Department

of
APPLIED MATHEMATICS

Numerical methods for the simulation of continous
sedimentation in ideal clarifier-thickener units.

by

R. Biirger, K.H. Karlsen, N.H. Risebro, and J.D. Towers

Report no. 161 October 2001

UNIVERSITY OF BERGEN

Bergen, Norway







Department of Mathematics ISSN 0084-778X
University of Bergen

5008 Bergen

Norway

Numerical methods for the simulation of continous
sedimentation in ideal clarifier-thickener units.

by

R. Biirger, K.H. Karlsen, N.H. Risebro, and J.D. Towers

Report no. 161 October 2001

iDlioteket






NUMERICAL METHODS FOR THE SIMULATION OF CONTINUOUS
SEDIMENTATION IN IDEAL CLARIFIER-THICKENER UNITS

R. BURGER”, K.H. KARLSENB, N.H. RISEBROC, AND J.D. TOWERSP

ABSTRACT. We consider a model of continuous sedimentation. Under idealizing assumptions,
the settling of the solid particles under the influence of gravity can be described by the initial
value problem for a nonlinear hyperbolic partial differential equation with a flux function that
depends discontinuously on height. The purpose of this contribution is to present and demon-
strate two numerical methods for simulating continuous sedimentation: a front tracking method
and a finite finite difference method. The basic building blocks in the front tracking method are
the solutions of a finite number of certain Riemann problems and a procedure for tracking local
collisions of shocks. The solutions of the Riemann problems are recalled herein and the front
tracking algorithm is described. As an alternative to the front tracking method, a simple scalar
finite difference algorithm is proposed. This method is based on discretizing the spatially vary-
ing flux parameters on a mesh that is staggered with respect to that of the conserved variable,
resulting in a straightforward generalization of the well-known Engquist-Osher upwind finite
difference method. The result is an easily implemented upwind shock capturing method. Nu-
merical examples demonstrate that the front tracking and finite difference methods can be used
as efficient and accurate simulation tools for continuous sedimentation. The numerical results
for the finite difference method indicate that discontinuities in the local solids concentration
are resolved sharply and agree with those produced by the front tracking method. The latter
is free of numerical dissipation, which leads to sharply resolved concentration discontinuities,
but is more complicated to implement than the former. Available mathematical results for the
proposed numerical methods are also briefly reviewed.

1. INTRODUCTION

We consider a model of continuous sedimentation of ideal suspensions of small solid particles
dispersed in a viscous fluid. It is well known that under idealizing assumptions, the settling of the
solid particles under the influence of gravity can be described by the one-dimensional kinematic
sedimentation theory formulated by Kynch (1952). This theory models the suspension as a mixture
of two superimposed continuous media, the solid and the fluid. Its essential assumption states that
if vs and v¢ denote the solid and fluid phase velocity, then the relative velocity of the solids with
respect to the fluid, v; = vs — v¢, is a function of the local solids concentration u only, v, = ur (u).
This assumption is well justified for suspensions of small rigid spheres showing no floc structure or
compressibility effects. Recent extensive discussions of Kynch’s and related sedimentation models
are provided by Bustos et al. (1999) and Biirger and Wendland (2001).

The basic balance equations are the continuity equations of the solid and of the fluid,

us + (uvs)z = 0, (S1881)
s (00wl =0) (1.2)
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where t is time, the vertical coordinate x is assumed to increase in the direction downwards, and
the subscripts ¢t and = denote partial derivatives. In terms of the volume-average velocity of the
mixture

q = uvs + (1 — w)vg,

the continuity equation of the mixture, obtained as the difference of (1.1) and (1.2), can be written
as ¢, = 0, i.e., g(-,t) is a constant function for each ¢ and is determined by boundary and feed
conditions. In particular, ¢ = 0 in a closed settling column without in- or outlets.

In terms of the velocities v;(u) and ¢ = q(z,t), Eq. (1.1) can be rewritten as

ur + (g(z, t)u + u(l - u)vr(u)):r = {0k

Defining the Kynch batch flux density function h(u) = u(1 —wu)v.(u), we can rewrite the governing
equation in the form

ur + (q(z, t)u + h(u))I = [0k (1.3)

The function h reflects the material properties of the suspension, and is related to the function fyx
used elsewhere by h(u) = — fox(u). Experiments aiming at determining the function h have been
conducted repeatedly (Tory 1961, Shannon et al. 1963, Davis et al. 1991, Chang et al. 1997). The
basic assumptions on h can be stated as h(u) = 0 for u < 0 and u > 1, h(u) > 0 for 0 < u < 1,
R'(0) > 0 and h'(1) < 0. We have chosen the value “1” as the maximum solids concentration
and simply assume h to be sufficiently smooth. The vast majority of Kynch batch flux density
functions h determined from settling experiments in the literature have at least one inflection
point (Bustos et al. 1999, Biirger and Tory 2000).

A very simple model for continuous sedimentation was studied by Bustos et al. (1990) (see
also Concha and Bustos, 1992), in which Eq. (1.3) is restricted to a space interval, say z € [0,1],
corresponding to a cylindrical vessel, and where the upper end = = 0 is identified with a feed inlet
and the lower z = 1 with a discharge outlet. The vessel is assumed to be fed continuously with
feed suspension at the inlet (surface source) and to be discharged continuously through the outlet
(surface sink). The overflow of clear liquid is not explicitly modeled. The volume average velocity
is a function of time only, g(t) = ¢,(t), where ¢, is a prescribed control function determined by
the discharge opening. In the model by Bustos et al. (1990), Eq. (1.3) is provided with Dirichlet
boundary conditions at z = 0 and z = 1, i.e., one intends to prescribe boundary concentrations
u(1,t) = ¢1(t) and u(0,t) = ¢o(t) at the feed and discharge levels, respectively. However, these
boundary conditions are overly restrictive in that they ignore that the solution values propagate
along characteristic curves (straight lines in the case of cylindrical vessels) and might intersect
the boundaries of the computational domain from the interior. This occurs when the vessel,
frequently referred to as Ideal Continuous Thickener (Shannon et al. 1966) empties or overflows.
A mathematically appropriate reformulation of the boundary conditions, which correctly takes
into account these situations, is provided by the concept of entropy boundary conditions (Bustos
et al. 1996).

This model, which was proposed first by Petty (1975), has some severe shortcomings despite its
amenability to mathematical analysis. Among them is the lack of a global conservation principle
due to the use of Dirichlet boundary conditions. It is preferable to replace the boundary conditions
at the ends of the vessel by transitions between the transport flux ¢(z,t)u and the composite flux
q(z,t)u + h(u), such that the problem is reduced to a pure initial value problem. Moreover, in a
realistic model the feed suspension should enter at a feed level located between the overflow outlet
at the top and the discharge outlet at the bottom. This gives rise to an upwards-directed volume
average velocity ¢; < 0 above and a downwards-directed velocity g, > 0 below the feed level. The
feed source itself is modeled by a singular source term. Such configurations were proposed by
several authors (Lev et al. 1986, Severin 1991, Barton et al. 1992, Chancelier et al. 1994, Concha
et al. 1995) under different names such as clarifier-thickener units or high-capacity thickeners.
Particularly thorough analyses of clarifier-thickener models were presented by Diehl in a series of
papers (Diehl 1995, 1996, 1997, 2000, 2001).
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It is such an improved “clarifier-thickener” model which is considered in this paper. Its main
purpose is to provide numerical methods that can be employed to simulate continuous sedimenta-
tion by computing approximate solutions of an initial value problem for a hyperbolic conservation
law of the form

s A gaflan, )l = (0 = ookl Ed () (1.4)
Here we make the non-standard assumption that the flux function g depends discontinuously on
the spatial variable = (details are given in the next section). To put the present work in the
proper perspective, we remark that Biirger et al. (2001) demonstrated that there exists a solution
to the clarifier-thickener model (i.e., the initial value problem for (1.4)). In this contribution, we
describe and demonstrate numerical algorithms by which approximate solutions to such models
can actually be computed. The choice of the numerical algorithms is guided by the theoretical
analysis (given elsewhere), which shows that they converge to the solution of the underlying model
as the repsective discretization parameters tend to zero (which, of course, is a highly desirable
feature). Included in our discussion here are a front tracking method and a simple finite difference
method. Both these methods have a solid theoretical foundation. The front tracking method is very
accurate since it does not contain any numerical dissipation due to the use of an exact solver for
Riemann problems of two scalar equations in two unknown variables (“2 x 2 Riemann problems”).
In particular, shock waves (i.e., admissible discontinuities in the local solids concentration) are
accurately resolved. Moreover, the front tracking method is unconditionally stable in the sense
that the time step is not restricted by the spatial discretization. The finite difference method,
on the other hand, contains numerical dissipation. Consequently, discontinuous waves may be
(slightly) smeared out. Also there is a time step restriction (the so-called CFL condition) since
the method considered here is explicit. However, compared with the front tracking method, the
finite difference method is very easy to implement.

The remaining part of this contribution is organized as follows. In Section 2 we provide non-
technical discussions of the front tracking and finite difference methods. In Section 3 the mathe-
matical clarifier-thickener model is described. The front tracking and finite difference methods are
described in detail in Sections 4 and 5, respectively. The performance of the numerical methods
are demonstrated in Section 6. Conclusions are summarized in Section 7.

2. THE FRONT TRACKING AND FINITE DIFFERENCE METHODS

The objective of this paper is to demonstrate that numerical methods which have arisen from
very recent research in the analysis and numerics of conservation laws with discontinuous fluxes
provide a tool for the efficient simulation of clarifier-thickener units. In this setion we recall the
general mathematical background and some recent advances for both the front tracking and finite
difference methodologies. Their specific applications to the clarifier-thickener model, together with
the necessary technical details, are considered in Sections 4 and 5, respectively.

2.1. The front tracking method. The main idea behind by the front tracking method was
introduced by Dafermos (1972). To illustrate it, consider the hyperbolic conservation law

Wg o) =0 =o€ @ Lo, 6 >0

u(z,0) = up(z), —o0o< z < 00, (2.1)

where the initial function ug is assumed to be piecewise constant and ¢ is a given flux function.
Then the entropy solution can be constructed by a superposition of solutions of Riemann problems,
i.e., solutions of the conservation law with initial data consisting of two constant states separated
by a simple discontinuity. If the flux function ¢ is piecewise linear, each Riemann solution con-
sists exclusively of constant states separated by shocks. When waves from neighboring Riemann
problems interact, the interaction will only involve constant states and therefore leads to new
Riemann problems and the construction can be continued forward in time. Thus, the construction
consists of solving Riemann problems and tracking straight-line discontinuities. In the general
case, the initial function ug is approximated by a step function and the flux ¢ by a piecewise
linear function. In this way rarefaction waves are approximated by a sequence of small shocks.
Variants of the method have been used by many authors, see Holden and Risebro (2001) for the
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history and many references. In particular, Holden et al. (1988) proved that the construction is
well-defined and terminates in a finite number of steps, even for non-convex flux functions, given
a finite number of constant states in ug(z). Front tracking was later formulated for hyperbolic
systems by DiPerna (1976), Bressan (1992) and Risebro (1993). Variants of the front tracking
technique based on Dafermos paper (1972) have also been used earlier to compute approximate
solutions to batch sedimentation problems, see Kunik (1992, 1993), Kunik et al. (1993) and Bustos
and Concha (1999). However, to apply front tracking to the advanced clarifier-thickener model
with continuous flow, one must be able to solve Riemann problems that are nonstandard in that
changes between flux functions, depending on the space coordinate z, are involved. Such solutions
were constructed by Gimse and Risebro (1990, 1992). Gimse and Risebro (1990) showed that
under some mild conditions, Riemann problems with a discontinuous flux functions always have
weak solutions. Furthermore, one can always single out a unique weak solution a being the limit
of a viscous approximation.

A convergence proof for the front tracking method for the clarifier-thickener model is given in
Biirger et al. (2001).

2.2. The finite difference method. The suggested finite difference algorithm is derived by
slightly modifying the standard Engquist and Osher upwind scheme (Engquist and Osher, 1980)
in order to handle the spatial variation of the flux appearing in the initial value problem for (1.4).
The essential idea is to regard the spatially varying flux g(z,u) as a function of u and a pair of
spatially varying parameters, i.e., g(z,u) = G(y*(z),7*(z),u). Then the flux parameter vector
(v!(z),v*(x)) is discretized on a spatial mesh that is staggered with respect to that of the solids
concentration u. Since the discretization of « is staggered against that of the conserved quantity
u, we can avoid solving the full 2 x 2 Riemann problem that would arise at each cell boundary if
the two discretizations were aligned (non-staggered). The result is a scalar finite difference scheme
in conservation form that incorporates a straightforward generalization of the Engquist-Osher
numerical flux first proposed by Engquist and Osher (1980). With the Engquist-Osher flux, the
resulting algorithm is a so-called upwind scheme, meaning that the flux differencing is biased in
the direction of incoming waves, making it possible to resolve shocks without excessive smearing.
The choice of the Engquist-Osher flux is also motivated by its close functional relationship to
the so-called Kruzkov entropy flux F(vy,u) = sign (u — ¢) (G(v,u) — G(v,¢)) (Kruzkov, 1970) and
the nonlinear singular function Wgq(7y,u) to be introduced in Section 5. The relationships can be
used to prove convergence for the sequence of numerical approximations. For standard (constant
parameter) conservation laws, the Engquist-Osher algorithm is well known to converge to the
correct entropy solution. That setting is covered by the now classical theory of monotone schemes
as developed by Crandall and Majda (1980) or Harten et al. (1976). In particular, the numerical
approximations converge to the unique entropy solution as the discretization parameters Az and
At approach zero, as long as a suitable CFL condition is enforced. For the case of a single
discontinuous parameter the modified Engquist-Osher scheme was proven to converge for the case
of a concave flux in Towers (2000) and for a flux with any finite number of critical points in
Towers (2001). Karlsen et al. (2001) extended the scheme so that it would apply to degenerate
parabolic equations with discontinuities in the convective flux, and established convergence to a
weak solution.

A future paper is devoted to the convergence proof for the finite difference method for the
clarifier-thickener model, i.e., the case of two discontinuous parameters.

3. THE CLARIFIER-THICKENER MODEL

Consider the configuration of Figure 1, where z = —1, 0 and 1 are assumed to be the levels
at which in normal operation, the clarified liquid leaves the equipment (overflow level), the feed
suspension in pumped into the unit (feed level), and through which the concentrated sediment
leaves the thickener (discharge level), respectively. At z = 0, the vessel is fed with fresh suspension
at a volume flow rate Qg (¢) > 0. The volume flow rate of the discharge, Q- (t) > 0 or equivalently
q-(t) = Q-(t)/S, where S denotes the constant cross-sectional area of the vessel, is also prescribed.
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q(t)=Qit)/S

overflow level z = —1 + t

clarification zone

feed level z = 0 + *¢$$$$T¢f¢f¢f¢ (IF(t) i QF(t)/S’ U’F(t)

settling zone

discharge level x = 1 + |

FIGURE 1. The one-dimensional clarifier-thickener model.

The volumetric balance of the mixture requires that at any time
@0 = @hler)) == Ol (3.1)

We assume that the volume flows satisfy Qg(t) > 0, @(t) > 0 and @;(t) < 0. Dividing (3.1) by
S shows that

(3.2)

gl )= {ql(t) =¢-(t) —Qr()/S <0 forz <0,
¢r(t) 2 0 for z > 0.

The prescribed local volumetric solids concentration of the feed flux is ur(t). Consequently, the
solids continuity equation for —1 < x < 1 can formally be written as
t t
e+ (gl O+ hw),, = o(z) LERED (339
where § denotes the Dirac unit mass located at z = 0, and g(z,t) is given by (3.2). Expressing
0 as the derivative of the Heaviside function H (defined by H(z) = 1 for z > 1 and H(z) = 0
otherwise) and noting that

Qr (1)
S y

a(z,t) = q(t) + H(z)(g-(t) — a(t)) = a(t) + H(z)
we can rewrite Eq. (3.3) as
us + (q(a:,t)(u - uF(t)) + q(t)ur(t) + h(u))z —0)

Taking into account that the Kynch batch flux density function h is zero outside the interval
(=1,1), we finally obtain the hyperbolic conservation law

W 2= G0, W) =0, =69 £ 2 9 1 > (3.4)
with the composite flux density function
q(t)u for z < —1,
t)u + h(u for -1 <z <0,
it g:((t))u c h((u)) + (@(t) — () up(t) for0<z <1, Sl
gr(t)u + (@ (t) — g (t))ur(t) for z > 1.

For the remainder of this paper we regard ¢;(¢), ¢-(¢) and up(t) as independent control variables
satisfying qi(t) <0, ¢-(t) > 0 (then we always have Qr(t) = S(¢,(t)—q(t)) > 0) and 0 < up(t) < 1.
We shall also also assume that the control variables ¢;, ¢, and 0 < up < 1 are constant with respect
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OO U2 @eh S 0F A I
FIGURE 2. The Kynch batch flux density function h(u) = ZLu(1 — u)”.

to ¢, which also handles the practically relevant case of piecewise constant (with respect to t) data.
Thus the model we consider is the following initial value problem:
u; + g(z,u); =0, —o0<z<o00,1%>0,

A 0) = apllE), =69 < P s ba (36)

where, in view of (3.5), g(z,u) has its obvious meaning. By a solution u we understand a weak
solution, which is allowed to have discontinuities. This means we do not require that u and its
derivatives satisfy the partial differential equation u; + g(z,u), = 0 in a pointwise sense. Rather,
we multiply this equation by a sufficiently smooth test function ¢, integrate over (—oco, o0) x (0, 00),
use integration by parts to move the derivatives from the solution to the test function, and require
the resulting equation to hold for all test functions from a suitably chosen space. Here, the weak

formulation reads as follows:
o0 (o o] o0
/ / (upr + g(z,u)p, ) dtdr + / up(z)p(z,0) dz =0 (3.7)
—o00 JO —00

for all test functions ¢ € C§°(R X [0,00)). In Biirger et al. (2001), we demonstrated that there
exists a weak solution to the initial value problem (3.6). The problem of existence of a solution
to (3.6) had been left open after the work in (Diehl 1995, 1996, 1997, 2000, 2001).
The flux function g is defined according to (3.5) by
qu oy 45 <& =1l
g(z,u) = < f(q(z),u) for 1<z <1, (3.8)
gru+ (@ — gr)up forz > 1.

The “interior” flux function f is defined as
flg,u) = q(u—ur) + h(u) + qur. (3.9)
For the plots and numerical examples in this paper we have used the following Kynch batch flux
density function (see Figure 2):
2T :
D)) = qu(l =y (3.10)

4. THE FRONT TRACKING METHOD

The clarifier-thickener model derived in Section 3 leads to three non-standard Riemann problems
that need to be solved. The solutions of these problems are constructed in Section 4.1. Equipped
with the Riemann solutions, we formulate in Section 4.2 the front tracking method for the clarifier-
thickener model. The front tracking method presented here is also used in Biirger et al. (2001) to
prove that there exists a weak solution to the clarifier-thickener model. This analysis is reviewed

in Section 4.3.
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flaq,u)

Um

Uu, [\ Uy

qu qiu

FIGURE 3. Construction of the solution of the Riemann problem (4.1) centered at
z = —1 with u, < @ (left) and u, > @ (right).

4.1. Solutions of the Riemann problems. Now we shall solve the Riemann problems at the
discontinuities of g(-,u). In this we follow Gimse and Risebro (1990), see also Biirger et al. (2001).
First we describe the Riemann problems at the overflow and discharge levels z = F1, each of
which involves one linear and one nonlinear flux function.

At the overflow level z = —1, the left flux function is given by f;(u) = qu and the right flux
function given by (3.9) with ¢ = ¢;. Precisely, we wish to solve the initial value problem (3.6)
around z = —1 and for small ¢t where

) ateie ap < — 1l
— 4.1
uo(z) {ur e a5 5> =1l )

There are two cases to consider depending on the sign of f (q;,u,). Let @ be defined by
i (o, @) =0 amel @ > (0, (4.2)

If f(q,u;) > 0 or u, <@, then the solution is given by a discontinuity moving to the left with
speed ¢, separating u; and 0, and a discontinuity moving to the right with speed f (q;,u,) /u,,
separating the values 0 and w,. If u, > 4, let uy, be given by um = f (¢, u,) /q (see Figure 3).
Then the solution is given by a discontinuity moving to the left with speed ¢;, separating u; and
Um, and a discontinuity located at z = —1 separating wu,, and u,. These two cases are shown in
Figure 3.

For z = 1 the situation is slightly different since f (¢,,u) can have both a local maximum and
a local minimum for u between 0 and 1. Now we wish to solve the Riemann problem defined by
the initial datum

Wy e < L
i {u: o a7 = 1l =)
Let fmin denote the value at the local minimum, and @ the corresponding u value, i.e.,
f(gr, @) = fin, (4.4)
and define u to be the unique solution of
f(gr,4) = fuin, (4.5)

where u < %. Then the solution of the Riemann problem depends on whether u; is in the interval
(u, @) or not. If w; € (u,u), then the solution is given by a composite u wave from u; to @, followed
by a ¢ wave with zero speed from % to um, and then by a wave with speed ¢, from uy, to u,. Here
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flgr,u) fgr,u)

Wz Ur

gu+ (@ — gr)urp gru+ (@ — gr)ur

FIGURE 4. Construction of the solution of the Riemann problem (4.3) centered at z = 1
with u; € (u,u) (left) and w; & (u,u) (right).

the term “composite wave” means a wave consisting of a shock followed by a rarefaction. The
right middle state uy, is given by
AL fmin i (QT il ql)uF
qr
If u; € (u, @), the solution is similar to the second case at £ = —1. Now the solution is given by a

g wave of zero speed from u, to un, followed by a right wave of speed ¢, from uy, to w,. In this
case the middle state uy, is given by

U’m

f(gr,w) + (¢r — @)ur

ar ;
Note that the state immediately to the left z = 1 is always in the set [0,u] U [a,1]. See Figure 4
for an illustration. For later use we shall refer to the waves moving out of the interval [—1, 1] as
left and right waves respectively. The waves with zero speed sitting at = F1 we call left or right
boundary waves. The waves moving into the region [—1, 1] we label u waves.

The Riemann problem defined by the discontinuity in ¢ at = = 0, which includes the feed
mechanism, involves two nonlinear flux functions on either side and is therefore more complicated,
but also covered by the general theory in by Gimse and Risebro (1990). This Riemann problem
is given by

Ul —

ut + f(g,u)e =0, (4.6)

Wy e g < (0 ap e e
L) = — 4.7
) {ur iioe ap > (0 a(e) {qr for z > 0, T}

where ¢; < 0 < ¢,. We here demonstrate that there exists a unique entropy solution for all w, and
u, in [0, 1], in the sense that this solution is the limit of a viscous approximation. This solution
consists of u waves, over which ¢ is constant, and a q wave, separating ¢ and g,.

For simplicity, we shall assume that f(g,u) is strictly monotone along the transition curve
T := {(u,q) : 8.f(g,u) = 0}, which is the curve in the (u, ¢)-plane that joins the local extrema of
f(q,-) with respect to u, see Figure 5. This means that the control parameters g;, g, and up are
chosen in such a way that d,f # 0 on T, which then implies that either u —ur <0 or u —ur >0
onT.

We assume that the left inequality holds on the left branch of the transition curve, and the
right inequality holds on the right branch. Furthermore, we shall assume that g, is so small that
f(gr, ) has both a local maximum and a local minimum in (0,1). We set g to be the largest value
of ¢, for which this is the case. If h(u) is chosen as (3.10) we find that § = 9/4. Thus in this case
we have the following restrictions on ur:

2—+/1—4q./9 2+ +/1—4q-/9
qr<%, and ——3q—/<UF<——3_gL- (48)
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4 f(“~q) — fmax q
/

u u u U
qr 0 .r | .r

Ely gt (o ap) = (0 @y g (s @) = 0

(]

0 uy Wy Wi 1 0 uy u; Uy 1

FIGURE 5. Solution of the Riemann problem (4.6) located at © = 0 with w; < u1 (left)
and w; > uy (right).

The restrictions (4.8) are inessential and stated for convenience only, since they give fewer cases
to discuss when solving the Riemann problem at z = 0.

For later use we depict this solution in the (u, q) plane, see Figure 5. We start at a point (u;, )
on the line ¢ x [0, 1] and move on a gray path to the point (u,, g.). There are two cases to consider
depending on the location of u;. Let fmax be the local maximum of f(g,,u) (such a maximum
exists for ¢. < q), and let u; < us denote the solutions of

fla,ur) = f(q,u2) = fmax- (4.9)

The set of all points (u,q) satisfying f(q,u) = fmax is shown as a dotted curve in Fiéure Gl
Similarly, if f (g,,u) has a local minimum in u, then we let f;, denote this value, and let us be
the unique solution of

f (QIaUB) T fmin- (410)

The solution path is depicted as a gray path in the figures. The horizontal segments are u waves
while the segments that move on contour lines of f(q,u) are ¢ waves. To find a particular solution,
follow the gray path from (q;,u;) (on the lower horizontal line) in the direction of the arrows to
the any point (g, u,).

For example, assume that u; < ui, i.e., we are in the first case, and that w, lies to the right
of the local minimum. Then the solution is given by a w wave connecting u; and us, followed by
a g wave connecting (us,q) with the local minimum, given by the point @, where @ is defined by
(4.4), where the right branch of T' intersects the line ¢ = ¢,, and finally a u wave connecting the
Tl Wit

As another example consider the case where u; is between u; and us, and u, is to the left of the
local maximum of f(g,,u). Then, according to the right part of Figure 5, the solution consists of
a u wave from w; to us (this wave will be a shock wave), followed by a ¢ wave connecting (u;, ;)
with (i, g,), where 4 is the local maximum of f(g,,u), followed by u wave from @ to u, (this wave
will be a rarefaction).

Finally, we mention that any Riemann problems occurring inside the intervals (—1,0) or (0,1)
are Riemann problems for a single scalar conservation law, and are solved by taking the envelope of
the flux function, see Holden and Risebro (2001) and Chapter 5 of Bustos et al. (1999). Riemann
problems outside the interval [—1, 1] are Riemann problems for a linear equation, and their solution
is trivial.
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4.2. The front tracking procedure. Now that we have determined the solutions of all non-
standard Riemann problems occurring in our application, we can employ them as a tool for
constructing approximations to more general Cauchy problems. The front tracking algorithm
we construct closely resembles the ones used by Gimse and Risebro (1992) and Klingenberg and
Risebro (1995, 2001). These algorithms are all based on the fact that for a scalar conservation law
of the form (2.1), one can construct the exact entropy solution if ¢ is piecewise linear on a finite
number of intervals, and ug takes values in the set of breakpoints of ¢ (Holden et al. 1988). Such
an algorithm was also presented by Bustos and Concha (1999). We shall make piecewise linear (in
u) approximations to f(q,u) and f (¢, u) in such a way that the solution of the Riemann problem
at £ = 0 is easy to compute.

To be specific, choose a (small) positive number 6. Let @; and @, denote the local extrema of
f(gr,u). For i =0,F1,F2,...let u;(¢) denote the solutions of

Jiaseela)li=0" N (4.11)
In other words, the curves u;(q) are the contour lines of f in the (u, ¢)-plane.
With a slight abuse of notation, we define for ¢ = ¢; and ¢ = ¢, the finite sets of points
{ui((JT)} = {Oaalvﬂﬁv 1} U {Ui(QT)} N [Oa 1]7 {Uz((II)} = {O,Ul,ﬂ'_},“?,, 1} U {Uz((ﬂ)} N [01 1]>
where u;, us and ug are defined by (4.9) and (4.10):

f(QIvul) = f(QHUZ) = f(QTsﬁ) = s GG f(QMUS) — f((ITaﬂ) = Jfoim:

see also Figure 5. We order the set {u;(q)} so that u;—1(¢) < u;j(¢). Then we define a piecewise
linear (in u) approximation to f(g,u) by

f g, uj41(9) — £ (9,v5(q))
uj+1(q) — uj(q)
for ¢ = q; or ¢,. Note that for a fixed (constant) g, the entropy solution of the initial value problem

Fogw) = f(gu5(@) + (u—u;() for u € [u;(q), uj41(q)], (4.12)

RS R e e e e IR
wl(,0) = upl@), =c9 <@ <L E9

can be found by front tracking if ug is piecewise constant, see Holden et al. (1988). Furthermore,
if uo takes values in the set {u;}, the solution will also take values in this set.

Note also that by construction of f°, the solution of the Riemann problems in case f is replaced
by f°, can still be described by Figure 5 for z = 0 and by Figures 3 and 4 for ¢ = F1. The
breakpoints of f° are also chosen such that if for some j the points (g;, u;) are connected to (g, u)
by a q wave, then u € {u;}. This means that if u; and u; are breakpoints, the solution of the
Riemann problem

i g = 0 a0 = e = 0,
w + fO(gr,u), =0, u(z,0)=ux forz>0

will take values among the breakpoints. Also, since the flux function is linear outside [—1, 1], then
a similar observation is valid for Riemann problems defined at z = F1. Since f° is piecewise
linear, the solutions of these Riemann problems will be piecewise constant, and the discontinuities
will move with finite speed.

Now we are ready to define the front tracking approximation to (3.6). Let

qu forr < —1,
9°(z,u) = < fO(q,u) for =1 w4 ai, (4.13)
UEW SR = ey o 1L < @

and let u$(z) be a piecewise constant approximation to ug taking values in the set {u;}. We define
u% to be the weak solution to the polygonal initial value problem

U6+95(17U6) — (I} 4 Colelir e (ot el
t o (4.14)
w®(z,0) = ud(z), —oo0< T < 0.
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The weak solution u® is constructed as follows: First solve the Riemann problems defined by the
discontinuities of ug and at the points 2 = F1 and z = 0. This will give a finite number of
discontinuities emanating from the discontinuities of ug z = F1 and x = 0. When these collide,
solve the Riemann problem defined by the state to the left and right of the collision. This Riemann
problem will be of the same type as the initial Riemann problems. Therefore we can continue this
process for as many collisions as we like, see Holden et al. (1988) and Holden and Risebro (2001).
In the next section, we shall see that there will only be a finite number of collisions for all ¢ > 0,
and hence u° can be defined for any t.

4.3. Analysis of the front tracking method. The main purpose of the present contribution
is to draw attention to the practical value of the front tracking method for the simulation of
continuous sedimentation processes. Nevertheless, the mathematical analysis of this method is
necessary in order to show that the correct (physically relevant) weak solution is approximated as
the discretization parameter ¢ goes to zero. This convergence property ensures that the numerical
method is reliable and is hence important for the practitioner. We therefore briefly summarize
some recent results of the mathematical analysis of the front tracking method applied to the
settler-clarifier model. For details we refer to Biirger et al. (2001).

From the present description of the front tracking procedure for continuous sedimentation it is
not obvious beforehand that the method is well-defined. For example, the collision of two discon-
tinuities gives rise to a Riemann problem whose solution can result in a new fan of discontinuities,
which in turn might produce new collisions and thereby could lead to an infinite number of dis-
continuities, such that the solution procedure never ends. It is therefore necessary to explicitly
demonstrate that this does not occur. To this end, first recall that for a fixed time ¢, the ap-
proximate solution is piecewise constant, where the constant values belong to a finite set which
is determined a priori through the piecewise linear approximations of the flux density functions.
Consequently, requiring that the number of discontinuities of u°(-,¢) remains finite for all times is
equivalent to stating that the total variation of u%(-,t), defined as the sum of the absolute values
of all jumps of u°(-,¢) (with respect to z and t fixed), remains bounded.

As in the papers by Gimse and Risebro (1992), Klingenberg and Risebro (1995, 2001) and
Temple (1982), it is at least difficult (and perhaps impossible) to prove directly for the settler-
clarifier problem that the total variation of u°(-,t) remains finite. However, it is possible to show
that the variation of a particular nonlinear functional of u’, the so-called Temple functional ¥
defined by

¥(g,u) = /0 101 (0, €)] d€ + £(q,0), (4.15)

is bounded. Roughly speaking, the difference ¥(g;,u;) — ¥(g2,u2) measures “how many” contour
lines in a g versus u plot such as Figure 5 separate (q,u;) and (g2, us). To show that the total
variation of ¥ is bounded, observe that the front tracking solution can be viewed as a sequence
of discontinuities or fronts, where we distinguish between left, left boundary, g, u, right boundary,
and right fronts, corresponding to discontinuities that travel to the left of z = —1 (i.e., upwards),
stationary discontinuities sitting at the discharge level z = —1, stationary discontinuities located at
the feed level z = 0, the “conventional” jumps of the solution involving one nonlinear flux function
of u only, the stationary discontinuities at the overflow level z = 1, and the jumps traveling to the
right of z = 1 (i.e., downwards), respectively. It is possible to define the strength F for each type
of fronts such that the strength majorizes the variation of the Temple functional. The strength
F(u®(-,t)) of the front tracking approximation or wave path u%(-,t) (as a function of t) is then
simply defined as the sum of all strengths of the different types of fronts involved.

The strength has an important property in conjunction with the front tracking method. Con-
sider the states w; = (g, w) and w, = (gr,u,) and assume that [w;, w,] is the wave path obtained
from appropriately solving the Riemann problem with left and right states given by w; and w,,
respectively. If v is any other wave path connecting w; and w,, then F([w;, w,]) < F(v). Biirger et
al. (2001) establish this minimizing property by a careful discussion of the solution of each of the
different types of Riemann problems involved. An additional inspection of the Riemann problems
occurring due to collisions of the different fronts then reveals that the total variation of the Temple
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functional is uniformly bounded by a constant which is independent of time and the discretization
parameter ¢, and indeed decreased by at least J each time a front is “reflected” from one of the
boundary fronts. Since on the other hand F > 0 by definition, such collisions can take place only
a finite number of times. For every fixed discretization parameter d, the front tracking method
leads to an approximate solution u® which can be computed in a finite number of steps, since only
a finite number of Riemann problems have to be solved and only a finite number of interactions
occur.

With these statements it is obvious that the front tracking method is well-defined and leads
within a finite number of steps to an approximate solution of the original initial value problem
(3.6) for every fixed value of the discretization parameter §. In fact, u° is the ezact weak solution
of the polygonal and with reasonably small effort solvable initial value problem (4.14). Exploiting
that ¥ can be inverted, it is possible to prove that the family {u’} of front tracking solutions
converges in an appropriate sense to a weak solution of the initial value problem (3.6), see Biirger
et al. (2001) for further details.

5. A FINITE DIFFERENCE METHOD

In this section we will describe another numerical method for the clarifier-thickener model. An
advantage with this method is its simplicity. As we shall see, there is no need to solve complicated
2 x 2 Riemann problems (as is the case with the front tracking method). Moreover, the numerical
method is given in terms of a very simple explicit updating formula (5.4) for advancing from one
time level to the next. However, to achieve this simplicity we must to some extent sacrifice the
superior accuracy of the front tracking method. We refer to Section 6 for numerical examples
illustrating the qualitative difference between the front tracking method and the finite difference
method.

We begin the construction of our finite difference method by discretizing the spatial domain
R = (=00, c0) into cells

IJ 5 [Ij—%‘:rj—e—%)’

where z; = kAz for k = 0, :t%,il,:t%, .... Similarly, the time domain [0,00) is discretized via
t, = nAt for n =0,1,..., resulting in the time strips

i = [tnvtn—i-l)-

Here Az > 0 and At > 0 denote the spatial and temporal discretization parameters respectively.
Let x,(z) and x™(¢) be the characteristic functions for the intervals I; and I", respectively, i.e.,

(2) I it & i n(t) ] Lokl =
e — / =
¥ 0 otherwise, i 0 otherwise.

Furthermore, define x7(z,t) = x;(z)x" (t) to be the characteristic function for the rectangle I; x I".
We will use UT* to denote the finite difference approximation of u(jAz,nAt). The iteration (5.4)
is started by setting

1 Titd
[JJO == AI/ o Uo(I) de (51)

We view the flux g(z,u) appearing in (3.6) as depending on two parameters v} (z) and ¥*(z),
which we write as a vector for brevity:

Then
g(z,u) := G(y(x),u) == 7 (z)(u — ur) + ¥*(2)h(uw) + qur,
with

fa

andis G —
g aton Tl

it O Tl 2/
0 for = ¢ (—1,1).

{1 for z € (—1,1),
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The parameter v'(z) corresponds to the mixture flow velocity g(z). The discontinuity at z = 0
is due to the separation between the clarification zone (z < 0) where the flow is upward (¢; < 0),
and the settling zone (z > 0) where the flow is downward (¢, > 0).

The spatially varying flux parameter vector ~ is then discretized as follows:

1 gafil
Yk = Ko /z iz )idz: (5.2)

i.e., on a mesh that is staggered with respect to that of w.
The difference solution {U7'} is extended to all of R x [0, 00) by defining

i A TN e €05 ) B S (5.3)

where A = At = MAz and A is the mesh size ratio specified below. Similarly, the discrete
parameter vector {7;, 1} is extended to all of R by defining

’YA(m) - ZX1+%(I)’Y]'+%7 z € R,
Ui

where x; 1 is the characteristic function for the interval Ij+% =l a0 )i
The difference scheme takes the following conservation form

UpH = U = A(Grj43, U UF) = Gy, U URL)). (5.4)

Here, the numerical flux G(v,v,u) is the Engquist-Osher numerical flux, generalized slightly to
accommodate the spatial variation of the flux G(vy(z), u):

G(y,v,u) = %(G(’y,u) - G(’y,v)) - %/v |Gy, w)| dw. (5:9)

The Engquist-Osher numerical flux is consistent with the actual flux in the sense that

Cllam,m) = €y, m).

~ In addition, for fixed v, G(v,v,u) is a two-point monotone flux, meaning that it is nonincreasing
with respect to v, and nondecreasing with respect to uw. In fact, the partial derivatives of the
numerical flux satisfy

min (0, Gy (7,v)) = Gu(7,v,u) <0 < Gyu(7,v,u) = max (0, Gy(v,u)). (5.6)
€

It is possible to show that for initial data uq(-)
following CFL condition is satisfied

u
[0, 1], if the parameter X is chosen so that the

2\ (max(—ql,qr) + max |h'(u)|) <1 (5:7)

then the computed solutions UT' remain in the interval [0, 1], the CFL condition (5.7) holds for
each succeeding time step and the scheme (5.4) is monotone.
Using the fact that the numerical solution operator is monotone and conservative, it is possible
to show that a discrete time continuity estimate holds:
o0 (o ]
a0 TR TR < AN R el iea (5.8)
j=—00 j=—o0
Here the constant C' depends on the total variation of ug and 7, but not on the mesh refinement
parameters Az and At.
As in the case of the front tracking algorithm, the critical ingredient in establishing convergence
of the sequence of approximations {u”} is a uniform bound on the spatial variation, as measured
by a singular transformation. For the finite difference algorithm, we use the singular mapping

Uea(y,u) = /O“ |0wG (v, w)| dw. (5.9)

It is possible to achieve such a uniform bound on the spatial variation by using the time continuity
estimate (5.8), along with the discrete entropy inequalities satisfied by the Engquist-Osher scheme.
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FIGURE 6. The flux density functions for Example 1 for ¢ < 2.5 (left) and ¢ > 2.5 (right).

The proof depends in an essential way on the close functional relationships between the viscosity
of the Engquist-Osher flux, the Kruzkov entropy flux F(v,u) = sign (u —¢) (G(v,u) — G(v,¢)),
and the singular mapping (5.9).

A detailed convergence proof for the finite difference method described herein will be presented
in a forthcoming paper.

6. NUMERICAL EXAMPLES

We consider here two numerical examples to illustrate the numerical methods.

6.1. Example 1 (front tracking method). In the first example, we choose the initial and
control functions
L7 itore v £ 29, -1 T <2150
e = g =

; . ¢ =06,
QAL ke ¢ 3> ) —0.2 fort > 2.5,

and initial data u(z,0) = 0. The flux density functions for this case are plotted in Figure 6.
Figure 7 shows the fronts generated by the front tracking method for this example, where the
discretization parameter § = 0.005 is chosen. Figure 8 displays the same front tracking solution as
a sequence of concentration profiles taken at various times. For ¢t < 2.5 the data of Example 1 are
the same as in Example 1 of Biirger et al. (2001), but in that paper the discretization was chosen
coarser (§ = 1/80). The example shows how the clarifier-thickener is first filled up at a solids feed
rate which exceeds the maximum possible solids discharge rate. Thus the sediment level rises above
the feed level. Instead of letting the unit overflow, as in the simulation of Biirger et al. (2001),
we drastically reduce the solids feed flux fr but keep the discharge velocity ¢, constant. As a
consequence the sediment level decreases and eventually the ideal clarifier-thickener unit empties.
The change of flux density functions at ¢t = 2.5 becomes visible in Figure 7 in that at that time
several discontinuities split into two diverging fronts. The discussion of Sect. 4.3 has shown that
this does not occur during the standard application of the front tracking method without changes
of the flux density functions.

6.2. Example 2 (front tracking method). In the next example we study the way changes of
the feed flux propagate into the thickening and clarification zones. We keep the discharge bulk
flux constant at g, = 0.6 and vary the values of ¢; and ur. This is done in such a way that the
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0.0 4.0 8.0

o

FIGURE 7. Example 1: Fronts calculated by the front tracking method with § = 0.005.

feed flux fr = (¢ — q)ur is kept constant. Specifically, we choose

—04 for0<t<1, (IR GRS o () A

= iew €€ 3 CJ0E e Ol <€ L 3

G T S TS il I TS R
=028 fonrii= 5 0.7 i 1 = 5.

Observe that all values give fr = 0.6. Moreover we set initially ug = 0.5.

In Figure 9 we show the fronts resulting from a simulation with § = 0.005, in the time interval
[0,20]. At this time a stationary solution is not yet reached.

In Figure 10 we show the same numerical solution as concentration profiles at various times.
We remark that a stationary solution, i.e., a steady state of continuous sedimentation, is reached
at t ~ 145. The last diagram of Figure 10, corresponding to ¢t = 150.0, shows the stationary state.

6.3. Example 1 (finite difference method). In Figures 11 to 14 we show the results of applying
the finite difference scheme to Example 1. In all cases, we used Az = 0.02 and At = 0.0025, i.e.,
both the clarification and thickening zones are subdivided into 50 cells. Each dot in Figures 11
to 17 illustrating the finite difference method corresponds to the solution value of one cell.

The overall solution pictures indicate that the finite difference scheme approximates the same
solution as the front tracking method, as expected. The numerical examples illustrate the ten-
dency of the finite difference scheme to ‘smear out’ discontinuities due to numerical viscosity. For
example, Figures 13 (a) and (b) show several isolated dots near z = —0.4. This means that
the upwards traveling concentration discontinuity, which is sharply resolved by the front tracking
method (as seen in the lower left and middle diagrams of Figure 8) is smeared out over several
computational cells.

6.4. Example 2 (finite difference method). In Figures 15 to 17 we show the results of running
the finite difference scheme on Example 2. Here we used Az = 0.02, At = 0.0025 for all runs,
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= t=0.1 =02 Z =03

- t=0.4 t=0.5 t=1.0

t=2.0 = t=3.0 = =80

FIGURE 8. Example 1: Concentration profiles calculated by the front tracking
method with § = 0.005.

with the exception of Figure 15 (b), which corresponds to ¢t = 0.6. For this one run, we halved the
mesh parameters to Az = 0.01 and At = 0.00125 in order to resolve the small downward jump
occurring at x = 0. With the coarser mesh, this feature did not appear at all.

The ‘smearing’ effect of the finite difference method is also visible in this example. For instance,
compare Figure 15 (a) with the corresponding front tracking result, i.e., the upper left diagram of
Figure 10.

7. CONCLUSIONS

The present work shows that ideal clarifier-thickener models proposed by several authors can
be simulated accurately and efficiently by two alternative methods, an accurate and rapid front
tracking method and a mildly disspative and somewhat slower, but very easily implemented finite
difference method. The numerical examples show that despite their fundamentally different design
principles, both schemes approximate the same solutions.

We emphasize that the mathematical analysis, providing a theoretical foundation of the reli-
ability of the methods, is by no means trivial, despite the apparently simple clarifier-thickener
setup, and based on very recent analyses (Biirger et al., 2001; Karlsen et al., 2001; Towers 2000,
2001). The essential main problem that had to be solved is of course the correct treatment of the
feed level flux discontinuity located at x = 0. It is strongly emphasized that both methods regard
the feed mechanism and the associated flux discontinuity as a true point source. It had not been
obvious previously that this would be possible at all. This becomes apparent, for example, in
the paper by Chancelier et al. (1994), who analysed a clarifier-thickener model that in the special
case of a cylindrical vessel is equivalent to ours. However, they smooth out the discontinuities
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FIGURE 10. Example 2: Concentration profiles calculated by the front tracking
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T (a) z (b)

y
: ' =

0 0.5 1 0 0.5 1

FIGURE 11. Example 1: Concentration profiles calculated by the finite difference
method for (a) t = 0.3 (120 steps with At = 0.0025), (b) ¢ = 0.4 (160 steps with

AT—10:0025):
T (a) 0 (b)
—1+ -1
0 @) L
11, ; b u 11, : \|= u
0 0.5 1 0 0.5 1

FicURE 12. Example 1: Concentration profiles calculated by the finite difference
method for Example 1 for (a) ¢ = 0.5 (200 steps with At = 0.0025), (b) t = 1.0
(400 steps with At = .0025).

+— U

0 0.5 1 0 0.5 1

FIGURE 13. Example 1: Concentration profiles calculated by the finite difference
method for (a) ¢t = 2.0 (800 steps with At = 0.0025), (b) ¢ = 3.0 (1200 steps with
At = 0.0025).
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FIGURE 14. Example 1: Concentration profiles calculated by the finite difference
method for ¢ = 8.0 (3200 steps with At = .0025).

= | R R StlE
i j

0 05 1 0 0.5 1

FIGURE 15. Example 2: Concentration profiles calculated by the finite difference .
method for (a) ¢ = 0.2 (80 steps with At = 0.0025), (b) t = 0.6 (480 steps with
A = U00125),

0 (a) T (b)

0 05 i 0 05 i

FIGURE 16. Example 2: Concentration profiles calculated by the finite difference
method for (a) t = 1.5 (600 steps with At = 0.0025), (b) ¢ = 6.0 (2400 steps with
At = 0.0025).
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T (a) T (b)

0 0.5 1 0 0.5 1

FIGURE 17. Example 2: Concentration profiles calculated by the finite difference
methos for (a) ¢ = 20.0 (8000 steps with At = 0.0025), (b) ¢ = 150.0 (60000 steps
vl AN = (01 (010845))).

of the discontinuous flux in order “to avoid technical difficulties” (p. 957) and continue to work
with the “smoothed” problem, which can be expressed as a (harmless) conservation law with a
smooth source term. In a similar manner, Barton et al. (1992) distribute the feed source in
their numerical discretization over several cells. The present paper shows that these “difficulties”
have not continued to be insurmountable and that such “smoothing” (although in many contexts
widespread engineering practice) is unnecessary.
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