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ON THE CONVERGENCE RATE OF OPERATOR SPLITTING FOR
WEAKLY COUPLED SYSTEMS OF HAMILTON-JACOBI EQUATIONS

ESPEN R. JAKOBSEN, KENNETH HVISTENDAHL KARLSEN, AND NILS HENRIK RISEBRO

Abstract. Assuming existence and uniqueness of bounded Lipschitz continuous viscosity
Solutions to the initial valne problem for weakly coupled systems of Hamilton-Jacobi
equations, we establish a linear L°° convergence rate for a semi-discrete operator splitting.
This paper complements our previous work [2] on the convergence rate of operator splitting
for scalar Hamilton-Jacobi equations with source term.

1. Introduction

The purpose of this note is to study the error associated with an operator splitting
procedure for weakly coupled systems for Hamilton-Jacobi equations of the form

where the Hamiltonian H = [Hi,... ,Hm ), is such that only depends on m and Dui
(and x and t). The equations are only coupled through the source term G = (Gi,..., Gm ).

We assume that under reasonable conditions the present problem has a unique bounded,
Lipschitz continuous viscosity solution, see Crandall, Ishii, and Lions [l] for an up-to-date
overview of existence and uniqueness results for fully nonlinear first and second order partial
differential equations as well an introduction to the general viscosity solution theory.

Our semi-discrete splitting algorithm consists of alternately solving the “split” problems

sequentially for a small time step At, using the final data from one equation as initial data
for the other. We refer to Section 2 for a precise description of the operator splitting. We
prove that the operator splitting solution converges linearly in At (when measured in the
L°° norm) to the exact viscosity solution of (1.1). This is a generalization of the results in
[2], where convergence of a splitting algorithm was proved in the scalar case.
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du'
+ Hi{t, x,Ui,Dui) = Gi(t,x,u) in QT = x (O,T), z =

(1.1) ot
u{x, 0) = uq{x) in R^,

dUi
+ Hi(t, x , Ui, Dui) = 0, for i = 1,..., m,ot

ut = G{t,x,u), u = (til, • • •,%),
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Before stating the our results, we start by defming our notation and State the necessary
preliminaries, for more background we refer the reader to Souganidis [s], see also [l].

Let ||/|| := ess suplGt/ |/(x)|. By BUC[X), Lip{X), and Lipb{X) we denote the spaces
of bounded uniformly continuous functions, Lipschitz functions, and bounded Lipschitz
functions from X to R respectively. Finally, if f E Lip{X) for some set X C IA, we
denote the Lipschitz constant of f by ||D/||.

Let F E C([o, T] x xßm x M.N ) and uQ E BUC(Rn ) and consider the following initial
valne problem

Definition 1.1 (Viscosity Solution). 1) A function u E l3 o> viscosity sub~
solution of (1.2) if for every E C l (Qt), whenever u— f attains a local maximum
at (æq, t 0) E Qt, then

2) A function u E is a viscosity supersolution of (1.2) if for every E
C l {Qt), whenever u (f) attains a local minimum at (x0 Ao) E Qt, then

3) A function u E C(Qt;ÆQ is a viscosity solution of (1.2) if it is both a viscosity
sub- and supersolution of (1.2).

4) A function u E C(Qt', is viscosity solution of the initial value problem (1.2) and
(1.3) if uis a viscosity solution of (1.2) and u{x, 0) = u0 (x) in RN .

From this the generalization to viscosity Solutions of the system (1.1) is immediate.
In order to have existence and uniqueness of (1.3), we need more conditions on F.

(Fl) F E C([o, T] xRn xR x is uniformly continuous on [O, T] xRN x [—R , i?] x
Bn{o,R) for each R> 0, where BN {O,R) ={iE Rw : \x\ < R}.

(F2) supgT \F{t,x, 0,0)| < 00.
(F3) For each R> 0 there is ajr E R such that F(t, x , r, p) - F{t, x , s, p) > 7r(v —s)

for all x E RN ,-R<s<r<R,te [O,T], and p E R*.
(F4) For each R> 0 there is a constant CR > 0 such that \F{t, x , r,p) F(t, y, r,p) \ <

Cr{ 1 + |p|)|x y | for ali t E [O, T], |r| < R, and x, y and p E R^.
Under these conditions the following theorems hold:

Theorem 1.1 (Uniqueness). Let F : [O, T] xRxR -a R satisfy (Fl), (F3), and(Ff).
Let u,v E BUC[Qt) be viscosity Solutions of (1.2) with initial data u O ,v0 E BUC(RN ),
respectively. Let R 0 = max(||it||, \\v\\) and 7 = 7Ro . Then for every t E [O,T],

l u{-,t) - v{-,t)\\ < e ll \\uo - no ||.

Theorem 1.2 (Existence). Let F : [O,T] x xR x RjV —> R satisfy (Fl), (F2), (F3),
and (F4- For every uo E BUC{M.N ) there is a time T = T(||uo|l) > 0 and function

(1.2) u t+F{t, x, u, Du) = 0 in Qt

(1.3) u{x,o) = uq{x) in RN ,

where u 0 € BUC{RN ).  

Mxo, to) + U, D(f)(xo, to)) < o

Mxo, + F{to: x O , ti, D(f){xo , t 0)) > o
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u G BUC(Qt) such that u is the unique viscosity solution of (1.2) and (1.3). If, moreover,
7a in (F3) is independent of R, then (1.2) and (1.3) has a unique viscosity solution on Qt
for every T > 0.

Proposition 1.1. Let F : [O,T] xRN xRx RN -A R satisfy (Fl), (F2), (F3), and (Ff).
If uq G Lipb (RN ), and u G BUC(RN ) is the unique viscosity solution of (1.2) and (1.3) in
Qt, then u G Lipb{Qr)-

2. Operator splitting and main results

We now give conditions on G and H which in the scalar case (m = 1) will be sufficient to
get existence and uniqueness of a viscosity solution in Lipb(Qr)- Moreover these conditions
are strong enough to give a linear convergence rate for the operator splitting.

We assume that H and G satisfy the following conditions:

(Hl - H4) For each z, Hl satisfies conditions (Fl) - (F4).
(H5) There is a constant LH > 0 such that \Hl {t, x , r,p) Hi{t , x , s,p)\ < LH \r —s|

for te [O, T], x, p G rGl, and i = 1,..., m.
(H6) For each R> 0 there is a constant Nj( > 0 such that \Ht [t, x , r, p) Hz {t , x , r, p)

Nj[{ 1 + |p|) 1 1 —f\ for t, t G [O,T], \r\ <R,x, p G RN , and i = 1,... ,m.
(H7) For each R> 0 there is a constant Mr > 0 such that \Hl {t, x , r,p) ,x,r, q)

Mr\P -q\ for t G [O,T], |r| < R, x, p, q G RN such that |p|, \q\ < R , and
i = 1,..., m.

(Gl) GG C ([O, T] xRN x is uniformly continuous on [O, T] xRN xFm (0, R)
for each R > 0.

(G2) There is a constant Ca > 0 such that CG = supqt |G(t,x,o)| < 00.
(G3) For each R> 0 there is a constant Cr > 0 such that | G{t, x , r) G{t, y, r)| <

Cr\x —y\ for t G [O,T], |r| <R , and x, y G RN .
(G4) There is a constant LG > 0 such that \G{t,x,r) G(t,x,s)\ < LG \r —s\ for

(t, x) G Qt and r, s G Rm .
(G5) For each R > 0 there is a constant > 0 such that | G{t, x , r) G(t, x,r)\ <

N*d 1 1 —t\ for t, f G [O,T], |r| < R, and x eRN .
Note that by the conditions (F2) and (G2) we can assume that Hl satisfies Ht {t, x , 0, 0) =O.
If this were not so, we could simply redefine H as H{t,x,u,p) - H{t,x, 0,0) and G as
G{t, x , u) H{t, x , 0, 0).

We shall assume that there exists a unique solution u G Lipb {QT ; Rm ) to the initial value
problem (1.1) under the assumptions (H1)-(H7), (Gl)-(G5), and u 0 G Lipb (Q]Wn ).

First we will State an error bound for the splitting procedure when the ordinary dif
ferential equation is approximated by the explicit Euler method. To define the operator
splitting, let

E{t,s) ; Lipb (RN ;Rm ) —>• Lipb (RN ; Rm )

denote the Euler operator defined by

(2,1) E{t, s)w{x) = w {x) -f {t s)G(s, x, w {x))
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be the solution operator of the scalar Hamilton-Jacobi equation without source term

(2.2)

i.e., we write the viscosity solution of (2.2) as Su{t, s)w{x).
We let S denote the operator defined by S{t,s)w = (t, 5)wi, ..., 5//m (t, s)wm ) for

any w = (wi,..., wm ) G Lipb (RN ] Em ). Now we can define onr approximate Solutions: Fix
At 0 and set tj j At, set u(x, 0) Ug(3:) and

(2.3)

for j > 0. Note that this approximate solution is defined only at discrete t-values. Our
first result is that the operator splitting solution, when (2.2) is solved exactly, converges
linearly in At to the viscosity solution of (1.1).

Theorem 2.1. Let u(x,t) be the viscosity solution of (1.1) on the time interval [O, T], and
v{x,tj ) be defined by (2.3). There exists a constant K > 0, depending only on T, ||u o || ;
||Duo ||, ||uo || ; H-Dvoll, H, and G, such that for j = 1,..., n

We will prove this theorem in the next section.
Our second theorem gives a convergence rate for operator splitting when the explicit

Euler operator E is replaced by the exact solution operator E. More precisely, let É{t, s) :
Lipb {RN ;Rm ) —> Lipb {RN ] Rm ) be the solution operator of the system of ordinary differ
ential equations

(2.4)

where w G Lipb {RN ] Rm ). Note that x acts only as a parameter in (2.4), and that the
assumptions on G ensure that E is well defined on the time interval [s,T].

Analogously to (2.3) we define the approximate solution {u(a:, =l ,

(2.5)

Theorem 2.2. Let u(x,i) be the viscosity solution of (1.1) on the time interval [O,T] and
v{x,tj) be defined by (2.5). Then there exists a constant K > 0, depending only on T,
||uo || 7 \\Duo \\, ||uo||, \\Dvo \\, H, and G, such that for j = 1,..., n

Remark 2.3. Theorems 2.1 and 2.2 are generalizations of Theorems 3.1 and 3.2 in [2].

for o<s< t < T and w G Lipb (RN ] Rm ). Furthermore, let

SH (t,s) : Lxpb (RN ) -> Rw )

ut + H(t, x, u, Du) = 0, u{x,s) = w{x),

v(x,tj) = S, (tJ-,tJ-_i)jE7(*J-,*j_i)v(-,tj_i)(a;),

I|| < K{\\u0 - vo || + At).

ut = G{t,x,u) u{x,s) = w{x)

v(x,tj) = s(tj,tJ-_i)£?(tj,tJ->i)?;(-,^_ 1 )(a;),

for j> 0 and v{x,to ) vO . Then we have:

| - v{-,tj) || < K{\\u0 - Vq || + At).
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3. Proofs of Theorems 2.1 and 2.2

We will proceed as follows: First we give some estimates we will need later. Then we
introduce an auxiliary approximate solution and prove linear convergence rate for this
solution. This proof involves the scalar version of Theorem 2.1. We proceed to show that
the operator splitting solution converges to this approximate solution with linear rate. This
completes the proof of Theorem 2.1. Finally we give a proof of Theorem 2.2. This proof is
similar to the proof of Theorem 3.2 in [2].

We start by stating the relevant estimates on S. Let w, w G Lipb (RN ), 0 < s < t < T,
and Ri = supf)S { || Si(t, s)it;||, then

(3.1)

(3.2)

(3.3)

where K[R) is a constant depending on R but independent of z, t, and s. Estimate (3.3)
is a direct consequence of Theorem 1.1. Note that in this case 7 = LH . Estimates (3.1)
and (3.2) correspond to estimates (4.7) and (4.8) in [2],

Regarding the approximation defined by (2.3), v{-,tj), we have the following estimates:

Lemma 3.1. There is a constant R independent of At such that maxi<j<n < R.
Moreover for every 1 < j < n,

Proof. To prove a) and b), we need (3.1), (3.2), and the definition of the operator E. We
only give the proof of a). The proof of b) is similar. By (3.1) we get

(3.4) {£(!,, < eL" At \\{E{tJ ,tJ . l )v(-,t^ l )} i

We then use the definition of E (2.1) and (G3), (G4) to get

Note that ||u(-, tj_i)|| < JffiL i ll ui(’, Now using this and summing over zin inequality
(3.4), we get

m

Si{tj, tj-i){E[tj,tj—i)v{-,tj—i)}i

(3.5)

||Si(*,sHl < eLH{t s) IMI>
j|D{s,(i. s)w}|| < + (t - s)K(RI )},

|jsi(i, s)w Si{t, s)w|| < e lHit~‘* j|t« w||,

(a) ||t)(-,tj)|| < m e (i "+miG)1j (||uo || + tjCa),
(b) ||D«(-,ij)|| <me^ + tj

+At (CG +La ||w(-,ti- 1 )||)

1=1

< eiWA, | (l + A tmLG)+ mCGZ\t|

< e(i"+'"iG || Wj (., tj.OH + mCaAt\.
l=l '
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The result in a) now follows from successive use of (3.5) and an application of the inequal
ities \x\ < \ xi\ m \ x \ f°r x € Mm . Replacing tj by Tin a), we see that the existence
of R is assured.  

Proof of Theorem 2.1.
Let u denote the solution of (1.1) and define
(3.6)

Note that the function Gz satisfies (Gl)-(G5) for all i = 1,..., m.
Using Gi , we can rewrite (1.1) as a series of “uncoupled” equations

(3.7)

Of course, the viscosity solution of (1.1) u is also the unique viscosity solution of the system
of equations (3.7).

Now we want to do (scalar) operator splitting for each equation in (3.7). To this end,
for any x (aq ; ... ,xm ) <E Em , let xt * = (aq,... , aq_i,aq+ i,... ,xm ). Now for any w e
Lipb {RN ;Em ) let El {t,s)wl be given by

Now we define the following operator splitting solution v = ({q,..., vm ),

(3.8)

for j> 1, and Vi(x,to ) = uQi {x). Note that Et is the Euler operator for the equation

Hence by the results of [2]:

Lemma 3.2. Let u{x,t ) be the viscosity solution of (1.1) on the time interval [O,T] and
v{x,tj) be the operator splitting solution (3.8). There exists a constant K' > 0, depending
only on T, ||uo || ; ||T>no ||, H , and G, such that for j = 1,..., n,

IK-,*j) ~ || < K'At.

Using the above lemma, we wish to estimate || v(-,tj) - v{-,tj) ||, and start by using the
definition of the operator splitting Solutions (2.3) and (3.8) and the estimate (3.3). Then

Gi(t, x, r) =Gi (t, x, Ui (x, t),..., Ui-i{x, t),r, ui+l {x , t),..., nm (x, t)) , i = 1,..., m

du{ ~
—1 4- Hi{t , rc, ii», Dui) = Gz (t, x, it*), z = 1,..., m.ot

Ei{t , s)wi = wl + [t - s)Gi (s, x, Wi).

Vi(x,tj) Si{tj , tj—\)Ei{tj , tj— i)"Dj(x, tj— i)

Gi\t X, Ui) .

\vi{x,tj) | | S{{tj , tj_i) Ei[tj , tj— i (x,tj — 1)

<eL* At tj-i))^
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By the Lipschitz continnity of G , we have that

< I(i5» - u») OMj-i)| + LG At{\{ui* - Vi*){x,tj-i)\ + HG -

< |(u* - Vi) (Mj-i)! + LG At(j(iq* - Vi,)(x,tj-i)\ + \(vi* - viif )[x,tj- 1)|

< \{vi v*) (x, -f L°K'At2 + LG \f2At \v{x, tj- 1) v(x, tj_x)| .

Summing the resulting inequality over i yields

Proof of Theorem 2.2. We end this section by giving the proof of Theorem 2.2. Assume
for the moment that

for all j, where Cis a constant depending on G, H , T, ||ito ||, ||.Dito ||, ||vo||, and ||Dvo || but
not At. Using (3.9) and Theorem 2.1, we find

Setting K = K+ C, we conclude that Theorem 2.2 holds. It remains to show (3.9). Using
the same arguments as when estimating the local truncation error for the Euler method
we find that

m m

Y | {E{tj+l ,tj)v{x, tj) - E{tj+i,tj)v(x, tj)}i\ < emLGAt Y IMG tj) ~ v(x, tJ )} l \ + CAt2 ,
i=l i— l

where C = mLG (LG R + CG ) + mtV)?. Here R > max {\\E{tj: t)v{-, tj)\\ , ||v(-, tj)||), i? is
hnite by arguments similar to those used in the proof of Lemma 3.1. Now using this we

Ei 1) Vi (x, tj-i) - [E 1) i)) t-

i 5 —1) | "t" Gi {U\ : ... , V{ (x, ij_i), .. . , U-ui )

Gi . . . , tj—l ))

+ \ {Vi - vi )(x,t3 _i)\ Sj

m
y i Vi{x,tj) - Vi(x,tj) i
l—i

< ++-'AI£ W-.-,-) - -W-)')
m

< e { LH+m^K L°) tJ | Uo t i(x) vo>i(a;)| -f- mK'LGtj/\t
i=l

Hence Theorem 2.1 holds.

(3.9) \\v {x,tj) v {x,tj)\\ < CAt

- v( , ij)|| < (-. *j)ll

l\ (||iio ~1~ At) ~1~ CAt.
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find that

{S(tj+utj)E{tj+utj)v{;tj)

Since that v{x,o) = u0 (t), repeated use of inequality (3.10) gives (3.9).

4. A FULLY DISCRETE SPLITTING METHOD

In this section we present a simple numerical example of the splitting discussed in this
paper. For simplicity we shall consider a system of two equations in one space dimension

When testing this numerically, we must replace the exact solution operator 5 by a numerical
method. As most numerical methods for Hamilton-Jacobi equations are have convergence
rates of 1/2 with respect to the time step, we use a front tracking algorithm, which has
a linear convergence rate with respect to the time step. This front tracking algorithm is
described in [3] and we shall only give a very brief account of front tracking here.

Front tracking uses no fixed grid and the solution is approximated by a piecewise lin
ear function. The discontinuities in the space derivative, the so-called fronts , of the ap
proximate solution are tracked in time and interactions between these are resolved. This
algorithm works for scalar equations in one space variable of the form

For equations in several space dimensions, front tracking can be used as a building block
in a dimensional splitting method, see [4].

For weakly coupled systems of the form (4.1), the approximate solution operator E
depends on both u and v. Therefore, after the action of E , we must add fronts in the
approximation of u at the position of the fronts in v and vice versa. In this situation we
cannot in general find a global bound on the total number of fronts to track. In order to
avoid this problem we use a fixed grid X{ = iAx , for i G Z, and set

where tt is a linear interpolation to the fixed grid and lA1 - is the front tracking algorithm.
Unfortunately, this restricts the order of the overall algorithm to O{Ax1/2 ). Nevertheless,
we do not have any inherent relation between Ax and At, and we used Ax At/10.

m m

1=1

tj+l 5 tj ) (tj+1 ? (*sj ) } i
m

< e \\{E(tj+ u tj)v(-,tj) - E(tJ+ i,tj)i>( ,*,)}.
1=1

m

(3.10) <
i= 1

(4.1) u t +H(ux ) = f{u,v), vt + G{vx ) = g{u,v).

ut + H{ux ) =O.

(4.2) S:=7ToSLt ',
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Table 1. At versus 100 x L°° error.

We have tested this on the initial valne problem

and periodic boundary conditions. In figure 1 we show the approximate solution at t = 1
using At = 1/8. To find a “numerical” convergence rate, we compared the splitting solution
with a reference solution computed by the Engquist-Osher scheme with Ax = 1/2000.
Table 1 shows the relative supremum error for different values of At. These values indicate
a numerical convergence rate of roughly 0.63, i.e., error = O (At0 63 ), much less than the
rate using an exact solution operator for the homogeneous equation.
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