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Abstract.

Starting from the equations describing the two-fluid
model, The stability of a low-B plasma supported by a magnetic
fleld against an external force fileld, is studied.

Finite gyroradius effect is taken into account. The
stability analysis is based on localized perturbations in
a plane normal to the magnetic field. Even 1if the effect of
& fdnite gyroradius 1s to stabilize the system for perturbations
normal to the density gradient, it seems to be overstable for
perturbations in other directions.
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Incrodilcton:

The first papers dealing with the problem of a low-pressure
plasma supported by a strong magnetic field against a gravity
force were written by Kruscal and Swarzchild [1], Longmire and
Rosenbluth [2]. The conclusions from these works are that a
plasma Iin this situation is unstable at the boundary if the
gravity force points away from the plasma, and that it is
stable if the force points in the (pposite direction. The
authors of [1] use the usual HD-equations in their analysis
of the psoblem. The authors of [2] start with an analysis in
terms of virtual displacement and energy.conglderations. nBub
as thils procedure gives no suffisient condition for the
cecurrence of Instabllity, one has also to show that the plasma
actually 1s able to perform the required displacement, and this
is done from a microscopic point of vew by studying drift
velooitles.

Later investigations on this subject, erpesieiadlilsationg
By Tehment (3], [4].005], [6]: il uRoecnbhush st b Krall,

N. Rostoker [7] and K.V. Roberts and T.B. Taylor [ 8) Indicate
that the situation is ng%géerious ag 1k appears. o be from the
conclusions of [1]) and [2]. | The new effechs. taken into soccint
are,fIrast the effect of a continuous density gradient,
introduced by B. Lehnert [4], and second the effect of finite
radius of gyration for ions, studied by Rosenbluth et. al.

[7]. But in all the papers known to the author, where both

the finite radius of gyration and the continuous density
gradient are taken into account, perturbations in one directlion,
only, are studied; namely, the direction normal e = (the
magnetic field vector) and normal to ¥ IO 5 0= density gradient

vector). We shall in this report first state the assumptions
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and approximations, and then derive a consistent set of
equations which allow perturbations in a plane normal to B,
and especially in the direction parallel to the density gradient
vector. Afterwards we analyse these perturbations in normal
modes and derive the dispersion relation for the system.
Finally, the dispersion relation is discussed and solved
numerically for some parameter values. The results are

compared with results given in earlier papers.

2. Assumptions and approximations.

We shall here study a low B plasma, which means f << 1,
where B as usual is the ratio between the particle pressure

1"

and the magnetic "pressure". As we shall justify in Eq. (3.30)
we can then neglect the modifications in the magnetic field due
to currents in the plasma caused by a small macroscopic

electron velocity in equilibrium and by the first order electron
and ion velocities due to perturbations. This also allows

us to write E = - Vo , i.e., the perturbed alsctric. fleld is
the aradlient of a scalar function.

Our stability analysis will be based on the method of
localized perturbations, which means that we study the sittwation
in a local region of the plasma and assume the plasma to
extend to lnfinity in all directions, in order to make effects
from boundaries negligible. Otherwise one has usually to solve
an eigenvalueproblem, which is much more complicated, but, orf
course, also much more satisfactory from a physical joronbiaiy @i
view. But we still hope that the method of locallzed
perturbations as a first step, will give some results of

physical relevance.

We shall assume the temperature to be constant in space
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and time, both in equilibrium and in the pertirben statel 1t
seems perhaps somewhat curious that the plasma should be
isothermal in the perturbed state, since we have neglected
ealiligions, ““This assumption, however, can be justified by

the assumption of constant magnetic moment for each particle.

A consequence of these asgumptlons 19 that the pressure gradient
1s proportional to the density gradient.

We now introduce the mean ion speed WL transverse to =
and have by definition that the mean radius of gyration for ions
is given by a = g# , Where Wy is the gyrationfrequency for
ons. 4

We shall now introduce g local cartesian frame of reference
as our coordinate system. B points in the z-direction and the
gravity force, or an equivalent foree, g in the y-direction.

The density gradient in equilibrium also points in the y-direction.
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All perturbed quantities are assumed to be dependent only on
X, ¥ and t, where t as usual denotes the time. As for
the z-dependence it is of less interest, . Binee in the dow . p
approximation the flute type instability is the most probable,
where matter moves across the magnetic field leaving the
latter: practically undisturbed, That is because the plasma
does not contain enough energy to make perturbations in the
magnetic field probable.

In order to obtain a system of equations which 1s possible
to solve without any other restriction than linearization in the
perturbed quantities, we choose the density distribution given

by Eq. (3.7). We also use the approximation- of quasineutrality,

5. Basic equations.

We shall start with the equations for the two-fluid model,
where we neglect the interaction terms due to lon-electron

collisions. The equations are as follows:

v
£3.1) n, mi<€;% & Xi'vzi> = eni(g hiithe X B) - Wi Tignok  Rabrs i
ov
(3.2) n, mg 7§§-+ Xe‘vze> = - ene(g P B) - Yo e
(3.3) e SR
' St A
on
5. 4) 7Y§'+ V~(ne Xe) =0

Egs. (3.1)and (3.2)are the equations of motion for ions
and electrons, respectively, and (3.3}and (3.4)are the
equations of continuity. We have used the usual symbols where
the indices 1 and e vrefer to ions and electrony’ and g

is the gravity force or an equivalent force due to acceélerations,

for instance a centrifugal force. T (=il e he
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pressure tensor which we shall now specify. We use an
expression for the pressure tensor first salculated by Chapman
and Cowling [9], and also calculated in a simpler way in the
collision-free case by Thompson [10]. This expression for the
pressure tensor is also used by Roberts and Taylor [8] and
Lehnert [6]. We assume the radius of gyration for electrons

to be infinitely small and we can therefore approximate the
pressure tensor for electrons by a transverse isotropic pressure
P The relevant parts of the ion pressure tensor in the

collisionfree case are then

I i my n; atw, aviy i avix
o A 4 o oy
m, n; atw, avly Bvix
(3.5) ﬂyy < 4 ( o% U oy >
LG, m; n,.a%w Bvix i Bvly
B g 4 = A

Here a 1is the radius of gyration for ions. We see from Eqe {3.5)
that the transport terms in the pressuye tensor conbaining the
radius of gyration play the formal role of . kinematic viscosity.
But they hédve; of coursesxnot.exactly the same physical
significance, as pointed out by Roberts and Pavlopn el S

define a parameter o by

(3§6) ‘Tl =Gl
then ac is constant in our problem, according to the

assumptions made in Section 2. As mentioned earlier we choose,

for the-sake of convenience, the following density distribution
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W 74

) A W {N + n(x,y,t)} exp<%>

where N exp<%> is the assumed density distribution in
equilibrium, with N constant.
We can now calculate the components of the pressure tensor

divergence, and get from Egs. (3.5)

api a%x
G MBS e & < n— + ni—a'y> 5 < “1875)}

where the index x refers to the x-direction and a 1s given

by Eq. (3.6). When we linearize and use Eq. (BT, (V~gi)

=
can be written
2
g I 3% ov ov, . i
il IG £ 1 1k ko e
(3.8) (V'ry), = =% - am, Ne {TX%” B < il dx§ i ayé’} ;

In the same way we find

which gives

Sp. I e o T
(3.9) (v-m, ) 73—- i om Nel {—g;%x+ —g;§< i —55 —§9>} "

By the'help' of Ed#., (5, 8 and (=t vectorequation Eq. (3.1)
can be written as two ordinary equations, one for the x-direction

and one for the y~direction|“thus

ix X 6 on

2 2
il 3 %j+_awgy+ 1 B%y 8%1
o Syg el
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(5.11) ¥ = o

pene Wy 1s the gyrofrequency for ions and 6 1is defined

by the ideal gas equation

which gives
(3.12) g2 e
y 2

At the time t = 0 the system is un perturbed and we have
by definitlon

1l © S B 1 S Vel viy = (@

2

We see that these equilibrium values are solutions of Baay {%.4)
and (3.10). And from Eq. (3.11) we get

, wi E "
(3.13) e

= o
1l
o

where Eyo i1s the y-component of the electric field at t = 0.
The egpllibrium conditions Vi viy = S e ey

also be considered as a definition of our frame of reference.
From Eq. (3.13) we see that in equilibrium the y-component

of the electric field must be different from Zero 1h ordet

to balance the pressure gradient and the Eslolco. | Lecopdins

to our assumptions (Sec. 2) we can now write
bl i oQ
(3.14) By = m 5k R =

and finally we obtain
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ov w
i3 i Jdp © on
(35) —me ™ e pied . i1y e
égg égv 1 ov
-a{———‘é’wr——lg’ i< y--gix =0
ox oy
(3.16) aViy 1 dop o e on
i ot T TB oy T Taa T
Bgv S av v
%0 5 + —< +* ?é} =0
Oy

In the equafion of motion for electrons we shall neglect the
inertia of electrons, i.e., we put the electron mass Sl we
zero. If we consider a series expansion in the parameter

£L where w 1is the characteristic frequency of the system

e
and Wy is the gyration frequency for Cleobrong, our

approximation i1s a zero-order approximation in this parameter,

and we get from Eq. (3.2)

(5047) ol (EX e B)- -a-g-}% =0
(3. 18) e e <Ey L3 ] B) é§§ = 0
We can solve these equations with regpech to ng Vey
and s B and get
(3.19) SR JE 2?3 - 2% B
(3.20) e veng%%}i;Jr—gﬁEy

If we put these expressions into the equatlon of
continuity for electrons Eq. (3.4), we can easily eliminate

P and Vey' We also observe that the pressure terms cansel

out, and we are left with the equation
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on

e 1

(3.21) Al {% (ne Ey) & a%(ne EX)} =0

Using Egs. (3.14) and (3.7) we obtain from Egq. (3.21) the

following linearized equation

on N oo ) oy i
(3.22) 6T:—+E-:—B--a§+<m—j—:—-&: 5?——0

The equation of continuity for ions Eq. (1.3) can be written

as
%% é% % gf Vix(N s n)e% }* g% {viy(N ¥ n)e%} =0
which yields
on qv 6viy

ix N
(2:25) © SE TN oo 1 Vaps s i

Boa, - (3.15), (5.96), (3.22) and (Eiiiaiiis vt o v
equations which we shall analyse further in the next section.
But first we want to make a somewhat closer examination of
the low B approxiamtion in connection with our assumption of a
constant magnetic field.

From Eq. (3.19) we can see that P = 0 in equilibrium.
From Eq. (3.20) we get in the same case

ae Eyo
i = — () —a
Jex L = ae " B

E
Using the expression for —%9 which we obtain from Eq. (3.13)

and Eq. (3.12) for 6, we obtain (index e refers to electrons)

a
I TE 6 g
YeRT T et et
€ s
el
B ae 1 a g
B foxe BT e R A o 2
2 7
a8 g
- s i ol U .
il
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Here we have introduced a new parameter - defined by

m., gL
(3.25) PN o %% 5= T
p . Ay

which physically can be interpreted as the ratio between

the potential energy associated with the characteristic

length L 1n the gravity field, and the energy associated

with the gyration-motion. We have also introduced Te and

Ti as the transverse electron and ion temperature, respectively.
We now examine the space dependence in B from Maxwell's

equation
(3.26) VX B =

where J 1is the current density and Ky the permeability for

vacuum,
In equilibrium this current density is given by one

component in the x-direction

(5.7} J. = nl e )

From (3.26) we can now calculate the characteristic length

LCB for B 1in the y-direction since
ia2® 2
2 al 2
LCB & e Lwi Ti

Eq. (3.28) can be reduced to give

g 2 1
(3.29) Leg-==L -

B(%f gl

Aaiiss Elavenyel Clalshe Gl Te does not exceed Ti too much and

B is small enough we have
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(3.30) Lpplzr {0

As for the perturbed velocities we assume these to interact
very weakly with the magnetic field, ®ince we are interested
in the flute type instability as already mentioned in Section

2.

4, The dispersion relation.

From our basic equations we shall now derive a dispersion-
relatlon. We observe, that when we neglec t the y-dependence of
of the magnetic field, all the coefficlents 1in Egs. (3.15), 2
(3.16), (3.22) and (3,23) are indspenstus 'of W, & Sk,
This was also the reasonowhy we chose the particular density
distributlion given in (3.7). Since our system of equations
18 dependent on X, y and Tt ehly bhreughivsheacraunkicd
gquantities, and not through the coefficlents, we tiry bo find
normal mode solutions of the form exp{ i{wt + ael yky)} :
Assuming all perturbed quantities to depend exponentially
in this way on x, y and t, we can readily evaluate all
derivatives appearing in the equations, and this results
in a set of four linear homogenous equations in the fomr

unknowing n, v \%

and ¢ given below
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; 6 g el i
(4\3) 1{w+<—ﬁ——a—.—)kx}n+l—i—gkxcp—0

; N 4
A JUES ke, # f)viy + iwn

Il
(@)

(4.4) N R

A necessgary and sufficient condition that the linear set of
equations Egs. (4.1) - (4.4) shall have a nontrivial solution,
is that the determinant of the coefficient matrix should be
zero. This condition gives us the dispersion relation, which

we shall now calculate. The determinant is

|
I i
o 1K IR 4 :
;l( +-Ekx> - A N :l_-:—B——]r(X1
!
i A @k
¢ A S (T ¥ i
(4.5) e G Al
9 o N 1 iN i
0 0 i{w + FioL =k_|
Lwi Wy x| LB y'
ik, N 1Nk +E) i st
v L
where
A =w - afk” + k) Yab 2 e

When we expand this determimant after the third row we obtain

i i, k
a Sl
l(w o "I‘J- kX) - A - P
i g * kg | . o Gl
1{@ +<LTJ.“K> kx}! A 1(w b ] =
i il |
|
: N0 I | T 0
4 o N *
i(w + T k) o il o
i e
LAl . a . Yy
—]:-Ekx A 1(w R n kX> N g = {0
|
ik N iNk_ + % 10 E




B
T
R

i ]
i bl
o K i

st iace wIAP,

ol h

dsdgtooine won LlsHe




el e

The Tirst determinant above we calil D1 and the second we

call D2. We then have the relationship

1Nk
: 6 g WoAR
(4.5) l%)+<ME—<%>k4’% AWML D2~O

We now calculate D1 and Dg.

wiky i N wikkaN
4.6) D, = 2F (o 1 Y, + 1) o Y

ikxgwiN a Q)ikx N
+—“—'B—-—<Q)+'ikx> +1—B<1Nky+—]j>A

And when we put in the expression for A this simplifies

to give
: &
Nw, "k k kL
<. g X W@ ; v W
PLSTY PelfonElE {K“BT + 1[< L ka> = 1}}
o e X i

For D2 we find the expression

8l el S el \2
. X v it L
1 ; qu
b Sl 9<f + 1ky)A 4 i 9<w e
From Eq. (3.6) and Eq. (3.12) we have
2 2N

1 1
@ = .1 a wi and 6 = = a w
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By using these expressions for a and 6 Eqg. (4.8) can

be simplified to give

EES EOR O

B 5

wiBKXN
When we divide Egq. (4.5) by 1 ~—~r5— and substitute for

Lo End Bl By Bged (4.7) and (4.9) we obtain

a k (kX2 + kyg)L i
{4 10) {——-+ - = 2} { { K B; 4 1}}
2 2
- 1(‘<£&>3 X( > _<a2k2 1- i, ikYL}Jﬁ + kxa ]:O.
L \9y 2 kng ;?_ Wy el

After performing the multiplication in (4.10) and multiplying

by (-1), we obtain after collecting terms of the same power

W
in 7=
BN

2 2 2
a k k + k k

X b y B

5 i il
2002 b ok

o i di/ aila vl @) e
+{ LB + (3= Gl e
J : k i )

il

2
a

By o
';1“2' ?’F:and k kX +ky

Where

We have here in Eq. (4.11) finally obtained the dispersion
g ¢
relation we were looking for, and which we want to discuss \\

further 1n the next section. oy
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M. -

S5eBligeugsil ony andl conclusiiens.

(1) In order to simplify the discussion of Eq. (4.11),

we shall now define some new parameters. We put

(5.1) k, =k cos @, ky =k sin © ,

where © 1is the angle between the vector k (Eq. (5.1)) and
the x-axls, this gives
(5.2) Ll ot =il

Further we put

1Buz) = % a0 i

(5.4) Q = kL

When we use these parameters together with <y defined by

Eq. (3.25), we can rewrlte Eq. (4,11) and get

(5.5) <_> {?s/ B o it e}(_>
i {P(1 i %[(%)2 3 PQ} s I Gl B %P)A% sin é}gi

- % WSO = (O

We see that for @ = 0 Eq. (5.5) simplifies to a cubic equation

with real coefficients. Since % 1s small compared to Q,

we can as a good approximation neglect this term in the

coefficient of (éL) . If we also perform a simple rotation

i
of our coordinate system (y -»x, x » -y, z - z), and replace

% by <Lsimocandl Lo (by © v it eurneontibhat Bg. (5.5) becomes
ldentical with Eq. (11) of reference [8]. This equation is

discussed by the authors of [8] and is found to give the same
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results as Eq. (2.13) in reference [7]. It is, however,
in this case necessary to redefine the average velocity for
the ions. The discussion of this equation given in reference
[8] is, however, based on the assumption that the cubic term
can be neglected. This is valid as an approximation because
one of the three roots of this equatlion i1s of the same order
of magnitude as Q > 1, and the two other roots are much less
than one. The error introduced by calculating the two small
roots approximately by solving the quadratic equation instead
of the cubic is therefore quite small.

(11) According to Eq. (2.14) in the paper written by
Rosenbluth, Krall and Rostoker [7] the stability condition given

by these authors can be formulated as

(5.6) (ax) (B) > ¢ 8

L 1

From paper [4], Lehnert's stability condition can be written

as

Gy a"k

In the inequalities (5.6) and (5.7) we have used our notations.
QH is the instability growthrate in the MHD-approximation given

by

(5.8) Oy =\ 7o = Ve

Using our parameters, Eqs. (3.25), (5.3) and {5,4) ) Bhe

stability conditicn (5.6) can be rewritten as

(5.9) s % (Rosenbluth et.al.)
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b i
The gtablliby.condlibice (Suf) can be written

(Gud@) [ Wk % (Lehnert).

In order to obtain conditiocn (B O] e have, however, neglected

T%L- compared teo % ¥. Thle Cumme’ out toibe o aond
CB
approximation, since we in this case must have ‘v’>> st B 2
il

1e becauge P = = a k is a small number compared to one. 1In
the first case we get for the same reason, |y1<< 1. We therefore
note that these two stabilizing effects can not be simultanously
important

(112} | If we in Eq. (5 8080 iccti thie oulbto haeia o
59 and other terms of the same order, we are left with the

il
quadratic equation.

2
s e

(el 1) <§L> L B2 - v) coplel IR T ; L

(.Oi Q (A)l Q2(1 i Slg @)
Since 513 © << 1, we can perform a series expansion in
e i1Sin © -+ We then get an approximate value of 5% glven

Q
by

Loy o
w Gog By / Ry T
o 12 P i Tl T iy s

(5 )‘”i ——g——Q{1 Visek Rt e o R e Q)}

I we.pub L~y << 1 s R zet
® _ P R
(Ba12) g i th1 e

which gives the stability condition (5.9). If we put [vy|>> 1
and © = 0 we get
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(5.14) 5% z‘?% (1 i\/:m;‘f%) ;
which gives the stability condition (5.10)

If we, however, put © + 0, we see from Eq. (5.12) that
5% always will contain an imaginary part. Since both plus
a;d minus slgn are present there will always be a possibllity
for overstability. This will be true for all perturbations
which are not perpendicular (C)# 0) to the gravity force
and the denslity gradient. ‘1t is, however, diffienls to Justlfy
the validity of Eq. (5.12) when © + 0. We have therefore
performed some numerical calculations based on the cubic
equation Eq. (5.5). We have worked out a computer program
[11] for solutions of cubic equations with real and complex
coefficients. The numerical results are calculated on IBM 1620.
These results are presented as graphs in Flgs., 2, 3 and 4. In

Flg. 2 we have plotted the imaginary part of %L for the

o
ol
unstable root, versue P (Eq. (5.3)) for three different

values of @2 © = 0, © = 0.1 Cand 8= lie S o ety

in radians. The calculated results are in good agreement'with

the formulaze Eq. (5.16) for 1 + BTN

E g
sign in condition (5.9). In Flg. 3 the growth rate is plotted

which means equality

versues The angle ©. The system was stable for @ = 0. We
see from fig. 3 that the growth rate in this case has a maximum

for ® = 0.7, this is in agreement with the angledependence

we obtain from Eq. (5.12).

{5 45) Im<£i>a cos ®Wgin O = (9
il

Linprden: bo, obtatn Fa.. 45, 15) we have put {1 = ~) 4 =R
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g o

Eq. (5.12). This f(®) has a maximum at © ~ 0.61 and
1s seen to be in good agreement with the curve Fig. 3.

In Flg. 4 we give some curves for the case -y >> 1,
simlikar to the ‘curves in (Flg. ‘2. Bubt newwe Heve splotted
Im<£%> Versues v SR Eh st eia seMailisloMtlic e arslis s Wa SsE abile
regién only for € = 0., .And when @ &0 En- dpstabdilicy
is only reduced in the region which is stable for © = Q.

The growth rate dependence of the angle © inathis
case 1s about the same as that presented in Fig. 3 for the
easa |yl == 1.

Calculations also shows that when © = 0 Im\%%>
decreases with an increasing Q. That means thak t;e system
becomes more unstable for steeper denslty gradlents, in both
oro LG T I SRV R - o

The result seems therefore to be that for © + 0O there
exist no range in the parameter space for which Ehe SyEiE e e
stable, 1. e., 1t 18 always overstable,

It is,however, difficult to know how serious this
overstabllity is, since the method we have used, gives little
information about the dynamics behinde this fenomena. Tt may
be so that when the system 1is perturbed, the disturbances start
to move with the y-component of k in the opposite direction
of the density gradient and oscillates with a growing amplitude.
The physics behinde may be that fewer and fewer particles
participate in the oscillations, and we have a state of
convective instability. This can gilve growing oscillations even
1f the energy associated with the perturbations is constant. If
this is true, and there is no energy contained in the plasma
which 1s converted into growing oscillations, this overstabllity
is probably not dangerous.

There 18 also another argument against this result, perhaps

boundary conditions in the y-dlirection will charnes 1% completely
when © 4 0,
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