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Abstract

The mass transport induced by time-dependent oscillations

of finite amplitude in a nonhomogeneous fluid, is considered.

The mass transport is given by the Lagrangian mean velocity,

calculated to the second order in the Mach number of the

oscillations, We find no mass transport in a non-dissipative

model. Taking into account dissipation, hov/ever, the theory

leads to non-zero vertical drift and horizontal flow. The

vertical drift becomes zero in an incompressible model.
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Introduction.

In the present paper a general theory is outlined for the

mass transport induced hy time-dependent oscillations of finite

amplitude in a nonhomogeneous, one-component fluid. The theory

is motivated in the possible applications within astrophyslcs

and geophysics, where non-linear effects like the one studied

probahly influence the mean currents and the flux of energy.

(See, for example, Munk and Moore (1968), Longuet-Higgins (1970)

for studies of ocean currents).

The mass transport is given by the Lagranglan mean velocity,

calculated to the second order in the Mach number of the oscil

lations. We compute the vertical component of this mean velocity,

the divergence and the vertical component of the vorticity,

whereby determining the flow field. The fluid is a viscous,

heat conductive and heat radiative perfect gas. Compressibility

effects are fully accounted for. Different equilibrium models

are considered.

There is no mass transport in a non-dissipative model,

Taking into account dissipation, however, the theory leads in

general to a non-zero effect, A vertical drift is obtained in

addition to a flow in the horizontal plane. The vertical drift
•X- \

becomes zero in an incompressible model. ).

There are indications that flows of this type occur in

experiments on standing acoustic waves (See Schaaffs and Haun

(1968), Schaaffs (1977).» Hobæk (1977) who have observed the

formation of periodic density stratification, the scale of which

is the half wave length).

) This general result for an Incompressible fluid explains why
a zero mass transport is found by Kildal (1969), in his detailed
analysis of a viscous boundary layer model.
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2. Basic equations.

After elimination of the entropy, the equations of

hydrodynamics can be written as follows:

F v

ty, pressure, unit vector in upward direction, acceleration
. r  

of gravity and sound speed. Further, r ± s the viscous force,

the accession of heat due to conduction, J - 1

the accession of heat due to radiation, the viscous dissi

pation function; Y is the ratio £p/ c v of the specific heats.

where [VV) denotes the conjugate of 7 V

Further, we put

(2.1) j> XL +7f? + % f

(2,2) 51 + fV. 1/ = o
Db

(2.5) fC l P.V r +t R + <f>/ .
Dt

c are respectively the Eulerian velocity, densi-

(2.4) Fv = y[(-t +^6 jv.\/+ + yV lv-vvy +

(2.5) (y-'} y  ( t '7T)

(2.6) <t> V= U-')[K?y:W + t*B ( ?-¥) Z] >

(2.7)a = W _,) 7. f<rR VT)

for the optically thick case, and





-3-
i,

(2,7)b > = (Newtons cooling law)

for the optically thin case,

The temperature is given by the equation of state

Thus the radiative effects are accounted for only in the

energy equation (2,3)#

Jf and R are taken constant. The dissipative coefficients

hb/*5"R and depend on the temperature (mainly) and the

density. How, for example, cr and vary with these variables

is known from classical kinetic theory. If the binary collision
- V1

model with Central force proportional to r is adopted, cr

and p- are found to be independent of j> but proportional to
JL -! 2.

T 2' , (Chapman & Ccwling (1958)) •

The following equation of evolution is obtained for T

At equilibrium the velocity is supposed to be equal to

zero. The other variables K i ? ~h> must then satisfy the

following equations

(2.10)

for the. optically thin case, or the analogous equations where

°o is replaced by 0~o + <TRo for the optically thick case.

(2.8) f> =R; r , R = -c K

by eliminating \> , f betv/een (2.2), (2.3) and (2.8), and

inserting c 2 = :

(2.9) 2I.+ ((-i)TV.V =—{ T + + 4>'/ )
it Rj 1 '

Dther variables f> 0 ,

:

v f». + *3 S. = °

v.(r0 vr0)=0

. K-*S0 T>
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Ti )

We suppose that [> 0 , fo ,T0 depend only on the , so that

we have

(2,11) ;
jo 0 To

where the prime denotes the £ -derivative.

Of special interest is the isothermal equilibrium

where ,fs ' are the values of f> ,j»at 4 = o and H is the

scale heigth . Here c Ql - £T0 = t .

Other possible eqiiilibria are obtained by solving for

instance; the equation (cr (T0 ) t' J~ o, When <r ± s an increasing

function of T , f> 0 » j 0 ? are power functions of £ , and T0

increases with altitude.

M being the Mach number of the perturbation, we suppose

that V , , T can be developed in powers of M, at least

up to the second order

Substituting these expressions in (2.1)-(2.5) and (2.8), we

obtain to the first order the linearized where w- Y*

(2,14-) £ JY± aPb 4 2q f = F 1"
* *&fc m “ «M* -4

__ % _ To

— ?/H — £ /H

(2.12) T0 = constant, f> 0 f> s e yf0 = f£ e

Y = v„ t v ,. . .
(2.13)

I3rk+k + + • • •

(2.15) 5—1 + 5“1 = 0

(2.16) ?A + Wa + F- v = <+ tit

(2.17) h = R (f. t, + T c ;
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From (2.9) (or from (2.15)-(2.1?)) we obtain

Another consequence of the first order equations is obtained

by taking the curl of (2.14)

An alternative form is obtained by taking the time derivative

of (2.19) and by using (2.15), (2,15)

/

Hero W = ~å(~ + ~) is the Vaisala frequency, see later, §.4.1.Jo Lo

Identifying terms of order M we obtain the second order

equations

(2.2D

(2,18) 2_ll +T' + (H)T P.V, = -±( 4>J+

(2,19) — V*V. =9 X V ( ) + I7, f/

(2.2o) J>1 Vxv = + fLtxVftJ+ 4>f) + 2.(7. F/
- 1 3 ' /.* y ?T

(2.22) 2L. + S1 H Kj

(2.23) = + */-( V 7/>„ + yPi t)i'J1> t

(2.24) |\ = R( fo T +J) T + fx To )

Equation (2,9) (or (2,22)~(2.24-) ) gives now

(2.25) E2 +t' * + [t-,)T0 V.V = J_( 4> t 41> t ' 1 Z

( + (k-.)'W) - i + T + )
~ V Rj 2’ * -1
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f;, hk t* are the first order terms in the expansion of

F v , in powers of M ( is equal to zero). They are

linear combinations of first order variables and their gra

dients; the coefficients of these linear combinations depend

on the dissipative coefficients and the first derivatives of

these coefficients with respect to I , taken at T=To (^] # For

example,

where ir , stand for «'(X), (—I To ) and val>y with £in

general, F v , 4> R , are the second order terms in the— L 12.

expansion of F v , 4> T ,X , <$ Y .$zis a quadratio form of

and its gradient, with coefficients of the same form as

above. In addition to similar quadratic forms of the first
i— ii*

order variables, contains terms in and ,P 7 terms

in I , For example,

(2.26) <P= (Y-l)V-(r.VT, 7, VT.) j

(2.27) = (y-i)7. (r( VT + r(/T)
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3. Lagranp;ian velocity. Time averages.. Assumptlons.

The Lagrangian velocity (xo/ t) is now introduced, x 0

being the position at b -o of a particle, the position of

which is X at t :

Assuraing that Vu may be expanded in powers of M up
r

to the second order, VL = VL/j f \ L1 , and that J VL . (oc

is of the same order in M as , we obtain

We note that the last two equations hold for every xo ,

and therefore

(3.3)

(3.4)

for every X . (We build here on the assumption

that every X in the volurne occupied by the fluid may be

regarded as an initial position, i.e. that the transformation

(3*2) is invertible in this volume).

(3.1) VL (x„,t) = V( 5C„ +[ yL (x0/ r)dr ,~~ O '

( b
(3.2) x(x0/ t)= x„ + ] VL (x 0/ r) drO

Y L1 ( fc) = ( ?«, t)

Ytl (*„/ h ) ~ +(j -4 fey r ) Z ) ‘o

Yl<\ (*; k) = K, (*/ t)

VL i(x, t) = L C?V +( J (*/ t). 71/(X, i)o
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The last term in (3.4) is the Stokes drift velocity, (see

Longuet-Higgins (1969) for its interpretation in geophysics).

It is important to introduce the Lagrangian velocity when

looking for rnass transport; in fact, in the case of a finite

amplitude oscillation, VL1 may have a non zero mean value,

even If Yt has a z mean value.

Let now VA/ fa he a solution of (2.14) - (2,17) v/hich

is sinusoldal in time wlth period co , The mass transport

velocity may in principle be calculated by solving (2.21) -

(2.24) and by using (3.4-). As the solution of (2.21 ) - (2.24)

is not readily obtained, we replace these equations by averaged

equations. Here the time average cl(oc) of a function a C*-,h)

is defined by

0.5)

We then obtain a system of equations v/hich contains the

unknowps Yi (°r Pi /Sl / 'che averages of quadratic

forms of the first order variables, and the averages of time

derivatives of second order variables, as JfaiÅ.. for example,
i>b

We suppose that the last type of averages are equal to zero,

i. e.

2A

''b t
(3.6) o

This assumption is plausible since the source terms in (2.21)

- (2.24) are periodic functions. However it has to be Justi

fied. To do,this, we should prove, tor instance, that

yz j ,fa are not secular in time, v/hich in turn would make

t + iS.r oo

a(Ocj - JiL_ (h ( /tjd Z'
2-n J t

2±i
T> t

_2_A
n> fc
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it necessary to define boundary conditions, This problem

will not be treated here.

Further, we note the following:

Taking the divergence and the average of (3.4), noting that

is periodic in time with period Caj , we obtaln the identity

V Vi LI(3.8)

(3.7) ~ D whenever b i s periodic in time

with period oo

fw =

V-Yt + (l k Y)- ?v-^o
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Study of the mass transport velocity.

V/© nov/ proceed to the solution of the averaged equations

and let Index 1 indicate the horizontal proøection, such that

We take the' average of the second order equation of

continuity (2,22) and equation of energy (2.23) and obtain

respectively (4.1) and (4.2). To get these equations we have

used (3*4) and the identity (3*8), and have made the assump

tion (3.6),

(1.1) (4,2) may be considered as a system of equations giving

w li and • The determinant is

v/here N is the Vaisala frequency, see Eckart (1960), For the

(2.21)-(2.24) , where Y LU \> t , (1 ) are the unknowns

after V A has been eliminated by using (5.4-), Let uv • be

the vertical component of V l1 , i=1,2 ;

y L = y ti + y

V = + 7>_L ,

4.1. First results for and y.V.^

( 4 * 1 ) U W Lt + L y -Ytl= ° =

(4.2) t>l w-' Li + p.y L1 = $(*-')(& -

-hy£{+j *+'<)).

0-5) Kf,= -fo((^-')3 + i°) = W 2 ;
3
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Solving (A.1)-(A.2)

In f act v v L1 and v. V Ll are completely deterrained only when

"Hl , which appears through the second order thermal dissipa—

tion term and radiative dissipation term , is compu

bed. Before we show hov/ this can be done, we make some comments»

(i) It follows from (4.1)-(4.2) that a vertical mass

transport ( w Ll £ o) is impossible in absence of dissipation,

i.e, when |^~|^i i - cr - 0 , <:r R=o or (] =• o , This result still

holds in the case of a rotating but non-dissipative fluid,

since the Coriolis force only appears in the equation of

motion, which has not been used in deriving (A.1)-(d,2),

(ii) (A.1) and the identity (3.8) show that a vertical

mass transport is impossible for the incompressible model

( V-Vn o). Again, the result still holds in the case of a

rotating fluid.

4.2, Computation of and T^.

Averaging the second order equation of motion (2.21)

ciud equation of state (2.2A) and elirainating and

between these equations, we obtain successively

isothermal equilibrium A/ = Qf-Oj /f H
we obtain

(4.4) w l. = r—if *1 + 4> z + <*>*) -So o ‘ v i °

- ? (y, *:+*!!))]

(4,5) (7. V Li = lillllL) +t * + - Of- Ij[ 7- K, ]| U T + 4>/ 1
f^c/f/ 2 L

- P.(y, ('(*:• OJ ].
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Taking the curl of the averaged honizontal pnojection of the

equation of motion and intnoducing fon an expansion simd

3-an to (2,2/) , we obbain an equation fon the ventical compo—

nent of Yi '•

By using the finsb onden equations (2,1d) —(2,19) » we obtain

aften some computation (see Appendix I)

.i-he finst two tenms in (4-, 10) do not depend explicitly on

bhe dissipative coefficients, while the last two tenms do.

(4.6) V L t\ =

(4. 7 ) 7T = Al^r V.jtl - ' ti) - 2-C Cl - F /i)l
i p, H p, J

(4.8) = | r/ *[c -  

Here b is defined by

(4.9) C = v vy ,)jjb 1 ® T * 0

(4.10) C = I»,7f å z (p. :^fj z l _
( N -2 y pc» £. j 5 o (V 1 J

- * hL.(('V,). pT, r X-llLhiXlA" ] +
T ‘ 1 1T ° f.tj 1 */' j

+-M| k ( < + $*))[3 At?T+ x» ( Oo , *
p^ff'» /lj t. 1 T / '•> - 3-WJ

+f— f/ + &({ V».£l _7|x»( f V } F
L F» -- 1 j>. ~ r 0 ( l-^* -i J '
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Now let S M be a number which gives the order of magnitude

of the dissipative terras. For instance, when the scale heigth

is H and the wave length ?\ , with H , is the modified

Stokes number

If terms depending explicitly on S M are neglected in

(4-,10), C reduces to the sum of the first two terms. We thus

obtain from (4,6)-(4.7) the following approximated expressions

for b and i„ :r i I

Here n and 0 are arbitrary functions of 2 , which in gene

ral depend on the boundary conditions, Substituting (4.13) in

(4,4) for example, we obtain w LL correct to the first order

in It should be noted, however, that this result may not

be correct in other cases than the one mentioned above, In

the boundary layer, for instance, it may be necessary to keep

the dissipative terms in (4,10) in order to obtain C , and

therefore w , with the same accuracy.

Before we look further at the result obtained for w Ll ,

we give sorne interpretations of the expression (4.12) for (p .

f 0 /4 is the second order kinetic energy, is the

elastic energy, while the third term may be written as

(4.11) S M =My , h=j[ + + l-J { A)) cV .^ oi^)y

where i is the diffusivity of sound.

(4.12) t> =[-f A 1 + (i 4 -o(s M )) + n (t;

(4.15) t, =-[((Vm + jTZ + jliLihz^ifh + o(sj) + bu) .
å2 «z. 1 c/ w« J
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the

This term is discussed by Eckart (1960), p.33, and called the

thermobaric- energy. It is a part of what he defines as

"external energy density" - a quadratic form he derives from

linearized equations.

Substituting (4.13) in (4.4), we notice that the vertical

mass transport velocity may be decomposed in the sum of three

expressions

which describe respectlvely the mean vertical drift due to

thermal, radiative and viscous dissipation, correct to the

first order in S /k . . Here l is the sum of the terms

depending on the arbitrary function which appears in

( ] K13).

Por the viscous vertica.l drift we get

This expression is always positive.

nd

ic p io
b_ Q 0

Here h — —— is the first order perturbation of
U (t-i)foT 0

entropy, and is the entropy at equilibrium, with

W'>- c {A+±) = c(JtLa + zi‘) =
A pV f. C pV C* « T„ 7 J.

4.3. Cornputation of~~ ' Li£_

(4.14) w L1 - wj t + w L [ -+ +

(4.15) %I= Kllli L(VV 1 ;Pl/ 1 + l7y;.(Vy/_|(V.y i ) x ] + 2 lfu 0(5,))x l j
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In the sarne way we get

As an example, let us conslder the special case of

isothermal equilibrlum, where we shall first neglect the

variation of cr with temperature. Then are

simplified, and we obtain (see Naze Tjøtta and Tjotta (1972))

When the variation of cr i s taken into account, the diver-

gence term in (A.17) is modified by a term -5 f \ JA7T .
(T9 dr6 M

Por plane vertical progressive or standing waves where

the first order variables only depend on 5 , t, we get

Let us consider a vertical progressive beam

where (a) is equal to a constant A inside the beam
/|x j \
1 1v 1 ) and is equal to zero outside the beam ( (x/sJa).

( A,l ' jl °) have to satisfy the dispersion relation associated

with the linearized equations (2.l4)-(2.17), i.e. in the non
dissipatlve approximation

(4. 16) wj = *\ '7- yjfctf -7- ( V, f Vj ) ] (- + o (S A ,)),p rN L J o J
Jo

where , r x are given by (2.26)-(2.27).

6 1° ° 2- ] p o ' J

(4.i8) w L ;_i. r( il fl -e 2(t il [V, +0( < )} ,
i^N 1T 0 LVj' r-i V mJJ

( 2 !--i9) = h A e *sivi ( +cot) ,
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where A - ( uA/ yH H) - '/4 4 z .

Equations (4.1 8) and (4.14) gi ve

where for simplicity we have not taken into account the

effects of radiation and viscosity.

If we suppose that the flow is two-dlmensional, the

horisontal cornponent ii Ll of the mass transport velocity

is deterrained by (4.1)

where W\ is an arbitrary function. If we suppose the mass

transport velocity field to be non-secular in x , we must
choose

where h is an aroiurary constant. Also_, if we require Lt L ,

u0 in x r>i (l) has to be equal to zero.

Choosing for c< the root of (4.19) which is not bigger

k haii ~ * we neglect the ct t term in w L1 inside

the beam., thus obtaining

* = 'ITT / 1,1 = 4 , 't 4 > °

(4.20)
{ <t Z -tJi +A + _!_ -=.0kro A< o ,H

1 (-É--**)*
* tl ia ( k l + e + (U),2 y-i 7 "

X.

(J+.22) =- f j <** +

7.

t[i)= « H ,
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<'-» *>»&.£ I">Tt*'><*~""

This shows that an upward directed material flow takes place

inside the beam.

_ c<
T~ F eS - n CoS k i CcS 63 t(4.21)

where ,o<,k , co are the same as above. Hequiring for

u ll non-secularity and antisymmetry in \>jq find for the

vertical component of the mass transport velocity inside

the beam

Ic can be shown that w/ ul _ given by (4.25) changes sign

twice on a. hali wave length. However., when integrating this

expression of a half wave length t.1_ ; /r + ij _jj, ) , we see that
the first two terms do not contribute. The last term in

(4.kf) being positive,, we conclude that this integrated verti

cal drift is directed upward inside the beam.

When taking into account the variation of cr with T ,,

a term ~( T -Js] has to be added in the parenthesis
F -n/

Now let us consider the case of a vertical standing beam

, (Tf-i-O? '

(4.25) iv L . ~ —-L e. |(5-JfVk Sr »U>4
r . i(K-<; ( ;

+ +(y-iji i |2 v ' t J
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of (4.18). It is easily shown that this effect does not

change qualitatively the above results for most of the inter

action potentials mentioned in § 2. It is of special interest

to note that in the case of a progressive wave, this effect

always increases the value of given by (4,23)

Looking at the contribution from radiation in (4.4) and

Uoing (4. 13) s we obtain . In the optically thick case,,

lv u has the same form as

given by (4.10), only cr being replaced by . in
, R

the optically thin case, where t is given by (2.7)b, we

Substituting these expressions in the relevant part of (4.4),

and using (2.13)* (2.18), we obtain

Using (4.13), we get finally

I ic las o two uermo are equal co zero in the case of isothermal

where 4 :i is given by (2.7)a J)

ha. ve

= -u-o

= -(H^UiJ^K fWo (^ )c T)]  

<*•«) <  Jwfon-Ni-iigjjuV».j c P r N 1 L ° % d 1 ° o ' j

(4.27) W L * q [ (Ji ( i? ) -' jT,jP- V + _vv£. + Jo3 J a l ,.J1 1,1 i d i j o 7 -i - 1 i (Y . 93
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equilibrium. For other equilibria mentioned in § 2, where

o increases with altitude as a power of u these terms

are positive and give an upward drift. In the case of iso~
— R

thermal equilibrium, wui is given by

showing that the direction of this vertical drift may be

very sensitive to the variation of (T) . For instance, if

It is easily seen that the results obtained for wL *

(as well as for (Vx V ) , see § Jf A) at the present
% £

order of approximation in , are not modified if we add

a radiative pressure term in the equation of motion.

The mass transport velocity field is determined when

equation for ~TL by substituting (Jf. 10) in (Jf.8):

(4.28) wL * = ±» ( i- 1” f-j )t; ( i+ o[sM )) ,
CN 1 To f»

. VI •— R
C| is proportional to f , wLt has the sigh of uh

4.4 Computation of (\7 x V,) .~

we know wLl , \7 and the vertlcal component of the vor

ticity, „(\? x V ) = .VL x 2. i . We obtain an

(4.29) r</jl + p'*JL = CfV.(^W,r^jr< j]H L D J
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)

The last tem is the contribution of the Stokes velocity.

Since this equation is linear, we may again decompose JZ

into the sum of three expressions

7h f d> T nf?
and a srmilar equation for JL / A being replaced by

7=r V
For JL we get

r- V
[ is given by (2*4) where u , k are replaced by f^ p , 0

Expressions for hT T , ,ji correct to the zeroth order

in Sjyr are obtained by sub st it ut ing in the source terms of

«3'0-(^o32) the solution of the non-dissipative linearized

equations (see §.4*2 for the validity of such an approximation) *

For waves where the first order variables depend on the

horizontal coordinates t l = (x,yj only through k , l .k | , it is

easily seen that the source terms of (4, JA )-(4.32) are equal

to zero* However, a lateral confinement in the horizontal plane

of the v/aves, leads in general to non-zero source terms in (4*751

(4.32), and thus to a st/bong horizontal circulation (see below) .•

For the sake of simplicity, let us now suppose that the

equilibrium is isothermal. Using (4,351) (4.32) and

the non-dissipative first order equations, we obtain

1 • Lfo '0 S Q 1 * J
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In the optically thick oase, the equation for J7f : is

obtalned by replacing oq with <r Ro in (4.33). In the opti

cally thin case ; we obtain

It is easily,seen that the source term in (4.35) is equal to

zero in the case of a standing wave.

In the incompressible approximation, where Ya ° > the

last tv/o terms in (4.31) will give the do.minant part of SL

In the non-dlssipative case ? (4.33) s are no longer

since the hydrodynamical equations are singular at

P — ° • then obtain fl by taking the curl of (2.21)

and by taking into account the other second order equations.
We obtain

a» 2 " JL o
f)

Because of the non secularity condition (see§.3), SL is equal

co ics initial value. Together with the result obtained in

(i ), this shows that a finite amplitude oseillation

generates no mass transport in the non-dissipative case.

Ic is of interest to note that the source terms in the

equacions iop ol and AL in the optically thick case, for

example, contain terms which are proportional to -- S .. •' ft °
C *P f» ; y ©

(4.53) >T= -aL.^tJWJo.o^,;F Po lo Jf o

(4.3>o 7VT= i.v x * }-(f MjWjrø( ho' J o [+ 0 °i y o i

-ST5j -(i y^yv^[([b*^ + Jf ,+o M

(4.35) rji f< = ÅA 1» *. vj, x (uo( s m) j,
JfT 0 N f<-„
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respectively. In the same way, the source term in the equation

for Jl contains terms proportlonal to and others indeo
pendent of viscosity.

For a finite amplitude oscillation such that at least one

oi these source terms is non zero, the horisontal mass circu

!at ion is thus of zeroth order in . The vertical mass

transport, on the other hand, is of the first order in S M

lor such cases, the honzontal mass transport may dominate over

the vertical drift, espeoially :lf -L Piif is i arg e, which
f ho

normally is the case in the lower sola.r atmosphere.
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5. Concluding remarks.

V/e have shown that it is theoretically possible for finite

amplitude oscillations in a dissipative, nonhomogeneous fluid

to sustain a mass transport streaming. The fluid was a perfect

gas, but generalisations to other models are possible * The theo

ry.> we believe , is applicable in the studies of transport phe

nomenon in the solar atmosphere, for instance, it provides a

mechanism for associating vertical drift, and the observed large

scale horisontal flow in the supergranules, with oscillatory

motions in the atmosphere. The mass transport also influences

the energy transport.

In oceanography, it has been suggested by Munk and Moore

(1968) that the Cromwell current, which flows eastward in a

narrow sone along the equator, with maximum velocities (in the

Pacific) of the order 1 ra/sec at 100 m depths, is associated

with confined internal planetary waves. Their model, however,

being non-dissipative, fails to predict the necessary transport

of mass, a fact which was later pointed out by Moore (1969). It

is suggested by our theory that mean currents in the ocean may

be produced by such internal waves if dissipative effects are

accounted for (cf. §.4-.4-). Further, including the effect of

compressibility, it is also suggested-that a vertical drift

may be attributed to the same waves. An upward vertical drift

up to order 1 m/day, i.e* of order 10 compared to the maxi

mum horisontal flow, has been estimated at the equator (Knauss

(1966)).

An experirnental test of the results obtained should be

possible, i ! or instance, in a vertically directed standing
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waye the theory predicts microstreaming, the scale of which

in the vertical direction is the half wave length, We flnd

that this streaming should be strong enough to be observable

in an ultrasonio wave, and it may be the mechanism behind the

formation of periodic density stratification observed by

Schaaffs and Hann (1968), Schaaffs (1973) and Hobæk (1973).

fne last auohorMs similar observation in a horizontally directed

wave, can also be explained qualitatively by the vertical drift

in our theory, Hov/ever, further observations are needed be

fore definite conclusion can be dra.m.
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Appendix I

Let C be defined by (4.9). Using (2.14) and (2,17)

The fourth term in the above expression is compnted by inte

grating (2. 19) with respeet to t and by noting that the inte

gration constant does not contribute to C,,since V is perio
dic in t. V/e obtain

Integrating (2*14) with respect to t and multiplying by

we get in the same way

Elimination of between (2*15) and (2,16), and integration

with respect to t gives

Using (A.2)-(Ac4) to transform (A*1) we obtain finally

2_
together with the identity V v \ 71/, - f _y> F* V. , we obtain~ L - t

(A.1) C= p gt. A.S7p -Ti qkh _ f V*v* i/ + F l/
' ' 1 ,f. 1 •! h r --' 1 T" l  O

(a. 2) [-3^1,-(Vi + +

+ 0f y,)*r*M
L ‘o T 0 ° Jo

(A.3) v J Vf>, =-fV/ + jV, -0 v I o •“ 0

(A c 4) j v/ , 1 f» ( c o ~ + ( + ‘t’' +const.
3 ° °

(a. 5) C = + f\ +

-ÅåVT.fK +?Tlv l +«l±k, _ c z p )] +J 0 -r- 1 3 b p* Z. '/i J 11 oJ i J0 ° 0 lo Jo'"© iV ( 0 -*
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v/here A is defined by

Substituting this expression for 0 in (A.5) we obtain (4.10).

+ -A-h&VT. +1° 7»» rf 9 2» f ] f (* T + -t;) +

+ l f;" -*zi ?\{\ + p(fV. \/x n ,p - A ~ -p —i J ~ VJ "'i/ . /lo 'o ° 0 J 0

9  

Using (2*17) we also have

(A.6) R = £ihi + 2i! 1 +
-^i^cSv 2

•syjr
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