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Abstract.

Starting from the equations describlng the two-fluld

model, the stability of a low-p plasma supported by a magnetic

field against an external force field, is studied.

Flnite gyroradius effect is taken Into account. The

stability analysis is based on localized perturbations in

a plane normal to the magnetic field, Even if the effect of

a flnite gyroradius is to stablllze the system for perturbations

normal to the denslty gradient, it seems to be overstable for

perturbations in other directions.
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Introductlon.

The flrst papers dealing with the problem of a low-pressure

plasma supported by a strong magnetlc fleld agalnst a gravity

force were written by Kruscal and Swarzchild [1], Longmlre and

Rosenbluth [2]. The concluslons from these works are that a

plasma in thls situation Is unstable at the boundary if the

gravity force points away from the plasma, and that it Is

stable if the force points in the pposlte dlrection. The

authors of [1] use the usual MHD-equatlons in their analysls

of the problem. The authors of [2] start with an analysls in

terms of Virtual displacement and energy conslderations. But

as thls procedure glves no suffisient condltion for the

occurrence of Instabllity, one has also to show that the plasma

actually is able to perform the required displacement, and thls

is done from a mlcroscopic point of vew by studylng drift

velocities

Later investlgations on thls

B. Lehnert [j>], [4], [5], [6]; M.:

subject, espescially by

Rosenbluth, U.A. Krall,

N. Rostoker [7] and K.V. Roberts and T.B. Taylor [8] indlcate

as lt appears to be from the
vSO,

that the situation is not' serious

concluslons of [1] and [2], The new effects taken into account

are, flrst the effect of a continuous density gradi@.nt,

introduced by B. Lehnert [4], and second the effect of finlte

radius of gyration for lons, studled by Rosenbluth et, al.

[?]. But in all the papers known to the author, where both

the finlte radius of gyration and the continuous density

gradient are taken into account, perturbations in one dlrection,

°nly, are studled; namely, the dlrection normal to B, (the

magnetlc field veetor) and normal to Vn, (the density gradient

vector). We shall in thls report flrst State the assumntions
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and approximations, and then derlve a consistent set of

equatlons which allow perturbations in a plane normal to B ,

and especially in the directlon parallel to the density gradient

vector. Afterwards we analyse these perturbations in normal

modes and derlve the dlspersion relatlon for the system.

Flnally, the dlspersion relatlon Is discussed and solved

numerlcally for some parameter values. The results are

compared with results given in earlier papers.

We shall here study a low (3 plasma,, which means (3 « 1 ,

where (3 as usual is the ratlo between the particle pressure

and the raagnetic "pressure". As we shall Justlfy in Eq. (3. 30)

we can then neglect the modlflcatlons in the magnetlc fleld due

to currents in the plasma caused by a small macroscopic

electron velocity in equlllbrium and by the flrst order electron

and ion velocltles due to perturbations. Thls also allows

us to wrlte E= - Vcp i.e., the perturfred electric field is

the„ gradlent ©f a s cal ar function.

Our stabllity analysls will be based on the method of

localized perturbations, which means that we study the sltuatlon

in a local region of the plasma and assume the plasma to

extend to inflnlty in all directlons, in order to make effects

from boundarles negligible. Otherwise one has usually to solve

an elgenvalueproblem, which is much more compllcated, but, of

course, also much more satisfactory from a physical polnt of

view. But we still hope that the method of locallzed

perturbations as a flrst step, will give some results of

physical relevance.

We shall assume the temperature to be constant in space

2* Assumptlons and approxlmatlons.
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and time,, both In equlllbrium and In the perfcurbed State. It

seems perhaps somewhat curious that the plasma should be

isothermal In the perturbed State, slnce we have neglected

collisions. Thls assumptlon, however, can be Justlfied by

the assumptlon of constant magnetic moment for each particle.

A consequence of these assumptlons Is that the pressure gradlent

is proportlonal to the density gradlent.

We now introduce the mean ion speed transverse to B ,,

and have by deflnition that the mean radius of gyratlon for ions

IS given by a= — , where on Is the gyratlonfrequency for
ions.

We shall now introduce a local cartesian frame of reference

as our coordlnate system. B points in the z-directlon and the

gravlty force, or an equlvalent force, is in the y-direction.

The density gradlent In equlllbrium also points In the y-dlrectlon
See fig. 1.

Fig. 1.
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All perturbed quantlties are assumed to be dependenfc only on

x, y and t, where t as usual denotes the time. As for

the z-dependence it is of less interest, since in the low (3

approximation the flute type instability is the most probable,

where matter moves across the magnetic field leaving the

latter practically undisturbed, That is because the plasma

does not contain enough energy to make perturbatlons in the

magnetic field probable.

In order to obtain a system of equatlons which is possible

to solve wlthout any other restrlction than llnearlzation in the

perturbed quantities, we choose the denslty distrlbution given

by Eq. (3-7). We also use the approxlmatlon" of qua-Slneufcrallty.

3. Basic equatlons.

We shall start with the equations for the two-fluld model,

where we neglect the interactlon terms due to lon-electron

colllslons. The equatlons are as follows:

(3.4)

Bqs. (3. i)and (3.2)are the equatlons of motion for ions

and electrons, respectlvely, and (3„3)and (3;4)are the

equatlons of continulty. We have used the usual symbols where

the indices i and e refer to ions and electrons and g

is the gravity force or an equlvalent force due to accéleratlons,

for instance a centrifugal force, (v = i*e) is the

(3.1) n± m1(^-3T + v± - = en± (E + xB) - +n± m± g
/bv \

(3.2) ne + v e- Vvej = - ene (E +vg xB) - +ng me g

(3-3) + V.(n1 vi )=0
c)n

"cTT +V ' ( ne -e ) = 0



.
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5)

pressure tensor whlch we shall now specify. We use an

expression for the pressure tensor flrst salculated hy Chapman

and Cowllng [9] 3 and also calculated in a slmpler way in the

collision-free case by Thompson [10]. Thls expression for the

pressure tensor Is also used by Roberts and Taylor [8] and

Lehnert [6]. We assume the radius of gyration for electrons

to be Inflnitely small and we can therefore approxlmate the

pressure tensor for electrons by a transverse Isotropic pressure

P ej_* re lQvant parts of the lon pressure tensor in the

colllslonfree case are then

/dv. dv. \
f ly ix\
V dx dy )

/dv. dv. \f ly , ixA
\dx dy )

(3.5)

/dv. dv. \

Vdx ' ~dy )

Here a Is the radius of gyration for lons. We see from Eqs{3.

that the transport terms in the pressure tensor contalning the

radius of gyration play the formal role of.klnematic vlscoslty.

But they h£ve r of course^xnotj.pxactly the same physlcal

significance, as pointed out by Roberts and Taylor [8]. If we

define a parameter a by

(3.6)

then ct<7 is constant in our accordlng to the

assumptions made in Sectlon 2. As mentioned earller we choose,

for the•: sake of convenlence, the followlng denslty dlstrlbutlon

2m. n a oa.
ti = p. , ± ±_, ±xx *ii ?

2m. n. a 03.
rr =£. , + -ii-.1 . iyy ii 5

2m. n, .a co.
7T = 7T = 1 i.

xy yx 4

2
a co.

i

~4 = a
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ni =|n + n(x,y,t)| exp(j^
(3-7) n e

where N is the assumed denslty distribution in

equlllbrium, wlth N constant.

We can now calculate the components of the pressure tensor

dlvergence, and get from Eqs. (3.5)

where the Index x refers to the x-direction and a is given

by Eq. (3.6). When we linearlze and use Eq. (V-rr. )~ 1 x
can be wrltten

<’- s >

In the same way we flnd

which gives

By the help of Eqs. (3.8) and (3.9) the vectorequation Eq. (3.1)

can be wrltten as two ordlnary equations, one for the x-dlrection

and one for the y-directlon, thus

"   i 1 . - - “ "i{ é • é - =hS?)}

( V '-l)y = +ct m. (n n VJL (n n Vi:))l
1 y a y iW v niBiP J+ 3x i^yyj

(5>9)  ° "1 + —j? * l (% * %)}

(3.10) = 00. + CO. v, ®|Si B 1 ly NBx
2 2

ro v. d v. /dv. \r
+ a ]—¥+ —y+ i -Sl

*- 3x2 3y 2 L
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4.)

0

dv. E „ N
iv y 0 An 6

—-sv  = u). - 0). V, + g - _ Eli _ _
ot i B i v lx b NBy L

(3-11)

Here on Is the gyrofrequency for lons and 0 is deflned

by the ideal gas equation

whlch glves

(3. 12)

At the time t= 0 the system Is unperturbed and we have

by deflnltlon

E = 0 , n= 0 , v. =v. = 0
x ix ry

(3.3),
We see that these equilibrium values are Solutions of Eqs. (3

and (3.10). And from Eq. (3. 11 ) we get

(3.13)

where EyQ is the y-component of the electric field at t =

The equlllbflum condltions v. =v. =0 at t = 0 mav1x 1 y
also be consldered as a deflnltlon of our frame of reference.

From Eq. (3. 13) we see that in equilibrium the y-component

of the electric field must be different from zero In order

to balance the pressure gradlent and the g-force. Accordlng

to our assumptlons (See. 2) we can now write

(3. 14) E
X

and finally we obtaln

jA* , 3\x 1 f*\Y 3vlx\l
177 7 +

y

Pi_L= mi (N + n)eL 0

Q1 2 2
t> --g a co^

wi , 6 ,,
B +S- L = 0

dcp
Hx E= E -

y yo dy
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dv. co. >. _
—pL- 4- i _03 Y _L ®8n

+ B 3x U1 Viy + N cix
(3.15)

2 2
f8 V. 8~v. ,/dv dv \o

In the equatlon of motion for electrons we shall neglect the

inertla of electrons, i.e., we put the electron mass equal to

zero, If we consider a series expansion In the parameter
w
— where 03 is the characterlstic frequency of the system

and 03 e Is the gyratlon frequency for electrons, our

approximatlon is a zero-order approxlmatlon in thls parameter,

and we get from Eq. (3.2)

(3.17)

(3. 18)

We can solve these equatlons with respect to n v
e ey

and ng v and get

(3.20)

If we put these expressions Into the equatlon of

oontinulty for electrons Eq. (3. 4), we can easlly ellmlnate

vex vey‘ ’f’ e aPso observe that the pressure terras cansel

out, and we are left with the equatlon

- 2 2
Y d v , /dv dv

“h? * sf* K-^éy -  0

16) Viy ,“l dm e5n
(3- 1b) IT +“BSy + “l vlx +N By

dp
ne (e + v B)- —= 0e x ey ' dx

dp
ne (E - v B) -—= 0

e y ex ' dy

(3-19) n v = ’
e ey eB o x H3 x

1 3p e n e
ne V ex =iB +B- Ey
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a

(? ' 21) TT +1 {å < ne V - 4(ne Ex } } = 0

Uslng Eqs. (3.14) and (3-7) we obtaln from Eq. (3.21) the

followlng linearized equatlon

an /ø g\3n_ n
Tt +LB dx llS7 " U7J 3x " 0X 1 2/

(3.22)

The equatlon of contlnulty for lons Eq. (1.3) can be written

as

whlch ylelds

(3.23)

Eqs. (3.15), (3.16), (3.22) and (3.23) are now our basic

equatlons whlch we shall analyse further In the next sectlon.

But flrst we want to make a somewhat closer examination of

the low p approxiamtion in connection wlth our assumptlon of

constant magnetlc field.

From Eq. (3.19) we can see that v ey =0 In equllibrium.
From Eq. (3.20) we get in the same case

E
Uslng the expression for —g - whlch we obtaln from Eq. (3. 13)

and Eq. (3*12) for 0, we obtaln (Index e refers to electrons)

(3.24)

Il e±J +Tf {vlx (N + n) ® L }+ Ty {vly (N + n)eL} = 0

vex =I1 “e a e +

a0 0 O*v - oo a + - _2_
ex 2L e e Loo. oo. ji i

vex T? L“eae + fW1 a “ cfri

1a2 T e ,
~ 2IT “l' TT + 1 " ">')
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Here we have introduced a new parameter 7 deflned by

(3.25)

which physlcally can be Interpreted as the ratlo between

the potentlal energy associated with the characteristic

length L in the gravlty field, and the energy associated

with the gyrafcion-motion. We have also introduced T ande

ih as the transverse electron and lon temperature, respectively

We now examlne the space dependence in B from Maxwell's

equation

(3.26)

where J is the current density and p, the permeabllity for

vacuum.

In equllibrlum this current density is given by one

component in the x-dlrectlon

(3.27)

From (3.26) we can now calculate the characteristic length

LCB for B in the y-dlrectlon since

Eq. (3.28) can be reduced to glve

(3.29) 1
LCB‘“^L

+ 1 - 7)

Thls shows that If T does not exoeed T. too much andc 1
P is small enough we have

,, _ gL _ mlSL’ 12 2 ~ 1 2 2
2a “l 2?ml a “i

V X B = (i J— o —

J = n e vx e ex

(3.28) B n i . y\
lcb ° e VT 1 7
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Ul

(3.30) lcb >;> L

As for the perturbed velocities we assume these to Interact

very weakly wlth the magnetic fleld, slnce we are Interested

in the flute type instability as already mentloned in Sectlon

2,

From our basic equations we shall now derive a dlspersion

relatlon. We observe, that when we neglec t the y-dependence

of the magnetic field, all the coefficlents in Eqs. (3.15)* (2

(3.16), (5.22) and (3.23) are independent of x, y and t.

Thls was also the reasohowhy we chose the partlcular denslty

distrlbutlon given in (3.7). Since our system of equations

is dependent on x, y and t only through the perturbed

quantities, and not through the coefflcients, we try to flnd

normal mode Solutions of the form exp-f i(cat + xk + yk )Tlx y j
Assuming all perturbed quantities to depend exponentially

in thls way on x, y and t, we can readily evaluate all

derivatlves appearlng in the equations, and this results

in a set of four llnear homogenous equations in the four

4. The dlspersion relatlon.

unknowing n, vlx , v±y and cp given below
0 0 ak

(4.1) l(U + E ks )v. x - - a(k x + k )+ 1 vly

ik 0 oo.

+ n + i kx <p = 0

(4.2) (o). - a(k + k + i~k )v. +i(oo + k )v.i x y L y' ix v L x iy

0
+ 1 k n + i — lt. cp = 0= 0Ny B j H
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3

0

(4,3)

(4.4)

A necessary and sufficient condition that the llnear set of

equations Eqs. (4.i) - (4.4) shall have a nontrlvial solutlon

is that the determinant of the coefflclent matrlx should be

zero. This condition gives us the dispersion relatlon, which

we shall now calculate. The determinant is

(4.5)

where

When we expand this determinant: after the third row we obtaln

t (4 - $ q * i( " + 1 y*1( “ + 1 k A -4

0

A

m
LB k x A

lo)

4“ + (ist - £)k x } n + 1 ra k x 'P = 0

ik Nv. + (l N k +~)v. + icon = 0x Ix ' y w ly

A = <o, - a(k J- +k 2 ) + l k1 X y Ly

, ry loi.k
1( “ + Z k x ) -A

ik N INk +
x y l

ik e '
-A x i

I
ik 6 ;

1( “ + L k x) -f != 0

ik x N

1+ E k x )

INk + -y L
ik NX

i k Q
kB xi(a)

- A . x
N i

i (co + ~k )
1 k e r °. k

c t A y i i yx L x' N B

0 0 . f eco + -= iki IN,
l “i x i LB

Ik Nx ( iNk y + !)
ico 0
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The first determinant above we call and the second we

call We then have the relationshlp

(4.5)

We now calculate D 1 and D 2 .

And when we put in the expresslon for A this slmpllfles

to glve

For we find the expresslon

2 2
ak x 1

~IF“S

k ¥(“ * ? k V“ k y

From Eq. (3.6) and Eq. (3.12) we have

„ 1 2a — 3, 00

4“ + (tIt - sfr) k x} D 1 - TIT d 2 = 0

(4. 6) D, - („ ° K x )(lM y + ») . i

2
lk co.N / \ oo. k /

+ — + z k x) + 1 ~V( 1Nk y + e) a

2 2
Nco. k rk r/k L \ ~n

“• 7 > +

, v f ak 0

(4.8) D 2 = i| - ay 5 - 2 -—5 M 2 -

 s)

+ k x k y e {“i  a ( k x 2 + k y 2 ) +1 T 2 }

+ l(w 1 - a(k x 2 + k y 2 ) +1- k ) co

1 q / ctk \

+ lk x 0( L + lk y) A + ik x 6 (“ + Tr)

1 p p
and 0 = 7T a w.a i
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By using these expresslons for a and d Eq. (4.8) can

be simpllfied to glve

(4.9)

D 1 and Dg, by Eqs. (4.7) and (4.9) we obtain

After performlng the multlplication In (4.10) and multiplylng

by (-i), we obtain after collectlng terms of the same power

We have here in Eq. (4.11) finally obtained the dispersBon \
relation we were looklng for, and whlch we want to discuss x

further in the next sectlon.
X

”2 ' ‘“ 3 { - (Jf)' - %
1 / 2, 2 N 2 / . k \ A ka 2

4 (t) ( 1 - - 1 i) st + -sir }

i)Aj
When we dlvlde Eq. (4.5) by i —gg — and substltute for

r ,. gk w k -n
(4. 10) -iill-i-i +i 1* y ; jl + i |loo. 2L co 2 1 k co. k o>. j1 J X 1 L X 1

- 1 - -zrfå) + s+ X^X 1 ' + ~5E ]'°

. coln —
1

3 2 2 2 2
/..< ra k k + k kw, n *

(‘ "I y •x 1/ x 7J x i/

i- lA * ife)(fe -0* *v  J- o
2

Where B = —SL - £=. , and k 2 = k 2 + k 2
2 2r ' x y
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5. Dlscusslon and concluslons.

(i) In order to simplify the dlscussion of Eq. (4.1l),

we shall now define some new parameters. We put

where 0 is the angle hetween the vector k (Eq. (5*1 )) and

(5.3)

(5.4)

When we use these parameters together wlth 7 defined by

Eq. (3.25), we can rewrlte Eq. (4,11) and get

(5.5)

We see that for 0 — 0 Eq. (3*5) simpllfies to a cublc equatlon

wlth real coefficlents. Since - Is small compared to Q,

we can as a good approxlmatlon neglect thls term In the
2

coefflclent of (yy~) • If we also perform a simple rotatlon

of our coordlnate system (y x, x ~y, z z) , and replace
1 ,

L by “ and a b y i1: turns out that Eq. (5.5) becomes

identical wlth Eq. (11) of reference [8]. Thls equatlon is

discussed by the authors of [8] and Is found to glve the same

(5.1) k = k cos © , k = k sin 0 ,x y

the x-axls, this glves

(5.2) k 2 + k 2 = k 2A y
Further we put

12.2
P - 7j 9 k ,

Q = kL

-2 'COS ©,

Qt ) + {|' /+ coi-0 - 1 tan 0 Xst)

+ { p d -7) + {[(I) - P 2 ] +1(7 - 1 + >)| Bin e}j|

p
q 7 cos © = 0
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results as Eq. (2. 13) in reference [7]. It is, howeverq

in this case necessary to redefine the average veloclty for

the ions. The discussion of this equation given in reference

[8] is 5 however, based on the assumption that the cubic term

can be neglected. This is valid as an approximation because

one of the three roots of this equation is of the same order

of magnitude as Q > 1 3 and the two other roots are much less

than one. The error introduced by calculating the two small

roots approximately by solving the quadratic equation instead

of the cubic is therefore quite small.

(ii) According to Eq. (2.14) in the paper wrltten by

Rosenbluth, Krall and Rostoker [7] the stability condit ion given

by these authors can be formulated as

(5.6) (ak) (p >4 li i

From paper [4], Lehnert's stability conditlon can be written
as

In the inequalitles (5*6) and (5*7) we have used our notations.

instablllty growthrate in the MHD-approximation given
ty

(5 - 8) “h Sa

Uslng our parameters, Eqs. (3.25), (5.3) and (5.4). the

stability conditlon (5. 6) can be rewritten as

(5.9) I7I < (Rosenbluth et.al.)

(5-7) a 2 k 2 ( r k + 1 7 ) > 1lJB 4
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The stabillty condition (5*7) can be written

(3- 10) |'vl > y (Lehnerfc).

In order to obtain condition (5.10) we have, however, neglected

compared to —7. Thls turns out to be a goodCB

approxlmatlon, slnce we in thls case must have |y |» 1. That
•1 2 2

is because P = a k is a small number compared to one. In

the first case we get for the same reason, I -y|« 1. We therefore

note that these two stabllizlng

important

effects can not be slmultanously

(iii). If we in Eq. (5.5) neglect the cublc term in

order, we are left with the
03

— and other terms of the same
1

quadratlc equation.

by

(5.13)

which glves the stability condition (5.9). If we put |y|» 1

and © = 0 we get

(5.11) (+ p ( 1 ~7) cos 8 _co Pjycos e
W' Q “i ’ Q y (i - 1 slnj9) Q

s j_ n q
Slnce q « we can perform a series expansion in

1
“ " sin © * We then Set an approxlmate value of — given- 1 ____ 03.

(5.12) P| 1 _ 7 ± J ( ~, : 7 ) 2 ' +^(i + i sin^ø-jj

Xf WS pilt "y 1 8,11(3. 0 = 0 W© §©t

“i P ( 1 ±+ >
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t

(5. u)

whloh gives the statdllty condltion (5.10)

If we, however, put Q 4= 0, we see from Eq. (5.12) that
00

— always will contain an imaginary part. Since both plus
i

and minus slgn are present there will always be a possibility

for overstablllty. This will be true for all perturbations

which are not perpendicular ( 0 =(= 0) to the gravity force

and the density gradient. It is, however, difficult to justify

the validity of Eq. (5.12) when © 0* We have therefore

performed some numerical calculations based on the cubic

equation Eq. (5.5). We have worked out a computer program

til! for Solutions of cubic equations with real and complex

coefficients. The numerical results are calculated on IBM 1620

These results are presented as graphs in ppg S# p 3 und- 4 ' In :

F‘ig. 2 we have plotted the imaginary part of — , for the
i

unstable root, versue P (Eq. (5*3)) for three dlfferent

values of ©: © =0, © =0.1 and 0=1. The angle © is

in radlans. The calculated results are in good agreement with

the formulae Eq. (5*1 6) for 1 + =0 , which means equality

slgn in condltion (5*9)- In pig. 3 the growth rate is plotted

versues the angle 0. The system was stable for ©= 0. We

see from fig. 3 that the growth rate in this case has a maxlmum

for © ~ 0.7, this is in agreement with the angledependence

we obtain from Eq. (5.12).

(5.15)

_5L «.Pl (. + /TTJlV
2Q 11 ~\l P7' ’

cos © sTsTn =f( ©)

2

In order to obtaln Eq. (5.15) we have put (1-7) + Jpt = 0 in
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Eq. (5.12). This f(0) has a maximum at © ~ 0.61 and

is seen to be in good agreement wlth the curve Fig. 3*

In Fig. 4we give some curves for the case -7 » 1 ,

similar to the curves in Fig. 2. But now we have plotted

lrrQr) versues -7, In this case also there exist a stable

region only for ©= 0. And when © =j= 0 the instabllity

The growth rate dependence of the angle ©in this

case Is about the same as that presented in Fig. 3 for the

case ( 7 | « 1 .

Calculatlons also shows that

decreases wlth an increasing Q.

becomes more unstable for steeper

cases | 7 | « 1 and | 7 | »1.

That means that the system

denslty gradlents, in both

The result seems therefore to be that for © =)= 0 there

exist no range in the parameter space for whlch the system is

stable, i. e., lt is always overstable.

It is,however, dlfficult to know how serlous this

overstability is, since the method we have used, gives little

information about the dynamics behinde this fenomena. It may

be so that when the system is perturbed, the dlsturbances start

to move with the y-component of k in the opposlte dlrectlon

of the denslty gradlent and osclllates wlth a growing amplitude.

The physlcs behinde may be that fewer and fewer particles

partlclpate in the osclllations, and we have a State of

convective instabllity. This can give growing osclllations even

if the energy associated with the perturbatlons is constant. If

this is true, and there is no energy contalned in the plasma

whlch is converted into growing osclllations, this overstability

is probably not dangerous.
There another argument agalnst this result, perhaps

boundary condltlons in the y-dlrection wlll change it completely
when 0 j= 0, J

is only reduced in the region whlch is stable for © = 0.

when 0 = 0 Iir^j
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