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In the present paper we investigate the stability of

plane Couette flow of a homogeneous,, incompressible and

Inviscid fluid. We show how we can find an asymptotic series

for the stream function at large values of t (time), and

demonstrate the connection between Case's results [1 ] and

ours.
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Abstract.
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X Introductlon.

In a paper on inviscid plane Couette flow, K.M. Case [1]

investigated the asymptotic behavior of the x-component of

the velocity. His treatment of the question of stability is

not satisfactory. He asslgned certain initial vorticities

and studied the asymptotic behavior at a flxed point in the

fluid. Therefore he cannot be sure whether there is convective

instability or not.

In this work an symptotic series for the stream function

is found_, showing how it depends on the initial vorticity.

We flnd that the stream function vanishes as t within a

fluid partlcle mo ving wlth velocity z.

At the end of sectlon VI the connection between Case r s

results and ours is shown.
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XI» Fprmulatlon of the problem.

The system to be considered is the following: a horizon-

tal flow of a homogeneous j
and

incompressibleVlnviscid fluid

confined between two rigid

planes, situated at z = ± 1 ,

(see fig. 1). The equationsFig. 1

governing this system., are the hydrodynamlc equations for

motion in the gravity field, viz.:

(2.1)

where k is the unit-vector in the z-direction.

With appropriate choice of velocity units, the basic motion

in plane Couette flow is given by:

The perturbation velocity can be written as:

(2.3)

where j_ is the unit vector in y-direction, and l(x, z,t)

is the stream functlon.

Llnearizing the first of eqs. (2.1), elimlnatlng the

pressure, and using eqs. (2.2) and (2.3), we obtain:

The boundary condltlons to be imposed on eq. (2.4), are

2

,ay ,
p(st + -  = - vp - pgk ,

V•v = 0 ,

(2.2) V =z } V = 0
ox oy

V 1 = V x y(x,z,t)j_ ,

(2 - 4) (å + z å)v2 '? = o
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d¥/ . \
=0 at z = ± 1(2.5)

which shows that the vorticity is conserved within the fluid

particle moving with velocity Vqx = z .

We assume that \{/ depends on x as:

With this assumption eqs. (2.4), (2.5) and (2.6) become:

(2.9)

(2. 10)

(2.11)

(2.12)

which is the equation solved by Case [1]. From his solution

he tried to find the behavior of \J/(z,t) at large values

of t. But his treatment is not satisfactory, because he

Let the vorticity field be asslgned at t = 0

( 2 -6) (xjZj O) = F(x,z)

Integrating eq. {2.K), we obtain:

(2.7) V27(x, z,t) = P(x - zt,z) ,

(2-8) T(x,z,t) = \{/(z,t)e lkx ,

where Is the k^n Fourier component.

2

( §1 + ikz) (•—• - k2 )t =0 ,dz

\J/(z, t) = 0 at z = ± 1

- W VZ > *

where F(x,z) = Fk (z)e ikx

From eq. (2.7), we obtain;

- k2 H -P, (z)e‘ lkzt ,hz K
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assigned certain initial vorticities and studied the time

dependence at a fixed point (x,z) in the fluid. Therefore

he cannot be sure whether there is convective instability or

not. In the Appendix it is shown how we can find the asymp

totic behavlor of \(/(z,t), using the theory in [2]. Here

we will demonstrate another method, which can be used in order

to find the asymptotic behavior of vj/(z_,t).

In eq, (2.9) we use the Laplace transformation to

obtain:

(3.1)

where

Eq. (3.1) is easily solved. We find:

(3.2)

where W =W(sinhk(z + 1) , sinhk(z - 1)) = ksinh2k is the

Wronskian for sinhk(z + 1) and sinhk(z - 1).

We observe that

III. Solution to the problem.

00

= f ptdt ,
0

r= i £1 k

j, ( z t) - slnhkfz -i) r Fk^ u^
W Jik(u -TT Slnhk ( u + 1 )du

- 1

-]
slnhkf z+ 1) r

W J ”ik(u - n s^n-^( u " 0du
z
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(3.3) i(i,0 = = 0 ,

consistent with our boundary conditions. When \j/(z,£)

is found, (zj t) is easily obtained by inversion:

In eq. (3.4) we can change the order of integration, and

then obtain the solution of eq. (2.12), given by eq. (A1).

In this type of problems this is in general not possible.

Generally \|/(z,t) will be written in the form of eq. (3.4).

Here we will show how we can find the asymptotic behavlor

of this function directly from the representation in eq. (3.4)

In order to evaluate the integral in eq. (3.4) we will

the contour 0 , shown inperform an integration around

fig. 2 (k > 0). The

Using Caushy's residue
Fig. 2

theorem, since the

integrand has no poles within the contour C, we obtain:

Z F (u)

(3.4) \|/(z,t) =— J | [sinhk(z-l) J ) sinhk ( u+1 )du
lC “ 00 - 1o

r pk ( u )
+ slnhk;{z + 1 ) J — (u^T)sinhk ( u" 1 )du]d?

z

integrand has singu

larities at £ = -1.^

Therefore we have to

make cuts in the com-

plex Aplane, as shown.

(3.5) = -f-J

% Tj Tg A-BDE s<1 Sg

(z) z_-S Qssumed éo be ~fo>r z_ £: 1 i^J





U-1)

1 “ip-j 1-iS
analogous expressions for the

Therefore:

(3.6)

We have analogous expressions for

/ and /
72 7^

1 1 ~ioo

Let us examine the integral
1 - i»

oo z ~ 1 +iT)

+ \ _ _ik_ r-ikt-kT)t r .u, , , pF (v+1-iri)
' 2rrWJ [sinhk(z-l) J — ±kv sinhk(v+2-lq)dv

0 “2+irj

The first term in eq. (4.1) will be canceled by the

6

where /= J + / . We have
7-j 1~iS 1 -ip

integrals / and / * S 3 f and / are the Integrals
y2 y3 S 1 s 2 s3

around the small clrcles and surrounding

C - It is easy to show that / , / and / -* 0 when
S 1 S 2

the radii (i = 1,2,3) of the circles tend to zero.

Also / -> Oj when H, S -> co
ABDE

'Kz ’ t) = -•

7 1 72

1 1 “ioo
where now / = / + f

7-j 1 - !00 1

Æ. The asymptotlc behavior of the integrala along -y and

7when t qq .

We have f = f + f

7 1 1"1°° 1

J • Into this integral we introduce r], given by

£ ~ 1 “ iTl j as a new variable. We then obtain:

1T1
. ,, , .r Pk (v+1-1T1)

+ sinhk(z + 1) J sInhk(v - ln)dv]drj.
Z-1+iTj
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corresponding term in the integral f In the vicinity of

(*.2)

00

The term ) ar "nn is of no interest for the same reason as

above. is easily found, by differentiating eq, (4.2) ,

and letting p tend to zero. We find:

(4.3)

We are now in a positlon to find the first term in the

asymptotic serles for / . Using Watson’3 lemma [3], we find
r

that the first term is given by:

(4.4)

where we have used that Inp

Of T].

a many-valued function

Taklng into account eq. (4.4), we can write

7

1 -i°o

f} = 0 the last term can be written as:

i n „ / . \ co oo N
r Fk (v+1-1T|) V1 n V n )

J sinhk(v - lt))dv = > anT| + liji)
z-1+1 ti n=0 n=0

n=0

b =0
o

< t,= - pk d)

0

j~i-j e“ lktb 1 sinhk(z +1) [ J e^SltVndn
00

00 / \

+ / + 0 •
0 K r

*) f s
We assume that Fk (z} is an analytic function of ze[-1 j]





j

n P fl) , x
(k r) / kl__ sinhkfz + 1) “ikt , ,

J ~ ,2.2 sinh2k 6 + ... . when t-> -
7 1 k t

An analogous expression is found for the integral along 7 ,

We find:

W* g'Symptotic behavior of the integral along vy when

t -* 00 .

Let us cxamine the integral
72 z - ioo z

z~ioo

J . Into this Integral we introduce r], given by £ = z-irjz

as a new variable. We obtain:

(5.2)

xiie 1 ii-tot terms in eqs. (5.2) are of no since they

8

r> F f- 1 ) / \
/), c\ I _k sinhkfz -1) ikt
(4 ' 6) J ~ k2 t2 sinhSk 6 + ••• ' when t

7 3

” Z - ioo
We have J = / + f

co irj

(5.1) P( Z) t) = -|^e-ikzt /e-^tdT1 [sinh1c( 2 -l) / x
0 -1-z+ir]

1-z+i T)
o P (v+z-irj)

slnhk(v+z+1-iT])}dv+sinhk(z+l) J — sinhk(v+z-1-lr)) dv]
IT]

In the vicinity of rj = 0 we hovo:

rnFk (v+z-lri) _ ” ”
J ikv slnhk(v+z+1 -ir))dv = a lnA-' nil ) b^T]11

-1-z+iT] n=0 n=0

1 -Z+iT)
pPk (v+z-ir|) A “
j ik7 slnhk(v+z-1 -ir|)dv = a2n^+ln^
iTl n=0 n=0





2).

will be canceled by the corresponding terms in the integral
z
/ . Let us find b, and b p , Differentlating eqs.(5-Z-ioo In

and letting q o, we find:

(5.3)

(5A)

Using Watsonte lemma, and taking into account eqs. (5.3) and

(5.4), we obtain:

_ ik -ikztr
IttU6 l(5.5)

V

VI. Some comments

Taking into account eqs. (3.6), (4.5), (4.6) and (5-5),
we obtain;

9

r Vz)
b 1Q = — sinhk(z +1)

P (z)
< = - i — sinhk(z + 1)]

Fk (z)
b 20 = ilT~ sinhM z " 0

N P, (Z)
bsi = 1 slnhk ( z - 1)]

0 00 00

/ e" kllt lnnC £ b 1nTin + £ b 2nnn }dr)
00 n=0 n=0

CO 00 co

+J e kTit (lnr| + 2tt1) [ 2 b 1nnn + £ drl]
0 n~0 n=0

F, (z) ,7 ~ikzt
~ p p ® when "fc —* 00

k t
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From eq. (o.l) we find that the velocity in the x-direction
i

is damped as — when t 00

Differentiating eq. (6.1) twice with respect to z, we

obtain:

_ tp t„\ ~ikzt
2 “ Fk (zje +oz >

consistent with eq. (2.12).

We observe that if Fk (z) is assigned in such a way that

Fk () and all its derivatives are equal to zero at z =1 1

then there is no contribution from the integrals along 7

and 7^.

As to the question of stability of the system, the

Integral J is of the greatest interest, since it is only
72

this integral which contributes to the leading term in the

asymptotic series for and
OZ

where

*)
This is analogous to the situation studied by Case

•jf \

We Interpret >|/(z,t) and Fk (z) as the Fourier trans
forms of and F(x, z).

10
F (z) p /i]

(6.1) il/(z,t) = - e~ lkzt + MQhk(z+i) -ikt
k 2 t 2 k 2 t 2 smh2k

F sinhk ( z-1) ikt
sinh2k 0 + *• • •

Let us assume - i) — 0 . Then from

eq. (6.1), we obtain by inversion:

(6.2) if(x,z,t) - - G ~„ zt ’ z ) +





3)

s

(6.3)

Integrating eq. (6.3). we obtain:

where and 0 o are functions of z only, and

c/ 1 ) =0 3 so that the boundary conditions eq. (2.

are satisfied. The Fourier transform of G(x,z) exlsts in

the meaning of Fourier transform of a generalised

see [2].

Let us in conclusion show the connectlon between Case

results and ours. We consider the two cases:

associated with the perturbation, is

finite.

-j-00

P(xjz)dx — 00 3 i.e. the total initial vorticityII
 00

associated with the perturbation* is

infinite.

Case I.

For the integral to exist |F(x,z)| must tend to zero

at least as fast as |x| a (a > 1 ) when |x| s Then

(g(xjz)[ — when jxj °o . And this together

with eq. (6.2) shows us that the perturbation at any fixed

point (x, z) in the fluid is damped as — when t-> ooU

11

å2
P(x, z) =—- G(x,z)

hx

(6.4) G(x,z) =Jdx J P(x,z)dx + C 1 (z)x + C 2 (z) ,

results and ours. We consider the two cases:

-fco

I• J' F(x_,z)dx <00 3 i.e. the total initial vorticity
— 00





It is assumed that |f(x.,z)| tends to zero as

Introducing thls into eq. {6.2), we find that at any fixed

point in the fluid the perturhation will vanish as t a

when t -> °o .

These are the results of Case.

The financial support given by the Royal Norweglan

Council for Scientific and Industrial Research is acknow

ledged.

The author is grateful to the staffmembers of the

Department of Applied Mathematics for their interest in

thls work.
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Case II.

II """CXx l (0 < a < 1 ) when jxj -* <» . From eq. (6,4) we then

obtain:

Gr(x.,z) ( Is of order Ixl when Ixi -> oo

Acknowledgments.





Appendix.

¥e will show how we can use Theorem 19 in [2] to find

the asymptotic behavior of \|/(z,t) in thls simple case.

The solution of eq. (2.12) is given by

(Al)

1
slnhkfz + 1)

¥ Fk (u)sinhk(u - l)e ikutdu
z

The integral in eq. (A1 ) can be written in the following

by rneans of the Heaviside unit function:means of the Heaviside unit function:

(A2)

+ 00

The integrand in the first integral in (A2) has singularities

at u = - 1 and u= z. Supposing Fk (z) to be analytic

at every point z e [-1,l],we may wrlte:

13

'Kz.t) = ' S ~ n ~ k t j Z ~ 1 f F k (u)sinhk(u + i)e lkut du
-1

z

J F k (u)Sinhk(u + l)e” lkut du
-1

+ 00

= J F k (u)sinhk(u + l)H(u + l)H(z - u)e" lkut du ,
— 00

1

J F k (u)sinhk(u - l)e~ lkut du
z

= J F k (u)sinhk(u - 1 )H( 1 ~ u)H(u - z)e~ lkut du
-00





The integrand in the second integral in (A2) has singularities

at u= z and u= 1. As above we may write:

Let us

14
F k (u)sinhk(u + 1) = kF k (-l)(u + 1) +

in vicinity of u = -1 .

(A3) n + 1) = F^(z)slnhk(z + 1)

+ k (u)si n hk(ui + l)](u - z) +u=z

in vicinity of u = z

sinhk(u - 1) = - i)

+ -§^[F k ( u )si nh k(u - l)](u ~ z) +
u=z

(A4) in vicinity of u = z

F k (u)sinhk(u - 1) = kF fc (l)(u - i) +

in vicinity of u = 1

Let us put:

f*
= kP k (-i)(u + 1) h(u + i) ,

F 2 (u) = [P k (z)sinhk(z+1) +^(F k (z)sinhk(z+l))(u-z)]H(z-u),
(A5) <

,F 3 (u) = [F k (z)slnhk(z-1 ) + k (z)sinhk(z-1 )} (u-z)]H(u-z),

= kP k (l)(u - 1)H(1 - u) .

Using Theorem 19 in [2] with N = 2, we find





where

— 00

In order to ohtain expressions (A7), we have used Table 1

on page 43 in [2]. We are now in a position to determine

the asymptotic behavlor of t(z,t) for large values of t.

Taking into account eqs. (A1), (A6) and (Aj), we flnd:
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z 2

J Fk (u)sinhk(u+1 )e' lkutdu =£F. T. (Fm (u) ) +0(—) ,
-! m=1 l kt l

when |kt( -4 00 J

(A6)
1 4

f Fk (u)slnhk(u-1 )e' lkutdu = V P.T. (Fm (u)) + o(——) ,
z m l’:t|

when IktI —> 00

+oo

F. T. (u) }=J kPk (-l)(u +1 ) H(u + l)e~ lkutdu

Ikt

= “ (" 1 ) ~~2~2 s when |kt | -> ook t

P . T . [Fp(u)) = e- ikztj - V-Z)Slnhk(Z +1 }d L ikt

k (z)sinhk(z+1)
+ 2~2 I J when |kt | —> ook t J

(A7)

. . . , - ik7+ r Pk (z)smhk(z - i)
P.T.{F,(u 3 = e lKZt- —

L ikt

k (z)sinhk(z-1 )
' 2~3 f * when |kt | -> w

k t J

-ikt
= kF (1 ) F' o v/hen |kt | -> ook t
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3

which is equivalent to eq. (6.l) 0

F. (z) .. , F f1 ) / N
vi/r z t) = p " lkz t k l ; slnhk{z +1 ) -ikt

k2t 2 + k2t2 slnh2k

p /_1 \
k y slnhkfz - 1) Ikt

sinh2k 6 +
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