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Absitralel:

The mass transport induced by time-dependent oscillations
of finite amplitude in a nonhomogeneous fluid, is considered.
The mass transport is given by the Lagrangian mean velocity,
calculated to the second order in the Mach number of the
oscillations. We find no mass transport in a non-dissipative
model, Taking into account dissipation, however, the theory
leads to non-zero vertical drift and horizontal flow. The

vertical drift becomes zero in an incompressible model.
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In The present paper a general Thoory ig outlined for the
mass transport induced by time-dependent oscillations of finite
amplitude in a nonhomogeneous, one-component fluid. The theory
is motivated in the possible applications within astrophysics
and geophysics, where non-linear effects like the one studied
probably influence the mean currents and the flux of energy.
(see, for example, Munk and Moore (1958), Longuet-Higgins (1970)
for studies of ocean currents).

The mass transport is given by the Lagrangian mean velocity,
calculated to the second order in the Mach number of the oscil-
lations. We compute the vertical component of this mean velocity,
the dlivergeinee and the vertical component of the vorticity,
wherenpy determining the flow fleld. The £luld lg a wilscous,
heat conductive and heat radiative perfect gas. Compressibility
glfiects are fully accounted for. Different equillbrium models
girel eongldered,

There 1s no mass transport in a non-dissipative model,
Taking into account dissipation, however, the theory leads in
general to a non-zere effeet, A vertlcal drift ls obtained in
addition to a flow in the horizontal plane. The vertical drift
becomes zero in an incompressible model. ).

There are indications thab flows of this type ocecur in
experiments on standing acoustic waves (See Schaaffs and Haun
(1968), Schaaffs (1973), Hobsk (1973) who have observed the
formation of periodic density stratification, the scale of which

is the half wave length).

* - .

) This general result for an incompressible fluild explains why
a zero mass transport is found by Kildal (1959), in his detailed
analysis of a viscous boundary layer model.
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2. Basic equations.,.

After elimination of the entropy, the equations of

hydrodynamics can be written as follows:

2.1 2V Vb + 2 o
G

(eseiy Elation TRU3).< o
DE ;

(e %} j‘cz V\_/ -~ CPT+ CPR+ (PV
bt

Y)_F,F,'B, 3, C are respectively the Eulerian velocity, densi-
ty, pressure, unit vector in upward direction, acceleration
of gravity and sound speed. Further, E:V ig"vhe viscous“ferce,
qﬂy/x~! the accession of heat due to conduction, C#R//K”'
the accession of heat due to radiation, CPV the viscous dissi-

pation function; Y is the ratio CP/CV of the specific heats.

@u) F = Uldes o) WY+ VO] 4 BTV - Y0+ T (V2 )

2.5) P'= (y-) V. (s VT)

*

2.6) P'= O[TV 7Y+ PV (7Y) = 2(70) )+ g (PV)°]

*
where (VY) denotes the conjugate of VY'.

Further, we put

(amda - L V(SR

for the optically thick case, and
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=8s
o i d3R=-~(5—chfq (T_7}) (Newtons cooling law)

for the optically thin case.

The temperature is given by the equation of state
(2.8) b= RpT ; R el e cnicy

Thus the radiative effects are accounted for only in the
energy equation (2.3),

o R are taken constant. The dissipative coefficients
S P Py, %% and 9 depend on the temperature (mainly) and the
density. How, for example, o and M vary with these variables
is known from classical kinetic. theory. If the binary collision
model with central force proportional to Y-¢ is adopted, o

and |} are found to be independent of § but proportional to
Sl 2
Tt s (Chapman & Cowling (1958)).

The following equation of evolution is obtained for T
Bl climToai N Sieel between (2.2), (2.3) and (2.8), #nd
inserting c¢*= ¥p/#e
DT &+ () TRV =_'( @7+ 4 0Y) |
2l Sl AR
Gyl o
At equilibrium the velocity is supposed to be equal to

zero., The other variables p, , £ , T, must then satisfy the

following equations:

,VFO + Zggo =0
(2010) V.(G‘O VTO) = G
SRR

for the. optically thin case, or the analogous equations where

O, 1is replaced by Co+ Op, for the optically thick case,
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o

We suppose thatp,,p,,T, depend only on the gltitude 2 , ‘so that

we have
/

/
(2 i d) i L e T p
_?o RTO To

where the prime denotes the 2 -derivative.

Of special interest is the isothermal equilibrium

-Z/H ~-2/H
(2.32) T =, congtant »° bb. & bie b So P

where p., ¢, are the values of p , ¢ at 2=0 and H is the
scale heigﬁh. Here ¢/} = Niales = R Y3 o

Other possible equilibria are obtained by solving for
instance, the equation (647})‘T;);O. When ¢ is an increasing
function of T , b, , §, , T, are power functions of 2 , and T,
increases with altitude.

M being the Mach number of the perturbation, we suppose
that ¥V , b, ¢, T can be developed in powers of M, sk least
up to the second order

V- LOTE T A

P0+P4+FL+"'

(215 )

"

[ X X )

Substituting these expressions in (2,1)-(2.3) ang (2.8), we

obtain to the first order the linearized equationsjwhere w = Y‘Z )

2V v
(anah) gﬁ + qu Slde s = _F4

%5)4 . V.V = O
(2-15> :{EQ * S)o W4 % fo =)

;
(2.16) 2’% Rt A

(2T o e e R
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Fron (2,9) Worafudh il M15)4(2:47)) twe nebtain

R
o ¢z‘)

Another consequence of the first order equations is obtained

(2.18) 2:‘ + Tow, + (-0T 0V, =

o

by taking the curl of (2.14)

l / y
@GR VoY, = AV (Shn g e g
o 24

An alternative form is obtained by taking the time derivative

of (2.19) and by using (e 5], (2.46)

(2.20) 2 La AV CINA XTIV, + fo/)xv(cp+q>f?) ’av 7
rbC 3 f,, f

% . D
Hore #NO= LGf Tompdd oy the Vaisala frequency, see later, §.4.1,
€. i

Identifying terms of order M we obtain the second order

equations

y
Ll fo;“VPu?gfz el (n;‘{—u R

(2:22) r;iz +-§ o Tlg v V £ty V'(ﬁ1Y¥)

ATy Boph :

(2.24) Pp, = R(fngﬁ'ﬁ-n *Lﬁ7;)

Fquation (2.9) (or (2.22)-(2.24)) gives now

T — T 'R Lv
(2.25) %“E* T, o+ (Y HTLVY = pf<¢z*@z*“’2) e
f,f i £ \

H(\:/'"VT:?‘*(K—‘)T'?V'Y'?)- 2.(L’b4+cp4)'

Ryo
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R : : :
G W s #ﬂ are the first order terms in the expansion of

Yy &7, ¢® in powers of M ( q?/is equal to zero). They are
linear combinations of first order variables and their gra-

dients; the coefficients of these linear combinations depend
on the dissipative coefficients and the first derivatives of

these coefficients with respect to T , taken at 'T:7;Q). For

example,
T
(2.26) ¥l (4=) V(2 VT 5 (§5) T, PT.)

where o , {%) stand for V(To),(j—j— (o) "add vary with 2 in
| ‘0 R

i R V7 .
general, F: 3 ¢2 s ¢2 s ¢2 are the second order terms in the

expansion of EV " $7 ’ $f " q>v. (ﬁ; is a quadratic form of
Y4 and its gradient, with coefficients of the same form as
above. In addition to similar quadratic forms of the first
order variables, _EZ contains terms in yzand ¢£;‘Pi terms
in T, . For example,

}

(E327) ¢z (X”)V'“1VT£+®HVE*‘GQVR)

(

Rl LT T
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e Lagrangian velocity. Time averages.. Assumptions.

The Lagrangian velocity Yi(Eo,t) 5 now ‘Introducedy o,
bedng the position ‘@t baig ety it e particle, the position of

which is P at b

Gty Vilzat) = V(s [ K (x99t b)

E
Xo t 5 VL(%o/t)dt

—
!
.
O
S~
]
v/'\
1R
o
G
~—r
it

Agsuming that %, may be exXpanded in powers of M up
to the second order,V = V, + V , + .. , and that_L}iL(¥o;th

is of the same order in M as VLL(¥0/6) , we obbtain

\-/L’I(CE’O/&) e y'I(?Eo, t)
£
\-/Ll (D.CO’ t) i \_{2 ("E"/t) +(§ .Y4(7.C,0,;Z)dt>‘ V\_{q (??o/ \/3) .

We note that the last two equations hold for every x, ,

and therefore
(3.3) LR R R )

¢
(3.4) Vgt (et ) les Ve, 63 +(J Vi(2,8)de). VV,(%,¢)

(o}

- for every X . (We build here on the assumption

that every X in the volume occupied by the fluid may be
regarded as an initial position, i.e. that the transformation

(3.2) is invertible in thils volume).
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The last term in (3.4) is the Stokes drift velocity, (see
Longuet-Higgins (1969) for its interpretation in geophysics).
It is important to introduce the Lagrangian velocity when .
looking for mass transport; in fact, in the case of a finite
amplitude oscillation, YLZ may have a non zero mean value,
even if V; has a zero mean value.

Let now {1,P4,f4 bet Bt golutddn of (2.14) soBiaThahich
1s sinusoidal in time with period w . The mass transport
velocity may 1n principle be calculated by solving (2.21) -
(2.24) and by using (3.4). As the solution of (2.21) - (2.24)
is not readily obtained, we replace these equations by averaged
equations. Here the time average E:C;) ot g function oo )
i8 defined by

£+ 22

w

w o o g :

(3.5) o(x) = __S Ll ey s
AT ©

We then obtain a system of equations which contains the

unknowns VY, (or \{Z), P, , £, the averages of quadratic

forms of the first order variables, and the averages of time

derivatives of second order variables, as %%}. for example.

We suppose that the 1last type of averages are equal to BRI
SUppose yp g ]

i.e.
(3.6) _’5___\/_2__ = %—Pl - j_’iz; .
- 2 E 2>t 2 E

This assumption is plausible since the source terms in (2.21)
- (2.24) are periodic functions. However it has to be justi-
fied. To do this, we should prove, £or instance, that

\Q A ety are not secular in time, which in turn would make
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it necessary to define boundary conditions. This problem
will not be treated here,

Further, we note the following:

{25, 7) B0 whenever b ig periodic in time
wEth*perdiad e P
Talking the divergence and the average of (3.4), noting that

Fongoy - 220 fru): [y

°

1s periodic in time with period W , we obtain the identity

ey t
(5.8) o Viye = Vsl o (J\_Q)VV\_/,,



T | e S ¥ AL



Al

4, Study of the mass transport velocity.

We now proceed to- the solution of the averaged equations
(2.21)-(2.24), where TZ;,;Z-, E: (ﬁf;) are the unknowns
after y4 has been eliminated by using (3.4). Let W ; - be
the vertical component of YQL { i=1,2) v

and -let index J indicate the horizontal prodection, swch bthat

YL 7 yLL + z L
?
V: VJ_ +Z\f3~£ ’

Hal vy Bret) mesuilbis figh wpo and VeV,

We take the' average of the second order equation of

.continuity (2.22) and equation of energy (2.23) and obtain
respectively (4.1) and (4.2). To get these equations we have
used (3.4) and the identity (3.8), and have made the assump-
bden W56) 5

(4.1) hfl B0 foV'YLz = o = V(g VLZ)

by gk o — ] E T
CIEEEUATIEES AT IR 4 -m-f)<vz~»;)£(¢wf’)~

° LY |- 9L 2 4

] \-/».f(%” S

(441)-(4.2) may be considered as a system of equations giving

W, and_§7-vLL o« The determinant is

el 2
(4e3) Y Poph = Php, = ~po((¥-1)3+¥YRTS) = ~C-°g—f° Lt

where N is the Vaisala frequency, see Eckart (1960). For the
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1=

isothermal equilibrium A/E=(X4)§/)’H . Solving (4.1)-(4.2)

we obtain

Lo i[‘ﬁ“"f + %V-W—')(V-.VJJOH’P .

Tk
S (v [ereen)]

e ‘ﬂiz=%—(%ﬁ3’ﬁ[¢l+ﬂ‘>§+‘?’l -0y @7 )
P()Colr\‘/2 (>]
) v.(_v4f( ST+ ) ] ,

I fact ' W, s and Vﬁﬁl are completely determined only when

T, , which appears through the second order thermal dissipa-

R

o gl comph-

tion term 151 and radiative dissipation term ?D
ted. Before we show how this can be done, we make some comments.,
(o) T M8a 1l owe serem, (480 V-8 55 that & wverkical mass
traneport (:;:Z#:O ) is impossible in absence of dissipation,
il.e. when p= M, =o =0 ,063z0 or g =to e bl sfnt s il EY S AT
holds in the case of a rotating but non-dissipative fluid,
since the Coriolis force only eppears-in thesequation of
motion, which has not been used in derivimg (4e0)=(4.2).
(ii) (#.1) and the identity (3.8) show that a vertical
mass transport‘is impossible for the incompressible model
( V.W=z0 ), Again, the result still holds in the case of a
rotating fluld,

4,2, Computation of Do and-ﬁé.

Averaging the second order equation of motion (2.21)
and equation of state (2.24) and eliminating }; and 'PL

between these equations, we obtain successively
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(4.6) V.L‘;z R Ql i Fz.L

= AR SR
(4..7) VLTz = —%IQ[VL(—LEA)’%(”—L#)]

Taking the curl of the averaged horizontal projectieon of the
v

equation of motion and introducing for fi_ an expansion simi-

lar to (2.27), we obtain an equation for the vertical compo-

Henn . of VYYZ:

(4.8) V'(%’V(VXYZ)%) :g Vx[g 5 V'<P1VY1'\_/1VIH4)]}% ;

Here Q is defined by

() Bl % o
GO ET: :

By using the first order equations (2.14)-(2.19), we obtain

after some computation (see Appendix I)

(ha10) C=pVfLfp 2 b Sz(m-cf,af” i

P“ 2 ) XFO zfo COQ N 7l

€ ir R /
oz, /
E;%Z(L(¢4+¢4)[%ivn {V;(Vhdrhgf )] +
’5)4 o e i TR
+[:‘:‘:4 +f°(§o£/)"\7*§,:‘ “Z%(JK} ’_‘4j

The first two terms in (4.10) do not depend explicitly of

the dissipative coefficients, while the last two terms do.
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Now let SM be a number which gives the order of magnitude
of the dissipative terms. For instance, when the scale heigth
is H and the wave length A , with AL H | Sy is the modified

Stokes number

(4”7> S e 5:_L[ﬁijq+€h)+lﬂ@lﬁyh+é¢%+f%J/

T e ke o
where & is the ditTTusd vty o sounds;
Li¥ vernsdepenting expliea ity " on SM are neglected in
1oy, g reduces to the sum of the first two terms. We thus

obtain from (4.6)~(4,7) the following approximated expressions

fitoNe R%_ and T£ g

A e 2 2 b, )v
(4.12) Fz:['fr\;i““ 2;4CZ 3;_;_____“_2,](“ 0(S,)) + n(z)

i e I 3
(4.13) .Tz :_'[(& ) VT, + T‘ ML i %17; (Fq—Cffh)J(,+(3/< )+ B(2) .
: e

Here n and © are arbitrary functions of 2z , which in gene-
pal depend on the bounmdeny gonditions. Substituline (4.1%) in
(LAY foe example, we obtain _;ll correct Goe bhe first omder

s SM' It should be noted, however, that this result may'not
be correct in other cases than the one mentioned above, In

the boundary layer, for instance, it may be necessary to keep
the dissipative terms in (4.10) in order to obtain Q s BB
therefore —WZL’ with the same accuracy.

Before we look fubsher ab the mesmiiobbained fom W, .

we give some interpretations of the expression (4.12) for ?1 ’

i A . ] 2 :
£,V /2. is the second order kinetic energy,ff/zjzc; 1s the

elastic energy, while the third term may be written as
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gfo )711
2 Cp 7;
Here n,= ML is the first order perturbation of

(¥-1) £o To
entropy, and y is the entropy at equilibrium, with

—— e 20 - C*__
Y)O,._ b fo Co’l. P(.La-r ) p
This term is discussed by Eckart (1960), p.53, and called the
thermobaric-energy. It is a part of what he defines as
"external energy density" - a quadratic form he derives from the

linearized equations,

4.3, Computation of WLE.

Substituting (4.13) in (4.4), we notice that the vertical

mass transport velocity may be decomposed in the sum of three
expressions

‘ oy ok e TFr D /-
(adpr Biane_veprlcal nrgpressind ar bl
which describe respectively the mean vertical drift due to
thermal, radiative and viscous dissipation, correct to the
first order in Sﬂﬁ. Here @(%) is the sum of the terms
depending on the arbitrary function @(i) which appears in

(%.13).

For the viscous vertical drift we get

(5.15) = 508 o (1400 017 203 ), (20, 04 05,0

§,¢ N

This expression is always positive.
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In the same way we get

TR it [CV

L) 47 7% #1)] 1+ 005,
g8 _

o

i T
where qu qﬁ_ are glven by (2.26)-(2.27).

As an example, let us consider the special case of

isothermal equilibrium, where we shall first neglect the
) T i
variation of o with temperature. Then ¢z . qDﬁ are

simplified, and we obtain (see Naze Tjdotta and Tjdtta (197 ))

(4.17) W L;_"h);@;ff!l%{<V;4>L+v.[v(-(jid).vvg ‘u) (( )7 TJ 1+ 0(5,))-

When the variation of

0 1s taken into account, the diver-
gence term in (4.17) is modified by a term

Tkl
o o a
For plane vertical progressive or standing waves where
the first order variables only depend on 2

s t, we get

B Sig s L 3ol :
SRR, ;X&)S Ti,[(%—bm R a)J(H Akl

,[ %%

Let us consider a vertical progressive beam

.<4.19) T, = F; e*“% S”q(k%'ku)t> p

where F;(l) 18 equal to a constant A inside the beam
¢ D , ) 5]

(\llw-z > and is equal to zero outside the beam ( fb/>>~;>-

(d,k,w) have to satisfy the dispersion relation associated

with the linearized equations (2.14) (2597

: ; s e dn the* hon
dissipative approximation
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H GH*
where A= (()f‘/b’HH)._ | /4h? .
Equations (4.18) and (4.14) give
(- 2+4) 2
z H
(4.21) ok 4 = .fi ( kzﬁ- : chz) e & f(é);

Poarl

where for simplicity we have not taken into account the

effects 'of “radiation “and viseosity .

If we suppose that the flow is two-dimensional, the

horizontal component W, , of the mass transport velocity

is determined by (4.1)

=X

— - 2
(f.22) Wy, == fo?ﬂ"%

(foWLz)d’: s m(};),

where m is an arbitrary function. If we suppose the mass

transport velocity field to be non-secular o wWe et

choose

L(2)=

where o is an arbitrary
to be antisymmetric in =

Choosing for A the

IPH

o €

constant. Also, if we require W, ,

5

> m (%) has to be equal to zero.

root of (4.19) which is not bigger
Z/H . v

| / , N
than T we may neglect the oe term in w;, inside

the beam, thus obtaining
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o S Hz kz 3-% 2
- N - —— + ‘—-—d e .
(4°23) WLL ~ fsg 2_ ( K" )

i

This shows that an upward directed material flow takes place

inside the beamn.

Now let us consider the case of a vertical standing beam

,_o(%

e cos kg cos ot

—
-+
N
e

N’
=

i

where FA, X, k,w are the same as above, Requiring for
W, . non-secularity and antisymmetry in %, we find for the
vertical component of the mass transport velocity inside

the beam

U
{(S—B)dk §in \Zk%+

2
T H‘ '8
fngo Z(K")

It can be shown that w , given by (4.25) changes sign

twice on a half wave length., However, when integrating this
expression of a half wave length (wx%,{m—u)%;) , we see that

the first two terms do not contribute. The last term in
(L.25) being positive, we conclude that this integrated verti-
cal drift is directed upward incide the beamn,

When taking into account the variation of o o By v RO M

TR R )
(",0 o D:

a term I§<éf\1§3-<T ETE) has to be added in the parenthesis
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of (4.18). It is easily shown that this effect does not
change qualitatively the above results for most of the inter-
action potentials mentioned in § 2. It is of special interest
to note that in the case of a brogressive wave, this effect
always increases the value of w,, given by (4,23),.

Looking at the contribution from radiation in (4.4) and
using (4.13), we obtain ;;Lf . In the optically thick case,
where qDR is given by (2.7)a, z;J; has the same form as
Rﬂl given by (4.10), only o being replaced by g G 5
the optically thin case, where qDR is given by (2.7)b, we

have

g
o
I

2= (- e, 0,9, T,

&
1

B el e T oD (a5 s g (1) ]

Substituting these expressions in the relevant part ol (4 . 0,

and using (2.15), (2.18), we obtain

= - € T To d? FARY 4
(%.26) Ww,, =- (¥-1) v qo[TZ’L(J \-/4>'V/4+(F—I)(('M(JTL) )T"J( L‘/'\flf-] :
CD’L[\/l [} qo f 9 (o)
Using (4.13), we get finally
LA - €iog! T 7 d : '""“""“""“'“ o e = 2
e W= 0 [ ) oy TV, g, @/M
¢t N o @ g 2 (¥-09 (?f“'/ b

The last two terms are equal to zero in the case of isothermal
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equilibrium. For other equilibria mentioned in § 2, where
T, increases with altitude as a power of 2 , these terms
are positive and give an upward drift. In the case of iso-

ke Poril R :
thermal equilibrium, w_, is given by

AUy (. TD d? 2
(4.28) “ML'Z.-:: -\_\QE!;%: _(1_0 ( - (E'”—]'>o) T4 (|+ O(SM )) )
il il 90

showing that the direction of this vertical drift may be

very sensitive to the variation of 9 (T g instance, if

y

e
q is proportional to T , MQ{ has the sigh of 1-h ,
— R
It 1g easily seen that the results obtained for W,
(as well as for ( way )., see § 4.4) at the present
L?,_ZL p

order of approximation in wa’ are not modified if we add

a radiative pressure term VFR in the equation of motion.

4.4  Computation of (Y7ngLZ) :

Vi

The mass transport velocity field is determined when

we know Vﬂl 5 \ZSil and the vertical component of the vor-
ticity, HL = (Y?X\Ql bour=e 2 -le'YLzL . We obtain an
equation for L by substituting (4.10) in (4.8):

5 T - g I —~ ¥ (& o \7
(4:29) V%V“Q'*Vgﬁ'l::ajlx §L~V(“zVY v /Fw_ﬁjﬂ(ng.Vy4L”,

. L
(i) L A
2 AL

74 i
©
L
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The last Term 1s the contribution of the Stokes velocity.
Since this equation is linear, we may again decompose L

into the sum of three expressions
(4.30) il T R T

We have

) € -
(4.31} POV7:QT+ fw;;{ T:f C%Nla .Vyx [( .:D_° VT, + 1:,::_ izr% )L CP4 ]

and a similar equation for 4. , 4 \ being weplaced by .

%
For Al we get

5 v e y
h | R V .( 3 ¥ :‘\ l/ Lk 7/ v 7 // ﬁl}
(&.32) ]%V'lﬁ-v“* }%3 0 EVLX{% Eu“L fo((,l'o\,/q)x m}j{' ); V’(”Z VXmWL i b oD\q}Yq)‘L 1_4'_,/.; ;

FY s given by (2.4) where M , #B arve. Tonlag e 0 e

Expressicns for;ff} jiﬂ, jlv correckt Lo ‘the zZeroth order
in SM are obtained by substituting in the source terms of
(4431)-(4.32) the solution of the non-dissipative linearized
equations (see §.4.2 for the validity of such an approximation).
For waves where the first order variables depend on the
horizontal coordinates ]l:(XQO only through ﬁi‘fl U i ‘
easily seen that the source terms of (4.31)-(4.32) are equal
to zero. However, a lateral confinement in the horizontal plane
of the waves, leads in general to non-zero source terms in (4.31 )~
(4.32), and thus to a strong horizontal circulation (see below).
For the sake of simplicity, let us now suppose that the

equilibrium is isothermal, Using (4.31), (4.32) and

the non-dissipative first order equations, we obtain
4 9
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In the ophicdlly Thiek case, the sguabion for ML°  1s
obtained by replacing o, with &, in (4.33). TIn the Botd~

y

cally thin case, we obtain

T - B
(4.35) ﬂ“:ﬁ%% % W (e s
o M o 2

It is easily,seen that the source term in (4,35)

]-.J
-
)
o
=
)
‘._..J

zero In the ease of a standing wave.
In the incompressible approximation, where V-V, o s The
last two terms in (4.34) will give the dominant part of 2L .

5o

In the non-digsipative case, (#.33)-(4.34) are no longer

4

valid, since the hydrodynamical equations are singular at
=0 BN Ehen obtaln L by taking the leurlites (2.21)
and by taking into account the other second order equations.

We obtain

Because of the non secularity condition (see Bl bR eaguad
to its initial value. Together with the result obtained in
§.4.1, (1), this shows that a finite amplitude oseillation
generates no mass transport in the non-dissipative case. |

It is of interest to note that the source terms in the

: +£3 T —?‘ V( * L . -~ £
equations for JfL and JL" in the optically Thick case, fon

el A il 5 Sg
example, contain terms which are proportional to L =2 LI
‘ ¢ P ffeo ¢ b o
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respectively. 1In the same way, the source term in the equation

for 1Y contains terms proportional to CF° and others inde-
o

pendent of viscosity.

For a finite amplitude oscillation such that at least one
of these source terms is non zero, the horizontal mass circu-
lation is thus of zeroth order in S+ The vertical mass

transport, on the other hand, is of the first order in SM

.

For such cases, the horizontal mass transport may dominate over

: i . : | 6% +
the vertical drift,especially ifr — —°o% *Ro

Gf’ o
normally is the case in the lower solar atmosphere,

1s large, which
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o 1% Concluding remarks.

We have shown that it is theoretically possible for finite
amplitude oscillations in a dissipative, nonhomogeneous fluid
to sustain a mass transport streaming., The fluid was a perfect
gas, but generalisations to other models are possible. The +heo-
ry, we believe , is applicable in the studies of transport phe-
nomenon in the solar atmosphere. For instance, it provides a
mechanism for associating vertical drift, and the observed large
scale horizontal flow in the supergranules, with oscillatory
motions in the atmosphere. The mass transport also influences
the energy transport,

In oceanography, it has been suggested by Munk and Moore
(1968) that the Cromwell current, which flows eastward in a
narrow zone along the equator, with maximum velocities (in the
Pacific) of the order 1 B/gec 'at 100w depths, i1s associated
with confined internal planetary waves. Their model, however,
being non-dissipative, fails to predict the necessary transport
of mass, a fact which was later pointed out by Moore (1969), It
is suggested by our theory that mean currents in the ocean may
be produced by such internal waves 1if dissipative effects are
accounted for (cf., §.4.4), Further, including the effect of
compressibility, it is also suggested that a vertical &b i i
may be attributed to the same waves. An upward vertical drift
up to order 1 m/day, i.e. of order 10—5 compared to the maxi-
mum horizontal flow, has been estimated at the equator (Knauss
(1966)).

An experimental test of the results obtained should be

possible. For instance, in a vertically directed standing
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wave the theory predicts microstreaming, the scale of which

in the vertical direction is the half wave length. We fingd
that this streaming should be strong enough to be observable

in an ultrasonic wave, and it may be the mechanism behind the
formation of periodic density stratification observed by
Schaaffs and Haun (1968), Schaaffs (1973) and Hobszk (1973).

The last author's similar observation in a horizontally directed
wave, can aiso be explained qualitatively by the vertical drift
in our theory. However, further observations are needed be-

fore definite conclusion can be drawmn.
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Appendix I

Let C be defined by (4.9). Using (2.14) and (2.17)
2
together with the identity V.0V, = P\ _ v xVxV, , we obtain
Y LA el ; ,,

e v
(A’]) CAJOV\/_)%VP 3f4P1 ,SO,,,V/iXVX}/4+'——'f-"- F/'

The fourth term in the above expression is computed by inte=-
grating (2.19) with respect to t and by nobing that $the inte-
gration constant does not contribute to C,,81ince v4is perio-

dite it t, We vbtain

fﬁwhi e O(LL\/"%(V)«»~

~70 ! & .5)0
Integrating (2.14) with respect to t and multiplying by VPd

we get in the same way

E i E 2
(A,.3) \/4.£ e -fovj i ngo% ”f4v'Jo \_/4

Elininsbion of V-Y4 between (2.15) and (2.16), and integration

with respect to t gives

Lolp? 2 gl = 5 R
(A.4) Lo N j Wy = £(cl8,-by) + yof( A fﬁ;‘) + const.
i j

Using (A.2)-(A.4) to transform (A.1) we obtain finally
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Using (2.17) we also have

o e \7[ 3" (b~ ) ] i
' 2 P){ g & N 2 2—\5 f"
+’./)}—C:?%7\){ To b - C, 5’,)*~ +P0P4ﬁ] T 2\{)0(204[\,/4(,“, B

Substituting this expression for A in (A.5) we obtain (il BT
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