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ON STRONGLY DEGENERATE CONVECTION-DIFFUSION PROBLEMS
MODELING SEDIMENTATION-CONSOLIDATION PROCESSES

R. BURGERa , S. EVJEb , AND K. HVISTENDAHL KARLSENc - b

Abstract. We investigate initial-boundary value problems for a quasilinearstrongly degenerate
convection-diffusion equation with a discontinuous diffusion coefficient. These problems come
from the mathematical modeling of certain sedimentation-consolldation processes. Existence of
entropy Solutions belonging to BV is shovvn by the vanishing viscosity method. The existence
proof for one of the models includes a new regularity result for the integrated diffusion coefficient.

New uniqueness proofs for entropy Solutions are also presented. These proofs rely on a recent
extension to second order equations of Kruzkov’s method of “doubling of the variables". The

application to a sedimentation-consolidation model is illustrated by two numerical examples.

1. Introduction

In this paper, we consider quasilinear strongly degenerate parabolic equations of the type

where Qt ' = £2 x T, Q : = (0, 1) and T := (0, T). In general, we allow that the diffusion coefficient
a{u) vanishes on intervals of solution values u , where (1.1) is then of hyperbolic type; therefore this
equation is also called hyperbolic-parabolic. Although equations of this type occur in a variety of
applications, we here focus on the application to sedimentation-consolldation processes [3, 8, 9],
which leads to an initial-boundary value problem (IBVP) with mixed Dirichlet-flux boundary
conditions (“Problem A") or alternatively to an IBVP with two flux conditions (“Problem B”).
It is well known that Solutions of (1.1) develop discontinuities due to the nonlinearity of the
flux density function f{u ) and the degeneracy of the diffusion coefficient. Therefore one has to
consider entropy Solutions in order to have a well-posed problem. Moreover, in regions where (1.1)
is hyperbolic, solution values propagate along straight-line charactenstics which might intersect
the lateral boundaries of Qt from the interior and require the treatment of Dirichlet boundary
conditions as entropy boundary conditions [2, 7]. A review of properties and known existence and
uniqueness results related to the concept of entropy Solutions for equation (1.1), as well as an
overview of numerical methods for strongly degenerate parabolic equations, is provided in [ll],

Our particular application justiffes vanous assumptions on the coefficients of (1.1) and on the
initial and boundary data. Most notably, many constitutive equations proposed for these processes
imply that a{u) = 0 for u < uc and that a{u) jumps at uc to a positive value, where uc is a given
constant, the so-called critical concentration. We therefore insist on using a discontinuous diffusion
coefficient a{u). This case had not been covered by the previous existence and uniqueness analysis
of Problem A by Biirger and Wendland [6], which relies on relatively strong assumptions on the
regularity of the coefficients of equation (1.1) and on the initial and boundary data: in particular,
a{u) is assumed to be continuously differentiable. We point out that the previous analysis [6] was
limited to Problem A, and that Problem B has not been treated so far.
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f u
dt u + dx {q{t)u + f{u)) = d'A[u), (x,t)EQr, A[u) := / a(s)ds, a{u) >O. (1.1)
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The first objective of this paper is to show existence of entropy Solutions belonging to BV{Qt)
for these problems when the diffusion coefficient is discontinuous. We show that smoothing out
the jumps of a{u) and of the initial and boundary data by a standard mollifier technique will not
cause new smgulanties when the smoothing parameter tends to zero in the vamshing viscosity
method. As a part of the existence proof of Problem B, we show that the mtegrated diffusion
coefficient A[u) belongs to the Holder space Cll/2 (Qt)- This is a significantly better regularity
property compared to the result dr A(u) E L 2 {Qt) valid for Problem A.

The second objective of this paper is to present new uniqueness proofs for both problems based
on the technique known as “doubling of the variables” . This technique was introduced in Kruzkov's
pioneering work [l3] as a tool for proving the L l contraction principle for entropy Solutions of scalar
conservation laws and very recently extended elegantly by Carrillo [lo] to a dass of degenerate
parabolic equations. It is the extension in [lo] that we adopt here to our initial-boundary value
problems. We emphasize that these uniqueness proofs merely require that the functions f(u ) and
A{u) are locally Lipschitz continuous (a(u) may be discontinuous) and that they are not based
on deriving jump conditions as in [24]. In fact. continuity of a[u ) has been assumed in previous
papers [6, 24, 25] in order to derive such jump conditions. Furthermore, the jump conditions
and thus the correspondmg uniqueness proof derived by Wu and Yin [2s] (see also [7]) have
at present no multidimensional analogue, whereas the uniqueness approach presented here also
works in multidimensions [4], Håving said this, some new results dedicated to the solution of this
problem are available, see VoPpert [2o].

We mention that to produce an entropy solution belonging to BV(Qt), it is necessary to require
that the initial function u 0 belongs to the dass ‘J3 of functions for which TV(<9rA(u)) is uniformly
bounded with respect to regulanzation. This condition is rather restrictive but satisfied by most
initial data occumng in the context of the sedimentation-consolidation problems. Our problems
are also solvable for u 0 £ ‘J3 (sav u 0 E BV{Q)), but then it is only possible to show existence of an
entropy solution in the larger dass C l/2 (T; L 1 (Q))flL (X) (T; BV{Q)). also referred to as BVi A / 2 {Qt)
[22]. In this larger dass, one can not assume a priori that the traces of the entropy solution at
the boundaries of Qt exist. To resolve this problem one needs a reformulation of the concept of
solution that avoids these traces. Such a solution concept has been employed by Wu [22], but will
not be considered here since it is not obvious how to prove uniqueness of such Solutions.

This paper is organized as follows. In § 2, we recall some properties of mollifiers and related
functions, State the initial-boundary value problems with the respective pertainmg assumptions
on the data and formulate definitions of entropy Solutions. In § 3, existence of entropy Solutions
is shown by the vanishing viscosity method and the improved regularity result valid for entropy
Solutions of Problem B is derived. Uniqueness of entropy Solutions is shown in § 4. In Section 5 we
present two numerical Solutions of the IBVP modeling sedimentation with compression, in which
the assumptions for the existence of BV Solutions are satisfied.

2. MaTHEMATICAL PRELIMINARIES AND DEFINITION OF ENTROPY SOLUTIONS

2.1. Mollifiers and related functions. Let u E C£°(M) be a function satisfying w > o,suppu; C

( 1,1) and |[a;||£,i(]R) = 1, and define a standard mollifier [l6] with support in {—h. h ) by uJh{x) =
uj{x/h)/h. A C°° regulanzation of a bounded function b(u) is then given by the convolution

b{u v)iJh{v) dv.

Moreover, we define for sufficiently small h > 0 the functions

which have the property stated in the following lemma given in [24].

{b * uj h ){u) :=
J-h

Qh{x) := J «hWK Hh{x ) := 1 Qh[x 2h ). Vh{%) : Qh [x —(1 2/?)). (2.1)
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Lemma 1. Let vG L 1 (T; L°°{Q)). If the traces jo v := (7r)((U) and 7l v := ( 7 i>)(l,<) exisi
a.e. in 7, then we have for p G C^{Qt)

2.2. Statement of Problem A. We consider the IBVP

(Al)

(A2)
(A3)
(A4)

where we assume

/is continuous and piecewise differentiable, /< 0, supp / C [o,u max], ||// || co < 00, (2.2)

(2.3)

Smce Ais monotonically non-mcreasing, sgn(fci - k 2 ){A{k 1 ) - A{k2 )) = |A(Zi) - A{k2 )|. Defining

and U£ [—F, umax +f] for F>o, we can State the regularity assumption on uq as

We comment on the assumption (2.5). First note that, if n 0 G 23, then also xT0 G 23. This
requirement is needed to show that the entropy solution of the initial-boundary valne problem is
Z 1 Lipschitz continuous in time. It might be difficult to verify whether a given initial function
belongs to 23, but, for example, all piecewise constant functions defined on 12 do so.

The boundary datum p\ is assumed to satisfy

Pi changes its monotonicity behaviour at most a finite number of times. (2.7)

In particular, we admit that the functions uq and p\ may possess jumps, and note that (2.6) and
(2.7) imply that TV^i) < 00. The assumptions (2.2)-(2.7) are essential in the proof of existence
of an entropy solution belonging to BV(Qt).

Remark 1. Of course , if a(-) is sufficiently smooih , then the requirement that u 0 G 25 can be
replaced by the requirement TWn{dx ti0 )) < MO . In particular, the existence analysis conducted in
[6] is coniained in the analysis presented below.

2.3. Definition of entropy Solutions of Problem A. Since weak. possibly discontinuous Solu
tions are in general not unique, we need a selection principle or entropy criterion. This is included
in the following solution concept. Wherever notationally convenient, we set g{u,t) ;= q{t)u + f(u).

Definition 1. A function u G Z°°(Qr) fl BV[Qt ) is an entropy solution of Problem Aif the
following conditions are satisfied:

1- JJq h {x) +vh = - (f[Q,t)iQv) dt.

dt u + dx {q{t)u + f{u)) = d;A[u), (x,t) e Qt,

u(x, 0) = x E £2,

u(U) = y?i(<), / G (0, T]

/(«((M)) “ dxA{u{Q,t)) = 0, t E (0,7],

a{u) >O, supp a C supp /, a(u) = 0 for u <uc , 0< u c < u max

q{t) <0 W 6 T, TVa-(g) < 00, < 00, (2.4)

M w ) (( Q + £ ) * us )(u), A£ (u) := f a£ {s)ds , £>o
Jo

u o G23  GB\ ($7) : u{x) GUoVx G $2; TVn(SXJ4 £-(w)) <Mq uniformly in c|, (2.5)

o < <pi{t) < 5 GT, (2.6)

dx A{u) G L 2 {Qt)\ (2.8)

Vv? G C°° ((0, 1] x T) , ip > 0, supp p C (0, 1] x T, V& G M :

JJ ||u + sgn(u ~ — g{k,t ) dT A[u)\ dx dzctø

+ {-sgn(v?i(o - fc)[ø(7i«.<) - g{k,t) - ~n dxA{u)] <p{l, t)
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Entropy inequalities like (2.9) go back to the pioneering papers of Vokpert [l9] and Kruzkov
[l3] for first order equations and Vokpert and Hudjaev [2l] for second order equations.

2.4. Statement of Problem B. We also consider Problem B which is obtained from Problem

A if the boundary condition at x = 1, (A3), is replaced by the total flux condition

either T= 0 or Elf; >O, Mg >0 : fa{u) {q{t) + f {u)) > Mg . (2.12)

All other assumptions (2.2), (2.3) and (2.5) remain valid. Here, we assume that

Problem B is also of interest m the application of the sedimentation-consolidation model, since
frequently the feed flux T rather than a boundary concentration ip 1 is prescribed.

2.5. Definition of entropy Solutions of Problem B. Here, the definition of entropy solution
is analogous to Definition 1:

Definition 2. A function u G L°°{Qt) kl BV{Qt) is an entropy solution of Problem B if (2.8)
and (2.11) in Definition 1 are saiisfied, if for all u? G ( Qt ), A > 0 an d k V inequality

(2.14)

holds, if the boundary condition (2.10) is valid, and if

(2.15)

3. EXISTENCE OF ENTROPY SOLUTIONS

3.1. Existence of entropy Solutions of Problem A. Existence of entropy Solutions is proved
here by the vanishing viscosity method. Therefore we replace a[u ) by a £ [us ) and use the regular
izations f£ {u) := (/ * )(u), qe {t) := [q * ui £ )[t) and g £ {u, t) f£ ( u ) + q£ (i)u. Note that (2.2)
implies that supp f£ C IL. The functions u 0 and are replaced by smooth approximations uf
and ip\ with 1/5 —uo in Zk(D) and <p\ m L l {7) for e[ 0. The solution to the degenerate
IBVP is then obtained as the limit for £ ], 0 of the family {tr}.->o of smooth Solutions ol the
regulanzed parabolic IBVP (referred to as Problem A£ );

To ensure the existence of a smooth solution of Problem A£ for any fixed value £ > 0. the functions

Uq and have to satisfy first order compatibility conditions:

where a[u) a.{u). In [6] it is required that the functions a(n), tto and do already satisfy
the smoothness conditions necessarv for the existence of a smooth solution of the Problem A~

+ [sgn(7i« k) sgn(</?i(0 - k)] [A (71 u) - A(fc)] <9 di > 0; (2.9)

for almost all t G T, 70 (/(w) dT A{u)) = 0; (2-10)

for almost all i£fi, \im u(x,t) = tto(x*). (2.11)«J.O

(g{u,t) - dx Å{u)){l,t) = te{o,T\. (B3)

We h ave to assume that

V< GT : min {g{u,t)) < ty{t) <O, > g(umax , <); TVo'('J)<dc . (2.13)u G U 0

jj ||u - k\dt <p + sgn {u - k)[g{u,t) - g(k,t) - dx A{u)\dx dtdx > 0

7i {g{u,t) - dx A{u)) = '&( t ) for almost all tE T.

dt u £ +dx {q£ {t)u£ +f£ {u£ )) = dlA£ (u£ ), (xJ)gQt, (AM)

u'{x, 0) = u'Q {x), x £ Q, (A£ .2)

ue {l,t) = ip\{t), te{o.T], (A£ .3)

ifeiir) - dx A£ {u£ )){o.t) =O, ZG(O,T], (A£ .4)

4(1) = y?i(0). (3.1a)

-k(0) + /;(u5(i))l(«S)'U)-a'(«S(i))[(«o)'(i)r«(“o(i))(“S)"n) = (ri)'(()). |3.ib|

a(u'o(0))(«5)'(0)-/e K(0)) =0- (3-lc)
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The compatibility conditions are established there by setting p\ = <,p l and n,g(x) = tio{x) +fr {x)
where h £ satisfies ||/? £ ||L-fn) = O(e) with supp h £ C [o,f]U[l -e, I], Moreover, m that paper, the
functions uq and p x are assumed to satisfy a priori the compatibility conditions (3.1) with respect
to a(u) = a(u), and the choice of h£ ensures that (3.1) remains valid for a(u) = a{u) +f. Here,
the regularity assumptions made in [6] are relaxed to (2.5) and (2.6). We set

and define the regularized initial and boundary data by n.g(x) := (u 0 * u£ ){x) for x G Q and
P\{t) •’= {pl *us ){t) for / G T.

Lemma 2. The functions tro and p\ satisfy the regularity assumptions necessary for the existence
of a smooth solution of Problem Æ and the firsi order compatibility conditions (3.1). They also
satisfy u£o {x ) G U£ for x G Q, p\{t) G U 0 for t G T,

<TV7 ( v? 1) + lu0 (l)-y?o(0)|, < TVfi + Uo (0)+£.

Proof. The compatibility conditions (3.1) follow from

wo(!) = Vi(0) = wo(l), («o) / (l) = (V, i) / (1) =O, K)'(0) =O, f£ {u£0 (0)) =fs {-E) =O.

From u £ > 0, we obtam p\ > 0 and u £ > -e. Since umax x) > 0 for all x GR, we have

that is, Uq < u max , and by the same argument, p\ < u max . Furthermore, we have

Following [l6], we show that mollifying the functions u 0 and p i does not increase their total
variation, respectively. Recall that the total vanation of a function g G iV(M) can be expressed as

Using the substitution x x—y, y —y, the symmetry u£ [—y) = u> s (y) and hnally replacing x
by x and y by y and setting p£ {x) := {p*u£ ){x), we obtain from this

Lemma 3. Let ir be a smooth solution of Problem Æ. Then there exist positive constants Mx ,
M'> and M 3 such that the following estimaies hold uniform ly with respect to s:

\\ u£ ix^)\\L^{ QT ) < T/i, (3.4)

/)|| L1(n) < Mo for all t G T, (3.5)

||^U £ ||jr 1(Qt ) < M 3. (3.6)

:=(i-2£)/(l-4f), f := ((< - 2e)T)/{T - 2e), (3.2)

( u 0 (l) for x > 1 2e, ,

u o {x) := <j u 0(x £ ) for 2s <x< 1 - 2c, V\{t) := < W f° r / -
[-r for x < 2c, Vl( ' !) for 2£ <<< T,

0 < ((«max - Wo) * <*> c )(ar) = “max - («o * w c ) (ar) for x<s R,

TV* («e 0) = TV n («i), TV* ( v\) = TVt (9{),

TV® (v?i) = = TVj(^i) + |u 0 (l) - (0)| ,
TVe (uq) TVq (w 0) = TVn (u 0) + u o (0) -f s.

TV(<7) = sup [ g{x)v\x)dx, T> := { <p € C£(M) : IMU <i)
<fiET>J]& i

Then we have

TV®(«o) = sup / / uo (x - y)cj£ {y)(p'(x) dydx = sup [ f u o (x - y)dx {u e {y)(p(x)) dxdy.
ifievJmJ-s ipevJ-s Jm

TVk(wq) sup / / uo {x)dx {u>£ [y)(p{x y)) dxdy = sup / u o (x)</?'(æ) rfx,

and hence, noting that |y? *u£ :<pE Cq (M), < l| C D,

TVe(uq) < sup / uJ(iy(x)di = TVE(«S). (3.3)
'-P iE T) JK

The inequality TV® (y?*) < TV® (qq) follows in the same way.  
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Proof. For every e > 0, Problem A£ has a unique solution u£ G C2+i3 ' I+i3/2 {Qt) C C2l {Qt),
(3 > 0. This is shown in [6] by applying the well-known results from [l7]. The uniform boundedness
of ir can be shown in a standard way by rewriting Problem A£ in terms of exp(—A'f)w£ (x,<) and
exp (-/v’i)(timax +£-r(i,i)), where K > 0 is an arbitrary constant, and showing that these
functions are nonnegative on Qt, see [6]. Hence we have u~(x.t) G He for (x,t) G Qt\ i n
particular, (3.4) is valid. Estimate (3.5) can be established here by following the denvation m [6],
where more regularity was assumed on the initial and boundary data, and by arguing additionally
that mollifying the data does not mcrease their respective one-dimensional total variations with
respect to x and t. Similarly, estimate (3.6) can be proved by following the denvation in [6], where
assumption (2.7) is required. Here, the derivation of these estimates will be performed m detail
for Problem B (see § 3.2).

Estimates (3.4), (3.5) and (3.6) imply that the family {ir} £>o of Solutions of Problem A£ is
bounded in W IA {QT ) C BV{Qt)- Since BV(Qt) is compactly imbedded in L l {Qt)< there exists
a sequence e= zn | 0 such that {ir n } converges in L l {QT ) to a function uG L x [Qt ) H BV[QT )•
To show that u is an entropy solution of Problem A, we must show that the integrated diffusion
function A{u) possesses the required regularity.

Lemma 4. The hmit u of Solutions u£ of Problem Æ satisfies condiiion (2.8).

Proof. Multiply equation (ATI) by (u£ -pi(t)), integrate over Qt and use the boundary conditions
to obtain (see also [6])

so that \\a 1J 2 {u £ )dx u£ \\ L -2 ( Q is umformly bounded with respect to c. However, since a{ir) is
bounded, we can conclude that ||sj: A £ (u£ )|1 L 2 ( q t ) is also bounded. Therefore, passing if necessary
to a subsequence, A£ [u~) —* Ain L 2 {Qt) and dxA e [u£ ) — dx A weakly in L~[Qt) as £]. 0. Since
A £ (u£ ) A{u) a.e. as sJ.O, we conclude that A = A{u) a.e. and thus condition (2.8) holds.  

Lemma 5. The vanishing viscosity limit u of Solutions u£ of Problem A~ satisfies the entropy
inequahty (2.9) and the boundary condition (2.10).

For the proof, we need the following lemma given in [24].

Lemma 6. If v G L l [Qt) and dx v is an absolutely continuous measure, then for ip G C<CKJ {Qt)
with supp p C x T there holds

Proof of Lemma 5. We multiply the viscous equation (ATI) by - k)p. p G
p> 0, suppy? C (0, 1] xT, t G ®-, integrate over Q T and use mtegration by parts to obtainT

-flIu£ - k:\rjdtpdtdx + l {u £ {l,t) -k) [g£ {ir{lj.). i) - g s {k.t)]p{l,t) dtJJqt Jo
-fl sgn„(it E - k){gs {u£ ,t) - g e {k,t))dT p dtdx

JJqt

-fl sgn|,(uc - k)dx ue {ge {u£ ,t) - g£ {k,t))p dtdx
JJqt

(3.8)

f[ a e [u£ )[dx u£ ) 2 dtdx - f - (u£ )~ (p\{t)u£ dx -// u £ (<£>i) (t) dtdx
JJqt Jo o JJQt

T

+[[ dx ue g£ {u£ ,t) dtdx + / (ue (0, i) (<)r (0. t) dt. (3.7)
JJQt J 0

It is easy to see that (3.7) implies that

ff a e {u £ ){dx u£ ) 2 dtdx < 5 M2 + M\M3 + \\gs \\ooTMo + H^Hoo^^r 
JJqt

[[ dx (pv dtdx = f {jivipi 1, t ) ~fov<f{o, t)) di —Il ipdx vdtdx.
JjQt J 0 JJ Qt
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(3.9)

// sSn T 7 i u k)dx {A£ [u ) As {k))dx tp dtdx —ff sgnL{u£ ~ k)(dr u £ )~a £ { ir )<f dtdx.
jj Qt JJQt

The last integral on the left-hand side of (3.9) vamshes when tj ) 0, while the last one is nonneg
ati\e. Notmg that p/,(l) = 1 and = 0, we obtain from this when t] [ 0 the mequality

- / -k) [A£ {u£ ) - A £ {k)]dx {<p{x,t)iyh {x)){l,t)dtJo

+ f sgn (ir -k) ( A e ( u £ ) - A £ {k))dl<p dtdx > 0
JJ qt

x (l,f)) A£ {k)){dx <p){l,t) dt —JJ dx —k) [A£ [ue ) AE (k)) j dx ip dtdx,

which, by using Lemma 1 and the fact that

dx k){A{u) A{k)) j sgn(w k)dr [A{u) A{k)) in the sense of measures,

/ s S n (Wi(O ~ k){Ae {ue ) - Ae {k))dx (ip{x,t)vh {x)){\,t) dtJo

- k)dx (A(u) - A(k))dx(r~iyh ) dtdx.
Qt

Taking the limits £ | 0 and h | 0 and using Lemma 6, we obtain inequality (2.9) from (3.10). To
verify that the limit satisfies the boundary condition (2.10), we multiply equation (A1 .4) bv a test
funetion <L G Cq°(T) and integrate over T to obtain

= [ sgn^(u e (l,<) - k)dx {A£ (ue ))(l,t)(p{l,t)dtJo

JJ { I u* -k I dt(fi + sgn( tr -k ) [g£ ( u£ , t ) - <j € ( k , t)] dx 9?} dfdx

- J sSn - E (uE (M),i)-(7f (^i)-^4£ (« £ (3.10)

We have

[[ sgn (u~ —k) {A£ { ir) A s {k))d~ip dtdx = f sgn (ue (l,/) —k) x
dd Qt Jo

yields

ff sgn(u £ - k)(A£ {u£ ) - A£ (k))d;<fdtdx
JJ qt

rT

jo sgn{~nu-k)(A{yiu)-A{k))idx <p){l,t)dt- jj sgn{u- k)dx {A{u) - A{k))dx <pdtdx.

Moreover,

=- // sgntø(*) - k){A£ {us ) - A£ {k))d2x {^uh )dtdxJ J qt

~ dx (sgntø(f) -k) {Ar{u£ ) - As {k)) j dx {<pi/h ) dtdx

- // sgn(v?i {t)-k){A{u)-A{k))dl{<pvh )dtdxJJ Qt

T

0= [ (f£ {u£ ) - dx A e {u£ )){o,t)s{t)dtJo

= -// dx {f{u£ ) - dx Ae {u£ ))s{t)fih {x) dtdx -II (/£ (ue ) - dx A{u£ ))s{t)n'h [x) dtdx
J JQt JJ Qt
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=[[ {dt u£ + q£ {t)dx ue )<b{t)iih(x) dtdx -jj (/c (us ) - dx As {u e ))s{t)fj,h {x) dtdx. (3.11)
JJQr J QT

The first integral on the right-hand side of (3.11) vanishes for h JO. The boundary condition at
x = 0 follows then from

Lemma 7. The limit funciion u of Solutions ir of Problem A£ saiisfies the initial condition (2.11).

To prove Lemma 7, we need the following variant of Kruzkov's lemma [l3] proved in [l2].

Lemma 8. Assume thai there exist fimte constants C\ and c 2 such that the funciion u : Qx T— M

satisfies 11a(•, t) 11 oo <ci and TVn {u{-,t)) <c2 for all t GT, and that u[x,t) is weakly Lipschitz
continuous in the time variable in the sense that

V(0

Then there exisis a constant c, depending in particular on c\ and c 2, such that the following
interpolation result is valid:

Proof of Lemma 7. Multiplying equation (ATI) with a test function p G Cq(Qt) and using in
tegration by parts it is easy to see that the statement of Lemma 8 holds with n = 2, i.e. there
exists a constant c such that ||tr (•, r) Uo||z,i(n.) < cr 1 / 3 holds uniformly in f for sufficiently small
r > 0. This implies for r J, 0 and £ J, 0 that the initial condition (2.11) satisfied.  

As a consequence of Lemmas 2 to 5 and 7, we obtain

Theorem 1. Under the assumptions (2.2)-(2.7), Problem A admits an entropy soluiion u.

3.2. Existence of entropy Solutions of Problem B. To show existence of entropy Solutions
of Problem B, we consider the regularized parabolic IB VP B £ , which is obtained from Problem A£
if the boundary condition (AT3) is replaced by

Here f£ and A£ denote the same regularizations as before. Obviously, the definition of u£0 has to
be modified slightly; here we set tro (x) := (uq * uj s ) {x) and q £ {t) := {q * u£ ) {t), where

and x £ (x) and T{t) are defined in (3.2). The first-order compatibility conditions appropriate for
Problem B£ are then given by (3.1c) and the condition

g e (0K(l) + /e K(l)) -a£ (u5(l))(u£o) / (l) = (3.13)

valid at x=l,t = 0. This condition is satisfied if we set T £ (t) := (T *u;£ )(t), where

As in the previous case, mollifying the functions uq, q and T does not increase their respective
total variations. By the classical theory of quasilinear parabolic equations, also Problem B ; has a
smooth solution u£ G (72 +TH-h/2 for a fLxed value of z> 0.

-// ife {u£ ) - dx A£ {uE ))s{t)fi h (x) dtdx
JJqt

- f[ (/(w) - dx A{u))s{t)fi'h {x) dtdx / 7o(/(w) - dx A(u))<P(t) dt.  
JJqt o

/> 1 n

/ (u(x, w(x, y?(x) dx < Q(?2 £1)
i= o

Vv? € CM), 0< t l </o <T.L°°(n)

u{-,t 2 ) - u{-,U)\\lhh) <c{U-h) 1/(n+l \ 0 <h<t2 <T. (3.12)

(q£ {t)us + fe {u£ ) - sa?5a? A£ (t/ £ ))(l,i) = 'MO, i G (o,rj. ( B 5 .3)

(—e for x > 1 2s, f r
Uo(x) := J uo(l‘) for 2s<x<1 2e,i “ '

l- £ for x < 2e, f” <' <

~ f 0 for / < 2c,
: = <

| ty(t £ ) for 2z < i <T.
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Lemma 9. Let u£ be a solution of Problem B£
independent of e saiisfymg

Then there exist positive constants C\ and Co

In Parilcular, exists a constant M 4 such thai ||tr || L oc ( gT) < M 4 holds umformly in e.

Proof. The maximum principle can be applied in a similar way as for Problem A and as in [6],
but the treatment at the boundary x 1 is different. Suppose that u £ assumes a maximum at

(x = l,t = t 0), 0< t 0 <T. Then drv £ (l,to) > 0 must be valid: without loss of generality we may
assume that dT u £ (l,t 0 ) > 0. Inserting this assumption into (BC3). which can be expressed as

reveals that then g£ {t){u£ {l, t 0), > TMo) holds. Due to the regularity assumptions on f{u)
and q{t), we may conclude from this that

Since g(u,t) <M) for u > u max , inequality (3.16) implies that u£ (l.t 0 ) < u max + 0(c).
N°w assume that u £ assumes a local minimum at (M 0), this implies dx u£ {l,t 0 ) <0: again we

have to consider only the case <9x u f (l,to) < 0. This assumption yields g£ {u£ {l.t 0 ),t 0 ) < T.(to)-
In \ lew of 'lt(t) < q(t)u g{u, t)| u <o, this can not hold for —u > 0(e), and we conclude that
 u(Mo) > is vali d. These arguments, combined with the discussion of extrema of u£ on the

remaining parts of Q T following the analysis of Problem A, imply that estimate (3.14) is valid.  

To denve estimates on the denvatives of ir , we first need to pro\'e the following lemma.

Lemma 10. Let übe the limit function of Solutions u£ of Problem B£ . Then dx A(u) G L 2 {QT ).

Proof. Multiplying equation (Af .l) by ir and integrating over Q?. we obtain

Jn _/ | rJf' 'j-' 2(tr {l,t)^s {t) +q£ {t)u~ (0,t)) dt -- f (rr) 2 dx - [ Gb(uM) dt ,
0 2Jo o Jo ' o

where G£ {u,t ) := g£ {s, t) ds. Obviously, we have the uniform estimate

(3.17)

hence dx Ae (u £ ) E L 2 {QT ) mdependently of f and the conclusion of Lemma 10 follows as in the
proof of Lemma 4. t—i

We note that the regularity result expressed in Lemma 10 will be significantly improved in § 3.3.

Lemma 11. Let u£ be a solution of Problem B£ .

a) In the case where T 0, there exists a constant Mo such that the following estimate holds
umformly in e:

b) In the case where £a{u) {q{t) + f'{u)) >Mg for some positive constants f. M,} . there exists
a constant Mq such that the following estimate holds umformly in s:

In both cases, there exists a constant M- such that the following uniform estimate is valid.

-C\£ < u £ {x, t) < wmax + Cn£ for (x,t) G QT . (3-14)

dx u£ {l,t) = [(7 c(u e (l,<),<) - £ it)]/aE {ir{l.t)), (3.15)

g[u E {\.t 0 )Jo) > + 0(£). (3.16)

// ae [u£ ){dx ue ) 2 dtdx —f u£ {a£ {uc )dx u£ - g £ {u e ,t)) dt - -/f dt (ue ) 2 dtdx
jjQt Jo o 2 JJQt

// gr{u£ ,t)dx u£ dtdx
JJqt

jJQ M u e )idr u e )~ dtdx < TM4 + Ik.lloo +M4 + 2||Ge ||oo) =: Mg,

dru £ (-, OlUmh) <M6 for all t£ T. (3.18)

\\dx us \\ L i {Qt) <M 6. (3.19)

ll<W(-,/)|| L1(n) < M 7 for all t e T. (3.20)
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Proof. Let approximations and | • of the sign and modulus functions be given by

(3.21)

We first consider the estimate on dt uc . We define v£ := dt u £ and w£ := dx rr and differentiate

equation (ATI) with respect to t to obtain

(3.22)

Multiplying (3.22) by sgnr) (^£ ), integrating over Q To := 9. x (0, To), 0 <T0 <T. integrating by
parts and using the boundary conditions yields

By Saks’ lemma, I~ Q; and <o. Finally, we have < 2T'||g£ || co (umax +s) and

(3.24)

To evaluate the integral Iq, we have to derive the estimate on dx u £ .

a) Let T=o. To obtain an estimate on dx ir , differentiate (A£ .l) with respect to x. Setting
ur := dx u£ , we get

Multiplying equation (3.25) by sgn rJ {w£ ), integrating over Qt and using mtegration by parts yields

From the nonnegativity of the last integral, from the initial condition and from equation (ATI),
we obtain

(3.26)

From Saks’ lemma (see [2, 18]) we infer that I 2 0 and I — 0 for r) [ 0. By the boundary
condition (BT3), we have for T= 0 that w £ (1, t ) =g£ {u £ (1 ,t), t)/aE (ir (1, t)). Me have therefore
either w£ {l,t) < 0 or ur (IT) = 0. However, the latter is true if and only if u £ [l.t) assumes the

:= | Sgn(r) |x|„ = / r) > 0[7-/77 if |r| < r7, Jo

dt ve =dt (dx {-gE {ue ,t) + a c (u£ )u> e )) =dx (dt {-ge {u s . t) + ae (u£ )ir))

T

ff d,\v‘\ n dtdx < \gnrl (v c )(-'S'! (t)+q'! [t)u‘(l.t] + qAt)v‘(U))dt (3.23)
JJQtO •'O

-[[ sgn '{ve )dx v£ {a'r (ue )w£ - f'e {u£ ) - q£ {t))v£ dtdx -fl sgn )a s {u £ ){dT v-) 2 dtdx
JJqt0 JJ Qt0

+ [ sgn {v e )q£ {t)u e dt-ff sgn )q'£ {t)we dtdx =: /r) +/“+ i 3 +l*+ /J
io 0 JJqt 0

Observe that
T T

/1 [ sgn[v£ {l,t)) 4- q'£ {t)) dt + f q£ {i)\vs dt < + TVo-(g f ).Jo Jo

I* —lo:= [ Qs{t) [ Sgn {v£ )ws dxdtJo Jo

dt we + d2x [q£ [t)us + fc{u')) =dl {a£ {ir )ur ). (3.25)

// sgnr} {w£ )dt we dtdx =// )d2x (a £ (tr )ur - g£ {ir . t )) dtdx
JJQ T Q T

= f sgn {ws )dx {a£ {u s )w s - g s (u £ ,t)) dt +jf sgn'ri {w £ )dx we {du gc ){u e .i)w£ dtdx
Jo 0 JJ qt

-// sgn'rl {w£ )dx w£ a'£ (u£ ) {w£ ) 2 dtdx -// J )aE {u£ ) [dx ur ) 2 dtdx.
JJ Qt J J Q T

J \w£ {x.T)\v dx < j |(uo) / (*)| 7J dx + Jq sgnn {w£ {lj.))dt u£ {l.t) dt

- [ {w£ {o,t))dt ue {o,t)dt+ fl sgn ,T] {wE )dx we {du g s )(u{u£ ,t))we dtdx
J 0 JJ Qt

[[ sgnj,(iy£ )dx w£ dr ac {u £ )ws dtdx =: /J + +/* +
JJqt
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constant value sor t/ max +; • Letting E—{t E [O, T] :u~ (1, t) =-r or = u max +f}, we
note that dt u £ {l,t) = 0 a.e. in E. We therefore conclude that

(3.27)

Applying the same argument to the boundary condition (Ae .4), we have

(3.28)

which proves estimate (3.18). Inserting this into (3.24) shows that < Conse
quently, the right-hand part of the limit for r/ j 0 of (3.23) is uniformly bounded in f. Estimate
(3.20) follows since uq E B and hence ||u£ (•, o)||ii(n) is uniformly bounded.

b) In this part of the proof, we follow Wu [23], We now assume that the second alternative of
(2.12) holds, from which we may infer that

(3.29)

Multiplying equation (A£ .l) by —sgn r? (iu £r ) and integrating over Q yields

Note that first integral on the right-hand part of (3.30) vanishes due to Saks’ lemma. For 77 J, 0,
we then obtain from (3.30)

Consequently, adding ff £ae (us )\wE \ dtdx to both sides of (3.32) yieldsS; Tq

(t;a£ (u £ ) - q E {t) f'E {u£ ))\w£ \ dtdx
Qt0

v £ | dtdx.

In view of (3.29), we hnally obtain

(3.34)

nT

!n / Sgn(ws (l,t))dt us (l,/)dt = - / dt uf (l,*)ctø = tr(l,0) - u£ (l,T). 'O Jo

nT T

—~ / sgn{w£ (0,t))dt u£ {o,t)dt= [ dt ue (o,t)dt = ue [o,T) - u£ {o,o).Jo Jo

From (3.26) we obtain then for rj J. 0:

l|3l « t (-,r)|| i . (ni < ||K)'|| L ., n , + u'(o,T)-«'(i,r) < ||(us)/ || i .(n ) + u m„ +£,

£Mwe ) - (ge + /é(w£ )) > Mg, Mg =Ms + 0(f) >o.

j sgn n{we )[-q£ [t) - fs {u£ ))wE dx = -sgn(iye (l,<))(^c (uc (l,0) - *M<))

+ sgnTl {w£ {0,t))fs { U e {0 ) t)) + sgn,Tl {w£ )dx w£ a£ {u£ )iu£ dx + sgn v {wE )v£ dx. (3.30)

f i-qe (t) - f',{u£ ))\w£ \dx < 211/elloo + + + [ \v £ \ dx. (3.31)J 0 Jo

Integrating (3.31) over [0,70], we obtain

ff (~Qe{t) - /é(w E ))he |rf<dar < To(2||/e |loo + ||g £ ||co + ||tf e ||oo) +ff \ve \dtdx. (3.32)
JJ Qt0 JJ Q Tq

From (3.17) we obtain

Jj a€ {u£ )\w£ \dtdx < cir{u£ ) a £ {u: ){dx ir f dtdx^j

< (Tfide ||oo) 1/2 M =: .V/8 . (3.33)

< (Mi + ro (2j|/t j|„ + ||,r ||„ + +
Qt0

// |ur| f//c/x < .l/c, H—i— [f kri dtdx,
JJqT 0 M.g JJq Tq
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where M 9 := [f Mg + To (2||/e ||oo + \\q e \\oo + \\^s lloo)] /Mg- Using (3.34) we obtam from (3.24) that

Using this estimate in (3.23) and sending 77 iO, we see that v£ satisfies the inequality

(3.35)

for some suitable constants Mio and Mn . Note that the first integral on the right-hand side is
bounded smce we assume u 0 E 23. Using Gronwalhs lemma, we obtain from (3.35) the desired
estimate (3.20). Finally, using (3.20) m (3.34) for T 0 = T shows that (3.19) is also valid.  

Remark 2. Note that we have not been able to establish that j|5r u £ (-,G|U 1 (n) 25 umformly bounded
when the second alternative of (2.12) holds.

As in § 3.1, we may conclude from the estimates established by Lemmas 9 to 11 that there
exists a sequence e— sn i 0 such that the sequence of Solutions {u£n }of Solutions of Problem B £
converges in L l {Qt) to a function u E L°°{Qt) H BV{Qt)- We now prove:

Lemma 12. The viscosity hmit function u of Solutions u£ of Problem B£ satisfies inequality (2.14)
for all p E Cq° ( Qt), p > 0 and k E M and the boundary and initial conditions (2.10) and (2.15).

Proof. To show that u satisfies the integral inequality (2.14), we follow the first part of the proof
of Lemma sby multiplying equation (A£ .l) by — k)<p, <p E P> 0 and kE M,
and letting 77 [ 0 and £ [ 0. Note that m this case, no boundary terms appear. The verification
of boundary condition (2.10) is, of course, exactly as m the second part of the proof of Lemma 5.
Using the function vu instead of ph and starting from

the boundary condition (2.15) can be verified in the same way. As for Problem A, the initial
condition (2.10) can be inferred from estimate (3.20).  

Summarizing, we have:

Theorem 2. If (2.2)-(2.5) and (2.13) hold. ihen Problem B admits an entropy solution u.

3.3. An improved regularity result for entropy Solutions of Problem B. In Lemma 10,
we proved that the vanishing viscosity solution u of Problem B satisfies dx A{u) E L~{Qt). as
required by the definition of entropy solution. The purpose of this section is to show that A(u) is
actually more regular than this; namely, we have that A{u) is Holder continuous on Qt-

Lemma 13. Lei u £ be a solution of Problem. B£ . Then there exists a constant M\o > 0 such that
the followmg estimate holds umformly with respect to e:

Proof. Define V£ := q£ {t)u£ f£ {u£ ) + ae {u£ )dx u£ . Equation (ATI) can then be written as
dt u £ dx V £ . Inserting this into (3.22), we obtain

which implies that V£ satisfies an equation of the type

Evaluating (3.38) at x = 0 and using the boundary condition (A£ .4) yields C{t) = 0. In view of
Problem B £ , V £ can be considered as the solution of the linear IB VP with Dirichlet boundary
conditions

dt l r£ + [q£ (t) + f'(u£ )\dx V£ + q£ u£ = dx (as (u£ )dx V £ ), x E L>, t E (O.T], (3.39a)

V£ {x, 0) = -q£ {0)u£o (x) - fe (u£0 (x)) + a £ {u£o {x)){u£o y{x). xE W (3.39b)

lo < Ik.llco (^M9 +4- \v S \dtdxj.

f \v £ {x, To )| dx < f \v£ {x,o)\dx + Miq +Mn [ [ \v£ {x.t)\ dtdx.Jo Jo Jo J 0

0 = f {ge {u£ {l,t))-dx As {u£ {l,t))-y£ {i))Mt) =O,Jo

||o*Ae (ue )|| L „ ( g7j <Ml2 . (3.36)

dx {dt V£ ) + dx ([q£ (t) + f'e {u £ )]dr V £ + gé(<)u £ ) = c);{a £ {u- )dr V € ). (3.37)

dt V- + [<? £ (o 4- f'A u')] dx V£ + q'e u£ = dx {a£ {u*)c)T V£ ) + C{t). (3.38)
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Since u 0 GB, the right-hand part of equation (3.39b) is uniformly bounded in f, and so are those

of (3.39c) and (3.39d). Thus, the maximum pnnciple implies that there exists a constant Mx2 such

that the uniform estimate || Vs < holds; as a consequence, we have shown (3.36).  

Theorem 3. Assume that w —r u a.e. in Qt as zj 0. Then there exists a subsequence zn J 0
such that A(u€n ) —> A{u) uniformly on Qp and

A{u) eChl/2{QT ). (3,40)

Proof. \\e shall estimate the L continuity in time of V' applying Lemma 8. Integratmg equation
(3.39a) against a function p G Cq(l2), and exploting the relation dx Ve = dt ue and Lemma 11, we
obtain for 0 < ti < to < T:

i

< (o ~ *i){lktlloo "i IMIco + + 11/tlloo) Afis + (|a'lloo Mr) lIFIU}

Applying Lemma 8, we obtain

We use this to obtain a continuity m time estimate of Ae {u£ ). From the definition of Ve we obtain

= J {|?£ W + /1(«)| («(f,<2) - «({,<!)) +K£ - Vt,il)}

and using the L 1 continuity in time estimates (3.20) and (3.41),

|/L(tr(æ,t 2 )) -4c (u£ (;M 1 ))| < + 2 + ||/£/ || 00 )(/ 2 -h) + (3.42)

In viewof Lemma 13 and (3.42), there exists a constant Ml 4 > 0 independent of f such that

|Aj(U[x2 A 2 )) Aj ( U (i’l ,t\) ) [ < Mi 4 —X\\ A- \/\t2 1 1 , V(xi ,t\),{x2 1 to) GQt  

The Ascoli-Arzelå compactness theorem then yields the existence of a subsequence of {A(ue ")}
converging uniformly on QT to a limit Å G Clll/2 and we conclude easily that Å = A(u).  

Rernark 3. If one could prove for the solution tr of Problem Æ that zdx u £ {lj) is bounded uni
formly in z , then, under some additional techmcal assumptions, it is easy to see that Theorem 3
would also be valid for Problem A.

4. UNIQUENESS of ENTROPY SOLUTIONS

4.1. General results. We consider Problem A or B and assume only that f and A are locally
Lipschitz contmuous functions. Observe that if u is an entropy solution of Problem A or B. then
it is easy to see that the equality

(4.1)

holds for all p G Cq°{Qt)- An approximation argument will reveal that (4A) holds also for all
p G L 2 (T; Hq{Q)) Dll 11 (T;L :o (12)). This immediately implies dt u may be viewed as an element

K e (l,o = -®e (i), i S (O.r], (3.39c)

V'(o,t) = -gc (t)u‘(o,t), i 6 (O, T]. ( 3 3 9d)

/ (Vrf (x, U) - V e {x, ti))v{x) dxJo

~JtJ ( + féi ll ')] £ q'e u £ +SX (a£ (ir )s;r Vr£ <p{x) dxdt

~ j { — Q£ u£<p{ x ) + ([<7e(o + f'e {u" )] V € ae (u£ )dtu dxdt

3A/13 >0 : \\V £ {-,U)- 1 )|| L1(Q) < Ml3 y/t 2 -ti. (3.41)

A s {u£ {x,t 2 )) - A£ {u£ {xJi)) = j {ae {u £ {£,t 2 ))dx u£ {£,t 2 ) - a f (u£ (£,£ 1 ))dx ir(£J I )|d£

=Jo { M*) + £(«)] («(£,<2) - «(£,*i)) + v£ {t h) - V£k, /i)} .

jj | udt <p + [g{ u,t) - g{k,t) - dx A{ u)] dx dxdt = 0
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m L 2 (T; H~ 1 {Q)), since drA(u) G L 2 [QT ) and obviously u. g[u.t). A{u) G L p [Qt ) for all p. In
what follows, we let ( , •) denote the usual pairing between H -1 (L>) and Hq{Q).

For later use, introduce the function

where ip : M —* M is a nondecreasing and Lipschitz continuous function. Recall that A{u) 0 for
u < uc , A{-) is increasing in (uc ,umax ), and A{u) = M(umax ) =: Tmax for u > u max . Thus the
range of T(-) is the interval [o,Mmax ] and therefore \Ay,{k)\ is bounded by | k\ p(v4max ).

We shall need the following “weak chain rule” (see [l. 10]), which is here properly adapted to
our problem.

Lemma 14. Lei u:Qt he a measurable function satisfymg ihe following four condiiions:
(a) u G L°°{Qt ) n C{7 ; L (b) u(0) =uo G L°°{Q), (c) cf u G I 2 (T; and (d)
A{u) G L~ (T; . Then, for a.e. s G T and every nonnegative ip G for which
<9£<pU=o,i = 0 for p = 0,1,2,..., we have

Proof. In the sequel let p be as in Lemma 14. We can assume without loss of generality that
?/’(0) =O. If "0(0) i 1 0, we simply replace V’ by w—ip if{o) and note that Apju) Mv ( u) i {o)u.

Note that Ay> is a nonnegative and convex function. Convexity implies that for a.e. (x. /) G Qt -
we have

where we define u{t ) = u 0 for t G (-r. 0). Multiplying this inequality by <p{x,t) yields

Ay, (u(x, t))ip(x, t) - Ay.{u(x,t T))<p{x,t - t) + Ay, {u[x, t - r)) (p(x, t - r] p{x.t)]

(4.2)

Note that u o :Ay,{u0 ) G L l {Q) and u,Ay,{u) G L°° (T; L l {Q)). Dividing (4.2) by r and mtegrating
over Pl x (0, s), we get

- [ [ A u\u[xA))p{x,t) dtdx - - f j Ay,{uo {x))p{x,t —r) dtdxT Jn Js-t T Jn Jo

(4.3)

Since p G Q°(Qt) and dx A{u) G L 2 {QT )- we have w{A[u))p G Lr (T; H}JQ)) . Therefore,
exploiting that u G C(T:L 1 (fi)) and dt u GL 2 (T; i/ -1 (Q)), we can let r[o in (4.3) and obtain

for a.e. s G 7. Convexity implies also that for a.e. (x,t) G Qt and t > r. we have

Ay,{u(x,t)) Au.{u{x,t - r)) > [u{x,t) u{x.t - r))p{A{u{x,t - r)))

Multiplying this inequality by ip{x,t r) yields

Ay,{u{x,t))<p{x,t) - Ay,{u{x-t - r))p{x.t - r) + AP {u{x,t)){-p(x-t - r) - -p(x.t))

= Ay,{u{x,t))p{x-t - r) -Av.[u{x,t - r))ip{x,t - r) (4.4)

> ( u[xj ) u{x,t r))u'{A{u[x,t r)))(p{x.t r).

Au.{k) = f w(A(r)) dr,Jo

- f [dt u, \p[A{u))ip) dt =I f Aip(u)dt<f dtdx+ f A^[uo ,0) dx- fAtJo Jn Jo Jn Jn

Arp{u{x.t)) - As{u{x,t - r)) < [u{x,t) - u{x,t - t))j!>{A{u{x J))},

= A,p(u{x,t))ip[x,t) - (u(x, t - r))<p{x,t) < ( u{x.t) - u{x,t - r))il’{A{u(x J.)))<p{x,t).

+- j / {u{x, t r)) {(p{x, t—r) ip{x. /)) dxdtT Jn Jo

< / [ (u{x,t) u{x,t r))-ip{A{u(x.t)))ip{x.t) dtdx.
r Jn Jo

/ — / Axi,{uo)(p{x, 0) dx
Ja Ja

- f f A^{u)dt <r dtdx < f {dt u. v{A(u))<f) dt
Ja Jo Jo
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After dividing (4.4) by r and integrating over Q x (r, s), we obtain

(4.5)

Finally, similar to the case (4.3), letting r | 0 in (4.5), we get, for a.e. s G T,

/ Axp{u{x,s))(f{x,s)dx - / Axp(uo )ip{x,o)dx
Jn Jn

~j J dtdx > J {dt u,ij;{A(u))(p)dt.

This conciudes the proof of the lemma.

The following lemma is an adaption to our problem of Carrillo’s [lo] main observation:

Lemma 15. Let u be an entropy solution of Problem .4 or B. Then, for any nonnegative <p G
C^{Qt ) and k G («cAmax), we have

Proof. In what follows, we always let <p, k be as in the lemma and use the approximation

(see (3.21)) for the sign function. Introduce the function %{z) = (z - A{k)) and note that it
satisfies the hypothesis of Lemma 14, so that

Since u satisfies (4.1) and sgn rl {A[u) - A{k))tp G L 2 { T; H£{&)), we have

- f (dt u, sgn {A{u) - A(k))p) dtJo

which implies

I AyJji {u)dt (p dtdx +jj {g{u, t) g{k,t) dx A{u))dx (sgn„{A{u) A(k))<p) dtdx =O.
Qt JJqt

(4.7)

Since A{r) > A{k) if and only if r > k, sgn 7? (A(r) - A{k)) 1 as rj j 0 for any r > k. Similarly,
s S n r? - A{k)) —-1 as g [ 0 for any r < k. Consequently, — |u —k\ a.e. in QT as
Tj f 0. Moreover. we have |./1,/, i) (w)| < |u|, so by Lebegue's dominated convergence theorem

jf A xp{u{x,t))(f>{x,t) dtdx fl Axp{u{x,t))if[x,t) dtdx
Jfl j S-T T J£l J Q

“I— f f Aip(u{x,t)) {<p{x,t —t) <p(x,t)) dxdtT Jn Jr

f f (u ix A) - u{x,t - r))i'{A{u{x.t - -r) dtdx.' Jn J t

|\u k\dt <p -f- sgn(u —k) [g{u,t ) g{k,t) ~ dx A{u)\ dt dx

= JJQ (^r-4(w))“sgn|? [A{u) A{k))(p dtdx. (4.6)

- f {dt u, sgnv {A{u) - A{k))<p) dt =f f A Vri {u)dt ip dtdx.
Jo JflJo

+JJ [;g(u,t ) - g[k,t) - dx .4 ( u )] dx ( .4 ( u ) - A{k))ip) dtdx =O,

lim // Aø [u)dt (f dtdx = // \u k\dt y dtdx.
-i JJQt J JQt

We have

Jim JJq t) - g{k,t) - dxA{u)] dx (A(u) - A(lc))>p) dtdx

= lim // [g(u,t) - g{k,t) - dxA{u)]drsgn [A{u) - A(k))<pdtdx
vio JJqt
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Consequently, letting 77 J 0 in (4.7), we obtain the desired equality (4.6).

Theorem 4. If u and v are two enirovy Solutions of Problem A or B, ihen we have for any
P G Cq > {Qt ), P>o:

jj |(u - v\dt (p 4- sgn(u -v) [g(u,t) - g(v,t) - (dx A(u) - dx A(v))]dx (pJ dtdx >O. (4.8)

Proof. Let p G Cf? [Qt x Qt), supp pCQt x Qt , p = p[x,t, y, s) >O, u = u[x.t), and
v = v[y,s). Observe that

sgn(u - i>) = sgn(.4 (u) - A(v)) a.e. in [Qt x (Qt\O u )] U [[Qt\®v ) x QT ]

From the definitions of entropy Solutions and Lemma 15. we easily derive

(4.9)

(4.10)

(4.11)

(4.12)

+HmJj [g{u,t) - g{k,t) - åx .4(u)]sgn IJ (.4(i/) - A{k))dT *p dtdx

= lim [[ [g{u,t) - flf(År,^)]sgn(? (A(it) - A{k))dx A{u)<pdtdx
0 JJQt

-lim [[ {dx A{u)) ~ sgn {A{u) - A{k)) <f didx
nio JJqt

+Hm [I [g{u,t) ~ g(k.t) - dx A[u)]sgnv {A(u) - A(k))d
Oo JJqt

= h Hm [f (dxA{u))~sgn' {A{u) - A{k))<pdtdx +U
OO JJqt

One can easily check that

h = lim f[ [g{u,t) - (.4(u) - A{k))dxA{u)(p dtdx —O.
0 JJqt

Using that sgn(n k) = sgn {A[u) A{k)) a.e. in Qt,

h- Hm [[ [g{u.t) - g{k,t) - dx A{u)]sgnv {A{u) - A{k))dT (fdtdx
vl° JJqt

= ff sgn {u - k)[g(u,t) - g(k,t) - dx A(u)]dT ydtdx.
JJqt

dx A[u) = 0 a.e. in O u ;= |(x,2) €Qt  u{x,t ) <uc or u{x,t) > l|,

dy A{v) = 0 a.e. in := |(y, s) GQt ' *’(y, s) <uc or v{y, s) > 11.

IfSI>-0 W ~ + ss n ( u _ u)[ø(w,<) - g{v,t) - dtdxdsdy
Qt xQt

> lim JJJI i^xA{u))~sgn'v {A(u) ~ A{v))<f dtdxdsdy
IQt\O v )xQt

= lim Ifff (^a:^(«))“sgnj7 (.4(it) - A{v))<p dtdxdsdy,
( Qt\Ov ) x ( Qt\Ou )

//// ~ + sgn(t; - w)[y(v,s) - g(u,s) - dy A(v)\d dtdxdsdy
Qt xQt

= lim fiff (sy .4(tO)“sgn/r? (.4(i)) - A{u))<p dtdxdsdy.
(<?t\O u )x(Qt\O v )
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Observe that for a.e. {x, i) G Qt,

(4.13)

(4.14)

~ jjjj sSn ( w v)dx A(u)dy tp dtdxdsdy
Qt x Qt

(4.15)

Similarly, using (4.14), we find that

(4.16)
dx A{u)dy A(n)sgn /r; (A(n) A{u))ip dtdxdsdy.

( Qt\Ov)x(Qt\Ou )

Adding (4.9) and (4.15) yields

jjjj v + sgn(n - u)[(flf(w,<) - g{v,t))dx <p- dx A{u){dx ? +dy dtdxdsdy
Qt x Qt

Adding (4.11) and (4.16) yields

jjjj{\ v ~ u \dsA + sgn(*i -u) s) - g(u , s))dy ip dy A{v){dy p + dx^p) j | dtdxdsdy
Qt xQt

fjjj - dr A{ v)dy A{ r)] (A( r) -A( u))<p dtdxdsdy.
( Qt\Ov )x(Qt\o u )

Using that sgn(-r) = -sgn(r) and = a.e. in jti. adding (4.17) and (4.18) gives

I dx A{u)dy [sgn {A(n) - A{y))ip) dsdy =O.JJqt
or if one prefers

—// sgUn [A{u) A{v)) dxA{u)dy ip dsdy =jj dy sgnT] {A(u) A{v))dx A{u)(p dsdy.
jjQt JJqt

Similarly, for a.e. {y,s) € Qt ,

jj sgn7?('4(t’) A{u))dy A{u)dx (pdtdx —ff [A{v) A(u))dy A{ii)(p dtdx.Q T J J (Q rp
Now using (4.13), we find that

“ JJJj *&(A{u)-A{v))dx A{u)d,<pdtdxdsdy
(Qt\O v }*Qt

jjjj sSnr?(^( u ) ~ A{v))dx dtdxdsdy
( Qt \ Ov )x Qt

Jjjj dyA{v)drA{u)sgn'v {A{u) - A{v))<p didxdsdy.
{ Qt\O v ) x Qt

—— 1™ //// A{v)dx A{u)sgn'rl [A{u) A{v)) ip didxdsdy.
(Qt\Ov)x(Qt\O u )

jjjj sSn ( w - u)dy A{v)dx <p dtdxdsdy
Qt x Qt

= "l‘io ////

//// -dy A{iL)dx A{v)]sgn'r] {A(u)-A{v))^dtdxdsdy.
(Qt\o.)x(Qt \ou)

JJJJ{\U - v\{dt <p + ds (p) + sgn( u -r) |ø(M) - g{v. s) - {dT A{u) - dy .4(v))] {dT <p + dy p)
Qt x Qt
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Let p G CS°{Qt) be nonnegative and let be a standard regularizing sequence in M. We
then introduce the test function

Observe that

(4.20)

It is now classical (see Kruzkov [l3]) to take the limit h i 0 in (4.20) to obtain (4.8).

Remark 4. One should note that (4.8) is valid under significantly less regulaniy fhan uG B\ ( Qt )

4.2. Uniqueness of entropy Solutions of Problem A.

Corollary 1. Let u,v be two entropy Solutions of Problem .4 with initial data uO ,v0 . respectively.
Then

l|w(-,<) - < ||«o - woIIlmo)- (4.21)

In particular, Problem A has at most one entropy solution.

For the proof of Corollary 1, we need the following lemma.

Lemma 16. Let u be an entropy solution of Problem 4. Then condition (2.9) is satisfied if and
only if the integral inequahty (2.14) holds for all nonnegative pGCff ( Qt ) art d k G if a{s) 0
is valid for all sG 9 (pi (<), 71 u) := [min{y>i(*), 7iu}, maxføi(f). 71»}]; and if the following entropy
boundary inequahty is satisfied:

sgn ((7iu)( 1, t) —k) {t) —k) [ g{~/i u,t ) g{k, t) 7i dx A{u) j> 0. (4.22)

Proof of Lemma 16. Set p{x,t) = p{x)uh {x)A>{t) in inequahty (2.9), where p > 0, p G C£° (Q).

$ > 0, O G Cf° (T) and uh is defined m (2.1) and let h [ 0. See [7] for details.

Proof of Corollary 1. In inequahty (4.8) we choose <p{x,t ) = ((1 ph(x) i/h{x))A> (t) with $ G
Cq°(J), 4> > 0 and y h and vh from (2.1). Taking the limit h ] 0, we obtain from Lemma 1, using
the boundary condition at x = 0 and the nonpositivity of q:

(4.23)

+ sgn( u— v) [(</(u, s) g(u, t))dy<p + [g{v, s) —g( v. t )) dx j- dtdxdsdy

= lim //// {dT A{v) - - A{v))pdtdxdsdy>o. (4.19)
(Qt\O v )x(Q t \Ou)

n (x + y t+ s\ /x— y\ (i -s\
Vh {x,t,y, s) = --J dh (~2~J df> ' ~Y~)

„ fx + y t+s\ /x —y\ ft -s\
dtyh + ds tph —di(f y 0  2 0 j 1 [ 0 ) 

** + 9,* = ( —) - (V)

Using as test function in (4.19), we get

jjjj ||« - v\dt +sgn(u - - g{v.s )
Qt x Qt

+ sgn(u —v) [ {g[u, s) g{u, t))d}J <pk + s) )?(f, 0) dr-Ph J I dtdxdsdy > 0

J

IJ \u v\&{t)dt = j |sgn(7itz. -71 v) [y(7i u, t) g{~n *’• 1) - [~'idx A{ u) —7l r.4 (v)) ]

- sgn(70 u - ']ov)q{t) (70U - 7o *’)| dt

> J |sgn(7i u j\v) [0(71 m, t) gijiv, t) {'yidx A(u) 7i<9r A(u))] |dt
Note that
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Figure 1. The model functions f{u) and a[u) for the sedimentation-consoli

dation problem. The umts are 10~ 5 [m/s] for f{u) and 10~ 5 [m 2 /s] for a(u).

x MtiM) - g{k,t) - 7i dx A[u)] + sgn( 7l u - 7i«)[ø(7it>,/) - g{k,t) - 7l dr A(r)]. (4.24)
Choosing in a standard fashion

Now let s(r) = gh{r)~gh (r-i), where gh is given m (2.1). Corollary 1 follows by takmg hj 0.  

4.3. Uniqueness of entropy Solutions of Problem B. We note that by the boundary con
dition (B3), the right-hand part of (4.23) is zero, so that mequality (4.25) follows immediatelv.
Summarizing, we may conclude:

Corollary 2. Let u,v be two entropy Solutions of Problem A with initial data u O . v O . respectively.
Then (4.21) holds. In particular, Problem B has at most one entropy solution.

Remark 5. We pomt out that for both initial-boundary valne problems A and B. the stability
proof essentially depends on the nonpositivity of q. In other words. stability relies on reducing the
total flux g{u,t) - dx A{u ) to its convective part q(t)u ai the ‘ outfloiu' boundary of only.

5. Application to gravitational sedimentation-consolidation processes

5.1. Statement of the problem. The study of degenerate convection-diffusion equations of
type (1-1) is in part motivated by a model of sedimentation-consolidation processes of flocculated
suspensions in an idealized sedimentation vessel, here considered to be of height 1 [m]. In that
application, u = u[xp) denotes the local volumetric solid concentration, q[t) < 0 is the average
flow velocity of the mixture which can be controlled externally. f[u) is a given nonlinear function
relating the local solid-fluid relative velocity to the local solids concentration, and

where A g > 0 denotes the solid-fluid mass density difference, gis the acceleration of gravity. and
cre( u ) ois the derivative of the solid effective stress function. The material behaviour of the

suspension is descnbed by the functions f(u) and ae (u). Condition (A2) corresponds to a given
initial concentration distribution, condition (A3) to prescribing a concentration value at x = 1 due
to dilution of feed suspension which enters the container continuously, and condition (A4) is then

sgn(7iw —7l v) J#(7iu, t) g{jiv,t) (7l dx A{u) - 71 5 = sgnfrju -71r) x

f7i« if 7i« G Tit’)-

= | v?i(<) if <Pi{t) G J(tiw, Tlf),
Itiu if 7i v t J(v?i(Z), 7i«)

in the entropy boundary mequality (4.22) and its analogue for v, we see that both summands on
the right-hand part of (4.24) are nonnegative. Consequently,

// \u - v\s'{r) dvdx >O. (4.25)
JJ Qt

a i u ) = - f{u)cr'e {u)/{Aogu ), (5.1)
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FIGURE 2. Numerical Solutions of Problem A applied to the sedimentation
consolidation model: a) batch settling, b) continuous sedimentation-consolidation

equivalent to reducing the solid volume flux density at the bottom of the vessel to its convective
part q{t)u{o,t). This sedimentation-consolidation model is described in detail in [3, 8. 9].

The property which is of interest here is that most researchers (see, e.g., [ls]) assume that cre
is constant for u not exceeding a critical valne u c , at which the solid flocs are assumed to touch
each other, and that ae is strictly increasing for u > uc . Consequently, a{u) = 0 for u< uc and
a{u) > 0 for u > uc wherever f[u) < 0. Most notably, many constitutive equations for cre imply a
jump of a'e at u uc , which makes a{u) discontinuous.

5.2. Numerical examples. We calculate entropy Solutions of Problem A in this application by
using the finite-difference operator splitting scheme described in [s].

We employ a flux density function of the well-known Richardson and Zaki type with parameters
which were determined for a suspension of copper ore tailings (see [9]):

The function a{u) is given by (5.1) with A g = 1500 [kg/m3 ], u ) 0 for u < uc 0.23 and

see e.g. [ls]. Figure 1 shows the resulting model functions f{u) and a(u).
In the first example, see Figure 2a), we consider the settling of an initially homogeneous sus

pension of concentration u 0 0.15 in a closed column, i.e. ipi =o,q = 0. Observe that the discon
tinuity between u = 0 and u uq is a shock. In the second example, we set q = —1.5 x 10~ J [m/s]
and start with a steady state; the function uq{x) is obtained by setting uq(0) = 0.34, by inte
grating the time-independent version of equation (1.1) using this boundary condition until u = u c
is reached at a certain level x c and setting uq{x) = <Fi(mo(0)) above, where 4>i is obtained from
solving gTi -f /(Ti) = quo{o), yielding <Fi(O.34) = 0.00922 and TR0.37) = 0.01014. Setting

f TR0.34) for 0 < t < 5 [h], TR0.37) for 12 [h] < t < 30[h],

~ [0.02 for 5 [h] < t < 12[h], 0 for t > 30 [h],

we obtain the numerical solution depicted in Figure 2b). This is a successive simulation of the
operation at steady State, rise of the sediment level, convergence to the next steady State and
emptying of the sedimentation vessel.

Note that uq G IB in both examples. This is obvious for uq = const., while in the second case

where Rq(0) was chosen such that the right-hand part of (5.2) is nonpositive, therefore u'o {x) < 0
for 0< x < xc . We have uq G 'T, since we can conclude from the jump condition [7] that

f{u) = -6.05 xlO 4 u{ 1 - i/) 12 59 [m/s].

cré(u) = 5-r (lOO(u/u c ) 8 - 1)) [Pa] for u > u c

dT A{u0 {x)) = q{u 0 (x) - uo {0)) + f{uo {x)) for 0< x < x c , (5.2)
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TVn(sx >l(wo)) [ \dlA{uo {x)) Idx + lim dx A{u0 (x))Jo xT^c
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