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On the numerical approximation of derivatives by a modified
Fourier collocation method

Knut S. Eckhoff* Carl Erik Wasberg*

Abstract

A modified Fourier collocation method is applied to calculate highly accurate approx
imations to the derivatives of piecewise smooth functions. The theoretical asymptotic
error estimates are demonstrated to be obtainable in calculations, and high accuracy is
achieved even for small numbers of collocation points. The limitations in accuracy and
robustness due to finite numerical precision are discussed, and approximation problems
arising from the solution of partial differential equations in complex geometries are solved
satisfactorily. Robustness of the method with respect to approximation of more smooth
functions is also discussed.

1 Introduction

Spectral methods [3, 11] have proven to be efficient tools for obtaining numerical solutions
of partial differential equations when high accuracy is required. However, the obtainable
accuracy depends strongly on the degree of smoothness of the solution.

By the modified Fourier collocation method presented in [B], functions that are only piecewise
smooth can be represented with high order accuracy by using the discrete Fourier coefficients
to approximate jumps in the function and its derivatives at the points where the periodic
extension of the function is not smooth. The calculation of approximate derivatives are studied
in detail in this paper, bearing in mmd applications to the solution of partial differential
equations.

The main points concerning the representation of functions and calculation of derivatives
presented in [8] are reviewed in section 2, while sections 3 and 4 contain more details on the
calculations with respect to accuracy and robustness.

An example of a function with one discontinuity point is studied in section 5 to illustrate the
effects of different choices that have to be made in the implementation of the approximation
method and to make recommendations for later use. In section 6 an example with more
discontinuity points is considered, and section 7 illustrates a situation that may appear in
connection with complex geometry applications.
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Section 8 deals with the robustness of the method with respect to functions with a higher
degree of smoothness than known a priori, and methods of detecting this smoothness are
discussed.

2 The approximation method

The purpose of the method is to calculate accurate approximations to the derivatives of a
piecewise smooth function u(x) defined on [0, 27r], from given values of u at the set of N + 1
points

The M points where u(x) is not smooth are called discontinuity points and are denoted by
jj, j = 1, ... ,M. These points are assumed to be known. As in [B], the point x= 0 (but
not x = 27r) is considered to be a discontinuity point if the 27r-periodic extension of u(x) is
discontinuous or has jumps in any of its first Q derivatives at x = 0.

Following [6, 8] we consider the following decomposition of u(x):

(2)

where

(3)

and

The 27r-periodic extension of Un (x) is a known function in the space Cp _1 (0, 27r) of 2ir
peripdic, continuous (if n > 0), and n — l times continuously differentiable functions, and it
has a jump-discontinuity of magnitude 1 in the nth derivative at x = ra27r, m = 0, ±1, ±2,
From (3) we see that Vn (x; 7j) is just a translation of Un (x), with a jump in the nth derivative
at x = 7j. We will therefore refer to these functions as "jump-functions".

If u(x) is at least Q times continuously differentiable for x / jj, j = 1, 2, . . . , M, and AJ- is
the jump in the nth derivative of uatx = 7^ for n = 0, 1, . . . , Q, j — 1, . . . , M, then all the
discontinuities in u(x) and its Q first derivatives are represented by the double sum in (2).
Consequently, the term u®(x) in (2) represents a function in C®(o, 2n).

The Fourier coefficients of a function v (x) are defined as

(4)

and the Fourier series associated with v(x) is Y^k^-00 etkx - his well known [3, 13] that if a
piecewise smooth function v(x) is in C^(o,27r), then the coefficients vk decay as o(\k\~Q~2 )

Xi = 2m/N, i = 0,...,N. (1)

M Q
u(x) = uQ (x) +J_ __>j Vn (x; 7j), 0< x < 2tt,

j=l n=o

Vn (x; 7j) = Un (x - 7j), 0< x < 2n,

U"(x) =- 1 ,im s"+i5"+i (x/27r) ' 0< z < 2tt,(n + 1)\

Un (x) = Un (27r + x), -2tt < rc < 0,

for n = 0, 1, . . ., where Bj(x), j = 1, 2, . . ., are the Bernoulli polynomials [I].

vk =— / *v(x) e~ikx dx, k= 0, ±1, ±2, .2-k Jo
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as \k\ —> 00. Because of this rapid decay, a truncated Fourier series is well suited for the
representation of u®(x) when Q is sufficiently large.

The approximation of u(x) is constructed on the form

(5)

where each AJ is an approximation of the exact jump A 7-.

For the differentiation of (5) wc note that [6, 8]

and

dw , .
(6a)

where

(6b)

(6c)

Still following [B], it is assumed that all the jumps A® in the function u(x) are known. This
will for example be the case in an application to partial differential equations with Dirichlet
boundary conditions and smooth solutions in the interior [8, 9]. The knowledge of these
jumps is used to define a new function that is continuous and has a continuous 27r-periodic
extension:

and the corresponding approximating function becomes

(8)

If these jumps were not known, the procedure described below would be based on the original
functions u(x) and w(x).

It remains to find values for the approximate jumps Aj and the coefficients w^ in (8) from
known grid point values of u°. For this purpose, the collocation equations

(9)

N/2-1 M Q
w(x)= £ e^ + EE4^(^), o<x<2tt,

k=-N/2+l j=ln=o

JTT

-r^(x) = Un-i(x), n> 1, 0< X < 27T,

-j^-(x) = -1/2-, 0< x < 2?r.ax

Thus when x jj, j = 1, . . . , M, the derivative of (5) can be written

N/2-1 M Q

k=-N/2+l j=ln=o

, M
u$ = ik wk , k = ±1,±2,..., ±(N/2 - 1), ti* = — Y,A%

Bf =0, B* = Af\ j = 1,2,...,M, n = Q,1,...,Q-l.

M
u\x)=u(x)-YJA]Vo(x; lj ), (7)

N/2-1 M Q

w°(x)= £ fe +
k=-N/2+l j=ln=l

w°(xl ) = u°(xi ), i = 0,...,N,
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are used at the grid points given by (1), and an JV-term discrete Fourier transform of (8) is
carried out, producing

(10)

where the discrete Fourier coefficients of w°(x) are defined as

(11)

To determine the relevant values for AJf wc use the fact that the coefficients w® of the Q
times smooth part will asymptotically decay faster with increasing k than the jump-function
coefficients (V^k^j), and can therefore be discarded for large \k\. This gives the following
system of equations:

(12)

where the MQ unknowns are Ån , n = 1, . . . , Q, j = 1, . . . , M, and k takes on K different
values chosen between —(N/2 —1) and N/2 —1. This linear system of equations can be exactly
determined or under- or overdetermined, depending on the choices of K and k\,k2 , . . . ,kx-
The system may become underdetermined (rank-deficient) due to finite numerical precision,
even if the number of equations K is equal to or greater than MQ.

The most robust and general way to solve the system (12) is to use a least squares method
with singular value decomposition [10], as found e.g. in LAPACK [2], where a minimum norm
solution is sought if the problem is rank-deficient. Because the derivation is motivated by
asymptotic behaviour of Fourier coefficients, the A;'s used should have the highest possible
absolute values. These choices are discussed in sections 4 and 5.

When approximate jumps have been obtained from (12), the coefficients of the trigonometric
part of (8) are calculated as the residuals

(13)

It is shown in [8] that (12) gives A] =A] + o(Ar(S+i-")) as -^ 00, and in [7] that the
rath derivative of w(x) then approximates d "m with error 0(N~^+1~m^) as N—* oe, for
m = 0,1,... ,Q.

M Q
*k = fis +EE4W)fc(7i), *= 0, ±1, . . . , ±(N/2 - 1),

j=ln=l

1 N-l
k = 0,±1,...,±(N/2-l).

3=o

Q M
E T,(Vn)k(v)Å" = «fe. k = ku k2 ,..., kK ,
n=lj=l

M Q
$k =*% - E E(^n)jt(7Mn , fe =0, ±1, ... , ±(AT/2 - 1).

j=l n=l
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3 Calculation of discrete Fourier coefficients for the jump
functions

To obtain accurate solutions of the system (12), it is important that the discrete Fourier
coefficients (V^k^j) are accurately calculated. The discrete Fourier transform of Vn (x;j) is

(14)

where the grid points Xj are given by (1). Because Vn (x;j) is n — 1 times continuously
differentiable, the coefficients (Vrn )jt(7) decrease rapidly when k increases, in particular for
large n. These coefficients may therefore often be too small to be calculated accurately by
the sum (14).

Using the exact Fourier coefficients of Vnfay), defined by (4)

(15)

and the following general relation between the discrete and exact Fourier coefficients [3],

the following analytic formula for the discrete coefficients is derived in [B], assuming that
0 < 7 < 27r/7Y:

(17a)

For 2ir/N < j < 2ir, there exists an integer / and a 7' 6 [0, 2-//V] such that 7=^ + 7'. It
follows from the translation property of the discrete Fourier transform that

(17b)

where (Vn ) k (r)') is found from (17a).

When (17a) is used, the derivatives of elzNl cotnz are calculated exactly (e.g. by Maple [4]),
and even though the resulting coefficients are also affected by the precision of the computer,
they are much more robust than calculation of the sum (14). (An accuracy problem seems to
arise for the smallest \k\ when 7^o, but these coefficients can be calculated with sufficient
accuracy by (14).

In the rest of this section we assume a single discontinuity point at x = 0, and study (Vn ) k (0)
(or (Un )k , by (3)). It is seen from (17a) that the coefficients for U2n+\(x), n = 0,1,2,...,
are real, while the coefficients for U2n (x), n = 0, 1,2, . . ., are imaginary. In the following we
study the accuracy of the real (for odd n) and imaginary (for even n) parts of the coeffi
cients calculated by (14) using a Fast Fourier Transform (FFT), compared with the results
from (17a).

1 N
(V»)*(7) =t; Yyn{xy, 7) e-^' , fe = -/V/2, . . . , AT/2,

j=o

(V.)t(7) = 2,(^1 . « = 0,1,2,..., * = ±1,±2...

oo

(Vn)k(l) = (Vn )kVy)+ E [{Vn)k+mN(-Y) + {Vn )k-mN{l)] , |*| < N/2, n = 1,2, .. . , (16)m=l

_ ( — ~\\ n p~ikl r rln f -\~[ l — J\}n 'vn

(vn)kvy) = e- i2*kl /N {vn)k(i'),
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Table 1: Real parts of the discrete Fourier coefficients (Ui)k, FFT/analytic.

The calculations are done in double precision, i.e., with 16 significant digits, and the FFT
results agree with the analytic coefficients up to at least the 15th decimal place. Taking into
account that the largest coefficient (\k\ = 1) is approximately 1/27T(exactly so for the exact
coefficients (15)), wc can assume that FFT can in general give correct answers up to at least
the 14th decimal place for a function where the largest coefficient has magnitude 1.

The non-zero parts of the coefficients (Un )k, \k\ = N/2 — 4, ... , A^/2 — 1, calculated by FFT,
agree with the results from (17) with at least 4 digits in the following cases:

Results are given in tables 1-7. Because of accumulated round-off errors, (Uti)n/2-i calculated
by FFT are never smaller than IO-17 in absolute value, while the correct values can be several
orders of magnitude smaller for large n and N.

Wc also look at the size of the imaginary (for odd n) and real (for even n) parts of the coef
ficients calculated by FFT. These parts should be zero according to (17a), and are therefore
a measure of the errors in the calculations. Sample results are given in tables 8-11, showing
that the errors are mostly of order 10 -17-10~ 18 without systematic variations.

• N = 32: n < 7.

• N = 64: n < 6.

• N = 128: n < 5.

N = 256: n < 4.

AT = 32 iV = 64 N = 128 N -256

N/2-l -1.549e-03 -3.844e-04 -9.593e-05 -2.397e-05

N/2-2 -1.595e-03 -3.872e-04 -9.611e-05 -2.398e-05

N/2-3 -1.675e-03 -3.919e-04 -9.640e-05 -2.400e-05

N/2-A -1.797e-03 -3.987e-04 -9.680e-05 -2.403e-05
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Table 2: Imaginary parts of the discrete Fourier coefficients (£/4)jfc, FFT/analytic.

Table 3: Real parts of the discrete Fourier coefficients (Us)k-

Table 4: Imaginary parts of the discrete Fourier coefficients (Ue)k

TV = 32 AT = 64 N = 128 JV = 256

N/2-1 -9.763e-08 -1.495e-09 -2.323e-ll -3.626e-13

N/2-2 -2.120e-07 -3.051e-09 -4.671e-ll -7.260e-13

N/2-3 -3.648e-07 -4.736e-09 -7.066e-ll -1.091e-12

N/2 -4 -5.904e-07 -6.624e-09 -9.534e-ll -1.460e-12

N = 32 N = 64 TV = 128 TV = 256

FFT/analytic FFT/analytic FFT/analytic FFT Analytic

N/2-1 -2.059e-08 -3.030e-10 -4.663e-12 -7.266e-14 -7.257e-14

N/2-2 -2.585e-08 -3.218e-10 -4.734e-12 -7.292e-14 -7.285e-14

N/2-3 -3.639e-08 -3.546e-10 -4.855e-12 -7.340e-14 -7.332e-14

N/2-4 -5.582e-08 -4.038e-10 -5.028e-12 -7.405e-14 -7.397e-14

AT = 32 AT = 64 W = 128 N = 256

FFT/analytic FFT/analytic FFT Analytic FFT Analytic

N/2-1 5.437e-10 2.051e-12 7.851e-15 7.940e-15 -5.190e-17 3.095e-17

N/2-2 1.250e-09 4.248e-12 1.592e-14 1.602e-14 -6.088e-17 6.204e-17

N/2-3 2.359e-09 6.754e-12 2.429e-14 2.439e-14 -5.069e-17 9.339e-17

N/2 -4 4.318e-09 9.766e-12 3.314e-14 3.319e-14 9.621e-18 1.252e-16
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Table 5: Real parts of the discrete Fourier coefficients (U-j)^-

Table 6: Imaginary parts of the discrete Fourier coefficients (Ug)k-

Table 7: Real parts of the discrete Fourier coefficients (Un)k-

N = 32 N = 64 N = 128 iV = 256

FFT/analytic FFT Analytic FFT Analytic FFT Analytic

N/2-1 8.493e-ll 3.000e-13 2.998e-13 1.235e-15 1.141e-15 1.041e-16 4.428e-18

N/2-2 1.223e-10 3.319e-13 3.317e-13 1.258e-15 1.171e-15 1.299e-16 4.457e-18

N/2-3 2.045e-10 3.888e-13 3.889e-13 1.313e-15 1.222e-15 1.056e-16 4.506e-18

N/2- 4 3.764e-10 4.776e-13 4.777e-13 1.337e-15 1.296e-15 6.177e-17 4.575e-18

N = 32 N = 64 N = 128 JV = 256

FFT Analytic FFT Analytic FFT Analytic FFT Analytic

N/2-l -2.798e-12 -2.798e-12 -2.618e-15 -2.590e-15 -7.866e-17 -2.496e-18 2.353e-17 -2.429e-21

N/2-2 -6.901e-12 -6.901e-12 -5.529e-15 -5.465e-15 -8.912e-17 -5.059e-18 3.755e-17 -4.875e-21

N/2-3 -1.451e-ll -1.452e-ll -9.009e-15 -8.952e-15 -7.086e-17 -7.760e-18 9.492e-17 -7.353e-21

N/2 -4 -3.053e-ll -3.053e-ll -1.355e-14 -1.348e-14 -2.215e-17 -1.067e-17 1.148e-16 -9.882e-21

N = 32 iV = 64 N = 128 JV = 256

FFT Analytic FFT Analytic FFT Analytic FFT Analytic

N/2-1 1.409e-15 1.500e-15 -I.lBoe-16 2.975e-19 2.082e-17 6.869e-23 7.633e-17 1.653e-26

N/2-2 2.853e-15 2.945e-15 -6.221e-17 3.662e-19 I.llBe-18 7.263e-23 2.010e-17 1.677e-26

N/2-3 6.924e-15 6.903e-15 -1.248e-16 4.969e-19 1.745e-17 7.941e-23 -1.039e-17 1.717e-26

N/2 -4 1.789e-14 1.789e-14 -7.305e-17 7.190e-19 4.063e-17 8.940e-23 -3.439e-17 1.773e-26



Table 10
with TV

Table 8
TV = 32

Table 9
AT = 64

9

Errors in the discrete Fourier coefficients of jump-functions, calculated by FFT with

Errors in the discrete Fourier coefficients of jump-functions, calculated by FFT with

Errors in the discrete Fourier coefficients of jump-functions, calculated by
128.

FFT

%Wi)k) xmh) »((^io)*) *((Uu)k)

N/2-1 -1.529e-17 -4.464e-17 -4.207e-16 5.168e-17

N/2-2 2.885e-17 -2.345e-17 -3.829e-16 9.396e-17

N/2 -3 1.581e-17 -9.041e-17 -3.540e-16 9.520e-17

N/2-4 7.457e-18 -5.077e-17 -3.204e-16 1.532e-16

*((Ui)k) X((U2)k) mUioh) 9((*7ii)*)

N/2-1 -1.055e-17 -5.766e-17 5.881e-17 6.769e-17

N/2-2 2.031e-18 -3.044e-17 1.417e-16 4.552e-17

N/2-3 -5.035e-18 -1.901e-17 8.006e-17 5.328e-17

N/2-4: -2.331e-17 1.507e-17 1.320e-16 1.288e-16

*((Ui)k) »((&2)*) »((^io)0 3((&ii)*)

N/2-1 -1.859e-17 2.548e-17 5.917e-17 1.289e-17

N/2-2 -1.252e-17 3.220e-17 8.056e-17 -6.054e-18

N/2 -3 -1.116e-18 3.340e-17 1.061e-16 8.198e-18

N/2 -4 1.064e-18 1.963e-17 I.oBoe-16 -1.608e-17
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Table 11: Errors in the discrete Fourier coefficients of jump-functions, calculated by FFT
with TV = 256.

9((#i)jfe) mu2)k) mUioh) Q((Uu)k)

N/2-1 -1.515e-17 -1.960e-19 3.949e-18 -3.291e-17

N/2-2 -1.585e-18 -6.009e-18 -1.085e-17 -7.366e-17

N/2-3 -3.027e-18 7.945e-18 -9.406e-18 -5.628e-17

N/2 -4 -1.381e-18 4.249e-18 3.243e-17 -3.248e-17
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4 The jump-function coefficient matrix

The linear system of equations (12) can be written on the form Ax = b, where A is a
K x (MQ)-matrix consisting of jump-function coefficients (V^kijj), x is an MQ-vector of
the jumps Aj, and b is a K-vector of the discrete Fourier coefficients w^.

When this system is solved, it is important to take into consideration the fact that the
elements of A are the discrete Fourier coefficients of C™ _1 (0, 27r)-functions, n= 1, 2, . . . , Q,
and consequently decay as Odfcl -71-1 ) as |A;| —* cx). These coefficients become very small when
k is large, even for moderate values of Q, as shown in tables 1-7.

Wc take a closer look at the matrix A in the special case where M = 1, i.e., there is only
one discontinuity point, which is tåken to be 7 = 0. (The subscript to 7 is dropped when
M-= 1.) By (3), (Vn ) k {o) = (Un ). First, wc use

(18)

in (12), such that A

(Uq)n/2-1

{Ug)n/2-2
(19)

{Uq)n/2-Q

It is interesting to study the
smallest eigenvalue becomes

eigenvalues of A, because when the span
large, the matrix is said to be ill-conditi

between the largest and
becomes conditioned and the solution of

k = N/2-I,N/2-2,...,N/2-Q

becomes the following Q x Q-matrix:

{Ui)n/2-1 tø)N/2-1

{Ul)N/2-2 {U2)N/2-2A =

{Ui)n/2-Q {U2)n/2-Q

iV = 32 N = 64 iV = 128 N = 256

Largest Smallest Largest Smallest Largest Smallest Largest Smallest

2.78e-03 1.32e-07 6.72e-04 I.BBe-09 1.67e-04 2.86e-ll 4.15e-05 4.45e-13

3.31e-03 2.39e-09 7.81e-04 7.69e-12 1.93e-04 2.86e-14 4.80e-05 I.loe-16

3.86e-03 6.06e-ll B.Ble-04 4.17e-14 2.16e-04 3.73e-17 5.37e-05 3.56e-20

4.45e-03 2.06e-12 9.76e-04 2.86e-16 2.37e-04 6.03e-20 5.88e-05 1.42e-23

5.14e-03 9.21e-14 1.07e-03 2.39e-18 2.57e-04 1.17e-22 6.36e-05 6.75e-27

fable 12: Largest and smallest numerically calculated eigenvalues of the jump-function coef-
icient matrix A for one discontinuity point (M = 1, 7 = 0) when K = Q equations are used
o determine the jumps.
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Table 13: Numerically calculated condition numbers of the jump-function coefficient matrix
A for one discontinuity point (M = 1, 7 = 0) when K = Q and K = 2Q equations are used
to determine the jumps.

N = 32 N = 64 7V = 128 iV = 256

Q eqs. 2Q eqs. Q eqs. 2Q eqs. Q eqs. 2Q eqs. Q eqs. 2Q eqs.

2.03e+02 6.43e+01 8.25e+02 2.61e+02 3.32e+03 1.05e+03 1.33e+04 4.20e+03

2.11e+04 3.02e+03 3.58e+05 5.12e4-04 5.82e+06 8.31e-HO5 9.34e+07 1.33e+07

1.39e+06 7.02e+04 1.02e+08 5.13e+06 6.74e+09 3.39e+08 4.35e+1l 2.19e+10

6.37e+07 1.37e+06 2.11e+10 4.62e+08 5.79e+12 1.26e+1l 1.51e+15 3.29e+13

2.16e+09 1.66e+07 3.41e+12 2.72e+10 3.93e+15 3.12e+13 4.14e+18 3.29e+16

5.58e+10 1.70e+08 4.47e+14 1.50e+12 2.20e+18 7.37e+15 9.43e+21 3.16e+19

1.12e+12 1.15e+09 4.86e+16 6.02e+13 1.04e+21 1.29e+18 1.83e+25 2.26e+22

1.79e+13 6.29e+09 4.47e+18 2.27e+15 4.28e+23 2.20e+20 3.09e+28 1.59e+25

10 2.28e+14 2.29e+10 3.51e+20 6.61e+16 1.54e+26 2.96e+22 4.61e+31 8.84e+27
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the system of equations is expected to be unreliable. The effect of this will be demonstrated
in section 5.

Eigenvalues of A for different values of TV and Q have been calculated by the routine ZGELSS
from LAPACK [2] (using singular value decomposition of A [10]) and are given in table 12.
The corresponding condition numbers in 2-norm [10] (the largest eigenvalue divided by the
smallest) are shown in table 13. The smallest eigenvalues can not be expected to be accurately
calculated if the span between the largest and smallest eigenvalue exceeds 16 digits. In these
cases the numbers given in tables 12 and 13 just indicate that A is ill-conditioned.

The conditioning of the matrix can be improved by increasing K, the number of equations
in (12), a natural choice being to introduce —k corresponding to each Å; in (18). As A then
becomes a 2Q x Q-matrix, the condition number is defined as the largest singular value divided
by the smallest [10]. The decrease in condition numbers can be seen from table 13. If this is
not sufncient, a possibility is to include smaller values of \k\, but this may reduce the accuracy,
because the method is based on the asymptotic assumption that the coefficients w® of the
"Q-smooth" part are smaller than the jump-function coefficients. The computational work
will of course increase when the number of equations in (12) increases.

If A is ill-conditioned, it may be necessary to introduce the "numerical rank", i.e. the effective
rank of the matrix in a numerical calculation. This will be further discussed in section 5.

5 Approximation of a function with one discontinuity point

Wc apply the approximation method described in the previous sections to the function

(20)

The 27r-periodic extension of u(x) is discontinuous and has discontinuous derivatives at
x = m27r, m = 0, ±1,±2, — As explained in section 2, this is handled by introducing a
discontinuity point at x = 0.

When the Q values (18) are chosen for k in the system of equations (12) for the jumps An ,
n = 1,2, ...,Q, wc get the matrix A given by (19) in the previous section. The discrete
Fourier coefficients that are the elements of A are calculated by the analytic formula (17a).
The first derivative of u(x) is calculated by the method in section 2, and the maximum error
is plotted as a function of Q for different TV in figure 1.

The conditioning of the matrix can be improved as described in the previous section, by using
the 2Q equations

in (12) and solving the system by the least squares method. Approximation results from these
calculations are shown in figure 2.

Comparing the results from figures 1 and 2 with the condition numbers in table 13, wc find
that in most cases the best results are obtained when the condition number of the matrix
Ais smaller than IO 12 . For condition numbers larger than IO 13 , no further accuracy of the

u(x) = 1 — cos3x/4, 0 < x < 2ir.

k = ±TV/2 - 1, ±AT/2 - 2, ... , ±TV/2 - Q (21)
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Figure 1: Max-error in the first derivative, K = Q equations, no condition limit

Figure 2: Max-error in the first derivative, K = 2Q equations, no condition limit
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12

Figure 3: Max-error in the first derivative, TV = 128, different condition limits and weighted
least squares.

solution is obtained, and for the most ill-conditioned matrices the solution becomes highly
unreliable.

These observations regarding condition numbers suggest the introduction of "numerical rank" .
The maximum allowed condition number is set to k, and if some eigenvalues or singular values
are more than a factor IO 12 smaller than the largest eigenvalue or singular value, they are
regarded as zero, and the system is considered rank-deficient. The term "rank" will be used
in the following meaning "numerical column rank".

Wc shall now look more closely at the effects of numerical rank and condition number for the
case TV = 128. Approximation results with 2Q equations and different limits on the condition
number are shown in figure 3. When the system becomes rank-deficient, the minimum norm
least squares solution [10] is used. (See below.) Wc observe that if k is too large, the solution
may become less reliable, as seen in figure 3 for At = IO 14 . On the other hand, a too small
value of n may not allow us to benefit from the full potential of the equations. A maximum
condition number of k= 5 • IO 12 gives the optimal solution for all Q shown in figure 3. To be
on the conservative side, k = IO12 could be chosen.

Some comments on the minimum norm least squares solution are appropriate. In the rank
deficient case, the rank r of the matrix A is smaller than the number of unknowns n, and the
solution of the least squares problem is no longer unique. A unique solution can be found by
introducing the additional constraint of minimal norm of x [2, 10]. However, for our system of
equations it is more natural to require that the jumps in the n — r highest derivatives are set
to zero. Without going into details on singular value decompositions and the solution of least
squares problems (see [10]), wc just note that the minimum norm solution of a rank-deficient
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Total number of equations

Figure 4: Max-error in the first derivative, TV = 128, full rank systems, extra equations.

least squares problem does not produce zero for these n — r jumps. The best approach is
probably to reduce the number of unknowns to r, and solve a full rank problem. However,
the mentioned jumps will usually become very small, and the difference would not be visible
in figure 3.

Weighting of the equations in favour of large |fc| is suggested for similar problems in [5] and can
also be applied here. The weighted results shown in figure 3 were produced by multiplying
each equation in (12) by A; 2 . (Multiplication by \k\ had very little effect.) As the results
only differ from the unweighted ones for some of the rank-deficient systems, weighting is not
elaborated further in this paper.

Another possibility mentioned in the previous section is to use more than 2Q equations. More
equations improve the conditioning of A, but may at the same time decrease the applicability
of the asymptotic assumption the method is based on, and is more time-consuming. Figure 3
includes results ("added eqs.") obtained by adding enough equations for the system to have
full rank when the maximum condition number was set to IO 12 .

The number of equations needed to obtain the different ranks are shown in figure 4. The
values of k were

a total of K equations. Up to Q = 5, K = 2Q equations are sufficient to give full rank
(as already seen from figure 2), but 22 equations are needed to obtain a rank of 6, and 54
equations for a rank 7 system. For the given function (20), there is no particular structure
apart from the jumps at x = 0, so the accuracy of the approximation is not decreasing before
the very smallest \k\ are used in (12), but in general the number of additional equations used
would have to be more restricted.

k = ±N/2 - 1, ±TV/2 - 2, ... , ±AT/2 - K/2, (22)
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Figure 5: Max-error in the first derivative, TV = 128, the effect of Q\ > Q.

It should be remembered that because the coefficients of the jump-functions Un (x) decrease
rapidly for even moderate n, it is necessary to include equations with low \k\ in (12) in order
to obtain the necessary rank to get any advantage of these jump-functions.

Another observation from figure 4 is that the error decreases much more slowly and less
systematic when extra equations are added. The method is clearly most efficient when the
systems are well-conditioned, and this indicates that higher numerical precision would imme
diately give much better results.

Wc have also investigated the effect of replacing Q with Q\ (> Q) in the solution of (12),
while the original Q is still used in the representation (5) (i.e., only the the jumps in the Q
first derivatives are used). As expected from the error estimates referred in section 2, the
calculated jumps are closer to the exact ones when Q\ > Q, but the total accuracy of the
calculated derivatives versus the amount of computational work must be considered.

Results from using Q\ > Q are shown in figure 5, and for comparison the approximation
error when the jump magnitudes are exactly known are also plotted. Wc see that already
with Qi = Q + 1, optimal accuracy is achieved for Q < 4. For larger Q, the systems become
rank-deficient and the improvements are smaller. Larger values of Q\ do not give significant
improvements.

Even though Q\ = Q + 1 improves the results in most cases, a larger least squares problem is
solved, so the actual computational work is closer to the work for a "(Q -f l)-problem" than
for a "Q-problem". Considering that the improvement in going from Q\ = Q to Q\ = Q -f 1
is in most cases smaller than the improvement of increasing Q by 1, it may not be favourable
after all, at least not from a pure approximation point of view. Wc also observe that when



18

Figure 6: Max-error in the first derivative, illustration of convergence for different Q.

Table 14: Convergence orders for the max error of the first derivative

the system no longer has full rank (for Q\ > 5), it is the extra equations in (12) that give the
improved accuracy, and not the increased number of unknowns. This is seen from the results
where Q\ = Q and 2{Q + 1) equations are used.

Examples of the pointwise distribution of errors for calculations with Q\ > Q are given in
section 6. Where nothing else is noted, the same value of Q are used in (12) and (5) in the
calculations in the rest of this paper.

In figure 6, wc show the approximation results for different TV and Q to check the convergence
rates. The results are calculated with IO 12 as maximum condition number of A. Basically,
2Q equations are used in (12), but sufficient additional equations are included when necessary
to achieve full numerical rank. As shown in figure 4, the results can be improved by adding
more equations in (12) than what is necessary to obtain full numerical rank, but a reliable
criterion for the optimal number of equations have not been found. It seems to be a good
compromise between accuracy, efficiency, and simplicity to use the smallest full rank system.
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Figure 7: Max-error in the first derivative, FFT vs. analytical calculation of jump-function
coefficients.

It it seen from figure 6 that the error for a given Q decays almost linearly in the double
logarithmic plot, as long as Q and TV are not too large. This means that the error is pro
portional to TV-p , where the convergence orders p are given in table 14, together with the
interval in TV they are calculated from. Wc observe that the orders of convergence are well in
accordance with the theoretical estimate of o{N~®) for the error in the first derivative [7].

Figure 6 also confirm the comments made in connection with figure 4, that the method is most
efficient when the least squares systems are well-conditioned. Even though the accuracy can be
improved for ill-conditioned systems by increasing the number of equations, the convergence
is no longer algebraic.

Finally, the effect of using FFT to calculate the jump-function coefficients is shown in figure 7,
where the results with analytical coefficients from figure 6 are included for Q = 4,6, 8, for
reference. The reduced accuracy from the use of FFT is first seen for TV = 256 and Q = 4
(no differences for smaller Q), and for large Q and TV the results are much worse than when
the analytic formula (17a) is used. The differences appear for the same combinations of TV
and Q that give ill-conditioned systems, so additional equations seem to be necessary to take
advantage of the improved accuracy of the analytical expressions (17) for the jump-function
coefficients.
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Figure 8: The function (23) with three discontinuity points studied in section 6.

6 Approximation of a function with three discontinuity points

In this section wc study a more complicated case, the function defined by (23) and shown in
figure (8). It has jumps in the function value and/or the derivatives at 71 = 0, 72 = 7r/2, and
73 = 7T-

(23)

The jumps in u(x) are subtracted as in (7), and the coefficients (Vn)k(lj) are calculated
by (17) in the following calculations. K = 2Q equations are used in (12) to find approximate
jumps, but the maximum condition number is set to IO 12 and additional equations are added
when necessary to obtain full rank systems.

Figures 9-12 show the error in the first and second derivatives at the grid points for different
values of the reconstruction degree Q and the number of grid points TV. We observe that the
dominating errors are located in a relatively small neighbourhood of the discontinuity points,
with errors being several orders of magnitude smaller away from these points. This behaviour
has been observed also for other methods of approximation of non-smooth functions, see [12]
for a similar approximation problem.

When the number of points with dominating errors is 0(1), as is clearly the situation here, the
RMS-error will be a factor TV 1 /2 smaller than the maximum error, so the theoretical results
from [7, 8] give 0(/y-(G+3/2-m)) for the RMS-error of the mth derivative.

The RMS-errors in the first and second derivative for different TV and Q are displayed in
figures 13 and 14. The results for each Q are approximately straight lines when TV is large
enough to avoid the equations with too small \k\ to be included in (12), and small enough for

r

ex , o<x< ir/2,

U(X) = < 0, Tf/2 < X < 7T,

cos(x/2), 7T <x < 2ir.

tracted as in (7), and the coeffici
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Figure 9: Pointwise error in the first derivative of (23), Q
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Figure 10: Pointwise error in the second derivative of (23),
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x/pi

Figure 12: Pointwise error in the second derivative of (23), Q 5

ie-uo i 1 1 1 1
f N=64 -*-

le-07 - \ \ N=l2B -"*-'
\ f\ * N=256 -a

le-08 - \ / \ /\

\ /l\ A /
le-09 -l\/ri\ / \

le- 10 -It \\ % V å I

le-11 - ri+ I] if: V fili i:
_V * /a n i #S>'. *?

le-12- ri\ /*_\ /rii\ fri

SSaPS s^ÆOSBP WsSS% i^fSpiS^
le-14 - i° !T°éP anaéf'f -P ri ••ri: l_b ;s i '<& i&\W

%j l| ** j» {*{ ri j
16-15 - é é D I ri li

!Id.lC l I I A I I

le-05
N=64

N=l2B - •—•
N=256 -o--

-le-06

le-07

le-08

le-09

le-10

A /!\ A i
\ \ I $ \ f t\ li

:*% 1 fy 4 é DD /\^ i (f y v

le-11

le-12

le-13

le-14
1.5



23

N

Figure 13: RMS-error in the first derivative for different values of Q and TV.

Figure 14: RMS-error in the second derivative for different values of Q and TV
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Table 15: Convergence order for the RMS-error of derivatives.

the system to have full rank with only 2Q equations.

The convergence rates are calculated for the intervals where the errors exhibit almost algebraic
convergence, i.e., straight lines in figures 13 and 14, and are given in table 15. As in the
previous section, the results agree with the theoretical estimates.

Finally, the results obtained here are compared with what wc get if the exact jumps and the
exact Fourier coefficients of the smooth part of the function are known. That would be the
optimal representation on the form (5) with given TV and Q. In practice wc have here used
the known jumps of u(x) and its derivatives for the AJfs to calculate the Q times smooth part

(24)

For Q > 3, approximations of the coefficients u£, \k\ < 64, up to the 15th decimal place can
be obtained using a discrete Fourier transform of length 1024.

The pointwise errors in the first derivative are shown for different TV and Q in figure 15. In
all cases the maximum error is much larger for the approximate jumps, but the distribution
of errors throughout the domain is interesting, as it is more uniform when the exact jumps
and coefficients are used. For small TV and large Q, the approximation has larger error at all
points, while for the opposite case (large TV and smaller Q), the exact jumps and coefficients
give a better solution only at a few grid points closest to the discontinuity points.

To illustrate this further, the absolute values of the real parts of the Fourier coefficients of
the smooth part w® (x) of the approximating function (5) are displayed in figure 16 for three
pairs of TV and Q. The exact coefficients decay very regularly, as they are asymptotically
0(\k\~(Q+2)) as |A;| —* 00. The approximate coefficients are much smaller for the highest 3Q
frequencies, because these coefficients are given by (13) as the residuals from the least square
problem for the jumps. The correspondence between the magnitude of the highest coefficients
and the minimum pointwise error is seen by comparing figures 15 and 16.

For the case TV = 128, Q = 4, results of calculations with Q = Qi = sin(l2) are included in
figures 15 and 16. Those results imply that the approximated jumps in the highest derivative
(the fourth in this case) play a key part in the pointwise error distribution. As mentioned
earlier, it is expected from the theory [8] that the approximate jumps in the highest derivative
have the largest error. However, the inclusion of these jumps apparently acts as a "filter"

Q M
U^(x)=u(x)-J2J2AlVn^^j)

n=Oj=l

Interval in N 32-256 64-256 96-256 96-256 96-192

Conv. order, Ist der. 1.5 2.6 3.6 4.7 6.0

Conv. order, 2nd der. 1.6 2.6 3.7 4.9
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Figure 15: Pointwise errors in the first derivative for approximate and exact jumps and
coefficients.
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N=4B, Q=6

8 12 16 20 24 28 32 40 50 60
k

Figure 16: Absolute values of the real parts of the Fourier coefficients for the smooth part
w® (x) of the approximating function.
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Figure 17: A domain with complex geometry embedded in a rectangular domain, with a
horizontal grid line.

on the highest coefficients (as seen in figure 16) and reduces the error away from the jump
locations strongly, whereas the approximation close to the discontinuity points suffers from
the limited accuracy of the jumps in the highest derivative. When Q\ = 5 (and the results
change very little with larger Q\) is used, the jumps in the first four derivatives become more
accurate, but the "nitering" due to the matching of the calculated jumps and the highest
coefficients disappear and the resulting approximation is very similar to the one with exact
jumps. (The difference between them is mainly due to the calculation of coefficients of the
smooth part, i.e., the collocation error, and not to the accuracy of the jumps.)

7 Width of an "exterior" interval

For applications to problems in complex two-dimensional geometries, the approach suggested
in [8] is to embed the given domain in a rectangular domain. This is sketched in figure 17,
where the gray area is the original domain.

The rectangular computational domain will in this case be divided into an "interior" part
which is the original domain, and an "exterior" part added to make the total domain rectan
gular. The functions involved are tåken to be zero in the exterior part of the domain.

A horizontal grid line like the
intervals, and the function (23)
a grid line. By changing the de

one drawn in figure 17 contains both interior and exterior
!3) can be used as a simplified example of a function along such
definition from (23) to

(25)

where Ax = 2-k/N is the grid spacing, we get a function which is zero at an interval of width

ex , 0 < x < -k/2,

u(x) = 0, tt/2 < x < tt/2 -f 8 Ax,

cos(rc/2), ir/2 + BAx<x< 2tt,
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0.1

delta, width of exterior interval (in units of grid spacing)

Figure 18: Max-error in the first derivative, N=l2B, Q=4, for varying width of the exterior
interval.

8 Ax. This interval is called the exterior interval in the following.

The effect of diminishing the exterior interval for TV = 128 and Q = 4 is shown in figure 18.
As seen from the previous section, this is a well-conditioned example when 6 = 32. When the
exterior interval gets smaller, the condition number grows, and the rank of the system (12)
becomes 3 (rank-deficient) at 8 = 3. For this problem the condition number is not reduced
when more equations are added in (12). The rank decreases further at 8 = 2 (rank 2) and
8 = 1 (rank 1). These results for TV = 128 and Q = 4 have been found to be typical, for
better conditioned systems 8 may be smaller before rank-deficiency occurs, and vice versa for
worse conditioned systems.

Figure 18 shows the maximum error at the collocation points, therefore there are jumps in
the error curves at integer values of 8. For 8 just larger than an integer, there is a grid point
at the right end of the exterior interval, and the error at this point is seen to become quite
large for small 8. When 8 is equal to or just smaller than an integer, the grid point closest to
the discontinuity will be in the right interior domain and the error is smaller. If 0 < 8 < 1,
the error is not measured inside the exterior interval, and becomes constant.

In an application, it is not really interesting to see how good the zero solution in the exterior
domains is represented, as long as errors does not spread to interior intervals. And wc see
from figure 18 that when the error is computed only from the interior points, the effect of
varying 8 is much smaller, which is an encouraging result concerning the methods ability to
handle problems in complex geometries.

It is illustrated in figure 19 that the maximum error appears in the exterior domain. Here
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100

Figure 19: Pointwise error in the first derivative, N=32, Q=4, with 1 and 2 points in the
exterior interval.

TV = 32 is used to give a better view of the pointwise behaviour. When 8 = 2, only the one
point with the largest error is located in the exterior interval. For 8 > 2 there are two exterior
points with much larger errors, but at the interior points the errors are still small.

8 Robustness regarding functions without discontinuities

In this section wc investigate the robustness of the approximation method for cases where the
actual function do not have discontinuities in the relevant derivatives. Such special cases can
occur e.g. in time-dependent problems, and must be handled with the same accuracy as seen
previously.

The four functions wc use as illustrations are shown in figure 20 and given by

(26a)

(26d)

, , ( exP (" offifc-o&) - NA - o.B| < 0.7,

0, otherwise,

u2 (x) = ((£ - 2tt)0 6 /tt 12 , £ = (2tt -f x - 0.3/tt) mod 2tt, 0< x < 2tt, (26b)

e 2
u3 (x) = 4 sin(£/2) -2£ + £-, £ = (2tt +x - 0.3/tt) mod 2tt, 0< x < 2tt, (26c)2tt

x
u4 (x) = -(1 - cos(3a:/4)) - — , 0 < x < 2tt.
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Figure 20: The four functions considered in section 8.

Figure 21: Real parts of the discrete Fourier coefficients (for TV = 128) of the four functions
considered in section 8.
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Figure 22: Maximum error in the first derivative from the approximation of the functions (26)

vi (x) is a smooth function, identically zero in the intervals [0, O.ltt] and [I.stt, 2tt], and thus the
2TT-periodic extension is also smooth. The 2Tr-periodic extension of U2(x) has discontinuities
in the 7th, 9th, and llth derivatives at x = 0.3/tt, while the 2Tr-periodic extension of u^ has
discontinuities in the third and all the higher odd-numbered derivatives at x = 0.3/tt. u4 (x)
is essentially the function wc considered in section 5, but the discontinuity at x = 0 in the
2Tr-periodic extension has been removed by subtracting a linear function. The 2Tr-periodic
extension of u4 (x) has discontinuities in all derivatives at x = 0. u4 (x) is included in this
section to represent the "normal" case, for comparison. The real parts of the discrete Fourier
coefficients of the functions (26a) for TV = 128 are shown in figure 21.

Figure 22 shows how the different degrees of smoothness and periodicity influence the accuracy
of the calculation of the first derivative. The curves marked "zero jumps" show the accuracy
obtained if the relevant jumps are set to zero. For u2 (x) and u^(x), the convergence orders
are close to the expected orders of 6 and 2, respectively, even when Q is too small to catch
the discontinuities. Still the approximations could be improved if it was detected that the
functions did not have jumps in the Q first derivatives. This applies in particular for the
function u\(x), and higher values of Q increase the errors drastically. Therefore wc search for
means to deal with these situations. Three general approaches are discussed below, before wc
consider a method for a single discontinuity point more in detail.

The first approach ( "truncation" ) is to set a lower limit for the discrete Fourier coefficients
used in the system (12), and regard them as zero if they are smaller than this limit, as they
will be if the function is sufficiently smooth and the values of |A;| are large enough. If the
truncation limit is related to the size of the highest coefficient of the jump-function of order
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Figure 23: Maximum error in the first derivative from the approximation with truncation of
the discrete Fourier coefficients of the functions (26).

Q, i.e., the absolute value of the coefficient {Uq)n/2-\i tne desired effect would be achieved
when TV is sufficiently large.

If the coefficients are larger than the limit just described, this truncation should not be applied
because significant digits of the coefficients would be truncated. Instead, a truncation limit
close to the machine epsilon (usually around IO-16 for double precision) could be introduced
to remove noise generated by the FFT of the input function. This may improve the results
for large TV.

Results using the truncation strategy are shown in figure 23. It detects the zero jumps in
many cases, but not all. Results are shown with the noise removal limit set to IO-14 and
10 , and it appears that this limit should not be larger than IO-16 . In fact, when the
functions have jumps in some of the first Q derivatives, it is difficult to see that application
of the "noise removal" improves the results at all (cf. figure 22 for approximation without any
truncation).

Unfortunately, TV would in many cases have to be much larger than seen previously in this
paper for the truncation to have the desired effect. To illustrate this, consider figure 21, where
the coefficients of the smooth, periodic function ui(x) decreases faster than those of the other
functions when \k\ grows, but are not smaller in magnitude than the coefficients of u2 (x) until
TV is greater than 128. So this truncation method only works in calculations with small Q
and/or large TV.

The second alternative is to consider the residual of the least squares solution of 12, in the
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case that the number of equations is larger than the number of unknown. A large residual
indicates that the calculated jumps are inaccurate. This will happen when the system is
solved for jumps that really are zero, but it could also be other reasons (e.g. too small TV to
be in the asymptotic area), and it is difficult to quantify how small the residual should be for
an "accurate" solution.

For a third method, wc note that (12) is a system of complex equations. The fact that wc are
only interested in real jumps as solutions (assuming that the functions to be approximated
are real) means that the jumps of two real functions u\(x) and u2 (x) are usually calculated
at once by defining the new complex function u(x) = u\(x) + iu2 (x).

When pairs of positive frequencies k and —k are used in (12), the real and imaginary parts are
decoupled, such that the errors in the jumps for u\(x) and for u2 (x) will not influence each
other. However, if only positive frequencies are used, errors for both functions are distributed
in both the real and imaginary parts of the solution. In that case, solving the system for a
single real function would produce imaginary parts of the calculated jumps that could indicate
the size of the errors in the real parts. Jumps with large relative errors can then be set to
zero, assuming that the error is large because there is no jump in the given derivative at the
given discontinuity point.

There are some disadvantages of this method too, one is that the system of equations for the
jumps becomes more ill-conditioned. The conditioning may be restored by using additional
equations with lower \k\, but this can decrease the accuracy. Another disadvantage is that
jumps for pairs of real functions can no longer be calculated in one complex calculation, with
the result that twice as many right-hand sides may be required. Also, as was the case with
the residual test mentioned above, it is difficult to prescribe a good quantitative criterion for
how small the imaginary part should be before the jump is accepted. But in contrast to the
residual test, this approach gives an indication of the accuracy of each jump, not only for the
total vector of jumps.

It appears that there is a need for a criterion to decide whether or not the function has
jumps in any of its Q first derivatives, for given Q > 1. (Still assuming that jumps in the
function itself have been subtracted.) Wc shall discuss another approach for the case of a
single jump location, which is closely related to the algorithms given in [5] and [6] for locating
discontinuities. The simplest form of those algorithms utilizes the fact that if a 2Tr-periodic
function u(x) is continuous except for a jump discontinuity of magnitude A at x = 7, its
Fourier coefficients asymptotically satisfy

as \k\ —+ 00. Therefore, if wc define the complex number zk as the ratio

(28)

wc obtain
(29)

Thus the location of the discontinuity is given by

(30)

uk = A(Vo)k (<y) -r o(\k\~2 ) = + o(\k\~2 ), (27)

__/____(_) _ 27Tikuk

Zk ~ 2fc-i/rø>)*-i(0) ~ 2ttz(* - I)^_!'

zjfc = e-i7+ o(|*r1 ), as |*| ->oo

7= - arg(zjb) + 0(1*1 l ), as |*| -» 00.
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Figure 24: Approximation of discontinuity position using the complex number z given by (28).

(It is shown in [6] that if u(x) is continuously differentiable for all a;^7, the last term in (29)
and (30) will actually be o(|*|~ 2 ).)

Figure 24 shows the circle of radius d around e *7 where the calculated zk is expected to be.
The radius dis at most o(|*| -1 ) as |*| —» oe.

In [5] and [6], an approximate discontinuity position was calculated as 7 = — &rg(\zk \/zk ),
but in our context the position is assumed to be known. Instead, we shall describe how zk
can be used to check whether there is a jump at a given position.

Because it is also assumed in this paper that the jump in the function is known and subtracted
using (7), we rewrite (27), (28) for use with a continuous 2Tr-periodic function with n — 1
continuous derivatives and a discontinuity of magnitude An in the nth derivative at x= 7 for
n > 1. The asymptotic behaviour of the Fourier coefficients becomes

(32)

We expect (29) to hold with zk replaced by z% (and with o(|*| 2 ) as the last term if u^n+l \x)
is continuous for all x 7^ 7). Therefore the quantity

(33)

is expected to be small if u(x) satisfies the regularity assumptions given prior to eq. (31) and
if |*| is large enough for the asymptotic assumption to be valid. If (31) does not hold, d^ will
generally be larger.

uk = An (Vn ) k (j) + o(|*|-<"+2>) = 2f{ +̂1 + o(|*|-^2)), as |*| - 00, (31)

and wc define zjj? by

zn = Uk /(Vn ) k (0) = 27T(ikr+1 Uk
Zk 2*-i/(V»)*-i(0) 2tt (t(* - l))n+l Uk^ '

jn _ \ n _ „— 2-71ak — \ zk e I
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Figure 25: Absolute values of the discrete (for TV = 64) and exact Fourier coefficients of the
jump-functions Vn (x;Q).

However, because a collocation method is used in this paper, only the discrete Fourier coef
ficients of u(x) are available, not the exact ones. The difference between discrete and exact
Fourier coefficients are given in general by (16) and illustrated for the jump-functions Vn (x; 0),
n = 1,2, 3, 4, 5, in figure 25.

Because of this difference, wc can not in general expect (31) to hold with the same accuracy
unless wc decrease |*| to avoid the highest discrete coefficients, and figure 25 shows that the
decrease in |*| has to be substantial for the small values of n. This is clearly unfortunate,
as wc wish to use the highest coefficients because of the asymptotic assumptions. Wc shall
therefore study the difference between discrete and exact coefficients more closely, using (15)
and (16).

When the first terms of the sum in (16) are written explicitly and (15) is used, wc obtain for
* = 1, 2, . . . , N/2 - 1, and n = 1, 2, . . .:

(34)

The first term in the sum on the right-hand side gives the exact coefficient. The rest of the
terms have decreasing absolute values, and for 7 = 0 it is easy to see that they are all positive

_ p-ik~i °° f e-i(k—m/V)7 —i(k+mN)j \

(^(7) = 2TT(i*) Tl+ 1 +^ n+ l (*-m/Y)n+l + 2Trz"+ 1 (* + mAT)"+ 1 J
e-ifc7 / \ ei/V7 e-iNy

27rin+l \kn+l +(* - AOn+l +(* 4- AOn+l
ei2/V7 e-i2Nj \

+ (*-2AOn+l +(* + 2A0n+l +" ')
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Figure 26: Size of the quantity kB%, indicating whether the leading discontinuity of u(x) is in
the nth derivative and at the given position. The functions u\(x)-u4 (x) are given by (26).

for odd n, while they form an alternating series if n is even. This explains the differences
between the discrete and exact coefficients in figure 25. The same behaviour was seen in the
discrete coefficients of u2 (x), u^(x), and u4 (x) in figure 21.

Unless 7 = j2tt/TV for an integer j (i.e. 7 is a grid-point), the sum over m in (34) will depend
on 7. The use of (32) with the discrete Fourier coefficients of u(x) and Vn (x; 0) instead of the
exact ones, will therefore generally not lead to a good approximation to 7. However, because
7 is assumed to be known, we can define

(35)

With the regularity assumptions given for (31), the asymptotic behaviour of the discrete
Fourier coefficients is

(36)

and wc obtain
(37)

The quantity

is expected to be small if u(x) satisfies the regularity assumptions given prior to eg. (31) and
|*| is large enough for the asymptotic assumption to be valid.

_ jW__n)fc_7)
sjb_i/(Vs»)fc_i(7)

uk = A(Vn )k(j) + o(|*|-(n+2>), as |*| - 00,

C? =1 + o(|*|- 1 ), as |*| -> 00.

% = \<k - 11 = ((»(Cif - l) 2 + (^(C?)) 2 ) 1/2 (38)
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Figure 26 shows k8k for * = TV/2 — 1 and different values of n for the four functions (26).
When the leading discontinuity of the function is in the nth derivative, *<5£ has a minimum
value significantly smaller than 1 for this n. Using this method, the "optimal" accuracy
(zero jumps) shown in figure 22 is obtained for the cases where the first Q derivatives are
continuous, otherwise the results are not affected.

9 Conclusions

We have studied the accuracy and robustness of calculation of approximate derivatives by
the modified Fourier collocation method [B], which uses piecewise polynomials to represent
discontinuities in the approximated function and its Q first derivatives. The magnitudes of
these jump discontinuities are determined from the discrete Fourier coefficients of the function.
It has been demonstrated through numerical examples that the theoretical, asymptotic orders
of convergence [7, 8] can be achieved with relatively few collocation points.

The numerical precision limits the accuracy of the calculations in different ways. The smallest
discrete Fourier coefficients for the piecewise polynomials involved become very small for large
values of Q, but this can be overcome by using analytic formulae for these coefficients as
discussed in section 3. However, for these values of Q and TV, the system of equations (12) for
the jumps becomes numerically singular (or rank-deficient if the system is overdetermined),
so the accuracy is nevertheless reduced. With the high orders of accuracy obtainable by
this method, increased numerical precision would immediately be rewarded by substantial
improvement of the results.

For 16-digit (double) precision, an upper limit of IO 12 is recommended for the condition
number of the matrix used in the system for the jumps. For a problem with M discontinuity
points, a system including the MQ highest positive and negative discrete Fourier coefficients
gives a good balance between accuracy and robustness. This overdetermined system can be
solved by the least squares method.

The pointwise errors displayed in section 6 show that the errors are essentially concentrated
near the discontinuity points, as is common in approximation of piecewise smooth functions.
High orders of accuracy are obtained everywhere, but the results are in many cases several
orders of magnitude better away from the discontinuity points.

An example of a situation occurring in applications to problems with complex geometries
was studied in section 7, namely when a part of the computational domain is regarded as
"exterior", and not really interesting for the results. The sensitivity of collocation point
positions relative to the discontinuity points were studied, with encouraging results. This
topic is discussed further in [9].

Finally we considered the situation where the functions to be approximated were smoother
than expected, in order not to introduce artificially large errors in the approximation of such
functions. Several aspects of the topic were discussed, but the choice of strategy and the
degree of sensitivity to these properties of the functions are probably problem-dependent and
should be reconsidered in the context of specific applications.

Stability of the differentiation operators in applications to partial differential equations are not
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discussed in this paper. The implementation of boundary conditions has a major influence
on the stability properties, in particular for spectral methods, so the stability should be
discussed in connection with particular applications. Stability for the heat equation with
Dirichlet boundary conditions is discussed in [9].
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