Department of

APPLIED MATHEMATICS

On the stability of plane inviscid
Couette flow

by
Leif Engevik.

UNIVERSITY OF BERGEN Bergen, Norway

On the stability of plane inviscid
 Couette flow
 by
 Leif Engevik.

Report No. 12.
November 1966.

Abstract.

In the present paper we investigate the stability of plane Couette flow of a homogeneous, incompressible and inviscid fluid. We show how we can find an asymptotic series for the stream function at large values of t (time), and demonstrate the connection between Case's results [1] and ours.

This work has been supported by the Royal Norwegian Council for Scientific and Industrial Research.
I. Introduction.

In a paper on inviscid plane Couette flow, K.M. Case [1] investigated the asymptotic behavior of the x -component of the velocity. His treatment of the question of stability is not satisfactory. He assigned certain initial vorticities and studied the asymptotic behavior at a fixed point in the fluid. Therefore he cannot be sure whether there is convective instability or not.

In this work an symptotic series for the stream function is found, showing how it depends on the initial vorticity. We find that the stream function vanishes as t^{-2} within a fluid particle mcing with velocity z.

At the end of section VI the connection between Case's results and ours is shown.

II. Formulation of the problem.

The system to be considered is the following: a horizon-
 tail flow of a homogeneous, incompressible $\sqrt{\text { inviscid fluid, }}$ confined between two rigid planes, situated at $z= \pm 1$, (see fig. 1). The equations governing this system, are the hydrodynamic equations for motion in the gravity field, viz.:
(2.1) $\left\{\begin{array}{l}\rho\left(\frac{\partial \underline{v}}{\partial t}+\underline{v} \cdot \nabla \underline{v}\right)=-\nabla p-\rho g \underline{k}, \\ \nabla \cdot \underline{v}=0,\end{array}\right.$
where \underline{k} is the unit-vector in the z-direction.
With appropriate choice of velocity units, the basic motion in plane Couette flow is given by:

$$
\begin{equation*}
V_{\mathrm{OX}}=z, \quad V_{\mathrm{oy}}=0 \tag{2.2}
\end{equation*}
$$

The perturbation velocity can be written as:

$$
\begin{equation*}
\underline{v}_{1}=\nabla \times \Psi(\mathrm{x}, \mathrm{z}, \mathrm{t}) \underline{j}, \tag{2.3}
\end{equation*}
$$

where \underline{j} is the unit vector in y-direction, and $\Psi(x, z, t)$ is the stream function.

Linearizing the first of eqs. (2.1), eliminating the pressure, and using eqs. (2.2) and (2.3), we obtain:

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+z \frac{\partial}{\partial x}\right) \nabla^{2} \Psi=0 \tag{2.4}
\end{equation*}
$$

The boundary conditions to be imposed on eq. (2.4), are

$$
\begin{equation*}
\frac{\partial \psi}{\partial x}(x, z, t)=0 \quad \text { at } \quad z= \pm 1 . \tag{2.5}
\end{equation*}
$$

Let the vorticity field be assigned at $t=0$.

$$
\begin{equation*}
\nabla^{2} \Psi(x, z, 0)=F(x, z) . \tag{2.6}
\end{equation*}
$$

Integrating eq. (2.4), we obtain:

$$
\begin{equation*}
\nabla^{2} \Psi(x, z, t)=F(x-z t, z), \tag{2.7}
\end{equation*}
$$

which shows that the vorticity is conserved within the fluid particle moving with velocity $\mathrm{V}_{\mathrm{ox}}=\mathrm{z}$.

$$
\text { We assume that } \psi \text { depends on } x \text { as: }
$$

$$
\begin{equation*}
\Psi(x, z, t)=\psi(z, t) e^{i k x}, \tag{2.8}
\end{equation*}
$$

where $\psi(z, t)$ is the $k^{\text {th }}$ Fourier component. With this assumption eqs. (2.4), (2.5) and (2.6) become:

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+i k z\right)\left(\frac{\partial^{2}}{\partial z^{2}}-k^{2}\right) \psi=0, \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
\psi(z, t)=0 \quad \text { at } \quad z= \pm 1, \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial z^{2}}-k^{2}\right) \psi_{t=0}=F_{k}(z) \tag{2.11}
\end{equation*}
$$

where

$$
F(x, z)=F_{k}(z) e^{i k x} .
$$

From eq. (2.7), we obtain:

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial z^{2}}-k^{2}\right) \psi=F_{k}(z) e^{-i k z t} \tag{2.12}
\end{equation*}
$$

which is the equation solved by Case [1]. From his solution he tried to find the behavior of $\psi(z, t)$ at large values of t. But his treatment is not satisfactory, because he
assigned certain initial vorticities and studied the timedependence at a fixed point (x, z) in the fluid. Therefore he cannot be sure whether there is convective instability or not. In the Appendix it is shown how we can find the asymptotic behavior of $\psi(z, t)$, using the theory in [2]. Here we will demonstrate another method, which can be used in order to find the asymptotic behavior of $\psi(z, t)$.

III. Solution to the problem.

In eq. (2.9) we use the Laplace transformation to obtain:

$$
\begin{equation*}
\left(\frac{d^{2}}{d z^{2}}-k^{2}\right) \bar{\psi}=\frac{F_{k}(z)}{i k(z-\zeta)} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{\psi}=\int_{0}^{\infty} \psi(z, t) e^{-p t} d t \\
& \zeta=i \frac{p}{k} .
\end{aligned}
$$

Eq. (3.1) is easily solved. We find:
(3.2) $\bar{\psi}(z, \zeta)=\frac{\sinh k(z-1)}{W} \int_{-1}^{z} \frac{F_{k}(u)}{i k(u-\zeta)} \sinh k(u+1) d u$

$$
+\frac{\sinh k(z+1)}{W} \int_{z}^{1} \frac{F_{k}(u)}{i k(u-\zeta)} \sinh k(u-1) d u,
$$

where $W=W(\sinh k(z+1), \sinh k(z-1))=k \sinh 2 k$ is the Wronskian for sinhk $(z+1)$ and sinhk $(z-1)$.
We observe that

\qquad
\qquad
\qquad
-• .

$$
\begin{equation*}
\bar{\psi}(1, \xi)=\bar{\psi}(-1, \xi)=0, \tag{3.3}
\end{equation*}
$$

consistent with our boundary conditions. When $\bar{\psi}(z, \zeta)$ is found, $\quad \psi(z, t)$ is easily obtained by inversion:
(3.4) $\psi(z, t)=\frac{k}{2 \pi} \int_{i \zeta_{0}}^{i 0_{-\infty}^{+\infty}} \frac{e}{}_{-i k \zeta t}^{W}\left[\operatorname{sinhk}(z-1) \int_{-1}^{z} \frac{F_{k}(u)}{i k(u-\zeta)} \operatorname{sinhk}(u+1) d u\right.$

$$
\left.+\sinh k(z+1) \int_{z}^{1} \frac{F_{k}(u)}{i k(u-\zeta)} \sinh k(u-1) d u\right] d \zeta .
$$

In eq. (3.4) we can change the order of integration, and then obtain the solution of eq. (2.12), given by eq. (A1). In this type of problems this is in general not possible. Generally $\psi(z, t)$ will be written in the form of eq. (3.4). Here we will show how we can find the asymptotic behavior of this function directly from the representation in eq. (3.4). In order to evaluate the integral in eq. (3.4) we will perform an integration around the contour C , shown in

Fig. 2
fig. $2(k>0)$. The integrand has singuParities at $\zeta=1, z,-1$. ${ }^{*}$ Therefore we have to make cuts in the complex ζ-plane, as shown. Using Caushy's residue theorem, since the integrand has no poles within the contour C, we obtain:

$$
\begin{equation*}
\psi(z, t)=-\int-\int-\int-\int-\int-\int-\int, \tag{3.5}
\end{equation*}
$$

$$
\begin{array}{lllll}
\gamma_{1} & \gamma_{2} & \gamma_{3} & A B D E & S_{1} \\
S_{2} & S_{3}
\end{array}
$$

 $\because \quad \vdots$
$\therefore+\quad+\quad+\quad+\quad+\quad$

Q a ?
$2-\cdots \cdots$

$\because=\because=\cdots, \quad \cdots$
$\cdots \cdots$

- . \quad - $\because \cdots$

$\because: \quad \because \quad \vdots \quad \cdots \quad \vdots \quad \because \quad \vdots \quad$: $\because!$
where $\int_{\gamma_{1}}=\int_{1-i S}^{1-i p_{1}}+\int_{1-i p_{1}}^{1-i S}$. We have analogous expressions for the integrals $\int_{\gamma_{2}}$ and $\int_{\gamma_{3}}, \int_{s_{1}}, \int_{s_{2}}$ and $\int_{S_{3}}$ are the integrals around the small circles s_{1}, s_{2} and s_{3}, surrounding $\zeta=1, z,-1$. It is easy to show that $\int_{S_{1}}, \int_{S_{2}}$ and $\int_{S_{3}} \rightarrow 0$ when the radii $\rho_{i}(i=1,2,3)$ of the circles tend to zero. Also $\int_{\text {ABLE }} \rightarrow 0$, when $R, S \rightarrow \infty$.

Therefore:

$$
\begin{equation*}
\psi(z, t)=-\int_{\gamma_{1}}-\int_{\gamma_{2}}-\int_{\gamma_{3}} \tag{3.6}
\end{equation*}
$$

where now $\int_{\gamma_{1}}=\int_{1-i \infty}^{1}+\int_{1}^{1-i \infty}$. We have analogous expressions for $\int_{\gamma_{2}}$ and $\int_{\gamma_{3}}$.

IV. The asymptotic behavior of the integrals along γ_{1} and

 x_{3} when $t \rightarrow \infty$.We have $\int_{\gamma_{1}}=\int_{1-i \infty}^{1}+\int_{1}^{1-i \infty}$. Let us examine the integral 1-im
\int_{1}^{1}. Into this integral we introduce η, given by $\zeta=1$ - in, as a new variable. We then obtain:

$$
\begin{aligned}
(4.1) P(z, t)=-\frac{i k}{2 \pi \eta} \int_{0}^{\infty} & e^{-i k t-k \eta t}\left[\sinh k(z-1) \int_{-2+i \eta}^{z-1+i \eta} \frac{F_{k}(v+1-i \eta)}{i k v} \sinh k(v+2-i \eta) d v\right. \\
& \left.+\sinh (z+1) \int_{z-1+i \eta}^{i \eta} \frac{F_{k}(v+1-i \eta)}{i k v} \sinh k(v-i \eta) d v\right] d \eta .
\end{aligned}
$$

The first term in eq. (4.1) will be canceled by the
corresponding term in the integral $\int_{1-i \infty}^{1}$. In the vicinity of $\eta=0$ the last term can be written as:
(4.2) $\int_{z-1+i \eta}^{i_{i}} \frac{F_{k}(v+1-i \eta)}{i k v} \sinh k(v-i \eta) d v=\sum_{n=0}^{\infty} a_{n} \eta^{n}+\ln \eta \sum_{n=0}^{\infty} b_{n} \eta^{n}$..

The term $\sum_{n=0}^{\infty} a_{n} \eta^{n}$ is of no interest for the same reason as above. b_{n} is easily found, by differentiating eq. (4.2).., and letting η tend to zero. We find:
(4.3)

$$
\left\{\begin{array}{l}
b_{0}=0 \\
b_{1}=-F_{k}(1) \\
-\cdots
\end{array}\right.
$$

We are now in a position to find the first term in the asymptotic series for $\int_{\boldsymbol{\gamma}_{1}}$. Using Watson's lemma [3], we find that the first term is given by:

$$
\begin{equation*}
-\frac{i k}{2 \pi T} e^{-i k t_{b}}, \sinh k(z+1)\left[\int_{\infty}^{0} e^{-\eta k t} \eta \ln \eta d \eta\right. \tag{4.4}
\end{equation*}
$$

$$
\left.+\int_{0}^{\infty} e^{-\eta k t} \eta\{\ln \eta+2 \pi i\} d \eta\right]=-\frac{F_{k}(1)}{k^{2} t^{2}} \frac{\sinh k(z+1)}{\sinh 2 k} e^{-i k t}
$$

where we have used that In in a many-valued function of η.
Taking into account eq. (4.4), we can write:

[^0]\qquad
(4.5) $\int_{\gamma_{1}}=-\frac{F_{k}(1)}{k^{2} t^{2}} \frac{\sinh k(z+1)}{\sinh 2 k} e^{-i k t}+\ldots$, when $t \rightarrow \infty$.

An analogous expression is found for the integral along γ_{3}. We find:
(4.6) $\int_{\gamma_{3}}=\frac{F_{k}(-1)}{k^{2} t^{2}} \frac{\sinh k(z-1)}{\sinh 2 k} e^{i k t}+\ldots$, when $t \rightarrow \infty$. γ_{3}

V . The asymototic behavior of the integral along γ_{2} when $t \rightarrow \infty$.

We have $\int_{\gamma_{2}}=\int_{z-i \infty}^{z}+\int_{z}^{z-i \infty}$. Let us cxamine the integral
$\int_{z}^{z-i \infty}$. Into this integral we introduce η, given by $\zeta=z$-i η, as a new variable. We obtain:
(5.1) $P(z, t)=-\frac{i k}{2 \pi \eta} e^{-i k z t} \int_{0}^{\infty} e^{-k \eta t} d \eta\left[\operatorname{sinhk}(z-1) \int_{-1-z+i \eta}^{i \eta}\left\{\frac{F_{k}(v+z-i \eta)}{i k v} x\right.\right.$
$\operatorname{sinhk}(v+z+1-i \eta)\} d v+\operatorname{sinhk}(z+1) \int_{i \eta}^{1-z+\frac{i}{F_{k}}(v+z-i \eta)} \frac{i k v}{\operatorname{kinhk}(v+z-1-i \eta) d v] .}$

In the vicinity of $\eta=0$ we havo:
(5.2)

$$
\left\{\begin{array}{l}
\int_{-1-z+i \eta}^{i \eta_{F_{k}}(v+z-i \eta)} \\
i k v \\
\sinh k(v+z+1-i \eta) d v=\sum_{n=0}^{\infty} a_{1 n} \eta^{n}+i n \eta \sum_{n=0}^{\infty} b_{1 n} \eta^{n} \\
1-z+i \eta \\
\int_{i \eta}^{1} \frac{F_{k}(v+z-i \eta)}{i k v} \sinh k(v+z-1-i \eta) d v=\sum_{n=0}^{\infty} a_{2 n} \eta^{n}+\ln \eta \sum_{n=0}^{\infty} b_{2 n} \eta^{n}
\end{array}\right.
$$

?

will be canceled by the corresponding terms in the integral $\int_{z-i \infty}^{z}$. Let us find $b_{1 n}$ and $b_{2 n}$. Differentiating eqs.(5.2), and letting $\eta \rightarrow 0$, we find:
(5.3) $\left\{\begin{array}{l}b_{11}=-i \frac{\partial}{\partial z}\left[\frac{F_{k}(z)}{i k} \operatorname{sinhk}(z+1)\right] \\ \cdots \cdots\end{array}\right.$
(5.4) $\left\{\begin{array}{l}\mathrm{b}_{20}=-\frac{\mathrm{F}_{\mathrm{k}}(z)}{i k} \operatorname{sinhk}(z-1) \\ \mathrm{b}_{21}=i \frac{\partial}{\partial z}\left[\frac{\mathrm{~F}_{\mathrm{k}}(z)}{i k} \operatorname{sinhk}(z-1)\right] \\ \cdots-\end{array}\right.$

Using Watson's lemma, and taking into account eqs. (5.3) and (5.4), we obtain:
(5.5) $\int_{\gamma_{2}}=-\frac{i k}{2 \pi T} e^{-i k z t}\left[\int_{\infty}^{0} e^{-k \eta t} \operatorname{ln\eta \{ } \sum_{n=0}^{\infty} b 1 n^{\eta^{n}}+\sum_{n=0}^{\infty} b_{2 n} \eta^{n}\right\} d \eta$

$$
\begin{aligned}
& \left.+\int_{0}^{\infty} e^{-k \eta t}(\ln \eta+2 \pi i)\left\{\sum_{n=0}^{\infty} b_{1 n} \eta^{n}+\sum_{n=0}^{\infty} b_{2 n} \eta^{n}\right\} d \eta\right] \\
= & \frac{F_{k}(z)}{k^{2} t^{2}} e^{-i k z t}+\ldots, \text { when } t \rightarrow \infty .
\end{aligned}
$$

VI. Some comments.

Taking into account eqs. (3.6), (4.5), (4.6) and (5.5), we obtain:
(6.1) $\psi(z, t)=-\frac{F_{k}(z)}{k^{2} t^{2}} e^{-i k z t}+\frac{F_{k}(1)}{k^{2} t^{2}} \frac{\sinh k(z+1)}{\sinh 2 k} e^{-i k t}$

$$
-\frac{F_{k}(-1)}{k^{2} t^{2}} \frac{\sinh k(z-1)}{\sinh 2 k} e^{i k t}+\ldots
$$

From eq. (6.1) we find that the velocity in the x-direction is damped as $\frac{1}{t}$ when $t \rightarrow \infty$.

Differentiating eq. (6.1) twice with respect to z, we obtain:

$$
\frac{\partial^{2} \psi}{\partial z^{2}}=F_{k}(z) e^{-i k z t}+\ldots
$$

consistent with eq. (2.12).
We observe that if $F_{k}(z)$ is assigned in such a way that $F_{k}(z)$ and all its derivatives are equal to zero at $z= \pm 1$, then there is no contribution from the integrals along γ_{1} and γ_{3}.

As to the question of stability of the system, the integral $\int_{\gamma_{2}}$ is of the greatest interest, since it is only this integral which contributes to the leading term in the asymptotic series for $\frac{\partial \psi}{\partial z}$ and $\frac{\partial^{2} \psi}{\partial z^{2}}$.

Let us assume $F_{k}(1)=F_{k}(-1)=0^{*}$). Then from eq. (6.1), we obtain by inversion: ${ }^{* *)}$

$$
\begin{equation*}
\psi(x, z, t)=\frac{G(x-z t, z)}{t^{2}}+\ldots, \tag{6.2}
\end{equation*}
$$

where
*) This is analogous to the situation studied by Case. **) We interpret $\psi(z, t)$ and $F_{k}(z)$ as the Fourier transforms of $\Psi(x, z, t)$ and $F(x, z)$.

 0 ? $\because \because \because \because \because \because \cdot$ $\cdots \quad \because \quad \cdots \quad \cdots \quad$ $\therefore \therefore \quad \therefore \quad \therefore \quad \therefore \quad \therefore \quad$
 $\therefore \quad \therefore \quad$ $\because \quad \because \quad:$ $\because \quad \vdots \quad \because \quad \vdots \quad \because \quad: \quad \because \quad$ \cdots $\because \quad \because \quad \because \quad \because$ $\therefore \quad$.

$$
\begin{equation*}
F(x, z)=\frac{\partial^{2}}{\partial x^{2}} G(x, z) . \tag{6.3}
\end{equation*}
$$

Integrating eq. (6.3), we obtain:
(6.4) $G(x, z)=\int d x \int F(x, z) d x+C_{1}(z) x+C_{2}(z)$,
where C_{1} and C_{2} are functions of z only, and $C_{1}(1)=C_{1}(-1)=0$, so that the boundary conditions eq. (2.5) are satisfied. The Fourier transform of $G(x, z)$ exists in the meaning of Fourier transform of a generalised function, see [2].

Let us in conclusion show the connection between Case's results and ours. We consider the two cases:
I. $\left|\int_{-\infty}^{+\infty} F(x, z) d x\right|<\infty$, i.e. the total initial vorticity associated with the perturbation, is finite.
II. $\left|\int_{-\infty}^{+\infty} F(x, z) d x\right|=\infty, \begin{aligned} & \text { i.e. the total initial vorticity } \\ & \\ & \text { associated with the perturbation, is } \\ & \text { infinite. }\end{aligned}$

Case I.

For the integral to exist $|F(x, z)|$ must tend to zero at least as fast as $|x|^{-\alpha} \quad(\alpha>1)$ when $|x| \rightarrow \infty$. Then $|G(x, z)| \cong\left|C_{1}(z) x\right|$ when $|x| \rightarrow \infty$. And this together with eq. (6.2) shows us that the perturbation at any fixed point (x, z) in the fluid is damped as $\frac{1}{t}$ when $t \rightarrow \infty$.

\qquad
(
\qquad
\qquad
$1+3$ sem
20

Case II.

It is assumed that $|F(x, z)|$ tends to zero as $|x|^{-\alpha}(0<\alpha<1)$ when $|x| \rightarrow \infty$. From eq. (6.4) we then obtain:

$$
|G(x, z)| \text { is of order }|x|^{-\alpha+2} \text { when }|x| \rightarrow \infty \text {. }
$$

Introducing this into eq. (6.2), we find that at any fixed point in the fluid the perturbation will vanish as $t^{-\alpha}$ when $\quad t \rightarrow \infty$.

These are the results of Case.

Acknowledgments.
The financial support given by the Royal Norwegian Council for Scientific and Industrial Research is acknowledged.

The author is grateful to the staffmembers of the Department of Applied Mathematics for their interest in this work.

```
                                    -.. :
```



```
                                    - ...
                                    < %
```



```
                                    . . Cor
```



```
    <<<!
```


Appendix.

We will show how we can use Theorem 19 in [2] to find the asymptotic behavior of $\psi(z, t)$ in this simple case. The solution of eq. (2.12) is given by:

$$
\begin{align*}
\psi(z, t) & =\frac{\sinh k(z-1)}{W} \int_{-1}^{z} F_{k}(u) \sinh k(u+1) e^{-i k u t} d u \tag{A,1}\\
& +\frac{\sinh k(z+1)}{W} \int_{z}^{1} F_{k}(u) \sinh k(u-1) e^{-i k u t} d u .
\end{align*}
$$

The integrals in eq. (A1) can be written in the following way, by means of the Heaviside unit function:
(A2)

$$
\left\{\begin{array}{l}
\int_{-1}^{z} F_{k}(u) \sinh k(u+1) e^{-i k u t} d u \\
=\int_{-\infty}^{+\infty} F_{k}(u) \sinh k(u+1) H(u+1) H(z-u) e^{-i k u t} d u, \\
\int_{z}^{1} F_{k}(u) \operatorname{sinhk}(u-1) e^{-i k u t} d u \\
\\
\quad \int_{-\infty} F_{k}(u) \sinh k(u-1) H(1-u) H(u-z) e^{-i k u t} d u
\end{array}\right.
$$

The integrand in the first integral in (A2) has singularities at $u=-1$ and $u=z$. Supposing $F_{k}(z)$ to be analytic at every point $z \in[-1,1]$, we may write:

… $\quad . \quad$.

\qquad

\qquad
\qquad
\qquad
(A3)

$$
\left\{\begin{aligned}
& F_{k}(u) \sinh k(u+1)= k F_{k}(-1)(u+1)+\ldots \\
& F_{k}(u) \sinh k(u+1)=F_{k}(z) \operatorname{sinhk}(z+1) \\
&+\frac{\partial}{\partial u}\left[F_{k}(u) \sinh k(u+1)\right](u-z)+\ldots \\
& u=z
\end{aligned}\right.
$$

$$
\text { in vicinity of } u=z \text {. }
$$

The integrand in the second integral in (A2) has singularities at $u=z$ and $u=1$. As above we may write:

Let us put:
$(A 5)\left\{\begin{array}{l}F_{1}(u)=k F_{k}(-1)(u+1) H(u+1), \\ F_{2}(u)=\left[F_{k}(z) \operatorname{sinhk}(z+1)+\frac{\partial}{\partial z}\left\{F_{k}(z) \sinh (z+1)\right\}(u-z)\right] H(z-u), \\ F_{3}(u)=\left[F_{k}(z) \operatorname{sinhk}(z-1)+\frac{\partial}{\partial z}\left\{F_{k}(z) \operatorname{sinhk}(z-1)\right\}(u-z)\right] H(u-z), \\ F_{4}(u)=k F_{k}(1)(u-1) H(1-u) .\end{array}\right.$
Using Theorem 19 in [2] with $N=2$, we find:

where

$$
\begin{aligned}
& \begin{aligned}
F \cdot T \cdot\left\{F_{1}(u)\right\}= & \int_{-\infty}^{+\infty} k F_{k}(-1)(u+1) H(u+1) e^{-i k u t} d u \\
= & -k F_{k}(-1) \frac{e^{i k t}}{k^{2} t^{2}} \text {, when }|k t| \rightarrow \infty . \\
\text { F.T.\{ } \left.F_{2}(u)\right\}= & e^{-i k z t\left\{-\frac{F_{k}(z) \sinh k(z+1)}{i k t}\right.} \\
& \left.+\frac{\frac{\partial}{\partial z\left[F_{k}(z) \sinh k(z+1)\right]}}{k^{2} t^{2}}\right\}, \text { when }|k t| \rightarrow \infty .
\end{aligned} \\
& \text { F.T. }\left\{F_{3}(u)\right\}=e^{-i k z t}\left\{\frac{F_{k}(z) \operatorname{sinhk}(z-1)}{i k t}\right. \\
& \left.-\frac{\frac{\partial}{\partial z}\left[F_{k}(z) \sinh k(z-1)\right]}{k^{2} t^{2}}\right\} \text {, when }|k t| \rightarrow \infty \text {. } \\
& \text { F.T. }\left\{F_{4}(u)\right\}=k F_{k}(1) \frac{e^{-i k t}}{k^{2} t^{2}} \text {, when }|k t| \rightarrow \infty .
\end{aligned}
$$

In order to obtain expressions (A7), we have used Table 1 on page 43 in [2]. We are now in a position to determine the asymptotic behavior of $\psi(z, t)$ for large values of t. Taking into account eqs. (A1), (A6) and (A7), we find:

$$
\begin{aligned}
\psi(z, t)=-\frac{F_{k}(z)}{k^{2} t^{2}} e^{-i k z t} & +\frac{F_{k}(1)}{k^{2} t^{2}} \frac{\sinh k(z+1)}{\sinh 2 k} e^{-i k t} \\
& -\frac{F_{k}(-1)}{k^{2} t^{2}} \frac{\sinh k(z-1)}{\sinh 2 k} e^{i k t}+\ldots,
\end{aligned}
$$

which is equivalent to eq. (6.1).

$$
\begin{aligned}
& \begin{array}{llll}
\because< & \ddots & \ddots & \ddots
\end{array} \\
& \therefore
\end{aligned}
$$

References.

[1] Case, K.M.: Stability of Inviscid Plane Couette Flow.

The Physics of Fluids, Vol. 3, (1960), (p. 143).
[2] Lighthill, M.J.: Introduction to Fourier analysis and generalised functions. Cambridge University Press (1962).
[3] Jeffreys, H.: Asymptotic approximations. Oxford Clarendon Press (1962), (p. 14).

[^0]: *) We assume that $F_{k}(z)$ is an analytic function of $z \in[-1,1]$.

