is independent of position

and hence equal to the producing GOR. This is also verified for the

simulated examples, and simulated drawdown GOR for example 5 is shown

in Fig. 3.5. Levine and Prats [6] assume that GOR is the same at all

points and corresponds to the pressure and saturation at the outer

boundary. However, an overall better saturation profile will probably

be obtained by using the wellbore value, i.e., the producing GOR.

Fig. 3.12 shows dimensionless pseudopressure profiles for example 5

and 6 obtained by integrating the simulated pressure and saturation

over wellbore and over radius, respectively. Pseudopressure is also

calculated from the saturation profile obtained by assuming GOR equal

to the producing GOR for all r, and it is seen that this corresponds

very closely to the result when the simulated saturation profile is

used. In addition, both these curves are good approximations to the

liquid solution. At the beginning of pseudosteady State, also the

pseudopressure profile calculated from wellbore S(p) is approximately

equal to the liquid solution, as expected. For late times, however,
there is a significant difference.

Note that when the expansion terms on the right hand side of

Eqs.(3.2.1) and (3.2.2) are neglected, S(p;t) may be found from

Eq.(3.2.24) neglecting terms involving dp/dt. Eq.(3.2.24) then

reduces to the asymptotic relation for large t presented by Bøe et al.

(their Eq.(21 )). The connection between Eq.(3.2.24) and the constant

GOR method also appears on Fig.3.4 by comparing drawdown S(p)

calculated from Eq.(3.2.24) with buildup S(p) calculated with

Raghavan' s method for example 5 and 6.

For gas flow. the material balance equation combined with the relation

between pseudopressure and density was used to calculate m(t). The

density now corresponds to p. but there is in this case no one to one

correspondence between m and p. We have, with m defined by
Eq.(3.2.22):
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(3.3.11)

Hence, if the last term in this equation can be neglected and*
(c/Å) (m;r) approximated with a kind of average function of m,

(c/A) (m), an equation corresponding to Eq.(2.5.8) may be used to

calculate the time variation. If (c/A) from Fig. 3.8 is compared

with the corresponding plots of c fc /Afc (Fig. 3.9), it is seen that

Ct/At( P) seems to be relatively independent of position for drawdown,

and, in addition, this curve seems to be a reasonable average for*
(c/A) . With pc replaced by drawdown c/A . m(t) and m (t) wast t m
calculated from Eqs.(2.5.8) and (3.3.6) for example 5 and 6 with the

results shown in Fig 3.13. The calculated m is much closer to thew
simulated solution than the liquid solution is, but still a

significant difference makes it difficult to interpret a reservoir
limit test.

The results presented in this section are essentially well known

aspects of well performance. However, with pseudopressure defined by

Eq.(3.2.22), the different theories are combined in a compact formcompact form.

Using this definition, the pseudopressure profile will be

approximately constant in the pseudosteady State period, and the

continuous changes in well performance is taken care of by the time

variation in cx(p;t). It is shown that a good estimate of saturation,

and hence pseudopressure profile, may be obtained from an assumption

of constant GOR, and the connection to the Evinger-Muskat theory [15],

based on steady state flow, is thus established. We have tried to

show that these results follow from the exact model equations together

with basic assumptions about flow regions.

Application of these results to well testing is thoroughly described

for instance in Ref.[7] or Appendix A.8 of Ref.CU] and will not be

discussed here. In these papers good results is reported from

multirate testing of oil wells. However, the superposition principle

is a priori not. valid for the nonlinear equations describing two-phase

flow. If pseudosteady state has been reached between every change in

Bø c * dm c * p(r,t)
rr = 77 ~ ( T ) / t P ;t) } dp'
3t A 3t A pw (ti 8t
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rate, it is reasonable to believe that the pseudopressure profile is

given by equations corresponding to Eqs. (3.3.5) and (3.3.6), but care

should be taken to apply these results to multirate testing if this is
not the case.
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As mentioned in Sec. 3.1, several methods have been proposed to

analyse two-phase buildup tests. Perrine [2] suggested simple

modification of the standard tests for liquid flow. Raghavan [8]

introduced the pseudopressure transformation, and to calculate the

pressure-saturation needed, the gas oil ratio was assumed to be

constant during buildup. Bøe et al. [11] used pseudopressure too, but

based on the fact that the pressure gradient during buildup is zero at

the well. wellbore saturation calculated from Martin 1 s [3] pressure

saturation relation was used to calculate buildup pseudopressure. For

all the simulated examples. this relation gives a good approximation

to the correct saturation at all points in the reservoir during

buildup. Saturation calculated from Raghavan's constant GOR

assumption. however, does not correspond to the simulated saturation

in this period (see Fig. 3.4). Despite this. buildup pseudopressure

calculated by the method of Bøe et al. is highly rate dependent. and

this method seems to be inferior to the one proposed by Raghavan.

One of the fundamental assumptions stated in Sec 1.3 was that

quadratic gradient terms can be neglected during buildup. The

validity of the pseudotime transformation discussed in Sec.2.3 depends

on an assumption of small gradients, and as will be shown also the

applicability of method of calculating buildup

pseudopressure follows from this assumption. The reason for this can

be seen by looking at Eq.(3.2.13). If the pressure gradient is small

enough and the coefficients in the flow equation behave reasonably

nice , it follows that the pseudopressure function will satisfy a

diffusion equation of the desired type

rip, enn sen in Eq . ( 3.2 .fl ) . The inner and outer boundary

conditions are homogeneous and hence independent of f. The important
factor is therefore
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at—shut—in. Since pseudopressure calculated from the saturation

profile at shut-in is a good approximation to the liquid solution

profile, and this saturation profile may be obtained from the

producing GOR, it follows that pseudopressure calculated from

Raghavan s method. approximately satisfies both the desired equation

as well as initial and boundary conditions; the only remaining problem

being the variations in (c/A) . Note that pseudopressure as defined

by Bøe et al. will satisfy the same diffusion equation approximately,

but not the desired initial condition. The difference in solution

profiles at shut in will increase with production rate and the stage

of depletion, and in turn affect the buildup solution. For infinite

reservoirs, Raghavan s method corresponds to using drawdown S(p)-

relation, and the method of Bøe et al. corresponds to using buildup

S(p)-relation at wellbore. The difference is clearly demonstrated in

Fig.3.16. It is, however. important to realize that the reason for

the validity of Raghavan’s approach is not that the GOR is constantR

luring—buildup. On the contrary, the GOR varies considerably during

the buildup period (see Fig. 3.6). From the plots of saturation vs.

pressure, there is no evidence that pressure changes occur much faster

than changes in saturation either. In addition, f(p) as defined is

quite different from a for buildup. Hence. the determining factor is

the assumption of negligible quadratic gradient terms.

The accuracy of the constant-GOR method to calculate the saturation

profile will depend on the relative size of Region 1 or 3 compared

with Region 2 or 4, and the variations in GOR in the two latter

regions, but for all the simulated solution gas drive examples the

pseudopressure seems to be relatively insensitive to these variations.

Note also that the applicability of Raghavan's method for buildup is

increased by the fact that the buildup solution in the semilog

straight line period only depends on the solution profile in Region 3

(or 1). where GOR * constant is a very good approximation. Still. of

course. we are left with the problem that nonlinearity is decreasing

the size of Region 3 (or 1). and hence the length of the semilog

straight line. and it is possible that the straight line will

disappear completely. especially if well effects are present. However.

if the remaining part is sufficient for analysis, it may be concluded

that Raghavan s method gives the “correct" pseudopressure function in
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this period.

The problem with negative k /k when calculated from Eq.(3.3.2) mav
rg r o

in this case be due to GOR in Region 2 or 4 being larger than the

producing GOR. However. as mentioned by Whitson [14], this will only

happen at early stages of depletion, and the drawdown pressure

saturation relation of Bøe et al. may then be used. Another

possibility is to extrapolate the S(p) or k (p) relations.
r o

Note that the procedure for calculating buildup m(p) outlined here is

equivalent to use the pseudopressure function defined by Eq.(3.2.22)

with t equal to the production time and p (At) inserted as the upper«r
integration limit in the last term:

(3.4.1)

However. in this case the equation for m will not be Eq.(3.2.23), but

Provided that pressure can be assumed to be a strictly monotone

function of radius and time both for drawdown and buildup, we have

thus shown that the pseudopressure function can be uniquely defined

for all r and t by Eq.(3.2.22). For a given r and t < tgiven r and t < t

pseudopressure is then obtained by integrating first over time for

r = and then over radius for the given time. For a given buildup

pressure. the pseudopressure is equal to the pseudopressure

corresponding to the given pressure at the instant of shut-in. The

integration paths are shown on Fig.3.1.

mw (At) = mr (Pw (tp ))  mt (pw (At))w p

rather Eq.(3.2.13) with f(p) = cx(p;t ).
P
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We have argued that buildup pseudopressure, when defined by

Eq. (2.2.22) and calculated as suggested by Raghavan [8], will

approximately satisfy an equation of the form:

(3.4.2)

together with initial and boundary conditions as for liquid flow.
*

(c/A) is defined by Eqs.(3.2.11) and (3.2.13), but will be given by

Eq.(3.2.18) when quadratic gradient terms can be neglected. For
*

solution gas drive reservoirs with r 0, (c/A) then reduces to

rapidly changing factor
8 9

When free gas is present, this is

like for gas flow. In addition, it will not be a unique function of

pressure or pseudopressure, but rather a function of two independent

variables as indicated in Eqs.(3.2.25) - (3.2.27).

From Fig, 3.8 it is seen that there can be a significant difference

between the curves for different values of r. For example 4, 5, and
ic

S, the gas saturation near the well quickly drops to zero, and (c/A)

becomes approximately constant, given by the oil parameters. However,

farther out in the reservoir free gas is present during the whole

buildup period.

If the variations in (c/A) could be accounted for by a kind of

average function of pressure, the results of Part 2 could possibly be
- ic

extended. The problem is to obtain such an average (c/A) (p)-curve.

Verbeek reports excellent results when using an average of c^/A^
between initial and wellbore values [10]. For the case of buildup

from PSS, however, it is doubtful that this will be a good solution. A

possible method could then be to use an average between /A (p”) and

but this requires that p and a corresponding saturation are
*

known. Refering to the plots of (c/A) and c , a better solution

2 c 3m
7 m = {—)

A dAt
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seems to be to use the drawdown c /A as a reasonable average also for t t
the buildup (c/A) -curve. At and At „ are then defined by:a a 0

The (c t /At )(p) function used is drawdown /At as a function of
wellbore flowing pressure.

Pseudotime was calculated by Eq.(3.4.3) for all the simulated

examples, and the results are shown in Fig. 3.15. In all cases, m
«Os

when plotted against pseudotime, very closely follows the liquid

reference curve as opposed to m (At ) and m (At ).
«Os Oi «Os Os

Note that since integration over radius is equivalent to integration

over time in the infinite acting period. drawdown (c /A )(p) then willt t
be approximately equal to )(p) for buildup if the pressure

saturation relation calculated from Raghavan's method is used.

_. . *
By examming the buildup (c/A) -curves, it seems that a straight-line*
approxima tion to (c/A) (m) should give better results than for gas

flow. The simplified perturbation solution, Eq.(2.2.14), was

therefore calculated from estimates of the derivative of (d/dm)(c/A)*

at shut-in, and, although not shown on the plots, this solution

corresponds very closely to the simulated solution except for example

example 1 the "S-shape" of m (At) is very pronounced, and now s
portion of the buildup curve can be said to follow a straight line.
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According to the previous section, when pseudopressure is combined

with pseudotime, a good adaption to the liquid model is obtained for

buildup. As long as Eq.(3.3.7) is valid and the correct MBH-function

[19] can be chosen, average pseudopressure may therefore be estimated

from buildup tests in solution-ga s—drive reservoirs using pseudotime,

just as for gas reservoirs (confer Sec. 2.6). The importance of using

pseudotime is demonstrated in Fig. 3.15.

In Fig.3.17, the pseudopressure functions in Fig.3.15 are replotted

vs. inverse Horner pseudotime. Absolute permeability and skin factor

was calculated from these plots and average pseudopressure estimated
*

from m using MBH-functions. p(m) was then calculated from the

buildup m(p) relation. which was extended to include the estimated m.

The results of the analysis are presented in Table 3.4 and compared

with the input model values and simulated average pressure. For the

simulated examples the estimated average pressures correspond very

closely to the simulated values, just as for a gas reservoir, but it

remains to show the general validity of the assumption rn = m(^>).



134 PART 3

Spivak and Oixon [20] in 1973 suggested that gas condensate reservoirs

could be simulated analogous to black-oil reservoirs by assuming that

the transfer between the gas and liquid phases could be handled by a

r»«~^ erm s imilar to R used in black-oil simulation. In addition.»g 8 0

they assumed that R =0, i.e., the oil phase does not contain any8 0 J
gas component.

At the same time, Fussell [21] presented a study showing that the K

values and phase densities can be considered functions only of

pressure for many single-well performance predictions for gas

condensate reservoirs. Cook et al. [22] proposed that volatile oil

and gas condensate reservoirs could be simulated by a generalized p

model where the PVT variables were assumed to depend on a

compositional parameter in addition to pressure. Later, Whitson and

Torp [23] presented a method for calculating volume factors and

solubility factors as functions of pressure for volatile oil and

gas condensate reservoirs from a constant volume depletion experiment.

B°th solubility of gas component in oil phase and volatility of the

oil component is then accounted for. However, in a recent work

concerning two-phase flow Whitson does not consider gas condensate

reservoirs "... because of the insufficient understanding of their PVT

properties.” [14].

The validity of the P-model for gas condensate reservoirs will not be

discussed here, but if such reservoirs can be described by a three

component, three-phase model with only oil and gas flowing, i.e.,

Eqs.(3.2.1) - (3.2.3), most of the results from the previous sections

should be directly applicable.
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To give an example of this, one simulation of a drawdown/buildup

process in a gas condensate reservoir was performed. PVT properties

were taken from Ref.[23] and are shown in Table 3,3. Reservoir

properties and relative permeabilities were the same as for the

solution gas drive cases. The reservoir was produced with a constant

surface gas rate, and pseudopressure was defined by Eq.(3.2.22) with a

replaced by a. Note that for single phase gas flow, this

pseudopressure function reduces to the real gas pseudopressure defined

in Part 2 except for the constant factor T /2Tp3C 8 C

The results from the simulation are shown in Figs. 3.18 - 3.22 and are

very similar to the results from the solution gas drive simulations,

with sorne exceptions:

The oil saturation in block 1 continues to increase after shut-in,

and at the end of simulation the gas saturation near the well is

equal to zero. The mass production rate of gas component is in

this case higher than the mass production rate of oil component.

Hence, the continuing increase in oil saturation may be due to the

fluid near the well being heavier during production, which in turn

makes the critical point shift to a temperature higher than the

reservoir temperature.

The variations in (c/A) are somewhat different from (c/A) *
* *

(c/A) being positive for all pressures. For buildup,

(c/A) « ct /At' indicatin9 that * least for this example, the

correction term in Eq.(3.2,17) is negligible even if both R and
IS)

r * g are dlfferen t from zero. The irregularities in the (c/A) and

ct /\ -curves correspond to the pressure points in the PVT table,

and again show the sensivity to the calculated derivatives of b and

0.

For the simulated example, Raghavan‘s method for calculating

buildup pseudopressure [8] does not seem to be as good as for the

solution gas drive cases. For infinite reservoirs, the

pseudopressure based on the drawdown S(p)-relation should be

identical to the pseudopressure calculated with Raghavan’s method

if the "constant GOR" approximation is valid at shut-in. However,
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in this case it seems that the size of Region 1 is significantly

decreased since the deviation occurs for relatively small Åt. The

point where the two pseudopressure curves start deviating from each

other corresponds to the point where saturation calculated with

Raghavan‘s method drops to zero in Fig. 3.19. The calculated

pseudopressure thus seems to be more sensitive to inaccuracies in

the GOR used than is the case for solution gas drive reservoirs.

However, this may not be any problem with buildup from PSS. In the

last plot, buildup pseudopressure is calculated from the drawdown

m(p)-relation. Pseudotime is calculated from drawdown c^ as in
the solution gas drive examples.
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Application of the theory presented so far relies on the knowledge of

relative permeabilities as functions of saturation. However, even if

it is possible to define "average" relative permeability curves

capable of describing the flow of the two phases, these are difficult

to obtain. To investigate the effect of using incorrect relative

permeabilities, the simulated example 4 was analysed using other

relations than the ones used as input to the simulator. This was also

done to investigate the possibility of estimating relative

permeabilities from a two-phase pressure test.

The relative permeability curves were assumed to depend on two

parameters; the pore distribution factor A and the critical gas

saturation Sgc . The three-phase drainage relations of Standing [16]

were used. For = = constant, these relations simplifies to:

(3.6.1)

(3.6.2)

* *
where S and S are effective saturations defined by:Og J

* S o
0 1 - S iw

(3.6.3)

(3.6.4)

0
k is the end-point relativer

calculations set equal to 0.7.

permeability and is in all the

k - u o i c * i2/A + 3
K ro * K r 1 b o '

krg - kr °( S gV< , - ,s 0 V/A*i ,

s* = s g ' s 9c
9 1 ' S iw - S gc
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gc
corresponds to the solid lines in Fig. 3.23. In addition to these

"correct" values, the example was analysed using 4 other combinations

of A and S :
gc

0.00

0.10

0.05

0.05

The corresponding relative permeability curves are shown by the dashed

and dotted curves respectively on the two plots in Fig. 3.23.

The resulting dimensionless pseudopressures for drawdown and buildup

are plotted in Figs. 3.24 and 3.25, where in all cases the solid lines

are calculated from the correct values. Drawdown pseudopressure is

calculated with S(p) calculated from Eq.(3.2.24) (method of Bøe et al.

[11]), and buildup pseudopressure using Raghavan‘s method [8]. For

buildup. pseudopressure is plotted v.s. dimensionless shut-in time
*

based on (c/A) pseudotime is not used. The calculated c t M t . and

hence the relation between At and At # . will also change with the

relative permeability relations used, but this effect is not studied.

The plots exhibit several interesting features:

i) Even if the variations in A has a larger effect on the relative

permeability curves for the present saturations than the

variations in S , the latter gives a more significant change in

calculated pseudopressure. The reason for this is that the

effect of the variations in k and k to a certain degreero r g
cancel each other when A is changed.

ii) Qualitatively the calculated pseudopressure curves are very

similar. and it is probably impossible to deduce from a test

whether the relative permeabilities applied are correct. Hence,

Simulator input for example 4 was A = 2.0 and S =0.05 and

i) A = 2.0, S
9 c

ii) A = 2.0, S
9C

iii) A = 1.0. S
9 c

iv) A = 6.0, S
gc
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it will be difficult to obtain good estimates of A and S from
9 c

a test. On the other hand, if absolute permeability is
calculated from the incorrect curves, the error in the result can

be significant; the small changes in relative permeabilities used
here causing as much as 20-25 l error.

iii) However, if absolute permeability is known, information about the

expected slope will increase the possibilities of estimating A
and S significantly.gc

The object of this section has only been to present some examples of

using incorrect relative permeability relations when analysing a two
phase test and is not ment to be a detailed study. The results
presented here, however, show that this is a field where further
investigation is needed.
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1) If the fluid flow can be described by the Ø-model given by

Eqs. (3.2.1) - (3.2.7), multiphase-flow effects for a constant rate

drawdown followed by a pressure buildup can, to a very good

approximation, be adapted by the liquid model Solutions. This is

done by introducing an integral transformation of pressure also

called a pseudopressure function. For buildup. a similar

transformation - pseudotime - is applied to the shut-in time.

2) Provided that pressure can be assumed to be a strictly monotone

function of radius and time for drawdown and buildup, separately,

the pseudopressure function can be uniquely defined for all r and

t by Eq. (3.2.22). For a given r and t< t , pseudopressure is
p

then obtained by integrating first over time for r= r and then

over radius for the given time. The pseudopressure for a given

buildup pressure is given by the corresponding pressure at the

instant of shut-in.

3) If relative permeabilities are known as functions of saturation,

the pressure-saturation relation needed in the integration along

r= rw may be found from the producing GOR as suggested by

Raghavan in Ref.[8], or, in the infinite-acting period, also from

the relation of Bøe et al.[11]. In the infinite-acting period,

the pressure-saturation relation in addition is approximately

independent of position, and the integration over radius is not

necessary.

4) All the simulated examples for a solution gas drive reservoir

indicate that a good approximation to the saturation profile for

all times may be obtained by assuming GOR to be independent of

radius and equal to the producing GOR. This method is very

similar to the Evinger/Muskat method [15], and for buildup it

corresponds to applying the method proposed by Raghavan [8].
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5) For drawdown in an infinite reservoir, the dimensionless pseudo

pressure function is equal to the liquid solution except for a

small constant term. An estimate of this term may be obtained by

the perturbation method presented in Part 2 for single-phase gas

f low.

6) In pseudosteady state, the dimensionless pseudopressure profile

very closely resembles the liquid solution profile, but the time

variation is different. Drawdown may be calculated from

flowing wellbore pressure and an estimate of the time variation in

pseudopressure may be obtained by replacing pc with in the

equations developed in Part 2.

7) If the producing time is sufficiently long, the buildup

pseudopressure function will follow a straight line on a MOH plot,

but with a larger slope than the liquid solution. An

approximation to this slope may be obtained from the perturbation

solution presented in Part 2 if the derivative of c t /A t with
respect to pseudopressure at shut-in can be estimated.

8) Drawdown may also be used to calculate the pseudotime

transformation, and dimensionless buildup pseudopressure plotted

against dimensionless shut-in pseudotime very closely follows the

liquid solution also in cases where the compressibility is

discontinuous.

9) Several buildup tests in a solution-gas-drive reservoir was

simulated, and in all cases accurate estimates of initial or

average pressure was obtained by applying the HBH-method to

pseudopressure plotted v.s. pseudotime in a Homer plot.

10) One drawdown/buildup in an infinite acting gas condensate

reservoir was simulated with the same conclusions as for solution

gas-drive reservoirs; the only exception being that buildup

pseudopressure calculated from the constant GOR approximation was

not as accurate as for the latter case.
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11) Relatively small inaccuracies in the relative permeability

relations used in the analysis can result in significant changes

in the calculated formation permeability even if the

pseudopressure curves are very similar. With relative

permeability relations given by the relations of Standing [16],
the pseudopressure curves are more sensitive to variations in

critical gas saturation than pore distribution factor.
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A Drainage area

b, a. 0 Defined by Eqs.(3.2.4) - (3.2.7)

Volume factors for gas and oilB . B
9

C (t). C (t)1 2 Arbitrary functions of time (see Eqs.(3.3.8-9)

Total compressibility of reservoir fluids
defined by Eq.(3.2.19)

c
t

f(p) Function of pressure used in the definition of
the pseudopressure function (see Eq.(3.2.0))

Gas/oil ratio

h Reservoir height

k Absolute permeability

Relative permeabilitiesk , k
r g ro

k °
r Endpoint relative permeability

m Pseudopressure

2irkh
m (m. - m(r,t))D

<0

2irkh Dimensionless pseudopressure
rise during buildup <1>

(m(r,t + At) - m(r ,t ))
P w pDs

q

Extrapolated value on Homer plot

Pressure

m

P

POL IN Dimensionless solution of the linear heat
equation (liquid solution)

For a gas condensate reservoir, subscript o is replaced by g.

GOR = a/a

Dimensionless pseudopressure
fall <1>

2lfkkroi h
Pn * E2i- (Pi - P(r.t))

% B 0 iM 0 i
Dimensionless pressure fall <1>

<1>
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q . q
9

r

S . S
9 gc

S
i«

*
S . S

9

t

t

Surface production rates

Radius

Oimensionless radius

Solubility of gas component in oil phase

Volatility of oil component

Oil saturation

Gas saturation, critical gas saturation

Irreducible water saturation

Effective saturations, defined by Eqs.(3.6.3-4)

Time

Production time

Shut-in time

k{t-t )

s —~—p Oimensionless shut-in time based on C(c/A)*] <1>
<p C (—) ] r •A s w

At . At Shut-in pseudotime, dimensionless shut-in

pseudotime (See Eqs.(3.4.3) and (3.4.4))
aO

2<pr
y Boltzmann variable

4kt

Porosity

M . M9 Viscosities

For a gas condensate reservoir. (c/A)* is replaced by (c/A)**

rn = r/r0

R

r
«9

S = S

p
Åt = t - t

p
kt

tni = 7~i 7 Dimensionless time based on C(c/A) ] <1>
01 <pt (-) ].r 2 *A i w

kt
= c~* Dimensionless time based on drainage area <1>

<1>
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\ Pore distribution factor (see Eqs.(3.6.1-2))

k k
x a _ro +

M o
Total mobility

*
Generalized compressibility-mobility ratios

defined by Eqs.(3.2.10-13 )

c c
'V  

P, m. b. p Volume averaged values

0 Dimensionless

iw Irreducible water
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APPENOIX 3.1

6 simulations of a constant rate drawdown followed by a pressure

buildup for a solution gas drive reservoir and one for a gas

condensate reservoir were performed to demonstrate the applicability

of the theory discussed. All simulations were performed with the two

dimensional, three-phase reservoir simulator, "TOOVARS" developed at

Rogaland Research Institute [18]. In all examples one well was

produced from the center of a circular, closed reservoir.

Reservoir parameters are identical in all examples and are shown in

Table 3.1. Relative permeabilities were generated from Standing's

drainage correlations [16], Eqs.(3.6.1) - (3.6.4), with pore

distribution factor A = 2.0. Critical gas saturation, S , is 0.0 for
9 c

for example 5 and 6 and 0.05 for all the other simulations. k and
r g

*< ro as functions of saturation are shown in Fig.3.23.

r ser

Except for the initial bubble point pressure equal to 4000 psi, the

PVT properties are identical to those used in Ref.[11] and are

presented in Table 3.2.

Example 1:

Example 2:

Example 3:

p. = 4300 psi, q = 100 stb/d, t =At = 100 hrs,1 p

t0 . = 1.79-10 , t = 0.U2, p = 3509 psipUi pOAi $

p = 4001 psi, q = 50 stb/d, t = At = 100 hrs,1 p

t.n; = 5.02 • 1 o 5 . t = 0.04, p = 3651 psipui pOAi wfs

P. = 4001 psi, q = 100 stb/d, t = At = 100 hrs
1 p

t _ n . = 5.02 - 1 0 5 . t = 0.04, p = 3196 psip u i pOAi wf s
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APPENDIX 3.

Example 4:

Example 5:

Example 6:

The PVT properties, which is presented in table 3.3, were taken from

one of the examples in Ref. [23] (rich gas condensate, NS-1) with

initial dew point pressure 6000 psi.

p = 4001 psi, q = 200 stb/d, t =At = 100 hrs,
1 p

Sm = 5 - 02 '’°5 ’ ‘poji  P, f .  1686 psi

P = 4001 psi, q = 100 stb/d, t = 10600 hrs, At = 100 hrs.p

Sli S 5 - 32,1 °7 ' tpoji = .23,p>ft = 261 psi

p. = 4001 psi, q = 200 stb/d, t = 1800 hrs, At = 100 hrs,

%0i = Soii = °- 72 ’ P.f, = 254 psi

p. = 5999 psi, q = 4000 Mscf/d, t =At = 100 hrs.1 9 p

Soi = 2 - 34 ' ,()S . \ 0ki = P„. = 2344 psi
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APPENOIX 3.2

Several programs were written to analyse the simulator output. Two

programs, based on the methods of Bøe et al. [11] and Raghavan [8],

respectively, were used to calculate oil saturation and pseudopressure

from simulated wellbore pressure. A similar program used simulated

saturation in block 1 to calculate pseudopressure. (c/A)**, (c/A)*,

and ct /Afc were calculated from simulated pressure and saturation as
functions of time.

In all calculations, pseudopressure is defined by Eq.(3.2.22) and

calculated as shown in Fig. 3.1, making m = 0 and m <0. Note that1 w f

the pseudopressure for some r and t may be larger than m. since a(p;t)

generally is different from a(p;rw ) , even if the pressure is the same.

Simple numerical methods were used: Linear interpolations; integrals

were calculated from the trapezoidal rule; and the ordinary

differential equation for saturation occuring in the method of Bøe et

al. was solved with Euler’s explicit method. For the solution gas

drive case, the inverse of Eq.(3.2.2) was used when calculating S

from Raghavan s method. If k /k (or k /k )in Eq.(3.3.2) becomes
rg ro ro rg

less than or equal to zero, S (or S) is set equal to zero. Theg o

derivatives involved in the expressions for (c/A)**, (c/A)*, and c /A

were calculated from a mid-point formula. Pseudotime was calculated

directly from the ct /A fc -curves. A smoothing of the curves was tried

without any significant difference in the resulting m (Åt ).«Os a 0
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Table 3.1 Reservoir properties.

Well radius 0.33 ft

Radius of reservoir 660 ft

Reservoir height 15.5 ft

Absolute permeability 10.0 mD

Porosity 0.30

Connate water saturation

Initial gas saturation

0.30

solution gas drive examples 0.00

Initial oil saturation

gas condensate example 0.00
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PVT properties saturated fluid (from Ref.Cll]):

P B o M o R«o B Mr
(psi) (RB/STB) (cp) (SCF/STB) (RCF/SCF) (cp) (STB/lcF)

193 1.050 1.350 44 206 .09479 .0113

139 .02807 .0125

104 .01587 .0138

240 .01083 .0152

.00
622 1.088 1.164 119 .00

1052 1.121 1.011 196 .00
1481 1.159 .881 278 .00
1911 1.202 .768 366 .00
2340 1.249 .671 461 .00
2769 1.302 .587 563 .00
3199 1.360 .515 673 .00
3700 1.434 .446 812 .00
4 201 1.516 .391 963 .00
4 701 1.605 .340 1127 .00
5202 1.702 .317 1305 .00
5B31 1.791 .300 1470 .00
5703 1.806 .298 1499 .00

Initial bubble point pressure: 4000 psi

Properties of oil above bubble point pressure:

Iable 3 .? Fluid properties. Solution gas drive examples.

dB -S dp„ c
“ = -1.6-10 RB/STB-psi —- = 2.1-10’ cp/psi

dp dp

519 .008169 .0166

531 .006561 .0181

791 .005567 .0195

783 . 004868 . 0210

575 .004350 . 0228

478 . 003979 .0246

453 .003711 .0263

561 .003507 . 0281

383 .003367 .0295

003 .003346 . 0298
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PVT properties saturated fluid (from Ref.[23]):

p B p R B p r
O O 80 g g sg

(psi) (RB/STB) (cp) (SCF/STB) (RCF/SCF) (cp) (STB/SCF)

Initial dew point pressure: 6000 psi

Gas properties above dew point pressure:

Table 3.3 Fluid properties. Gas condensate example.

dB c dM„ 5
—3 = -1.0-10 RB/STB-psi —3 = 3.5-10 cp/psi
dp dp

800 1 . 200 1 .09 140 . 0251 .0129 2.463E-5

1000 1 . 225 1.01 180 .0197 .0136 2.232E-5

1200 1.240 .96 220 .0165 .0143 2.174E-5

1400 1.280 .90 260 .0140 .0150 2.193E-5

1600 1 . 285 .85 300 .0123 .0157 2.222E-5

1800 1.310 .77 350 .0108 .0164 2.283E-5

2000 1 .335 .74 400 . 0095 .0171 2.370E-5

2200 1 .360 .70 450 . 0086 .0177 2.463E-5

2400 1 .385 .66 500 . 0078 .0184 2.577E-5

2600 1.410 .62 550 . 0073 .0191 2.762E-5

2800 1 . 430 . 58 600 .0068 .0198 2.994E-5

3000 1.460 .54 650 . 0064 . 0205 3.279E-5

3200 1 .485 .51 710 . 0060 .0212 3.650E-5

3600 1 . 550 .45 840 . 0055 . 0225 4.425E-5

4000 1 . 620 .40 980 .0050 . 0239 5.405E-5

4400 1.675 .37 1130 . 0047 . 0253 6.667E-5

4800 1 . 730 .35 1310 . 0045 .0267 8.065E-5

5200 1 . 790 .32 1500 . 0043 . 0280 9.804E-5

5600 1.850 .305 1700 . 004 1 . 0294 1 1 . 628E-5

6000 1.915 . 295 1910 . 0040 . 0308 13.514E-5

6400 1 .980 .285 2120 . 0039 . 0321 1 5.625E-5

6800 2.045 . 275 2330 .00385 . 0335 17.857E-5
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4 5 6

210.06 104.15 198.84

166.5 -814.9 255.0

k (mO) 10.7 9.65 9.99 10.07 10.55

Skin factor, S 0.2 0.03 0.10

tOAi 0.152 0.038 0.039 4.259 0.758

m (psi/cp)i 113.6 166.5

p(m ) (psi)i 4001 4005

m (psi/cp) -76.77 -1039 533.86

p(m) (psi) 4203 2750 3469

10.0

0.0

4001

3478

X.?bie 3t4 Results from an analysis of the Homer plots (Fig.3

generated from the simulated examples of a solution
drive reservoir.

17)

gas

-0.06 -0.06

k (mO) 10.0 10.0 10.0 10.0

S 0.0 0.0 0.0 0.0

P (psi)i 4300 4001 4001 4001

P (psi) 4230 3962 3965 2763



PART 3 159
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Fig. 3.1 Integration paths followed when pseudopressure is
calculated.

p = Pi

P( r l»ti> =p x <-> m(r x ,t : )

Pw =P 2 <“> m ( rW ’ t 2 )

t=t p 7!

y ' P( r 2> tp) = ?2 <“> m(r 2J t p )
/
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P( r 3> t p+At ) = P 2 m(r 3 ,t p+At)

| [" m < rw> t 2) « tp < teia
| m(r 3 ,t p+At) = m(r 2 >t )<

* m(rw' t 2) « tp > tela
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EXAMPLE 2

block 19, r - 1Orw

block 37, r - 100rw

EXAMPLE S EXAMPLE 4

Fig. 3.2 Simulated oil saturation vs. pressure at different points

in the reservoir. The plots show both drawdown and buildup

relations, and the positive time direction is indicated with

arrows.

block 1, r - rrTw
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Fig. 3.3 Levels of constant pressure and oil saturation.

Drawdown example 5.
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EXAMPLE <

Fig* 3.4 Simulated oil saturation in block 1 corapared with

saturation calculated from Eq.(3.2.24) (method of

Bøe et al.) and producing GOR (Raghavans method).

Drawdown and buildup.
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2 t 177 hrs

Fig. 3.5 Simulated GOR vs. dimensionless radius Drawdown.

EXAMPLE 5

1 At

10.6 hr s2 At

3 At 100 hrs

lOOOO

1 At

2 At

3 At

lOOOO

Fig. 3.6 Simulated GOR vs. dimensionless radius. Buildup.

1 t = 1.0 A hrs

3 t = 1011 hr s

4 t = 5011 hrs

5 t = 7511 hrs

6 t =10011 hrs

= 1.14 hr s

= 0.75 hrs

= 7.00 hrs

= 100 hrs
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Fig. 3.7 (c/X) /(c/X) i vs. mD for example 2,3,and 4,

drawdown and buildup. Effect of rate.
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EXAMPLE 1

block 1, r ~ r*
v,

i

block 19, r « lOrW

block 37, r * iQOrw

EXAMPLE 5 EXAMPLE 4

P (psi)

EXAMPLE 5

- K*
L.

500 1000 1500 2000 2500 5000 5500 4000

p (psl)

P (psi)

EXAMPLE 6

500 100O 1500 2000 2500 5000 5500 4000

p (psi)

8

•H

a. us
cx go •

Sl

i

Fig. 3.8 (c/X ) vs. pressure at different points in the reservoir.

Drawdown and buildup.
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block 19, r - lOrW

block 37, r - lOOrw

EXAMPLE 5
EXAMPLE 8

P (psl)
P (psl)

Fig. 3.9 c t/\ vs. pressure at different points in the reservoir.
Drawdown and buildup.

8
•H
(0
a

a

4J
<<

U

I

500 1000 1600 2000 2600 5000 5500 1000
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EXAMPLE 5

C3
Q ""

O
oo

2M
hJ rQ
S

to
V

,«*<*•

LO

M)

«Sl

63
i.

fcDi

PwDLIN

Simulated S(p)

Bøe et al. S(p)

Raghavan S(p)

Fig. 3.10 Dimensionless pseudopressure functions vs. dimensionless

producing time, tDi . Pseudopressure calculated from

the pressure-saturation relatlon of Bøe et al. (Eq.(3.2.24)

and Raghavan (Eq.(3.3.2) corapared with pseudopressure

calculated from simulated S(p) in block 1.

EH31 KE+OO 1.E+01 1.E+02 1.E+05 i.E+(M 1.E+OS 1.E+08
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EXAMPLE 4
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Fig- 3.11 Dimensionless pressure and
pseudopressure functions vs.

dimensionless producing time,
fcDi . Pseudopressure

is calculated from simulated S(p) in block 1,
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Fig. 3.12 Dimensionless pseudof

liquid solution.
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:ed from simulated S(p) in block 1

:ed from simulated S(p) profile

;ed from producing GOR and Eq.(3.3.S

)ressure profiles compared with the

and are defined relative

.utions at the outer boundary.
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example s

EXAMPLE 6
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simulatedCM

uL-p calculated

ea
9 1 .0

pDAi

Fig. 3.13 Dimensionless pseudopressure vs. tDAi corapared with the

liquid solution. "Simulated" mD is calculated from

simulated wellbore pressure and oil saturation in block 1.

"Calculated" is calculated from Eq.(3.3.6) and

an equation corresponding to Eq.(2.5.10).
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EXAMPLE 1
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:

S(p) in block 1

(method of Bøe et al. )

CM -I
GOR at shut-in

(Raghavan"s method)
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Fig.-. 3.14 Dimensionless pseudopressure rise

dimensionless shut-in time, Atp s ,

(drawdown) liquid solution.

during buildup vs.

compared with
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EXAMPLE i

PwDLIN

mwDs (AtDi )

mwDs (AtDs )

“wD s AtaD

EXAMPLE EXAMPLE 4

AtDi- AtD s . or Ata D

EXAMPLE EXAMPLE S

Fig. 3.15 Dimensionless pseudopressure rise during buildup

calculated from producing GOR at shut-in (RaghavarTs

method) vs. dimensionless shut-in times, AtDi and AtDg ,
and dimensionless shut-in pseudotime, At

corapared with (drawdown) liquid solution.
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Drawdown.

Pseudopressure calculated from

drawdown S(p) in block 1

tDi

Q

i-i
O

Buildup. 2M
SaPseudopressure calculated from

drawdown S(p) in block 1

/'////
/'

/'/'////
//

/////

PDLIN

Example 2

Example 3

Example 4

Fig. 3.16 Pseudopressure functions compared with liquid solution,

example 2, 3, and 4. Effect of rate.
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Pseudopressure calculated from producing GOR at shut-in

(Raghavan s raethod) vs. inverse Homer pseudo time.
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2000 2500 5000 5500 <1000 *500 5000 5500 6000

3.18 Gas condensate example. Oil saturation vs. pressure at

different points in the reservoir. Drawdown and buildup

Fi

2000 2500 5000 5500 *000 *500 5000 5500 8000

P (psi)

Fi 3.19 Gas condensate example. Simulated oil saturation in block 1

compared with saturation calculated from Eq.(3.2.24) (method

of Bøe et al.) and producing GOR method).

Drawdown and buildup.
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a.
ao

lD
O

r<

a

(c/X) vs. pressure at different

Drawdown and buildup.

Fig. 3.20 Gas condensate example

points in the reservoir

3.21 Gas condensate example. c t/\ vs. pressure at different

points in the reservoir. Drawdown and buildup.
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Fig. 3.22 Gas condensate example. Dimensionless pressure and

pseudopressure functions corapared with the liquid solution.
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Fig. 3.23 Relative permeabilities calculated from Standing's

correlations [16 ]-
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Fig. 3.24 Dimensionless pseudopressure fall vs. dimensionless

producing time, example 4. Effect of using

different relative permeabilities.
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Fig. 3.25 Dimensionless pseudopressure rise during buildup vs.

dimensionless shut-in time, AtDi example 4. Effect of

using different relative permeabilities.
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