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Abstract

When we apply the Richtmyer procedure [B] to solve a system of
parabolic differeutial equations which describe the propagation of a finite
amplitude sound beam, the initial conditions and the boundary condi
tions may cause unphysical effects. In this paper we explain why these
unwanted effects arise, and we describe how we may approximate the ini
tial and boundary conditions in order to make the Richtmyer procedure
applicable. In earlier papers[l,9,6,4] the fully implicit method has been
applied to solve the described system of equations. The performances of
the two methods are compared in a numerical experiment.
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1 Introduction

In several papers [1,9,6] systems of coupled partial differential equations of the
form

where = ( fø -f- a = («i,am ), b = (b x ,..., 6m ) and m the number
of harmonics retained in the numerical solution, have been used to describe
the propagation of nonlinear sound beams generated by circular pistons. The
first terms on the right hand side are due to absorbtion, the second terms to
diffraction and the last terms to nonlinearity.

In the case of moderate or weak nonlinearity, the diffraction terms have to be
integrated with greatest care, and therefore we will pay special attention to how
these terms should be integrated. Zhileikin [lo] applied the Richtmyer procedure
[B] to integrate these terms while Aanonsen used a fully implicit method. The
source in [lo] is Gaussian while the source in [l] is a piston.

In this paper we discuss two problems that may arise when we apply the
Richtmyer procedure to solve (1). In sec.2 we discuss the problem that arises
when we have a piston source. The problem is explained for in [4], and here
we describe a way to get around it. We also discuss the problems that arise
because we have to use a finite range of x and therefore to introduce unphysical
boundary conditions.

The use of the Richtmyer procedure together with new approximations of
the initial conditions in the case of a source piston we believe is a efficient
way of integrating the diffraction terms if also the boundary conditions are
approximated with care. In sec.3 we compare this method with the method
described in [l].

2 The initial and boundary conditions

If we simplify (1) bearing in mind that the diffraction terms are the important
terms, we get the problem studied by Richtmyer

da
 — = -c(n,a)a n - k(n,a)Vlbn + *7i(n,<T,a,6)

db n = I, m (1)
= —c{n,a)bn + k(n, a )V^an + ih{n, a,Q.,b)
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dv d2 w
dt dx 2

dw d2 v
dt dx 2

(2)

The initial conditions are given by v{x, 0) = i>o(æ) and w{x, 0) = w0 (x). The
boundary conditions are t) = /o(/), w(l, t) = a>(o, t ) = go{t ), tu(l, t) =
cj\{t) We introduce some notation used by Fairweather and Gourlay [3]

» (:) -C "i) (3)

Equation (2) rnay then be rewritten

(4)

A rectangular network of points with mesh sizes h and k in the x and t directions
respectively, vvhere Nh = 1 is superimposed on the region 0 < x < l,t > 0. The
values of il(x,t) at the mesh points x=ih,t = jk{i = 0,1, = 0,1,...) are
given by The methods we consider may then be written

(5)

vvhere r=k/h2 , lis the 2*2 unit matrix and 6 2 is the usual Central difference
operator in the x-direction.

For A = 1/2 we get the Richtmyer procedure and for A = I we get the fully
implicit method. In [4] we show that the eigenvectors of the solution matrices
for both methods are

(6)

The eigenvalnes of the solution matrix for the fully implicit method are

(7)

The corresponding eigenvalues for the Richtmyer procedure are

o<x< M > o

dQ _ d2n
dt dx 2

(/- XrA6l)Qi ij+ i =(/+ (! X)rAsl)tiij i = 1

/ isin(sn/N)
±sin(sn/N)

isin{(N I)s7t/jV)
y ±sin({N - \)stt/N)

s = 1,2, ...N - 1V±3

_ 1 ± Arisin~{sv/2N) _
/±$ 1 -f- \6r2 sin 4 (sTr/2N)
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1 2risin 2 {s'x/2N)
(8)

It is well known, see [2], that when a step function is approximated by a finite
Fourier series, Gibbs oscillations do appear. When we have a piston source and
a solution matrix with eigenvectors (6), Gibbs oscillations will also appear in
the numerical solution.

The eigenvalues of the fully implicit method are all inside the unit circle The
eigenvalues of the higher harmonic eigenvectors are small in magnitude, and the
contribution of these eigenvectors to the numerical solution will therefore soon
be damped, and after some steps the Gibbs oscillations will disappear from the
numerical solution. If the step sizes used in t direction are small, the lower and
moderate harmonics are only to a small extent damped, and this explains why
the fully implicit method for small step sizes has produced Solutions of (1) that
have proved to be in good agreement with physical experiments. However, as
we shall see in sec. 4, if we increase the step size, much energy is lost and the
side lobes in the beam patterns gradually disappear.

The eigenvalues when we apply the Richtmyer procedure, all lie on the unit
circle, and therefore as shown in [4] the Gibbs oscillations are maintained in the
numerical solution.

Thus both methods considered suffer from severe defects in the case of a
piston source. Jn this paper we try to remove the Gibbs oscillations in the
initial data before we start solving the system of differential equations by using
a lilter. We may then apply the Richtmyer procedure without further loss of
energy. The filtering achieved with the fully implicit method has already proved
to give satisfactory Solutions of (1) for small step sizes, and it was therefore
uatural to make a filter that simulated the filtering achieved by going some
steps with this method.

When we complicate (2) by introducing cylindrical coordinates, we get the
equation

dv d~w 1 dw
dl dx 2 x dx

(9)

To fmd a general expression for the eigenvectors and corresponding eigenvalues
of the solution matrices for this problem is very difficult. lt is therefore difficult
to predict the exact filtering achieved by using the fully implicit method on
problem (9). However, the most important terms on the left hand side of (9)
are the second order terms. Therefore, it is reasonable to base a subroutine for
simulating the filtering achieved by the fully implicit method, on the expressions
(6) and (7), The subroutine is listed in Appendix A.

±s 1 ± 2riBin~{sir/2N) S *

0 X Xrnax ) t
dw d~v 1 dv
dt dx~ x dx
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The test problem used in the numerical experiments to be described is

The initial conditions when we use the fully implicit method, are given by

(id

When we apply the Richtmyer procedure, the initial conditions given by (11) are
liltered with the subroutine in Appendix A. (Except where otherwise stated.)

The boundary conditions when we use the fully implicit method are

(12)

Let the values of a n{x,t) and b n (x,t) at the mesh points x = ih,t = jk(n =
1,8, i = O, IMAX,j = 0,1,...) be given by a and b respectively. When
we apply the Ricthmyer procedure, the boundary conditions are(except for the
plot in Figure 4)

IMAX,j _ 0n JMAX-l,j _ n IMAX-2,ju n &a n u n

At x=o the solution is symmetric, and -fø + = pa bs —ld 6 and
pnon =id— lin our experiments, When we apply the Richtmyer procedure,

d(l n n 1 _o.
- -p.,,n-a„ - 4m(l + j)2 VA+

n— 1 m

Pnon .y> j ,  E(«nVp) + Z ( 6P aP-« “ apbp-n)\
' ' p-1 p=n+l

n = X, B (10)
tib n _ 2 L 1

_ -pai,„ b„ + -^—^V£a,.+

1 m

Pnon 2(jT^ 2 ~ a n-pap) ~ , i ap ap-n +
' p=l p-n+l

, _ . f sin(x 2 ) when o<x < 1
a ’ (x ' <7 = 0) = \ 0 I<x < 8

, , f cos(x 2 ) when o<x < 1
6,(x, (r =0) = | Q

a n (x, a = 0) = 0

0 < x < 8, n = 2,8

b n (x,a =0) = 0

an ( x = 8, cr) = 0

(j > 0, n = 1,8

b n (x = 8, cr) = 0

n = 1,8, j = 1,2,... (13)
IIMAXj O IIMAX-IJ _ tIMAX —2Ju n zu n u n
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the absorbtion terms are integrated by using the Crank-Nicolson method. (The
Crank- Nicolson method applied to (2) is usually called the Richtmyer proce
dure, see [7].) When we use the fully implicit method on the diffraction terms,
the absorbtion terms are integrated by the fully implicit method also. The non
linear terms are in both cases integrated by an explicit method. h = 8.0/250
in all our experiments. k = 3.5 * 10“ 4 *(1 + o- ) 2 in the experiments in this see
tion(except for the plot in Figure 4). We adjust kin order to keep k/{h2 { 1-f <r) 2 )
constant, see (10).

To illustrate the usefulness of our filter we have applied the Richtmyer pro
cedure on (10). In Figure 1 we plot the amplitude of the initial values of the
fundamental (n=l) before and after(the dotted line) we have applied the filter.
1.24 per cent of the energy measured in the 2-norm is lost by using the filter.

In Figure 2 we show the computed amplitude of the fundamental at a 10.
for the initial values in Figure 1 when we apply the Richtmyer procedure. The
dotted line shows the results without the filter. We notice that almost all
Gibbs oscillations are removed from the numerical solution when we apply our
filter. Some unphysical oscillations are left in the side lobes farthest away from
the axis These could to some extent have been removed by using a stronger
filter. However, we have to balance between removing the Gibbs oscillations
and maintaining the energy in the solution.
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Figure 2. The fundamental amplitude at <r 10.

Figure 3. A comparison with the fully implicit method.

In Figure 3 we show the computed amplitude of the fundamental at a = 10,
when we apply the Richtmyer procedure and the fully implicit method (the
dotted line). We see that even though the system of equations (10) is more
complicated than (2), we achieve almost the same filtering by using the two
techniques.

We end tliis section with some remarks on the boundary conditions. To
restrict the values of x to 0 < a; < 8, as we do in (11) and (12), is clearly
unphysical. Ilowever, numerically we have to define a finite range of x and try
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to make a reasonable choice of boundary conditions.
In earlier papers [1,9,6,4] and in (12) all harmonics in the sound beam are

set equal to 0 at the boundary(x = xmax ). When we apply the Richtmyer pro
cedure, no energy is lost, see [lo], and all energy is retained inside the window of
x that we are considering. We solve problem (10) with the Richtmyer procedure
for k 2.0 * 10“' *(1 -f <x) 2 and let the boundary conditions be given by (12).
In Figure 4 we plot the amplitude of the fundamental at a 10.

Figure 4. Rellected sound from boundary.

We see that sound is rellected from the boundary, and for smaller values of
k the numerical solution overflows. Therefore when we apply the Richtmyer
procedure, we have to use a boundary condition that allows energy to escape
from the given x-window. This is not necessary when the fully implicit method
is used because here the reflected sound is soon damped.

As we see from the heavy oscillations near the boundary in the figures 2
and 3, we do not run away from all problems by introducing (13), but (13) at
least allows sound to escape from our x-window. Therefore, when we apply the
Richtmyer procedure in see.3, (13) will be used to approximate the boundary.
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3 Numerical experiments

In sec.2 we showed that if we used the Richtmyer procedure with a filter on the
initial values, the results would be almost identical to the results produced by
the fully implicit method for k = 3.5 * 10~ 4 *(1 -f a) 2 .

In this section we will study to which extent it is possible to increase the step
size and still have a satisfactory solution. We use problem (10) as a test problem
and study the amplitude of the fundamental only. As a reference solution we use
the solution given by the Richtmyer procedure and k = 3.5 * 10“ 4 *(!-(- o-) 2 (the
dotted li nes).

In figures 5,6 and 7 we plot the amplitude at cr = 10. produced by the two
methodsfthe Richtmyer procedure to the left in the following figures.) when we
use k = I.o*lo~ 3 *(l-l-cr) 2 , k 3,5*10~ 3 *(l+cr) 2 and k = I.o* 10" 2 *(1 + cr) 2
respectively.

In figures 8,9 and 10 we plot the amplitude on the axis (x=o.o) when we use
k = 3.5 * 10~ 3 *(1 -f cr) 2 , k = 1.0 * 10“ 2 *(1 + cr) 2 and k = 3.5 * 10“ 2 *(1 -f a) 2
respectively.

Figure 5. A; = 1.0 * 10 3 * (1 -f- a) 2
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Figure 7. fc = I.o+lo 2 *(l + cr) 2 .
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Figure 8. k = 3.5 * 10 3 * (I + a)2 .

Figure 9 A' = I.o+ 10 2 * (1-f <r) 2 ,
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Figure 10. k = 3.5 * 10 2 *{l + cr)“.

From the figures 5, 6 and 7 we notice that the energy in the side lobes is soon
lost when we apply the fully implicit method and increase k. If we want the two
first side lobes to their full strength, we must stick to k = 3.5 * 10~ 4 *(1 -f <r) 2 .
If we are satisfied with håving the First side lobe only to full strength, we may
increase kto 1.0 * 10~ 3 *(I + <r) 2 .

From Figure swe notice that we may increase the step size when we apply the
Richtmyer procedure, to k = I.o+lo~ 3 *(l+<r) 2 without affecting the numerical
solution When we increase kto 3.5 * K)~ 3 *(1 + <r) 2 , the First two side lobes
are still unaffected, but farther from the axis we start to notice differences in
the numerical Solutions. For k = 1.0 * 10~ 2 *(1 + it) 2 this effect becomes more
apparent.

From the figures 8, 9 and 10 we notice that if we are conserned about ap
proximating the on axis sound only, we may use greater step sizes. When we
apply the fully implicit method, we may at least use k = 3.5 * 10~ 3 *(1 + &) 2 -
For greater step sizes the computed on axis sound increase in strength as the
higher harmonics die out and the side lobes disappear.

When we use the Richtmyer procedure, all chosen values of k less or equal
to 1.0 + 10~ 2 *(1 -f a) 2 give al most the same solution on the axis, However,
fo, k equal or greater than 3.5 * 10~ 2  (1 + u-) 2 the numerical solution becomes
apparent ly unphysical. We did not notice this dramatic change in the numerical
solution when we applied the fully implicit method and increased k.

In the figures 5 to 10 we have studied the amplitude of the fundamental only.
However, if we study the amplitude of the second or higher harmonics (or their
phases), the relative performances of our two rnethods are approximately the
same.
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4 Conclusions.

lu this paper we have used the insight gained in [4] to make the Richtmyer
procedure applicable on our system of parabolic equations also for a piston
source. The numerical experiments suggest that we may increase the step size 5
to 10 times if we replace the fully implicit method with the Richtmyer procedure.
Also for other problems of the form (1), at least in the cases where the diffraction
terms are dominant, we believe the Richtmyer procedure to be preferable.

Programs for solving (1) with the fully implicit method are presented in [s],
The programs for solving (1) with the Richtmyer procedure are slightly modified
versions of the programs in [s].
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A Program FILTER

SUBROUTINE F ILTER(X.N,EXTENO.WORK)
C** * B E 61N PROLO6UE FILTER
C*** DA TE WRI IT EN 870223 (YYMMOO)
C * **AU T H 0 R Jarle Berntsen
C***OESCRIPTION The routine filter the Gibbs oscillations
C present in the initial values stored in X in
C approximately the same way as the fully implicit

C***INPUT PARAHETERS
C X Double precision array of dimension N.
C Contains the initial values to be filtered.
C N I n t e g e r .
C N must not have prime factors greater than 19
C when we use the given NAG routines for the FFT.
C EXTEND Double precision array of dimension 4*N.
C Contains an extension of X.
C WORK Double precision array of dimension 4*N.
C Used as working storage by the NAG-routines.
C***OUTPUT PARAMETER
c X Contain on exit the filtered initial values.
C***ROUTINES CALLEO COGFAF, CO6GBF, COGFBF (From NAG.)
C*** E ND PROLOGUE FILTER

INIEGER N, IFAI L, I ,NX,NDAMP

DUUBI F PRECISION RSM,LAMBDA

C
C
C
C

Extend X to make the Founer expansion a pure
sin expansion.

c method (100 steps with k = 3 .5d- 4 *(1 + sigma) * * 2 and h=B/ 2 5 0 )
C

DOUBLE PRECISION X(N) ,WORK(4*N) ,P I , COEFF,EXTENO(4*N)
NX= 4 * N

RSM=l6.oo*o.3B**2

NDAMP =lOO

FXTENDI 1)- O.DO

DO 5 I- 1 ,N- 1

EXTENDIIt 1 ) =X(N-1 + 1 )
EXTENO(N+I+I)=X( It 1 )
EXTEND(2*N+I+I)=-EXTEND(I+I)
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EXTENO(3 *N+I + 1)=-X(M)
CONTINUE5

C
C
C

Eouner eKpand EXTEND

CAll CO6FAF(EXTEND,NX,WORK,IFAIL)
C
C
C
C
C
C

Tiller EXTEND by reducing the Founer
coefficients by the same factor as the
fully implicit method with 100 steps and
k=3 . 5d 4* (1 + sigma)* * 2 and h= 0/ 250 .

1 0

C
C
C

Torm the complex conjugat.es of the discrete

C All CO 6GBF(EXTEND,NX,IFAIL)
C
C
C

Compute the mverse Founer transform.

C.AI 1 (OeFBFfEXTEND.NX, WORK. IFAIL)
C
C
C

Restract EXTEND to X.

20

EX TEND(N * 1)=X(1)
tXTEND(2*N+I) = O.DO
EXTEND(3*N+I)=-X( 1 )
PI = XOIAAF(I.DO)

DO in I= 1 . N
lAMBDA=I.DO+RSM*(SIN(I*PI/DBLE(2*N+I)))**A
L AMBOA = SQR T(1 .DO/LAMBDA)
IAMBDA=LAMBDA**NDAMP

EXTEND(NX-2* I * 2 )=LAMBOA*EXTENO(NX-2*l*2)
CONTTNIIE

1)0 2 0 1= 1 ,N
X(r) = EX T END(N +I)

CONTINUE
RETURN

END
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