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ON STRONGLY DEGENERATE CONVECTION-DIFFUSION PROBLEMS
MODELING SEDIMENTATION-CONSOLIDATION PROCESSES

R. BURGER?, S. EVJE®, AND K. HVISTENDAHL KARLSEN¢b

ABSTRACT. We investigate initial-boundary value problems for a quasilinear strongly degenerate
convection-diffusion equation with a discontinuous diffusion coefficient. These problems come
from the mathematical modeling of certain sedimentation-consolidation processes. Existence of
entropy solutions belonging to BV is shown by the vanishing viscosity method. The existence
proof for one of the models includes a new regularity result for the integrated diffusion coefficient.
New uniqueness proofs for entropy solutions are also presented. These proofs rely on a recent
extension to second order equations of Kruzkov’s method of “doubling of the variables”. The
application to a sedimentation-consolidation model is illustrated by two numerical examples.

1. INTRODUCTION

In this paper, we consider quasilinear strongly degenerate parabolic equations of the type
Oru+ 8- (q(t)u + f(u)) = 02A(u), (z,t) € Qr, A(u) ::/ a(s)ds, a(u) >0, (IE810)
0

where Q7 :=Q x T, Q :=(0,1) and T:= (0,T). In general, we allow that the diffusion coefficient
a(u) vanishes on intervals of solution values u, where (1.1) is then of hyperbolic type; therefore this
equation is also called hyperbolic-parabolic. Although equations of this type occur in a variety of
applications, we here focus on the application to sedimentation-consolidation processes [3, 8, 9],
which leads to an initial-boundary value problem (IBVP) with mixed Dirichlet-flux boundary
conditions (“Problem A”) or alternatively to an IBVP with two flux conditions (“Problem B”).
It is well known that solutions of (1.1) develop discontinuities due to the nonlinearity of the
flux density function f(u) and the degeneracy of the diffusion coefficient. Therefore one has to
consider entropy solutions in order to have a well-posed problem. Moreover, in regions where (1.1)
is hyperbolic, solution values propagate along straight-line characteristics which might intersect
the lateral boundaries of ()7 from the interior and require the treatment of Dirichlet boundary
conditions as entropy boundary conditions [2, 7]. A review of properties and known existence and
uniqueness results related to the concept of entropy solutions for equation (1.1), as well as an
overview of numerical methods for strongly degenerate parabolic equations, is provided in [11].

Our particular application justifies various assumptions on the coefficients of (1.1) and on the
initial and boundary data. Most notably, many constitutive equations proposed for these processes
imply that a(u) = 0 for v < u. and that a(u) jumps at u. to a positive value, where wu. is a given
constant, the so-called critical concentration. We therefore insist on using a discontinuous diffusion
coefficient a(u). This case had not been covered by the previous existence and uniqueness analysis
of Problem A by Biirger and Wendland [6], which relies on relatively strong assumptions on the
regularity of the coefficients of equation (1.1) and on the initial and boundary data: in particular,
a(u) 1s assumed to be continuously differentiable. We point out that the previous analysis [6] was
limited to Problem A, and that Problem B has not been treated so far.
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The first objective of this paper is to show existence of entropy solutions belonging to BV (Qr)
for these problems when the diffusion coefficient is discontinuous. We show that smoothing out
the jumps of a(u) and of the initial and boundary data by a standard mollifier technique will not
cause new singularities when the smoothing parameter tends to zero in the vanishing viscosity
method. As a part of the existence proof of Problem B, we show that the integrated diffusion
coefficient A(u) belongs to the Holder space CU1/2(Qr). This is a significantly better regularity
property compared to the result 0, A(u) € L*(Qr) valid for Problem A.

The second objective of this paper is to present new uniqueness proofs for both problems based
on the technique known as “doubling of the variables”. This technique was introduced in Kruzkov's
pioneering work [13] as a tool for proving the L' contraction principle for entropy solutions of scalar
conservation laws and very recently extended elegantly by Carrillo [10] to a class of degenerate
parabolic equations. It is the extension in [10] that we adopt here to our initial-boundary value
problems. We emphasize that these uniqueness proofs merely require that the functions f(u) and
A(u) are locally Lipschitz continuous (a(u) may be discontinuous) and that they are not based
on deriving jump conditions as in [24]. In fact. continuity of a(u) has been assumed in previous
papers [6, 24, 25] in order to derive such jump conditions. Furthermore, the jump conditions —
and thus the corresponding uniqueness proof — derived by Wu and Yin [25] (see also [7]) have
at present no multidimensional analogue, whereas the uniqueness approach presented here also
works in multidimensions [4]. Having said this, some new results dedicated to the solution of this
problem are available, see Vol’pert [20].

We mention that to produce an entropy solution belonging to BV (Q7), it is necessary to require
that the initial function ug belongs to the class B of functions for which TV(d: A(u)) is uniformly
bounded with respect to regularization. This condition is rather restrictive but satisfied by most
initial data occurring in the context of the sedimentation-consolidation problems. Our problems
are also solvable for ug € B (say ug € BV(Q)), but then it is only possible to show existence of an
entropy solution in the larger class CY2(T; LY(Q))NL®(T; BV(Q)), also referred to as BV} 1/2(QT)
[22]. In this larger class, one can not assume a priori that the traces of the entropy solution at
the boundaries of Qr exist. To resolve this problem one needs a reformulation of the concept of
solution that avoids these traces. Such a solution concept has been employed by Wu [22], but will
not be considered here since it is not obvious how to prove uniqueness of such solutions.

This paper is organized as follows. In § 2, we recall some properties of mollifiers and related
functions, state the initial-boundary value problems with the respective pertaining assumptions
on the data and formulate definitions of entropy solutions. In § 3. existence of entropy solutions
is shown by the vanishing viscosity method and the improved regularity result valid for entropy
solutions of Problem B is derived. Uniqueness of entropy solutions is shown in § 4. In Section 5 we
present two numerical solutions of the IBVP modeling sedimentation with compression, in which
the assumptions for the existence of BV solutions are satisfied.

2. MATHEMATICAL PRELIMINARIES AND DEFINITION OF ENTROPY SOLUTIONS

2.1. Mollifiers and related functions. Let w € C§°(R) be a function satisfyingw > 0, suppw C
(—1,1) and ||w||z1(x) = 1, and define a standard mollifier [16] with support in (—h. h) by wx(z) =
w(z/h)/h. A C* regularization of a bounded function b(u) is then given by the convolution

h
({52 cop @) 5= / b(u — v)wp(v) dv.
—h
Moreover, we define for sufficiently small A > 0 the functions
on(z) i:/ wi(€)dE, pn(z):i=1= pplz—2h), vn(z) =ionlz = (L= 2h)), (2.1)

which have the property stated in the following lemma given in [24].
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Lemma 1. Let v € LI(T:L”(Q)). If the traces yov = (yv)(0.¢) and viv = (vl 1) exist
a.e. in T, then we have for ¢ € C*°(Q7)

B
lim//Q 5I<<,9(1:,t)(ph($)—+—1/h(x)))l'(x‘t)d1‘dt:/ (¢(1.t)~,1v—¢(o,z)700) @i
74 0

hl0

2.2. Statement of Problem A. We consider the IBVP

Oce + Oc(q(t)u + f(u)) = 97 A(u), (z,1) € Qr, (A1)
u(z,0) = uo(z), z€Q, (A2)
(1L = pl(t). & (020Y, (A3)
Flu(0,2)) ~0aA(u(0,2)) =0 t€ (0,7, (Ad)
where we assume
f 1s continuous and piecewise differentiable, f <0, supp f C [0, el M ke = By (@22
a(wy >0, supp a Csuppy . () =0 for s < i, 0'< U, = taen| (223
g(t) <0 Vt €T, TVy(g) < o0, TV(¢') < 0, (2.4)

Since A is monotonically non-increasing, sgn(k; — ko)(A(ky) — A(k»)) = |A(k1) — A(k2)|. Defining

a:{() = (@ 2) o0 s N(w) A(w) ::/ well@les, & >0
0
and U, := [—¢, umax + €] for € > 0, we can state the regularity assumption on ug as
ug € B := {u € BV(Q) : u(z) € Up Yz € Q; TVa(0zAc(u)) < My uniformly in 5}, (25

We comment on the assumption (2.5). First note that, if uy € B, then also @y € B. This
requirement is needed to show that the entropy solution of the initial-boundary value problem is
L' Lipschitz continuous in time. It might be difficult to verify whether a given 1nitial function
belongs to B, but, for example, all piecewise constant functions defined on Q do so.

The boundary datum ¢; is assumed to satisfy

0 < ‘rol(t) < Umax, t € T (26)
1 changes its monotonicity behaviour at most a finite number of times. 2:10)

In particular, we admit that the functions up and ¢; may possess jumps, and note that (2.6) and
(2.7) imply that TVg(p1) < oo. The assumptions (2.2)—(2.7) are essential in the proof of existence
of an entropy solution belonging to BV (Q7).

Remark 1. Of course, if a(-) is sufficiently smooth, then the requirement that uo € B can be
replaced by the requirement TVq(d-up)) < My. In particular, the existence analysis conducted in
[6] is contained in the analysis presented below.

2.3. Definition of entropy solutions of Problem A. Since weak, possibly discontinuous solu-
tions are in general not unique, we need a selection principle or entropy criterion. This is included
in the following solution concept. Wherever notationally convenient, we set g(u.t) := q(t)u+ f(u).

Definition 1. A function v € L=(Qr) N BV (Qr) ts an entropy solution of Problem A if the
following conditions are satisfied:

9 Au 2(Qr); (2.8)
Yo € C™ ((0,1] x T), ¢ > 0,supp ¢ C (0, 1]><‘T VEe R :

// {|u—1\]dw+sgn(u—k)[ (u,t) — g(k,t) — 0 A(u }drdt

/ {=sen(er(t) = B)[aCrau.1) — g(k,1) = 710: A(w)] p(1.1)
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+ [sen(miu — k) —sgn(e1(t) — k)] [A(nu) - A(k)]()rp(l.t)} dt > 0; (2.9)
for almost all t € T, vo (f(u) — 0:A(u)) = 0; (2010
for almost all z € Q, ltij%l (et () (Za)

Entropy inequalities like (2.9) go back to the pioneering papers of Vol'pert [19] and Kruzkov
[13] for first order equations and Vol’pert and Hudjaev [21] for second order equations.

9 4. Statement of Problem B. We also consider Problem B which is obtained from Problem
A if the boundary condition at z = 1, (A3), 1s replaced by the total flux condition

(g(u,t) — 0 A(u)) (1,t) = ¥(t). t € (0,T). (B3
We have to assume that

either ¥ =0 or 3£>0,M; >0:&a(u)— (¢t) + f'(u) > M,. (22

(3N
=
(-]
S

All other assumptions (2.2), (2.3) and (2.5) remain valid. Here, we assume that
Wit Es mi&l(g(u,t)) <U(t) <0, ¥(t) > g(umax,t); TVHT) < co. (2.13)
u€gUop

Problem B is also of interest in the application of the sedimentation-consolidation model. since
frequently the feed flux ¥ rather than a boundary concentration ¢, is prescribed.

2.5. Definition of entropy solutions of Problem B. Here, the definition of entropy solution
is analogous to Definition 1:

Definition 2. A function u € L*=(Qr) N BV(Qr) is an entropy solution of Problem B if (2.8)
and (2.11) in Definition 1 are satisfied, if for all o € C§° (Q1), ¢ > 0 and k € & the mmequality

// {!u — k|0vp + sgn(u — k){g(u.t) —glk,t)— arxl(u)]a”:} dtdz > 0 (2.14)
Qr
holds, if the boundary condition (2.10) ts vald. and of

71 (g(u,t) — 9, A(u)) = ¥(t) for almost all t € T. (2315

3. EXISTENCE OF ENTROPY SOLUTIONS

3.1. Existence of entropy solutions of Problem A. Existence of entropy solutions is proved
here by the vanishing viscosity method. Therefore we replace a(u) by a.(u®) and use the regular-
1zations fo(w) = (f *w)(u), ¢-() = (g * w)(&) and g-(u,t) = fo(w) + g-(t)u. Note that(2-2)
implies that supp f. C U.. The functions uy and Lpl are replaced by smooth approximations uj
and ¢ with u§ — uo in L}(Q) and ¢ — ¢; in LY(T) for ¢ | 0. The solution to the degenerate
IBV P is then obtained as the limit for ¢ | 0 of the family {u®}.5¢ of smooth solutions of the
regularized parabolic IBVP (referred to as Problem A® ).

dyu® + 0 (ge(t)u’ + fe (u¥)) = Oz A: (v°), (x.1) € Qr, (A°.1)
(0 = @ (r). ThER), (A®.2)

wt (1, 6] =00 (U e ] (A5.3)

(Falas )= 0, A (Gl )02y = 0 0 (A .4)

To ensure the existence of a smooth solution of Problem A® for any fixed value £ > 0. the functions
ui and pi have to satisfy first order compatibility conditions:

(D) = 2310 (B8l
—14:(0) +f;(“6(1))} (u5)(1) = o’ (uf(1)) [(UB)/(I)]?O(UB(U)(”f))”(l) = (§)' (0). (3.1h)
a(uf(0))(ug) (0) = f (u§(0)) =0, (3.1¢)

where a(u) = a.(u). In [6] it is required that the functions a(u). uo and ¢, do already satisfy
the smoothness conditions necessary for the existence of a smooth solution of the Problem A®.
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The compatibility conditions are established there by setting <p1 = o el il = d((al=t (F (o)
where h® satisfies ||h®|| = (q) = O(¢) with supp h* C [0,e]U[1 —¢, 1]. \1oreover In that paper, the
functions up and ¢; are assumed to satisfy a priori the compamblht\ conditions (3.1) with respect
to a(u) = a(u), and the choice of h® ensures that (3.1) remains valid for a(u) = a(u) + . Here,
the regularity assumptions made in (6] are relaxed to (2.5) and (2.6). We set

= 0 (IR A e S o e (5.2
1 i 7 > = e,
ot ol ) i P Wl e v =l e
up(z) 1= uglz®) for 2e <& <l —2e, pift) == §
(=) ke A = i 2 T
—c ot <d)c
and define the regularized initial and boundary data by ug(z) = (wo * we)(z) for z € O and

i) = (BT *we) (1) for t €T,

Lemma 2. The functions uf and ¢ satisfy the regularity assumptions necessary for the existence
of a smooth solution of Problem A and the first order compatibility conditions (3.1). They also
satisfy ug(z) € U forx € Q, p5(¢) €Uy fort € T,

TVr(91) £ TV (p1) + Juo(1) — po(0)], TVaq (u§) < TVq + up(0) + .
Proof. The compatibility conditions (3.1) follow from
up(1) = 31(0) = uo(1), (uf)' (1) = (¢5)' (1) =0, (u§)'(0) =0, f:(u§(0)) = fe(—2) = 0.
From w, > 0, we obtain ¢f > 0 and u§ > —¢. Since umax — tg(z) > 0 for all z € B, we have
0 < ((¥max — U0) * we ) (Z) = Umax — (g *w:) (2) forz e R,

that is, uf < umay, and by the same argument, ©] < Umax- Furthermore, we have

TV (u§) = TVa (u§), TVk(¢]) = TVa(y),

TVR (¢1) = TV (p1) = TV (p1) + |uo(1) — ¢1(0)]
TVg (ug) = TVa (us) = TVa (ug) + u(0) + <.

Following [16], we show that mollifying the functions u; and 7] does not increase their total
variation, respectively. Recall that the total variation of a function g € L1(IR) can be expressed as

Vi) = sup [ s(a)¢'(2)dz, D= { e Ch): follo <1},
PEDJR

Then we have

TVg(ug) _sup// o(z — y)we (y)@' (z dz/dx_sup/ /uDl—y& (we(y)o(2)) dzdy.

peD weD
Using the substitution 7 := 2 —y, y := —y, the symmetry w.(—y) = w.(y) and finally replacing z
by z and y by y and setting . (z) := (¢ * w.) (z), we obtain from this
UV = sup/ / ug(2)0r (we (y)p(z — y)) dedy = sup / uo(z)pl(z) de,
p€eD weDJR

and hence, noting that { g, e SO R ) el < 1} @l

TVg(ug) < sup / uo(z)e'(z)de = TVe(ug). (353)

pEDJRK

The inequality TVg (¢]) < TVg (p1) follows in the same way. (]

Lemma 3. Let u be a smooth solution of Problem A°. Then there exist positive constants M,
Mo and Mgz such that the following estimates hold uniformly with respect to =:

||u" (o) ||L,O(Q < My, (3.4)
10w (-, )llp1q) < Mo forallt € T, (3.5)
||dtu H[‘l‘QT) = 1’\[3. (-36)
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Proof. For every ¢ > 0, Problem A® has a unique solution u® € GHILEP/ HO) @G> (),
3 > 0. This is shown in [6] by applying the well-known results from [17]. The uniform boundedness
of u can be shown in a standard way by rewriting Problem A® in terms of exp(—A't)u®(z,t) and
exp(—Kt) (umax + € — u°(z,t)), where K > 0 1s an arbitrary constant, and showing that these
functions are nonnegative on Qr, see [6]- " Hencetwer havesustn SRl Tors (2, v) e Qr; in
particular, (3.4) is valid. Estimate (3.5) can be established here by following the derivation in [6].
where more regularity was assumed on the initial and boundary data. and by arguing additionally
that mollifying the data does not increase their respective one-dimensional total variations with
respect to z and ¢. Similarly, estimate (3.6) can be proved by following the derivation in [6]. where
assumption (2.7) is required. Here, the derivation of these estimates will be performed in detail
for Problem B (see § 3.2). O

Estimates (3.4), (3.5) and (3.6) imply that the family {u®}.5¢ of solutions of Problem A® is
bounded in Wh(Qr) C BV(Qr). Since BV(Qr) 1s compactly imbedded in L'(Q7). there exists
a sequence £ = ¢, | 0 such that {u"} converges in LY(Qr) to a function u € L= (Q7)NBV(Q1).
To show that u is an entropy solution of Problem A, we must show that the integrated diffusion
function A(u) possesses the required regularity.

Lemma 4. The limit u of solutions u® of Problem A" satisfies condition (2.8).

Proof. Multiply equation (A°.1) by (u—¢i(t)), integrate over Qr and use the boundary conditions

to obtain (see also [6])
i !
dr—// u (o5 ) (t) dtdz
0 73

i
i e ()@ dide = — [ 5 () = (0
77 0

gt
+/ arusgg(ue.z‘)dtdx+/ (uf(0,%) — 05 (t))ge()u®(0,t)dt. (3.7)
Qr 0

It is easy to see that (3.7) implies that

T M

// )(0:uf)? dtdz < 5M32 4+ My Ms + ||gelloo T Mo
98

( )8, u||L2(Qr) is uniformly bounded with respect to c. However. since a(u”) 1s
bounded, we can conclude that [|0, Ac (u®) ) is also bounded. Therefore, passing if necessary
to a subsequence, A (u°) — A in L*(Qr) and Ol ~1 (uf) — 0. A weakly in L*(Qr) as ¢ | 0. Since
A (uf) — A(u) a.e. as ¢ | 0, we conclude that A = A(u) a.e. and thus condition (2.8) 1olds ]

Lemma 5. The vanishing viscosity imit u of solutions u of Problem A satisfies the entropy
inequality (2.9) and the boundary condition (2.10).

For the proof, we need the following lemma given in [24].

Lemma 6. Ifv € LY (Qr) and 8zv 1s an absolutely continuous measure, then for o € C' (Qr)
with supp ¢ C Q x T there holds

T
// (3I;,:vdtdx:/ (v1vp(l,t) — 01'99(0‘1))611‘—// w0l v dtdz.
Qr 0 e

Proof of Lemma 5. We multiply the viscous equation (A7.1) by sgn,(u® — k)p. » € CF(Qr).
©>0,suppe C (0,1] x T, k € R, integrate over @7 and use integration by parts to obtain

I8
—// [zf—kj,,0,gdtdx+/ sgn, (us(1.t) — k) [ge(w* (1,2).6) = ge (k. )] 2( 1, t) dt
@z 0

co

—// sgn, (u® — k) (ge(v",t) — ge(k, t)) 0y didzx 3.

— // sgny (uf — k)0 ut (ge(u',t) — g.(k,t))p didz
af
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r
:/0 sgn, (u(1,1) — k)0, (Ac (u¥))(1,t)e(1, 1) dt (3.9)

L // sgn, (u® — k)0; (A (v®) — Ac(k))Orp dtdz — // Sgn;(u" — k)(8ru) a. (uf)p dtdr.

T

The last integral on the left-hand side of (3.9) vanishes when 7 | 0, while the last one is nonneg-

ative. Noting that v4(1) = 1 and v} (1) = 0, we obtain from this when n | 0 the inequality
// [u® — k| Oy + sgn(u’ —-A)[ M o) = e, t)]) }(/1(/1’
> ; a5
—/0 sgn (] (t) = k) (9e (u(1,8),8) — ge (k1) — O Ax (u)(1, 1)) (1, t)wp (1) dt (3.10)

dis
—/O sgn (e (t) = k) [Ae(u®) — Ac (k)] 6z (o, wn(2))(L, 1) di

-i—// sgn (u® — k) (Ae(u®) — A (k) B2 dtdz > 0.
Qr

We have

T
// sgn (u® — k) (Ao (u®) — A (A))@ggodtdx:/ sgn (u(1,2)— &) x
i 0

x (Ae(uf(1,1)) — As(k))(aﬁa)(l,z‘)dt—// 0, (sgn(uf —A')(Af(uf)—A;.(k)))(‘)”cdtdx,
Qr
which, by using Lemma 1 and the fact that
B (sgn(u — k) (A(u) — A(lc))) =sgn(u — k)0 (A(u) — A(k)) in the sense of measures,
vields

// sgn(u® — k) (A (u°) — A (k) %o dide

Qr

- 7

-LO—/ sgn('/lu—k)(_4(71'u)—A(ls))(ﬁrga)(l.t)dt—// sgn(u —k)0r (A(u) — A(k))Ore dide.
0 ar

Moreover,
78
—/O sgn (5 (1) — ) (AL (1) — Ae (k) 8 (92, () (1,1) dt
:—// sgn (] (t) — k) (Ae (u®) — A (k)02 (pvn) dtdz
Qr
—// 0x (sun(#5(6) = k) (A: (%) = Ac(k) ) 0r(ovs) dtd
i // sgn(p1(t) — k) (A(u) — 4(L))d (pvy) dtdx

~ [} senlea(t) = 000 (A = Ak a0 i
a0
Taking the limits ¢ | 0 and h | 0 and using Lemma 6, we obtain inequality (2.9) from (3.10). To

verify that the limit satisfies the boundary condition (2.10), we multiply equation (A.4) by a test
function ® € C§°(7T) and integrate over T to obtain

r’
:/ (fe(u®) — 0z A (u)) (0, ) B(2) dt
0

:—// aAff(uf)—t?ue(uf))@(tmhu»dfdr—// e
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:// (Opu® + qe(£)Fru® ) P(t)pp (2 dtd.r—// (fe(uw®) — OpAc (1)) D(t)pn(z) dtdz. (3.11)

The first integral on the right-hand side of (3.11) vanishes for A | 0. The boundary condition at
z = 0 follows then from

// 8, A (u)) B(t) () dtde
4 T

ili—// (F(w) — e A() B()y () dtdz 22 [ 30(f(w) = A S dt. O

0
Lemma 7. The limit function u of solutions u® of Problem A satisfies the initial condition (2.11).
To prove Lemma 7, we need the following variant of Kruzkov's lemma [13] proved in [12].

Lemma 8. Assume that there ezist finite constants c1 and co such that the function u : QxT — B
satisfies ||Ju(-, t)||eo < ¢1 and TVq(u(-,t)) < co for allt € T, and that u(z,t) is weakly Lipschitz
continuous in the time variable in the sense that

1 n
/(u(r,tg)—u(x,tl))gp(r)dx <Otz —11) )
0

n=

) Vo eCP(Q), 0<t; <ta<T

Then there ezists a constant ¢, depending in particular on ¢y and co, such that the following
interpolation result 1s valid:

s el e Ry, T (3.12
(

Proof of Lemma 7. Multiplying equation (Af.1) with a test function ¢ € C§(Qr) and using in-
tegration by parts it is easy to see that the statement of Lemma 8 holds with n = 2, 1.e. there
*(-,7) —ul|z1(q) < er!/3 holds uniformly in ¢ for sufficiently small
7 > 0. This implies for 7 | 0 and ¢ | 0 that the initial condition (2.11) satisfied. O

As a consequence of Lemmas 2 to 5 and 7, we obtain
Theorem 1. Under the assumptions (2.2)—(2.7), Problem A admuts an entropy solution u.

3.2. Existence of entropy solutions of Problem B. To show existence of entropy solutions
of Problem B, we consider the regularized parabolic IBVP B*, which is obtained from Problem A®
if the boundary condition (A®.3) is replaced by

(g (D + fe(u') = 8z A (u*))(1,1) = Ve (2), 1€ (0,T]. (B*.3)

Here f. and A. denote the same regularizations as before. Obviously, the definition of uj has to
be modified slightly; here we set ug(z) := (up * we) (¢) and ¢.(t) := (¢ *we) (), where

L for x > 1 — 2¢,
() (e ito 2 e o el e S =
Ul i= e O Wz 5 =12e, =
0 up () L : Gl 9 <t < T,
Lz o @ & Ye,

and z¢(x) and t°(t) are defined in (3.2). The first-order compatibility conditions appropriate for
Problem B® are then given by (3.1c) and the condition

q-(0)ug (1) + fo (ug(1)) — a (ug(1)) (s )L = (0) (3H13))

valid at = 1, t = 0. This condition is satisfied if we set W, (t) := (¥ * w.)(t), where

~ 0 e 1 5 A,
W) o= .
W= ) e e < 0 < I

As in the previous case, mollifying the functions ug, ¢ and ¥ does not increase their respective
total variations. By the classical theory of quasilinear parabolic equations, also Problem B has a
smooth solution u¢ € C**t4:1+8/2 (Qr) for a fixed value of £ > 0.
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Lemma 9. Let u® be a solution of Problem BS. Then there erist positive constants C')y and Cl
independent of € satisfying

=@t < Umax + Che for (z.t) € W (3.14)
In particular, there ezists a constant My such that lufllL~(@qr) < My holds uniformly in <.
Proof. The maximum principle can be applied in a similar way as for Problem A and as in [6],
but the treatment at the boundary = = 1 is different. Suppose that u® assumes a maximum at

(=l =S Ot o << e o e (1) tg) > 0 must be valid; without loss of generality we may
assume that dzu®(1,¢9) > 0. Inserting this assumption into (B.3). which can be expressed as

el ) = (ge(u (1 ) St ()] /ac (v (1.1)), (35,115

reveals that then g.(t)(u®(1,t0),t9) > W.({g) holds. Due to the regularity assumptions on f(u)
and ¢(t), we may conclude from this that

g(u(1,t0),t0) > ¥(to) + O(e). (3.16)
Since g(u,t) < W(t) for u > umay, inequality (3. ) wmplhiest Weie @21, o) L Mg == O]

Now assume that u° assumes a local minimum at (1, to), this implies d-u®(1,¢y) < 0; again we
have to consider only the case d,u(1,#;) < 0. This assumption yields g. (u®(1.10),t0) < W.(tg).
In view of ¥(t) < ¢(t)u = g(u,t)|uco, this can not hold for —u > O(¢), and we conclude that
u(l,tg) > O(e) is - valid. These arguments, combined with the discussion of extrema of u¢ on the
remaining parts of Q7 fol llowing the analysis of Problem A, imply that estimate (3.14)1s valid. O

To derive estimates on the derivatives of u®, we first need to prove the following lemma.
Lemma 10. Let u be the limit function of solutions u® of Problem B°. Then 0, A(u) € L?(Qr).

Proof. Multiplying equation (A¢.1) by u® and Integrating over Q7. we obtain

ar’ 1
// as(us)(axu‘)zdfdaz:/ u® (a.(u )8 u" — g.(u* t)) dt — l/ 9y (uf)? dtde
7 0 Qr

// Opu® dtdr
1

T 1 1 ; 78 JE! 1
:/ (uf (1,8)W,(2) + q<(t)us(0,t)) dt — 7/ () dr—/ Gl vl @,
0 2 0 0 0 0
where G (u,t) fo (s,t)ds. Obviously, we have the uniform estimate
// )(0zuf)? dtdz < TMs (|9 |0 + My + 2||Ge||oo) =: Ms, (BT
T
hence 0, A (u® L*(Qr) independently of ¢ and the conclusion of Lemma 10 follows as in the
proof of Lemma 4. (]

We note that the regularity result expressed in Lemma 10 will be significantly improved in § 3.3.

Lemma 11. Let u® be a solution of Problem B-.
a) In the case where W = 0, there exists a constant Ms such that the following estimate holds
uniformly in <:
10z (-, D] 1y < M for all t e T. (3.18)
b) In the case where a(u) — (q(1)+f’(u)) > M, for some positive constants £. M, there erists
a constant Mg such that the following estimate holds uniformly in =:
HarUE”IJ(QT) S A\[h (319)
In both cases, there exists a constant My such that the following uniform estimate is valid:

[|0su® (-, t)||pr ) < My for allt € T. (3.20)
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Proof. Let approximations sgn, and |- [, of the sign and modulus functions be given by

Som(iqe S 5 r j s
sgm () e {1’777 i£ 7] < 1. | ! sgn, (€)d€, n > 0. (3:21)

We first consider the estimate on &;u®. We define v° := d;u® and w® := d,u° and differentiate
equation (Af.1) with respect to t to obtain
80" = 0, (0r (=ge (u,8) + ac(w ) ) = 0o (O1(=gelu’ 1) +ac(w)uf) ). (3.22)

Multiplying (3.22) by sgn, (y°), integrating over Qr, := Q2 x (0,T0). 0 < Tp < T, integrating by
parts and using the boundar} conditions yields

To
/ 0¢|v5|,7dtd3:§/ sgnn(vs)(—\lfé(f)—|—q2(l)uf(1,f)+qa(t)l‘s(l,t))dt (323)
Qry 0

_// sgn (v°)0:v° (al(u)w® — fl(u®) — q:(2))0° dt(ll’—// sgn;](vs)a:.(u‘_)((‘).,l‘f)2 dtdz
@, @

T 1
+/ sgn,, (v°)ge (1)u
@ 0

Observe that

To To
ity m/ sgn(vf(Lt))(\P;(t)+q;(t))df+/ g:(1)|v°(1,1)] dt < TVy(¥.) + TVa(g:).
0 0

dt — //Q sgn, (v )L (wdtdz = I} + D + 3+ I} + I
To

By Saks’ lemma, 13 e 0; and I,:; < 0. Finally, we have 1[# <

oot a6 ) yand

To i
R ._/ qs(t)/ sgn(v® )ws drdt. (3.24)
0 0

To evaluate the integral I3, we have to derive the estimate on dyu’.

a) Let ¥ = 0. To obtain an estimate on J,u°, differentiate (A®.1) with respect to x. Setting
We = Gy, we get

Byt + 02 (q= ()" + fo(u)) = 85 (ac(w)uw). (3.25)

Multiplying equation (3.25) by sgn, (w®), integrating over Q1 and using integration by parts yields

// sgn, (w*)0,w* dtdz = // sgn, (w* )02 (a. (v )w® — g-(u”. 1)) didz
Qr Qr

r 1
= / sgnn(wf)&.(as(u")u:s —g-(u®,t))| dt+ // sgn’n(u*f)0Iw5(0ugs)(u°ft)zf dtdz
0 0 T

—// sgnln(u;s)(‘)Iu,*sai,(lf)('Ltr")2 dz‘dx—// sgrl'n(u':)(ts(if)(&ru“)2 dtdzx.

From the nonnegativity of the last integral, from the initial condition and from equation (A®.1),
we obtain

i
/ lw®(z. T, dz </ }(uo) (x)‘n (1I+/ sgn, (w(1.t))dus (1.t) dt (3.26)
0 0
—/ (w(0,t))0rus(0,1) dt+// sgn W), w (Fyge )(u(u®, t))w® dtdz
0 T

— // sgn, (w)0: w Oz a. (u )u' dtde =: [‘n3 - I,; + [,'] + I& + [nm.
i

From Saks’ lemma (see [2. 18]) we infer that /) — 0 and [;0 — 0 for n | 0. By the boundary
condition (B¢.3), we have for ¥ = 0 that w®(1.¢) = g. (u*(1,t),t)/a-(u?(1,t)). We have therefore
either w(1,1) < 0 or w®(1,t) = 0. However. the latter is true if and only if u*(1.7) assumes the
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constant value —€ or umax + ¢. Letting £ = {t € [0, 7] : us(1,t{) = —= or u(1,%) = Umax + €}, we
note that d;u®(1,¢) = 0 a.e. in E. We therefore conclude that

7——/ sgn(w(1,1))3pu (1, 1) / St (1,1) w(1,0) — u(1,T). i)

Applying the same argument to the boundary condition (A®.4 ), we have

i a’
e / sgn(w(0,1))8u (0,1) dt = / Bpus (0, 1) dt = u(0, T) — (0. 0). (3.28)
0 0

From (3.26) we obtain then for n | 0:
1624 (. T)llzxy < 11(wg) i) + w5(0,T) = v (1, T) < [[(ud) |2 () + Umax + €.

which proves estimate (3.18). Inserting this into (3.24) shows that Bt g [t "Cnse
quently, the right-hand part of the limit for 7) | 0 of (3.23) is uniformly bounded In <. Estimate
(3.20) follows since ug € B and hence |[v*(+,0)||z1(q) is uniformly bounded.

b) In this part of the proof, we follow Wu [23]. We now assume that the second alternative of
(2.12) holds, from which we may infer that

§ae(u) = (g + fi(u)) > My, My =M, +0(c) > 0. (3.29)

Multiplying equation (A®.1) by —sgn, (w*) and integrating over Q vields

1
/ sgn, (w)(—ge(t) — fe(u))w’ dz = —sgn(w'(1,1)) (g (u(1,)) — V. (t))
0
1

1
+sgnn(wf(O,t))fg(us(O,t))+/ sgn, (w®)0z w'a. (uf)w’ dr+/ sgn s s ds (3030
0

0

Note that first integral on the right-hand part of (3.30) vanishes due to Saks’ lemma. For o L0
we then obtain from (3.30)

-1 i’
/ (—qsm—f;(lﬂ)lw"!drs?erlloo+Hqs||oo+H‘I/s||x+/0 0¥ | . (3.31)
0

INH//QT [v¥| dtdz.  (3.32)

P

1/2 1/2
w® | dtde < (// as(zf)dtdx> <// as(e(orus)e dtdx)

el (S En R LGS

Integrating (3.31) over [0, Ty, we obtain

J[ (=00 - re el dde < o215
Oz

From (3.17) we obtain
// a.(u®)
JIQT,

Consequently, adding foT Ea.(u®)|w*|dtdz to both sides of (3.32) yields

// (En i) = oy e s it
@

< EMs + To (2l felloo + [1ge e + 1P

oo + [1gelloo + RS

L +// [l
Oz,
In view of (3.29), we finally obtain

// |we | dtdz < \Ic,+—// |v° | dtdz, (3.34)
@ T



12 BURGER, EVJE, AND KARLSEN

where Mg := [EMg+To (2| felloo + 11geloo + 11 ¥e o) ]/M,. Using (3.34) we obtain from (3.24) that

I§ < |lgelleo <A19+ —// |1-5]dtdr)
M, Jgn,

Using this estimate in (3.23) and sending 7 | 0, we see that v® satisfies the inequality

To
/ll xT01d1</ |vf ( r0|d1+'\[10+\[11/ /ll (o)t (3.35)

for some suitable constants Mo and M;;. Note that the first integral on the right-hand side 1s
bounded since we assume ug € B. Using Gronwall’s lemma, we obtain from (3.35) the desired
estimate (3.20). Finally, using (3.20) in (3.34) for Ty = T shows that (3.19) is also valid. O

Remark 2. Note that we have not been able to establish that |0 u (-, t)||L1(q) ts uniformly bounded
when the second alternative of (2.12) holds.

As in § 3.1, we may conclude from the estimates established by Lemmas 9 to 11 that there
exists a sequence € = £, | 0 such that the sequence of solutions {u°"} of solutions of Problem B*
converges in L}(Qr) to a function u € L=®(Q7) N BV (Q7). We now prove:

Lemma 12. The viscosity limit function u of solutions u® of Problem B satisfies inequality (2.14)
for all p € C® (QT), ¢ > 0 and k € R and the boundary and initial conditions (2.10) and (2.15).

Proof. To show that u satisfies the integral inequality (2.14), we follow the first part of the proof
of Lemma 5 by multiplying equation (A°.1) by sgn, (v* — k)p, » € C5°(Qr), ¢ > 0 and k € I,
and letting 7 | 0 and ¢ | 0. Note that in this case, no boundary terms appear. The verification
of boundary condition (2.10) is, of course, exactly as in the second part of the proof of Lemma 5.
Using the function v} instead of pp and starting from

4
0= / (ge(u(1,2)) = 0x Ac(u(1,1)) = W (1)) @(1) = 0,
0

the boundary condition (2.15) can be verified in the same way. As for Problem A. the initial
condition (2.10) can be inferred from estimate (3.20). O

Summarizing, we have:
Theorem 2. If (2.2)-(2.5) and (2.13) hold, then Problem B admuits an entropy solution u.

3.3. An improved regularity result for entropy solutions of Problem B. In Lemma 10,
we proved that the vanishing viscosity solution u of Problem B satisfies d,A(u) & hl@n)as
required by the definition of entropy solution. The purpose of this section is to show that A(u) is
actually more regular than this; namely, we have that A(w) 1s Holder continuous on Qr.

Lemma 13. Let u° be a solution of Problem B°. Then there exists a constant Mo > 0 such that
the following estimate holds uniformly with respect to c:

102 Ae (u)| Lo g7y £ M2 (3.36)
Proof. Define V* = —q.( — fe(u®) + a.(u®)d,us. Equation (A°.1) can then be written as
Gt senting thls into (3.22), we obtain
0z (0:VF) + 0s ([qsu) + fi(u)]0: Ve + q;<t)uf) = 37 (a: (u")0:V°). (3.37)
which implies that V¢ satisfies an equation of the type
8:VE + [ge(t) + fL(u)] 8 Ve + ghut = 0x(ac(u’)0:VF) + C(2). (3.38)

Evaluating (3.38) at 2 = 0 and using the boundary condition (A®.4) yields C'(¢) = 0. In view of
Problem B¢, V¢ can be considered as the solution of the linear IBVP with Dirichlet boundary
conditions

BV g () + Ll T} 0, Ve Figout = 85 (a{uTae i o 2ie O e (0,77, (3.39a)
Ve(z,0) = —q.(0)u5(z) — fe(ud(z)) + a- (u5(z))(ug) (z), z €8, (3.39b)
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VG = ) e s (3.39¢)
Ve = e (A N (3.39d)
Since ug € B, the right-hand part of equation (3. 39b) 1s uniformly bounded in <, and so are those

of (3.39¢) and (3.39d). Thus, the maximum principle implies that there exists a constant M, such

that the uniform estimate ||V i Mo holds; as a consequence, we have shown (3. 5 6)) I ]

Theorem 3. Assume that u* — u a.e. in Qp ase | 0. Then there ezists a subsequence ¢, | 0
such that A(u®~) — A(u) uniformly on Qr and

A(u) € CYVXQ7). (3.40)

Proof. We shall estimate the L! continuity in time of V¢ applying Lemma 8. Integrating equation
(3.39a) against a function ¢ € C}(Q2), and exploting the relation 9,V = = 0;u® and Lemma 11, we
obtain for 0 < t; < t, < T:
1

(V (z,t2) = VE(z,t1))p(z) dx

/ / ) + fL(u® ] Ve — qiu® + 9, (ac (uf)0, \v"));p(x)dr(/t
ty |

tZ/{ geutp(z ([QE(t)+fZ(US)]VE—GS(US)(?{US>QOI(I‘)}C{.L’(H‘

< (ts = 1) {Ilqgll Mulllleg + ((ltell + 12110 Fre + el 37) [l -
Applying Lemma 8, we obtain
3;‘\[13>OZ l” —‘ wtl)HLl(Q)Si\jl.’i\/z‘i’—'tl- (311)

We use this to obtain a continuity in time estimate of A.(u). From the definition of 1’ we obtain
A (uf(z,12)) — Ae (u(z,t1)) / {aE (o) )ia v (Gt a (ur (& ¢ ou () }df

= [ {00+ @] (e )~ uie10)) + VoL ta) = Ve (e01) )

0

and using the L! continuity in time estimates (3.20) and (3.41),
|Ae (w5 (2, 82)) = Ac (u(2,11))| € (I9elleo + 2 M1t lloo + Flloo) (F2 — 11) + Miavis — 7. (3.42)
In view of Lemma 13 and (3.42), there exists a constant M4 > 0 independent of ¢ such that
’:15(115(;);3,?3)) — As(us(,yl,tl))’ < Miq (f.Lj — .’L‘1| + \/|f3 — 11 > Y(z1,t1), (ra,ts 0) € Q[‘

The Ascoli-Arzela compactness theorem then yields the existence of a subsequence of {A(us)}
converging uniformly on Qr to a limit A € C'11/( (Q1) and we conclude easily that A = Ay 10

Remark 3. If one could prove for the solution u® of Problem A that =0,us(1,t) is bounded uni-
formly in <, then, under some additional technical assumptions, it is easy to see that Theorem 3
would also be valid for Problem A.

4. UNIQUENESS OF ENTROPY SOLUTIONS

4.1. General results. We consider Problem A or B and assume only that f and A are locally
Lipschitz continuous functions. Observe that if u is an entropy solution of Problem A or B. then
1t 1s easy to see that the equality

// {u(},y-i— glu,t) — g(k.t) — 0. A(u )](‘)‘r;}d.v(/t:() (4.1)

holds for all g € C5°(Qr). An approximation argument will reveal that (4.1) holds also for all
0 € L*(T; HY(Q)) N W (T; L>=(Q)). This immediately implies d;u may be viewed as an element
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in L?(T; H-Y(Q)), since d, A(u *(Qr) and obviously u. g( t). A(u) € LP(Q7) for all p. In
what follows, we let (-, ) denote the usual pairing between H~ (..) and H(Q).
For later use, introduce the function

k
Ah(k):/ v(A(r)) dr,
0

where ¢ : B — R is a nondecreasing and Lipschitz continuous function. Recall that A(u) = 0 for
u < ue, A(-) is increasing in (e, Umax), and A(u) = A(¥Umax) =: Amax for u > umnax. Thus the
range of A(-) is the interval [0, Amax] and therefore [Ay (k)| is bounded by [k|v(Amax).

We shall need the following “weak chain rule” (see [1, 10]), which is here properly adapted to
our problem.

Lemma 14. Let u: Qp — E be a measurab/e function saizsfyzng the follou'zng four conditions:
(a) u € L‘”(QT AICETENDY, (@) w0) = uy € L=2(R), (] Ome L2(T; H Q) wadifd)
Alay & BAF: Hi(Q)). Then, for a.e s 6 T and every nonnej(mze © € C3(Qr) for which
Bl s = e = 01k e e

—/ (Bru, ¥ (A a’t // 5¢@dtd:r+/ﬂ. (ug)p(z, O)f{x—/ e s s (s W
0 Q

Proof. In the sequel let © be as in Lemma 14. We can assume without loss of generality that

¥(0) = 0. If (0) £ 0, we smlply replace ¥ by ' = ¥ —(0) and note that A ;(u) = Ay (u)—v(0)u.
Note that A, is a nonnegative and convex function. Convexity implies that for a.e. (2.1) € Qr,
we have
Ay (u(z — Ay (u(z,t — 7)) < (wlz,t) —u(z, t — 7))V (A(u(z. 1)),
where we define u(t) = ug for t € (—7.0). Multiplying this inequality by ¢(z,t) vields
Ay (u(z,t))p(z,t) — Ay (u(a, t—1))o(z,t —7)+ Ay (u(z,t — 7)) (p(z,t — 7) — 2(2. 1))
= Ay (u(z,1))p(z,t) — Ay (u(z, ¢ — 7)) p(z,1) < (u(z,t) —u(z,t — 7)) (A(u(z, 1)) e(z,1).
(4.2)

Note that ug, Ad(uo) € LY(Q) and u, Ay(u) € L= (T; LY()). Dividing (4.2) by 7 and integrating
over Q2 x (0,s), we get

// Ay (u(z,t))p(z,t) dtdl——// (uo(z))e(z,t — 7) dtde

// Aw(u(l‘,t ))(’r’(-r,t_T) Y(-l‘. ))dl’dt (_13)
¢ QJ0

/Q/Oé(u( s ) U( s /)) ( ( (I ))) ( )([1(}1
T Bl = 5 o a 1 t

Since ¢ € C§(Qr) and J.A(u) € s (QT) we have L'(A(u)); 6 L*(T; H}(Q)). Therefore,
exploiting that u € C(T; LY(Q)) and dyu € L*(T; H~}(Q)), we can 7| 01in (4.3) and obtain

/.A (u(z, s))e(z, s) d.L—/A ug )z, 0) dx

// w{u) dt,/did;r</ (G, ¥ (A(u)) ) dt,

for a.e. s € T. Convexity implies also that for a.e. (z,t) € @7 and t > 7, we have
Ay (u(z,t)) — Ay (u(z, t = 1)) > (u(z,t) — u(z,t — 7)) (A(u(z, t — 7))).
Multiplying this inequality by ¢(z,t — 7) yields
Ay (u(z, 1)) p(z,t) — Ay (u(z, t — 7))p(z,t — 7) + Ay (u(z.2)) (o2, t = 7) — (2. 1))
= Ay (u(z,?))o(z,t — 7) — Ay (2 (J: t—71))o(z,t —T) (4.4)
> (u(e, ) — ule,t — 7)) ¥ (Alulz.t = 7))ple.t = 7).
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After dividing (4.4) by 7 and integrating over Q x (7, s), we obtain

// Ay (u(z,t)) f(a:tdid.v——//ﬂ u(z,t))o(z,t)dtde

—// Ay (u(z, 1)) (¢, — 7) — p(x, 1)) dedt (4.5)

// (z,t) —u(z,t — 7)Y (A(u(z, t — 7)) o(z, t — 7) didz.

Finally, similar to the case (4.3), letting 7 | 0 in (4.5), we get, for a.e. s € T,

/Ad((rs)) (.I‘Sd.l—/ﬂu ug)p(z,0) da
Q

—// Aw(u)arpdidrz/k@,u,u‘(.&(u))p)dt‘
Q 0

This concludes the proof of the lemma. (5]
The following lemma is an adaption to our problem of Carrillo’s [10] main observation:

Lemma 15. Let u be an entropy solution of Problem A or B. Then, for any nonnegative ¢ €
C52(Qr) and k € (uc, Umax), we have

// {]u — k|0rp + sgn(u — k)[g(u,t) —g(k,t)— 81‘4(u)](?rc,9} dt dx

= lim// (Eir.4(u))3sg11'n(_4(u) — A(k))pdtdz. (4.6)

nl0

Proof. In what follows, we always let ¢, k be as in the lemma and use the approximation sgn,,
(see (3.21)) for the sign function. Introduce the function Yn(z) = sgn, (z — A(k)) and note that it
satisfies the hypothesis of Lemma 14, so that

7
—/ <(7,u,sgnn(44( ) — i — // (u)drp dtdr.
0

Since u satisfies (4.1) and sgn, (A(u) — A(k))p € L*(T; HA(Q)), we have

T
_/o (Oru,sgn, (A(u) — A(k))p) dt

+ // [gfat.t) — gk 2 = ('71.4(11)]ar(sgnn(ml(u) — A(k)) ) dtdz = 0,
which implies

// Aufq(u)é)tgodidx-i-// (g(u,t) — g(k.t) — 0, A(u)) 0, (sgn, (A(u) — A(k)) ) dtdz = 0.
Qr 7

(4:7)
Since A(r) > A(k) if and only if r > &k, sgn, (A(r) — A(k)) — 1 as | 0 for any » > k. Similarly,
sgn, (A(r) — A(k)) — -1 as g l 0 for any r < k. Consequently, Ay (u) — |u — k| a.e. in Qr as

7 | 0. Moreover, we have |A, (u)| < |ul, so by Lebegue’s dominated convergence theorem

/ Ay, (u)0rp dtde = // — k|0 dtdz.
”JO Qr T

// (u,t) = g(k,t) — - A(w)] 0 = (sgn, (A(u) — A(k))p) dtdr

We have

= lim// {g(u‘t) —g(k.t) — 6}_r_4(lz)]ﬁrsgnn(A(u) — A(k))pdtdr

nl0
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nn// (u,t) —g(k,t) — drA(u )]:g (Alw) — A(k))Orp dtdx
¢

1710

im // (u,t) — g(k.t)]sgny (A(u) — A(k))9r A(u)p dtde
U i

— lim // ((%A(u))“sgn/n (A(u) — A(k))p dtde
nl0 7
1m// (u,t) —g(k.t) — 0 A(u )}s 2 (A(u) — A(k)) O dtdx

nl0

—— hm/ (0. A(u) g i ( A(u) — A(k))pdide + I.
Qr
One can easily check that

ki :lim// [9(u,t) — g(k,1)]sgn, (A(u) — A(k))d- A(u)p dtdz = 0.

nl0

Using that sgn(u — k) = sgn(A(u) — A(k)) a.e. in Qr,

loi= lim// [g(u‘t) — gk, t)— E)rA(u)}sgn,](A(u) — A(k))drpdtdz
Qr

710
= // sgn(u — k) [g(u,f) —qg(k,t) — 8r_4(u)]0_r; dtdzx.
T
Consequently, letting 1 | 0 in (4.7), we obtain the desired equality (4.6). O

Theorem 4. If u and v are two entropy solutions of Problem A or B, then we have for any

p€C5(QT), ¢20
// {[u — v|0rp + sgn(u — v)[g(u,t) —g(v.t) — (0. Au) — ()_r.—l(l'))}ﬁrp} dtdae =R (4.8)

Eroep Lew @ E OO < @hp)y Suppa € @ 5 @O, @ = Gl ol 2 U@ = ol ), ane
v = v(y, s). Observe that

ekAl)) = 0 EE e 0 = {(.L e @ (et S-S ton vz, ) > 1}4
ol = 0 e i G .:{ (y,8) € Qr : v(y,s) < u. or v(y,s) > l}.

sgn(u — v) = sgn(A( v)) ae. in [Qr x (Qr\0u)] U [(QT\O.) x Qr].

From the definitions of entropy solutions and Lemma 15, we easily derive

////{|u — v|dip + sgn(u — v)[g(u. t) —g(v, t) — ar.-l(u)]()_,-,:} dtdzdsdy

QrxQr
10 //// (OrA(u) g 1! (A(u) — A(v)) e dtdedsdy (4.9)
n
(QT\ 0. )xQr
//// (0z A(u) “11,7( A(u) — A(v)) g dtdrdsdy, (4.10)
nLO
(QT\0,)X(QT\ Oy
////{|v — u|0sp + sgn(v — u)[g(v. s) — g(u,s) — dy Al z-)}(')_,;} dtdrdsdy (4.11)
QT xQr

lim //// ':gn;](:l(t) — A(u)) ¢ didrdsdy. (4.12)
nlO

(QT\0uw)X(QT\0,)
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Observe that for a.e. (z,t) € Qrp,
/ Or A(u)0y (sgn, (A(u) — A(v))p) dsdy = 0.
Qr
or if one prefers

—// sgnn(A(u)—:1(1'))0,«A(u)0ypd$dy:// Oysgn, (A(u) — A(v)) 0 A(u)p dsdy. (4.13)

Similarly, for a.e. (y,s) € Qp,

—// sgnn(A(v) — A(u))0y A(u)drp dtde = / Orsgn, (A(v) — A(u)) 0y A(u)p dtdr. (4.14)
Qr Qr

Now using (4.13), we find that

////sgn (u— )0 A(u)0y e dtdedsdy
Qr XQr
//// — A(v)) 8- A(u)8yp dtdzdsdy

(QT\0.)xQr

= 1Fol //// sgn, (A(u) — A(v))0: A(u)9y ¢ dtdzdsdy (4.15)

(Qr\0v)XQr

nl0
(QT\0.)XQr

III‘{)] //// v)0r A(u)sgn; (A(u) — A(v)) ¢ dtdedsdy.
n

(QT\ )X (QT\ O,
Similarly, using (4.14), we find that

////sgn (v — u)0y A(v)0; p dtdzdsdy

Qr xQr

= —lim /// OyA(r)@IA(u)sgn;(A(u) — A(v))p dtdzdsdy.

(4.16)
= 1Jno1 //// (u)dy A(v)sg (A(L‘) — A(u)) g dtdrdsdy.
n
(QT\0.)X(QT\0u)
Adding (4.9) and (4.15) yields
////{{u — v|0rp + sgn(u — v) [( (u,t) — g(v, 1)) Frp — Op A(u)(0ro + (‘)yp)] } dtdrdsdy
Qr XQr (4.17)
= Iilng //// () A(u))” — (‘%A(u)@_r:l(u)]sgn;(_4(u) — A(v))pdtdrdsdy.
n
(QT\0)X(QT\Oy
Adding (4.11) and (4.16) yields
////{IU — u|Osp + sgn(v — u) {( g(v,s) — g(u.s)) Oy — Oy A(v)(dy p + ﬁ”:)J } dtdrdsdy
e b (4.18)
= lilnol //// ()y Al ) 0> A(v)0y A(l‘)]sgn;(A(r) — A(w))p dtdedsdy.
7
(QT\0)X(QT\0u)
Using that sgn(—r) = —sgn(r) and sgn; (—r) = sgn/ () a.e. in . adding (4.17) and (4.18) gives

/// {|u — v|(Orp + Jsp) + sgn(u — v) {g(u.t) ~ (v )= L0 M) = 8y Alw)) | (Oseo + By )
Qr X Qr
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+ sgn(u — v) {(g(u s) — g(u, ))dye + (g9(v,s) — g(t'.i))ans} } dtdrdsdy

//// (9-A(v) ayA(z')):’sgn'n(A(u) — A(v)) ¢ dtdedsdy > 0. (4.19)
nlO

(QT\0.,)x(QT\Ox)
Let ¢ € C5°(Qr) be nonnegative and let {6n}n>0 be a standard regularizing sequence in E. We

then introduce the test function

Wy e B

. i L 1—{—1/ s T —NE AL — S
(}w‘h%—dm?h:arr‘( 5 = >(‘h< 5 >r\:;< = )

Observe that

2 2
P . i FESE I TAeE Gy T = =5
df*h+dy’9h:df"< g >b*‘< 2 )”’( 2 >

Using op as test function in (4.19), we get

////{M— L*i@t;<xj;y’t—%2-s> +sgn(u — v){g(u.t) —g(v.s)

QT XQr
} S r+y t+s r—y t—s (4.20)
- (arA(u)—ayA(z))]dw( = )ah( . )on( . )
+sgn(u — v) [(g(u‘s) — g(u,1))8yen + (g(v,s) — g(l'.f))d,;h} } dtdzdsdy > 0.
It is now classical (see Kruzkov [13]) to take the limit i | 0 in (4.20) to obtain (4.8). O

Remark 4. One should note that (4.8) is valid under significantly less reqularity than u € BV (Qr).
4.2. Uniqueness of entropy solutions of Problem A.

Corollary 1. Let u, v be two entropy solutions of Problem A with inttial data ug, vo. respectively.
Then

||U(~. —l HL! )S”U()—U[)HLI‘Q). (421)
In particular, Problem A has at most one entropy solution.
For the proof of Corollary 1, we need the following lemma.

Lemma 16. Let u be an entropy solution of Problem A. Then condition (2.9) s satisfied of and
only if the integral inequality (2.14) holds for all nonnegative ¢ € (g (Qr) and k € E: if a(s) =0
15 valid for all s € J (@1(t), 1u) := [min{p1(t), y1u}, max{pi(t). v1u}]; and if the following entropy
boundary inequalily s satisfied:

{Sgn((‘,w)(li) — k) —sgn(p1(t) — A‘)] {g('rlu‘f) —g(k,t) —110:A(u)| > 0. (4.22)

Proof of Lemma 16. Set p(z,t) = @(x)va(z)®(t) in inequality (2.9), where ¢ > 0, ¢ € C§° (Q).
®>0,® € C(T) and vy, is defined in (2.1) and let h | 0. See [7] for details. O

Proof of Corollary 1. In inequality (4.8) we choose o(z,t) = ((1 — pn(z) — vp(x))®(t) with @ €
(1}(\ ), ® > 0 and pj, and v, from (2.1). Taking the limit A | 0, we obtain from Lemma 1, using
the boundary condition at z = 0 and the nonpositivity of ¢:

// lu — v|®'(t) dt = / {bgn( nu—rmv)fgriu,t) —g(nv.t) — (v10:A(u) — 110 A(v))]
Qr 0

—sgn(you — 70v)q(t) (vou — Yov) } dt

T
2/ {sgn(*,lu—mu)[g("qu t) — g(11v,t) — (110:A(u) — 710:- A }a’t (4.23)
0

Note that
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F1GURE 1. The model functions f(u) and a(u) for the sedimentation-consoli-
dation problem. The units are 107° [m/s] for f(u) and 10~% [m2/s] for a(u).

sgn(11u — 719) [g('nu‘i) — 9(mv.t) = (110, A(u) - mc‘?p&(v))} = sgn(nu —7v) X
x [g(nu,t) — g(k.t) — y10: A(u)] + sgn(y1v — 1) [g(nv,t) — g(k,t) — 119: A(v)] . (4.24)
Choosing in a standard fashion

nu if y1u € Jlea(t), n1v),
k(t) = < pi(t) if p1(t) € I(mu, 11v),
Y1 if y1v € d(e1(t), y1u)

in the entropy boundary inequality (4.22) and its analogue for v, we see that both summands on
the right-hand part of (4.24) are nonnegative. Consequently,

// |u —v|®'(7)drdz > 0. (4.25)
Qr

Now let @(7) = os(7)—0n(7—1), where gy, is given in (2.1). Corollary 1 follows by taking h | 0. O

4.3. Uniqueness of entropy solutions of Problem B. We note that by the boundary con-
dition (B3), the right-hand part of (4.23) is zero, so that inequality (4.25) follows immediately.
Summarizing, we may conclude:

Corollary 2. Let u,v be two entropy solutions of Problem A with initial data u. vg. respectively.
Then (4.21) holds. In particular, Problem B has at most one entropy solution.

Remark 5. We point out that for both initial-boundary value problems A and B. the stability
proof essentially depends on the nonpositivity of q. In other words. stability relies on reducing the
total flur g(u,t) — 0z A(u) to its convective part q(t)u at the ‘outflow’ boundary of Qr only.

5. APPLICATION TO GRAVITATIONAL SEDIMENTATION-CONSOLIDATION PROCESSES

5.1. Statement of the problem. The study of degenerate convection-diffusion equations of
type (1.1) 1s in part motivated by a model of sedimentation-consolidation processes of flocculated
suspensions in an idealized sedimentation vessel. here considered to be of height 1 [m]. In that
application, u = u(z,t) denotes the local volumetric solid concentration, ¢(t) < 0 is the average
flow velocity of the mixture which can be controlled externally. f(u) is a given nonlinear function
relating the local solid-fluid relative velocity to the local solids concentration, and

a(u) = = f(u)ol(u)/(Aogu), (5.1)

where Ap > 0 denotes the solid-fluid mass density difference, g is the acceleration of gravity. and
ol(u) > 0 is the derivative of the solid effective stress function. The material behaviour of the
suspension is described by the functions f(u) and o.(u). Condition (A2) corresponds to a given
initial concentration distribution, condition (A3) to prescribing a concentration value at » = 1 due
to dilution of feed suspension which enters the container continuously. and condition (A4) is then
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FiIGURE 2. Numerical solutions of Problem A applied to the sedimentation-
consolidation model: a) batch settling, b) continuous sedimentation-consolidation

equivalent to reducing the solid volume flux density at the bottom of the vessel to its convective
part g(t)u(0,t). This sedimentation-consolidation model is described in detail in [BEREAE

The property which is of interest here is that most researchers (see, e.g., [15]) assume that o
is constant for u not exceeding a critical value u., at which the solid flocs are assumed to touch
each other, and that o. is strictly increasing for u > u.. Consequently, a(u) = 0 for u < u. and
a(u) > 0 for u > u. wherever f(u) < 0. Most notably, many constitutive equations for s. imply a
jump of ¢ at u = uc, which makes a(u) discontinuous.

5.2. Numerical examples. We calculate entropy solutions of Problem A in this application by
using the finite-difference operator splitting scheme described in [5].

We employ a flux density function of the well-known Richardson and Zaki type with parameters
which were determined for a suspension of copper ore tailings (see [9]):

f(u) = —6.05 x 10~ *u(1 — u)!2:%% [m/s)].
The function a(u) is given by (5.1) with Ag = 1500 [kg/m°], o.(u) = 0 for u < u. = 0.23 and
G = %(100(11/1%)3 — 1)) [Pa] for u > ue,

see e.g. [15]. Figure 1 shows the resulting model functions f(u) and a(u).

In the first example. see Figure 2a), we consider the settling of an initially homogeneous sus-
pension of concentration ug = 0.15 in a closed column, i.e. ¢ =0.¢ = 0. Observe that the discon—
tinuity between u = 0 and u = ug is a shock. In the second example, we set ¢ = —1.5x 1077 [m/s]
and start with a steady state: the function ug(z) is obtained by setting ug(0) = 0.34, by inte-
grating the time-independent version of equation (1.1) using this boundary condition until u = u.
is reached at a certain level z. and setting ug(z) = @1(up(0)) above, where &, is obtained from
solving ¢®; + f(®1) = quo(0), yielding ®;(0.34) = 0.00922 and ®,(0.37) = 0.01014. Setting

(085 e ) <2 v B a0 e 12l & < B10][kY).
i Bl {0.02 for 5 bl = o ¢ For t a0 h],
we obtain the numerical solution depicted in Figure 2b). This is a successive simulation of the
operation at steady state, rise of the sediment level, convergence to the next steady state and

emptying of the sedimentation vessel.
Note that ug € B in both examples. This is obvious for ug = const., while in the second case

Or A(uo(z)) = q(uo(z) — uo(0)) + f(uo(z)) for 0 <z < e, ((BE2)

\_;(

where u(0) was chosen such that the right-hand part of (5.2) is nonpositive, therefore ug(z) <0
for 0 < z < z.. We have ug € ‘B, since we can conclude from the jump condition [7] that
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TVa(0:A(ug)) = /r‘:‘agfl(llo(.t))l dx 1 'li]m 8IA(UQ(1'))|
0 s
< (' llse = ¢)(0(0) = ue) + | f(ue) = F(@1(uo(0)))] < .
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