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Abstract. We present and analyze a numerical method for the solution of
a dass of scalar, multi-dimensional, nonlinear degenerate convection-diffusion
equations. The method is based on operator splitting to separate the con
vective and the diffusive terms in the governing equation. The nonlinear,
convective part is solved using front tracking and dimensional splitting, while
the nonlinear diffusion equation is solved by a suitable difference scheme. We

verify L 1 compactness of the corresponding set of approximate Solutions and
derive precise entropy estimates. In particular, these results allow us to pass
to the limit in our approximations and recover an entropy solution of the

problem in question. The theory presented covers a large dass of equations.
Important subdasses are hyperbolic conservation laws, porous medium type
equations, two-phase reservoir flow equations, and strongly degenerate equa

tions coming from the recent theory of sedimentation-consolidation processes.
A thorough numerical investigation of the method analyzed in this paper (and
similar methods) is presented in a companion paper.

1. Introduction

We address the important issue of constructing and analyzing numerical meth
ods for a dass of scalar, nonlinear, degenerate convection-diffusion problems of the
form

for {x,t) e Qt =Mm x (O,T). Here u = u{x,t) is the unknown function; fj ,
Kj, Aj, and u 0 are given functions; and £ > 0 is a (small) scaling constant. In
applications related to fluid flow (see, e.g, [27]), / = (f1t ..., fm ) is often referred
to as the flux function, V = (Vi,, Vm ) as the velocity held, K= (K1 ;..., Km )
as the permeability held, and A = as the function of diffusivity.

Key words and phrases. Degenerate convection-diffusion equations, entropy Solutions, oper
ator splitting, front tracking, convergence, entropy estimates.
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Throughout this paper, we will assume that the data of our problem satisfy the
following conditions:

'(i) f,Ae C2 (M;Em ) and A' > 0.
(ii) V G C 2 (E;Em ) and YJj= = 0 (i-e., V is divergence free)

| (hi) K G C2 (E;Em ) and K> 0.
(iv) n 0 G L 1(ETn ) fl L°°(Em ) n BV(Rm ).

(2)

We mention that the “maximal regularity” conditions (i)-(iii) can be significantly
weakened and they are assumed here only to make our presentation as short and
as transparent as possible. On the other hand, condition (iv) concerning the initial
function u 0 is fairly weak. Notice that the convective part of (1) is written on
transport, or non-conservative, form, which is reasonable since V is assumed to be
divergence free.

We only require that A) > 0 for each j and hence the parabolic term is allowed
to degenerate. In fact, each A) may be zero on a set of positive measure, in which
case we call the equation strongly degenerate, and thus the well known hyperbolic
conservation law

(3)

is a special case of (1). Other subclasses of (1) include one-point degenerate porous
medium type equations [4o]; two-point degenerate two-phase reservoir fiow equa
tions [l7]; and strongly degenerate equations coming from the recent theory of
sedimentation-consolidation processes [5, 6, 15].

A characteristic feature of nonlinear partial differential equations of hyperbolic
parabolic type such as (1) is that Solutions may exhibit quite complex behavior,
like singularities and sharp transitions, in a small region of space (and time) and
this makes them particularly hard to solve numerically. The aim of the paper is
to construct and analyze a numerical method for nonlinear convection-diffusion
equations of degenerate parabolic type (1) that works “uniformly” in the diffusion
coefficient A'- >O, and as such is able to resolve the issues concerning singularities
and sharp transitions in the Solutions of (1); more details are given towards the
end of this section.

If (1) is allowed to degenerate at certain points, that is, A)(u) = 0 for some
values of u, Solutions are not necessarily smooth, but typically continuous, and weak
Solutions must be sought. On the other hand, if Aj{u) is zero on a seu of positive
measure, weak Solutions may be discontinuous and are not necessarily uniquely de
termined by their initial data, as can be easily deduced from the maximum principle
and what is known about the hyperbolic conservation law. Consequently, additional
admissibility criteria so-called entropy conditions must be imposed to single
out the physically correct solution. We use the following definition of an entropy
or generalized solution:

Definition 1.1 (Entropy Solution). We call a functionu E Ll {Qt)AL°°{Qt)
an entropy solution of the Cauchy problem (1) provided

(4)

m

Ut + '}2Vj {x)fj {u) Xj = 0
3 =1

£Kj{x)A{u) Xj 6 L]oc {Qt)i j
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for every constant kG E and test function cp G CQ°(Mm x [O, oo)), ø> 0. iFere u;e
have used the short-hand notations: S{u,k ) =ju /or the entropy, Fj{u,k ) =
sgn(it k){fj{u) fj{k)) /or the convective entropy flux, and Qj(u,k) |Aj(u)
Aj(A:)| /or the diffusive entropy flux.

We denote the left-hand side of (5) by C{u,(p,k] f,V,A,uo,T) and sometimes
C{u,(j>,k) or even simply Furthermore, C{u, (f), k] /, V, 0, Uq, T) denotes the
left-hand side of the entropy inequality corresponding to the purely hyperbolic case.
Observe that (5) implies that (1) holds in the sense distributions, i.e., the equality

holds for each test function (p G C'^°(lRm x [O, oo)).
When Aj = 0 for all j, the entropy condition (5) reduces to the entropy con

dition introduced independently by VoPpert [42] and Kruzkov [3s] for hyperbolic
problems and thus Definition 1.1 contains the hyperbolic problem as a special case
[3]. Definition 1.1 goes back to Vokpert and Hudjaev [43], who were the First to
consider strongly degenerate parabolic equations of nonlinear (or quasilinear) type.
They also showed the existence of a BV entropy solution, provided uq is sufficiently
smooth, by passing to the limit in a parabolic regularization and obtained some par
tial uniqueness results for BV entropy Solutions, i.e., entropy Solutions whose first
order partial derivatives are finite measures on Qt- In the one-dimensional case,
Wu and Yin [44] later provided the complete uniqueness proof for BV entropy
Solutions. See Bénilan and Touré [l, 2] for further results via nonlinear semi
group theory on entropy Solutions in the one-dimensional case (without variable
coefhcients). In this context, let us also mention that Cockburn and Gripenberg
[l3] have established continuous dependence on the nonlinearities of semigroup So
lutions of the Cauchy problem for multi-dimensional equations of the type (with
fj = f for all j)

In the multi-dimensional case, Brézis and Crandall [4] established uniqueness
of weak Solutions in Ll (Qt) nL°°(QT) of the Cauchy problem for (7) with no lower
order terms {fj = 0 for all j). Later, under the assumption that A{u) is strictly
increasing, which does not rule out the possibility of A’{u) håving infinite number of
zero points, Yin [4s] showed uniqueness of weak Solutions in L°°{Qt ) fl BV{Qt) of
the Cauchy problem for (7). Note that (7) is a special case of (1). The assumption
that u t should be a finite measure was removed in [47]. The initial-boundary value
problem for (7) with variable coefhcients was treated in [46].

and the following entropy inequality holds
m m

/ S{u , k)(pt + j(w, k)(Kj<f>Xi ) x .') dtdx
(b) Qt 3= i i=i

+ J \uq k\(f){x,o)dx J \u{x,T) k\<f){x,T)dx >O,

/. m m/ (u<f>t + '52vj (x)fj {u)<f>Xj +e^Aj{u)(Kj{x)<!>x .) dtdx
(fcj Qt 3 = 1 j= l

+ lM*W*.o)d*-/«(x,TW,,T)dx = 0,

m

(7) Ut +y] /i(w) x . = Ax A{u)
3= 1
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An important step forward in the general case of A{u) being merely non
decreasing (i.e., the strongly degenerate case) was made recently by Carnllo [l2],
who showed uniqueness of entropy Solutions for a particular boundar\ valne problem
for (7). His method of proof, which is an elegant extension of Kruzkov’s “doubling
of the variables” device [3s], also applies to the Cauchy problem for (7) as well
weakly coupled systems of equations such as (7), see [2B]. In [7], the uniqueness
proof of Carrillo was adopted to several initial-boundary value problems arising
the theory of sedimentation-consolidation processes [5,6,15], which in some cases
call for the notion of entropy boundary condition (see also [lO, 11] for the BV
approach).

Later on we will introduce our numerical approximations and prove that they
converge, based on a suitable compactness argument. We recall here that such
convergence proofs merely ensure convergence along subsequences. However, when
we are equipped with a uniqueness result, as in the cases mentioned abo\e, we
automatically get convergence of the whole sequence in question and not just some
subsequence. To the best of our knowledge, uniqueness of entropy Solutions for
the general problem (1) that we consider here is still open when A{u) is merely
non-decreasing, so in the general case we have to resort to convergence along sub
sequences.

Although there seems to be an increasing interest in the (analysis of) numerical
approximation of entropy Solutions of degenerate convection-diffusion equations,
the amount of literature on the subject is as the moment extremely modest, at
least compared with the purely hyperbolic case which has long traditions. Recent
literature include papers by Evje and Karlsen [23, 19, 21, 22, 18], Cockburn and
Shu [l4], Kurganov and Tadmor [36], and Bouchut, Guarguaglini, and Natalini [3].

In [23], an operator splitting method for one-dimensional degenerate equations
is proposed and analyzed. In particular, convergence results and precise entrop\
estimates are given for the proposed approximations which allow the authors to pass
to the limit and recover the unique entropy solution of the equation in question.
Related papers include [2O, 24, 8, 9, 17].

In [l9], the authors build a convergence theory for explicit monotone difference
approximations of degenerate convection-diffusion equations. This theory parallels,
and includes, the classical theory of Harten, Hyman, and Lax [2s] and Crandall
and Majda [l6] for conservation laws. Implicit monotone difference approximations
are treated via nonlinear semigroup theory in [2l, 18], High order MUSCL type
methods are analyzed in [22].

In [l4], the authors present so-called local discontinuous Galerkin method for
(degenerate) convection-diffusion problems. This method is an extension of the
Runge-Kutta discontinuous Galerkin method for hyperbolic problems. A conver
gence analysis within the entropy solution framework is, however, not provided.

In [36], the authors introduce and test a new family of Central schemes for con
servation laws and (degenerate) convection-diffusion equations. The main feature
of the schemes is that they possess a much smaller numerical viscosity than the
original Central schemes [39] and as such apply to convection-diffusion equations.
In particular, they admit a semi-discrete formulation. A convergence analysis of
their convection-diffusion schemes within the entropy solution framework is not
presented.

In [3], the authors introduce and analyze a dass of discrete velocity BGK type
methods for degenerate convection-diffusion equations, which in turn are extensions
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of similar methods for hyperbolic conservation laws. Convergence results and en
tropy estimates are proved, which imply that the BGK approximations converge to
the unique entropy solution of the governing equation.

We conclude this section by giving more details about the contents of the
present paper, which deals with a dass of numerical methods called operator split
ting methods. The underlying design principle behind any splitting method for an
evolutionary partial differential equation is to split the time evolution into several
partial steps in order to separate out the different (physical) effects present in the
governing equation. In our context, the idea is to split the original problem (1)
into a hrst order convection (hyperbolic) problem and a second order degenerate
diffusion (parabolic) problem. The split problems are then solved sequentially to
approximate the exact solution of the original problem. The main attraction of
splitting methods lies, of course, in the fact that one can employ optimal existing
methods for each split problem. A detailed description of the operator splitting
method analyzed in this paper is given in §2. For an introduction to operator
splitting methods in general, we refer to Espedal and Karlsen [l7].

The main purpose of the present paper is to extend the analysis (and the
splitting method) of Evje and Karlsen [23] (which in turn borrowed from Karlsen
and Risebro [34]) to more general problems arising in applications. To be more
precise, we extend the analysis of [23] as follows:

In [23], the authors proved convergence to a limit satisfying (4) and (5) only
for the semi-discrete method. For their fully discrete method, however, they
did not establish (4). In the present paper, we establish at least that the
limit of one of our fully discrete methods also satisfies (4).

In [23], the authors proposed and analyzed operator splitting method for
one-dimensional equations without variable coefficients. Here we propose
and analyze an operator splitting method that works for a general dass of
rnulti-dimensional equations with variable coefficients, thereby containing
[23] as a special case.

The convergence (or compactness) part of the analysis, together with the proof
that the limit of one of the methods satisfies (4), is presented in §3. Precise entropy
estimates are established in §4. These estimates imply in particular that the limit
of a converging sequence of numerical approximations satisfies the entropy condi
tion (5). Finally, we mention that a variety of (convincing) numerical applications
are presented in our companion paper [27], including applications to oil reservoir
simulation and sedimentation-consolidation processes.

Acknowledgement. KHK would like to thank Raimund Biirger and Steinar
Evje for discussions and collaboration on the subject of degenerate parabolic equa
tions and their applications to sedimentation-consolidation processes.

2. Operator Splitting Methods

To construct approximate Solutions of (1) it is often favourable to use a splitting
method. There are several motivations and possibilities for splitting the equation.
First, one could use dimensional splitting directly on (1), i.e., split it into m one
dimensional equations of the form

(8) vt + V{x)f{v)x = e(K{x)A{v) x ) x ,
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and use ones favourite one-dimensional method to approximate the solution oper
ator Vt of (8). In this case the splitting reads

where At > 0 denotes the splitting step. To approximate Vjt, one could for instance
use a monotone difference method [l9, 21] or a higher-order method based on
MUSCL techniques [22], Another alternative is the corrected operator splitting
method (COS) introduced by Karlsen and Risebro [33], which is a large-tirne-step
method. The method splits (8) into a hyperbolic step vt + V{x)f{v)x = 0 and
a degenerate parabolic step wt = e{K{x)A{u)x ) x . Once a shock is formed in the
hyperbolic step, there will be an entropy loss due to Oleinik s convexification. The
source of the entropy loss can be identified as a residual flux (dehned locally as the
flux / minus its convexification) which can be taken into account either in a separate
correction step or included in the parabolic step. This way, COS resolves the correct
balance between convection and diffusion in regions with sharp gradients for an
(almost) arbitrarily large time step and can be used in combination with (9) to yield
a very efficient numerical method (if the dynamics of (1) allows for large splitting
steps). This method has been investigated in other studies [24, 31, 30, 32], see
also the companion paper [27].

As an alternative to dimensional splitting, one can split with respect to physical
mechanisms, which is what we will pursue in this paper. To this end, split (1) into
a hyperbolic part

and a degenerate parabolic part

In what follows, we choose a time step At > 0 and an integer N such that NAt T.
We also use the notation tn = nAt for n = 0,..., N. The corresponding (semi
discrete) splitting method then reads

(12) U/\t{t) [Hai ° uoi f°r t£ (t A L n 1,... ,N,

where St and Tit denote the solution operators of (10) and (11), respectively.
A slightly different method is obtained if we apply dimensional splitting to the

hyperbolic part, i.e., (10) is further split into one-dimensional equations

(13) vt + Vj {x)fj {v)Xj =O, n(x,o) = vo {x).

The corresponding semi-discrete splitting method takes the form

(14) UAt{t) = ['Hai ° t°'' ‘ ° or t£ {t ,t ], n 1,..., A,

where Sf is the exact solution operator associated with (13).
Concerning the semi-discrete methods (12) and (14), we have the following

main theorem:

Theorem 2.1 (Semi-discrete methods). Suppose that conditions (i)-(iv) in (2)
hold. Let {uAt} be the semi-discrete splitting sequence given by (12) or (14). Then
{-UAt} converges along a subsequence in L]oc {Qt) to a limit u that satisfies u{-,t) G
L l {Wn ) C L°°(MTO ) C jE?K(Rm ) uniformly in t and u{-,t) is uniformly L 1 Holder

(9) u{x,nAt) « °' • • °'P lAt1At ] n uo {x),

711

(10) vt + Vj {x)fJ {v) Xj =O, v(x, 0) = vq{x)
3 = 1

m

(11) Wt = £^2(Kj {x)Aj {w)x .) Xj , w{x,o) = wo {x).
3 = 1
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continuous in time with exponent 1/2. Finally, the limit u satisfies the regularity
requirement (4) and the entropy inequality (5).

This theorem shows that the semi-discrete splitting sequences given by (12)
and (14) both converge along subsequences to entropy Solutions of (1) in the sense
of Definition 1.1. Moreover, when it is known that the entropy solution is unique
(see §1), the whole sequence {uAt } converges to this solution.

From a computational point of view, we need to replace the exact solution
operators St and Tit in (12) by suitable numerical methods. In this paper we use an
explicit-implicit finite dilference method to approximate Tit and a large-step, front
tracking method to approximate St . The large-step method is based on dimensional
splitting,-which means that we shall here use (14) as the basis for constructing the
fully discrete splitting method. We let TiAxg denote the finite difference solution
operator associated with (11) at time t and SJ5 Ax t the front tracking solution
operator associated with (13) at time t. To simplify the dimensional splitting
process, each one-dimensional hyperbolic solution is projected onto a Cartesian
grid with mesh parameter Ax by a projection operator

7tv (x) = / vilt) dy, for xG ST
v ' Axm Jn . y 3

where flj denotes

Qj = [ji Ax, (ji + l)Ax) x••  x \jm Ax, (,jm + l)Ax), j = (ji,... Jm ) g Z m .

Then our fully discrete splitting method reads

for t G {tn~ 1 , tn ] and n = 1,..., N. Here y signifies the discretization parameters
(Ax, At, 5) and u° = ttuq. For simplicity of notation, we sometimes use the short
hand

i.e., Ss,Ax,t denotes the front tracking-dimensional splitting solution operator asso
ciated with (10), see Holden and Risebro [29] and Lie [37] for more details about
this approximate solution operator.

Concerning the fully discrete method (15), we have the following similar main
theorem:

Theorem 2.2 (Fully discrete method). Suppose that conditions (i)-(iv) in (2)
hold. Let { uv } be the fully discrete splitting sequence given by (15). Then {uv }
converges along a subsequence in L]oc {Qt) to a limit u that satisfies u{-,t) G
L 1(Mm ) fl I/°°(Mm ) fl BV(Rm ) uniformly in t and u{-,t) is uniformly L 1 Hdlder
continuous in time with exponent 1/2. The precise entropy estimate for uv reads
Tø(u 7? ) > -f Ax + 52 ), for some constant C> 0 independent of y. In
particular, this implies that the limit u satisfies (5). In the case of a fully implicit
diffusion solver, the limit u also satisfies the regularity requirement (4).

Note that in the case of an explicit-implicit (or fully explicit) diffusion solver
B-Ax,At, we have not yet managed to establish the regularity requirement (4).

Theorem 2.2 follows easily from the results stated and proved in §3 and §4. On
the other hand, the proof of Theorem 2.1 will not be written out explicitly in this
paper. It is however easy to modify the proof of Theorem 2.2 so that it applies

(15) Uv {t) = [HAx,At OTTO S™Ax,AtO••• O 7T O <S£Al)Ai] \°,

(16) Så,Ax,t =7T O S^Ax j o• • O 7T o t> 0.
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to the semi-discrete methods (12) and (14). We leave the details to the interested
reader as an exercise.

Next, we describe the front tracking and the finite difference method in more
detail.

The Hyperbolic Step. In each hyperbolic step we solve an equation of the
form

(17) vt + V{x)f{v) x =O, v{x,o) = vo {x), xeß,t> 0.

To this end we will use front tracking, which is an unconditionally stable method
without an intrinsic time step. The method seeks approximations within the dass
of step functions. First, the initial data v 0 is approximated by a step function
n0 ,Ax- This is achieved by the projection in (15), i.e., r0,Ai = Thus the initial
valne problem is decomposed into a series of simple Riemann problems that can be
solved analytically one by one. If the flux function is approximated by a continuous,
piecewise linear function f å (u), the solution of each Riemann problem will again be
a step function. The global solution, until the first wave interaction occurs, thus
consists of constant states separated by discontinuities propagating along paths
x{t). Each path x(t) is given by the differential equation x = E(z)s, where s
is the Rankine-Hugoniot speed ( f å (vL ) - fs (vß ))/(vL - vR ). By approximating
the velocity V by either a piecewise linear or a piecewise constant function Vax,
the differential equations can be solved explicitly and the paths x[t) are given in
closed form. Since every wave interaction leads to a new Riemann problem, this
construction can be continued up to any desired time. In fact, it can be shown
[26, 38] that there is a finite number of wave interactions, even in infinite time,
if the initial data is bounded and has finite total variation. We stress that we
replace the flux functions f by f 6 in most of the following convergence analysis
and derivation of entropy estimates. Only at the final step we consider the limit as
f å -> /. One can prove that the limit (as S-A 0) is indeed the entropy solution of
(17), see Lie [3B].

By construction, front tracking Solutions are not increasing in L°° norm and
have bounded total variation. Since all waves have finite speed of propagation, the
solution is Lipschitz continuous in time with respect to the L 1 norm. Each solution
satisfies an entropy condition for the perturbed equation with f 6 and V&x and is
thus an entropy solution. However, the solution operators are not L 1 contractions
because of the velocity field and the non-conservative form. These claims can be
verified by using a Kruzkov type analysis, see Lie [3B], We summarize properties
of Solutions of (17) in the following lemma:

Lemma 2.1. Let v{x,t) be a solution of (17). Then v satisfies the following
estimates

where C is a constant depending on the data. Moreover, let u{x,t) be a solution of
(17) with flux function g, velocity field U, and initial data uO . Then we have the
stability estimate

where the constants D, E\, and E 2 depend on the data (/, g, V, U, vq, uq) .

IHIoo < IWoo, K  ,t)\ B V < \vo\bV, \H;t)-Vo\h<Ct,

\\v{  , t) -u{  , t)||i < eDt [||uo - Uolli

+ t(Ei\\U - V\\oo + E2 \\f - g\\Lip) min(|uolj3v, \vq\bv)]
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Note that each front tracking solution is an exact solution of (17) for special
functions /, V, and uO , so that Lemma 2.1 also gives the properties of the front
tracking Solutions used for the hyperbolic steps.

The Parabolic Step. In each parabolic step we solve a possibly degenerate
equation of the form

where we assume, without loss of generality, that wq has compact support. We will
use an implicit-explicit hnite difference method to solve (18). Difference methods
for general degenerate parabolic equations are treated in [l9, 21, 22, 18]. We
assume a mesh with a uniform spacing Ax in each spatial direction and a time
step r. Let a = (0n,..., am ) GZ m and ej the index with the jth component
equal unity and all other components equal zero. Let W” denote the approximate

solution in grid cell aat time t = nr. Furthermore, let j3Ja = ErKJa+e Ax2 and
A^n = Aj(W™)- Then the scheme reads

(19)

where the parameter 9is in the interval [o,l]; 9= 0 giving a fully implicit scheme
and 9 la fully explicit scheme. We make the following simplifying assumption
in this paper.

Assumption 2.1. The scheme (19) admits a unique solution {W™+I }-

The existence of a unique solution of (19) can be established by suitable fixed
point argument. For n = 0,1..., we let Wn = Wn [x) denote the piecewise constant
function

(20) Wn {x) = W£, for x G na

and some a G Z m . Moreover, we let TL^x ,t denote the (hnite difference) solution
operator dehned by

for any initial function wq wo(x) that is piecewise constant with respect to the
grid.

For later use, recall that the L°° norm and the L 1 norm of a grid function
W = {Wa ] are dehned respectively as follows:

For the scheme (19) we have the following properties.

m

(18) wt = £^2{Kj {x)Aj {w) Xj ) x _, w{x,o) - w0 (x),
3- 1

m

Wa"+1 =»C + [PM£et- <’”) - Pi-', (4.'” - At',)]3= l
m

+(1 - 0)E [øUA^~ 4'"+1 ) - (-4in+l -j— l

(21) 'HAx,t'Mo(x) Wn (x), ier, t e ((n - l)r,nr\, n = 1,2,

\\W\\ao= sup \\wa \\, \\W\h= T \Wa \Axm ,
aGZm aGZ™

and the BV semi-norm as

TV{W) =53 I - Wa% \Ax™-\
j,Ol
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LEMMA 2.2. Let Wn = {W"} and Vn = {V”} be approximate Solutions of
(18) generated by (19) with a time step r satisfymg the stabihty condition

Proof. The estimates are straightforward and we present the details only for
m = 1 (with Ki = K, Ai = A, and a = i G Z). First, we consider the L°° estimate
for the approximation {WfI }. Using Taylor expansions of A{W) we can rewnte the
scheme as

for suitable If we now choose i = f such that = maxi W,"+1 and use
the stability condition (22) we derive

Since WJ^1 < W"+1 , the inequality simplifies to max, W™ +1 < max, hF/1 . Simi
larly, by picking i= k such that FF"+1 = min, W?+1 we can bound W?+l from
below. Hence, max; \W?+1 \ < max* |fF™| and the L°° estimate follows by induction
on n.

To prove estimate on the total variation, we use almost the same argument.
Introduce Zf W?+ i - W- 1 . From the difference scheme (19) evaluated at i and
i + 1, we then get

for suitable Using once more the stability condition, we get

Hence £. |Z"+1 | < from which the TV estimate follows. The L 1 stability
estimate is derived by a similar argument. n

(22) Ømax/%(A')£ < 6maxfsup Kj{x) sup A' (u)) < —•

Then

M'"'lloo < P/C IU TV(Wn ) <TV{W°), Vill < lIW^-Vli.

[i + (i - ))] wi +l=
+ ))]WP

+ e[PiA'(Ci)W?+l+ ft_i A'{o-i)W/’l l ]
+ (i - fl) [ftA'te)WT+V + ft-^'te-1)^I ].

[l +(1 - 0){/3eA'{&) + Pt-iA1 {£i-i))] W^+ <

[1 - e{PiA'{Ci) + Pi-iA'(Ci-i))] maxW/1

+ 0\piA'{Q maxW?+1 + &_iA'(Ci-i) max^_JL i 1

+ (1 - 0) [f3iA' + fii-i A' .

Z,"+1 =zr + o[ft+i-4'(C.+i)Z"+l - 2ftA'(Ci)Z,n + -i)Z.-i]
+(1 - 9)[ft+l .4'(&+ i)Zr++11 - 2ftA'te)Z."+1 +ft-iA'(fj_ l )Zt!L+11 ].

52(1 + 2(1 - o)ft.4'te))|Z.n+l l < E(1 - 20)/M'(Ci)|Z."l
i *

+ 0 Øi+iA1 {(i+i)\Z™+ i \ + Pi-iA {Ci-i)\Zi-i l)
2 *

+ (i -»)(s2ft+i-4 'te+i)i z."++i1 ii^-Vi)-i *
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3. Convergence Results

In this section we will prove that the fully discrete splitting method (15) con
verges to a limit u{x, t). The proof is based on a standard L 1 compactness argument,
where we first use Lemmas 2.1 and 2.2 to bound the approximate Solutions uv in
suitable norms

LEMMA 3.1. Letuv denote the approximate solution defined by (15). Then uv
satisfies, for n,l = 1,2,...,

where C± and C% are constants independent of å, Ax, At.

PROOF. The first inequality follows since neither of the operators V.ax ,at,
S3å Ax At , or yr introduce new extrema into the solution (see Lemmas 2.1 and 2.2).

To prove the second inequality, we need to establish a bound on the total
variation of the composite hyperbolic operator Sd,Ax,At defined by (16). This result
is well-known and relies on the total variation non-increasing property and the
L l stability of each one-dimensional hyperbolic operator given in Lemma 2.1, see
Lie [37] and Holden and Risebro [29]. Combining this result with the fact that the
total variation is non-increasing in the parabolic step (see Lemma 2.2), the second
inequality follows.

It remains to prove the third inequality, which will be done by a technique used
first by Karlsen and Risebro [34]. For the product of the hyperbolic operators,
i.e., for the composite operator Ss,Ax,At defined in (16), the result is valid with
exponent 1 (i.e., Lipschitz continuity in time), see e.g., Lie [37]. Thus we focus on
the parabolic operator here. The key point is to establish weak Lipschitz continuity
in time for the finite difference approximation Wn defined in (20). To this end, let
DJ_ and DJ+ denote the backward and forward differences in direction j. Then:

where summation by parts (once in space) was used to derive the second equal
ity from the first one. Moreover, we have used the averaged test function (fa =
n(t){aAx), and the Taylor expansions e . AJ^ n = Ab{6a )\W£+e . W”] for suit
able 0a and løQ+e;; - <f>a \ < By repeating the above argument, we
easily derive

||u^(-,nAf)|| oo < ||uo||oo, \uv {-,nAt)\Bv < e CinAt \u0 \ Bv,

\\uv {-,iAt) - uv (-,nAt)\\i < C2 y/\n - £\ At,

j 4>(Wn+l - Wn)dx|

=er Y.[ØDi- iKUe,/2D3+ +(1 - S)dL K+ei/2 -DiAr+‘)]øQ Ax“
j,a

=er T,{eKLei ,2A'j«r.')D- WS+(1 -
j,a

< ||A' |U} ||VØ|U £(ø + (1 - o)\D>_WS+'\) te™- 1
3 j,a

< Constr || VøHoo,

(23) j (J){Wl -Wn )dx < Const ||Vøl|oo -n| r,
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which implies that | f (/>{nAx,AtWo ~ wo)dx\ < Const UVøIUAt. Combining this
with the strong Lipschitz continuity for the hyperbolic operator Så,Ax,At we derive

Let now uh be a smooth mollifier with support in [-h, h] m and define if to be equal
sgn(n£ - un ) for \x\ <r-h (r is some fixed positive number) and zero otherwise,
and finally iph =wh * Standard approximating arguments (see, e.g., [34]) show
that

j \uv {x,iAt) -uv {x,nAt)\ dx < Const y/\l-n\ At.

Using essentially the above lemma, Helly’s theorem, and several diagonal ar
guments, we can prove that the sequence converges to a function u.

Lemma 3.2. FixT > 0. Letuv denote the approximate solution defined by (15).
Then for any sequences Ati—y 0 and Ax{ —> 0 with Axi/At{ fixed, there exists a
subsequence of {urf), denoted and a function u such that

Moreover, the limit u{-,t) belongs to BV{Rm ) uniformly in t and is uniformly L 1
Holder continuous in time with exponent 1/2.

PROOF. The convergence proof is fairly standard, see, e.g., Smoller [4l] or
Karlsen and Risebro [34], From Lemma 3.1 it follows that the sequence {uv } is uni
formly bounded and has uniformly bounded total variation. Therefore, Helly’s the
orem ensures convergences of a subsequence {uVi } in L l on bounded boxes [-r,r]m
for each fixed t. Since r is arbitrary, the argument can be applied a countable
number of times to form a further subsequence, still denoted by {uVi }, such that
{ Ut? .(-,£)} converges in LfOC (Rm ) for each fixed t. Yet another diagonalization argu
ment gives convergence for a dense countable subset {ti} in [O,T]. For t £ {te},
there exists a sequence {tk } C {t£ } such that t k At. Bya triangle inequality

The first and third term can be made arbitrary small by making k large and using
the Holder continuity in time (see Lemma 3.1). The second term can be made
arbitrary small by making i,j large and using that t k )} is a Cauchy sequence
for each tk . Hence, {uVi {-,t)} is a Cauchy sequence in L/0C (MTO ) for all t G [O ,T].
We denote the limit by u. Finally, in view of Lemma 3.1, it is clear that the limit
u possesses the regularity claimed in the lemma. D

(24) J <j>{ur,{x,låA)-uv {x,nAt))dx < Const (\\(f)\\oo + HVøIU) \l -n\ At.

I \uv {x,iAt) - dx < C\h + C2 \i ~n\ At/h.
J [ r,r] m

By choosing h = y/\i - n\ At, and finally letting r -> oo we conclude that

um -*um L]oc {Rm x [O,T]).

I \um {x,t) - uVj {x,t)\ dx < / \uVi {x,t) - uVi {x,tk)\ dx
J[-r,r] m J[-r,r] m

+ I \u Vi {x, tk) uVj (x, tk)\dx + / \uT]j (x, tk) uVj {x, i)[ dx.
J [— r,r] m J[—r,r] rn
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It remains to prove that u is an entropy solution, i.e., that it satisfies (4) and
(5). We start with (4). However, as already mentioned, we will only manage to
establish this estimate for the implicit diffusion solver (and, of course, the case of
exact solution operators). In the next section we derive an upper bound on how
far each approximate solution uv is from satisfying (5).

Lemma 3.3. Suppose 6 = 0 in (19). Then the limit u constructed in Lemma 3.2
satisfies (4).

Proof. The proof is an adaption of the argument used in [22] (see also [18]).
For simplicity of presentation, we only treat the two-dimensional equation

(25) wt = £{K{x, y)A{w) x ) x + e{K{x, y)A(w) y ) y
and the corresponding implicit difference scheme

where W-j denotes the approximate solution of (25) at ( iAx,jAx, It) and Di, Di
are the backward and forward differences in direction £ x,y. Then extension of
the proof to the more general problem (11) is straightforward and is left to the
reader. Let us introduce the function

for some i,j GZ,/ = 0, ...,Nr -1, and n = with Nt t =At and
NAt —T. Here Tf3 denotes the triangle with vertices (Xi,yj ), {xi+i,yj), and
(xi+i,yj+ i), while T/;7 denotes the triangle with vertices (Xi,yj ), {xi,yj+ 1), and

j Vj+i ) • Let

SyA,= DIA(W‘P) on = l%.
Observe next that, independently of rj,

\\VlkAv \\ LHQt) < Const(T),

which is due to the fact that K, {W-}, and )TL \W\\ are uniformly bounded. We
next claim that, independently of p,

To see this, multiply the difference equation (26) by Ax2 A{W- Jf 1 ), sum over i,j,
and then do summation by parts. The result reads

wl+l -W1  
(26) ii = eDl{Ki+l /2J DIA(W‘y))+eDU

prooi to tne more general problem (ilj is straignttorward and is lett
ler. Let us introduce the function

+ D*+ A(W‘+l)(x-+ ~ %)-

4 ( for (x,y) g Tfa, t S (i"- 1 +lt, t" -1 +(( + l)r],

” X ’ y'~ | + DIA(W\y+1 )(x - Xi) + -
for \x,y) e TVj, t £ ( tn~ 1 + It, tn ~ l +{l + l)r],

some i,j €Z, l 0,...,iVr —l, and n= 1 ~..,7V with 7Vr r =
i T TTprP . HprmfpQ fVi O Lri 5} n crl O iinLVi trorLi r*oc (nr . (nr . . ~ m.

Ri,j = [xi,xi+l \ x [yl ,yi+l ]
and note that Ritj =Tf - U For later use, observe that

dx A„ = D*A(ff‘+‘) on Pii3- = U T&,

(27) y/£K{x,y)dz Av G L 2( z = x,y.

A*2 £ t 1 ) + Ax2 Y1 tKi+l/2J (DIA(W‘+ 1 )) 2
i,3 iJ

+ Ax2^2sKu+l/2 {DlA{W‘y)f = 0
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Multiplying this inequality by r and summing over l, we get

uv {x,y,t) = W-J 1 , for (x,y) G Rij, t G {tn I +lr,tn 1+(/ + l)r],

where / = 0,..., Nr —l. Moreover, we have that,

fuv {tn ) = uv {tn ) for all n = 1,..., N,

|l|u„(i) -un {t) ||i = 0(\/At) whenever t tn for some n =

uniformly in t G [O, 1Z-I ], so that u y u , with u being the limit constructed
Lemma 3.2. We can thus replace (28) by

Since .4(s) = f* A(£) d£ is convex, it follows that

- A(W‘j) < (W‘f - Wlj)A(Wf^).

We thus get

Ax 2 £ AiW^'] r A(nld + Ax^eK^jiDlAlW'^1 )) 2
i,j iJ

+ A x 2Y< 0
ij

Az 2 EM(</) - -A(W°j))+ (^.t 1 )) 2
i,j i .i

+ Ao:2rX;E^«+^(^«r)) 2 <
i,j l

Introduce the splitting solution

uv {t) = [Haxj-t71 - 1 ° Ss,Ax,At\ uq for tG (t ,t ],

where n 1,..., Ar and u™ 1 = n T? (tn 1 ). Note that

j{Auv )\ t=tn -Aurl )\ t=tn -i +)dxdy + x Av ) 2 dtdxdy

+JJ £K(x,y)(dy A71 ) 2 dtdxdy = o{Ax)
Observe that

IMK)| t=t-i + - A{uv )\ t=tn-i) dxdy | = o{Ax) + o{At)
which yields

j{Avv)\t=t"- A&J\t=t~-') dx dy + x Ari ) 2 dtdxdy

+JJ eK{x,y){dyAT 1) 2 dtdxdy = o{Ax) + o{At)

Summing over n, we get
T

j(A{url )\ t=T -A{url )\ t=zo )dxdy + eK{x,y)(dx Ar] ) 2 dtdx dy
T

+jj £K{x,y)(dy Av ) 2 dtdxdy = O{T).
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Since, independently of r], A{uv ) | t_oT 6 L l (M) DZ/°°(M), (27) follows. Therefore,
passing if necessary to a subsequence,

Since obviously

and, thanks to Lemma 3.2, A{uv ) —> A{u ) a.e., we conclude that A A(u) a.e.,
and thus (27) holds. This concludes the proof of the lemma.  

4. Entropy Estimates

In this section we derive a precise entropy estimate for uv , i.e., an estimate
saying how far the approximate solution uv is from fulfilling the entropy condition
(5). However, to accomplish this we need to introduce a new time interpolant uv
and first establish an entropy estimate for u v . To this end, we dehne intermediate
Solutions

for j 1,..., m, and n = 1,..., N. Next we split each time interval [tn 1 , tn ] into
subintervals [tr-, t7j+I ], j = 0,,m, where

(29)

for j = 1,..., m and n = 1,..., AL Observe that the sequence {u,,} converges to
the limit function u constructed in Lemma 3.2, since obviously

f uJtn ) = uv {tn ) for all n = 1,..., N,
(30) l V V

— un {t) l|i = At) whenever t tn for some n 1,... ,N.

4.1. Hyperbolic step. Since each one-dimensional hyperbolic step in (14)
is the exact solution of a perturbed version of (13), the corresponding solution
operator satisfi.es the entropy inequality

where vax,& denotes the front tracking solution of (17). For sufficiently smooth V, f
and initial data v 0 of bounded variation, a straightforward calculation gives (see,
e.g., [3B, 23, 33])

Ar, -> A weakly in H}oC {Qt).

Jj | Av {x,y,t) A{uv {x,y : t))\ dtdx = 0(Ax)

UV =7T o S3åAxAt o••• O 7T O SlAxAtU™ 1 , 1= W„ (*” *),

= ((w -1) + m 41" i) At , j-O, +

so that Vq =tn 1 and = tn . We then define (see [34, 23])

co 1 / (z (+n 4.n\
°<s,Aa:,(m+l)(t-f”_ 1 ) U V ’ V fcj-1 ) ) >

) <’m * e (C> C+l]

£{vAx ,s,<P, k-f6 , VAx ,o,vo,Ax,T) > Ofor m= 1,

£{VAx,å, </>, k] /, V, 0, Vo, T) - C{VAx,S,<l>, k] f 6, VAæ , 0, v0 ,Ax,T)

< ConstT(Ax + <52 ),
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In particular, it follows from this that the one-dimensional front tracking solution
vax,å satisfies

for all test functions p > 0. In (31), vAXtS {x, 0) coincides, of course, with the initial
function vO ,ax . Exploiting the particular structure of u v together with a suitable
change of (time) variable, it is fairly easy to translate (31) into (see [34, 23] for
details)

for j = 1, ..., m and n = 1,..., N. One should notice the factor m+ 1 coming from
the particular time scaling in (29). In (32), uv {x,tJ-) denotes the function before
the operator tt is applied.

4.2. Parabolic step. We now derive a corresponding entropy inequality for
the (degenerate) parabolic step in (14). This will be established by hrst proving
a discrete cell entropy inequality for the difference scheme (19). Similar (discrete)
entropy inequalities have been derived in Evje and Karlsen [23, 19, 21, 18].

We derive the cell entropy inequality only for m = 1 (with Ki =K, A 1 A,
and a = i G Z) to avoid complicated notation. Let

define the discrete difference operator

We now set out to derive the following cell entropy condition

Using the scheme and the fact that A is an increasing function, we can write (here
Aj1 denotes A(W™), etc.)

Sk {Wtn ) + etODq (KiDoQkiWn) = WP V k - W? A k

+ [(A? +l V A{k) - A™+1 A A{k)) - (Aj 1 V A{k) -A? A A{k))

+ OPi—i [ (Aj1 V A{k) - Aj1 A A{k)) - (A£_ 1 V A{k) - A?_ x A A{k))

/ / {\vax,s - k\(f)t + F{vAXi6,k){(t)Vj {x,t)) x } dtdxJrJo

( 31 ) > J \vAx>s {x, At) - k\<j>{x, At) dx - j \vAx,s{x, 0) - k\<f>{x, 0) dx
Const At{Ax + å 2 ),

J {\uv -k\(f)t + {rn + l)Fj {uv ,k)[(t)Vj {x,t)) xj }dtdx

> j lurtifj-) ~ k\(f){x,t])dx - I
Const At{Ax + 5 2 ),

Sk {u) = S{u,k) = | u- k |, Q k {u) = Q{u,k) = \A{u) - A{k)\

wn wn
"i+l/2 I—l/2

DoWi - Ax

and let a V k = max(a, k) and a A k = min(a, k).

(33) Sk {W?+1 ) - Sk {W?) - ETDo^Do^QkiWl1 ) +(1 - o)Qfc(^+1 ))] <O.

+ e/Si-i [(A? V A{k) -A? A A{k)) - (A”_i V A(/c) - A A(fe))]

=Hi(W?+1 V k,WP V k) -Hi(WP+l Ak,W? Ak),
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where we have introduced the function

17

The function Hz is increasing in all three arguments due to the stability condition
(22), so that

where we have used that Hi{k,k,k ) = k. Since A is a nondecreasing function, a
case analysis will reveal that

| A{v) - A{k)\ | A{w) - A{k)\ < sgn(v - k)(A(v ) A{w))

Now, we estimate as follows

Combining this inequality with (34), we arrive at the cell entropy condition (33).
To derive a global entropy condition, let p > 0 be a test function, multiply (33)
with rAxp™ {(f>f = ø(iAx,nr)) and sum over all i 6 Z and n = 0, ...,Nr 1,
where fVr r = At. Then, using summation by parts twice in space, we get

JV-r-l

{Sk{Wp+1 )-Sk (Wn)WAx0 >
n—0

Hi{u, v, w) =v + dpi ( A(u ) - A(u)) - Ofii-i {A(v) - A{w)).

St (W?) + erØD0 (K,DO Q k (W/*))

>Hi (W?+l, W", WP_ ,) V fc. i) - Hi(WP+l , IV,", W" A k,

' - H,(k,k,k)\

= \W,n+l k (1 ~ff)erD

Sk (W?+1 ) - £T[1 - O)Do(Ki DoQt(W”-+1 ))

=W[‘+' Vk- W"+1 A k+(l-0)13,[|^+1- - |A"+* - A(A;)j]

+(1 - [|A"+1 - A{k)\-\A"+ 1 -

<sgn {W?+1 - k){W?+1 -k)

+ (l-o)sgn(W7*+1 -^i1 ) + - A"-i))

<\W"+1 - k -(1 - e)eTD

Nr 1

~ tc E E +(l - O)Qt (W"+I )])]<l,fAxi n=o

= E - E SkiW^Ax
i i

i n—o
Nt -1

+ e E E [(»0»(W") +(1 - O)Qt (tV"+I ))Do (^i3oør)jTAi.i n=o
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Using the L 1 Holder continuity in time of {W/1 } (see Lemma 3.1 and its proof), we
can write

so that we end up with

(35)

Letting w{t) = T~L&.x,t'UJ o denote the finite difference solution (as defined in (21)),
we can obviously replace the discrete inequality (35) by its continuous counterpart

where w(x, 0) coincides with wO . A similar inequality can be obtained (with the
same argument) in the multi-dimensional case. Similar to the hyperbolic step, we
can translate this multi-dimensional inequality into the following entropy inequality
for the degenerate parabolic step (see [34, 23] for further details)

(36)

4.3. The splitting method. For j = 1,..., m+ 1 and n = 1,..., N, let Xj{t)
be the characteristic function of the subinterval To derive an entropy
estimate for the splitting method, we add (32) and (36), sum over j 1,, m and
n = 1,... ,N and rearrange terms, yielding

EEK(W") + (1 - 9)Q*(WT+I ))tAii n=o

= E E Q t (H/"+I )rAi + C'(Aiv/f),
i n=o

_1 r n+ l _ rhn 1

]T [Sfc(W?+1 )-—+ eQkiW^Doi^Dofå^TAx
i n=o

> Y SkiWiNT )^T Ax ~Y Sk (W^$Ax ~ Const At\/r.
i i

I I \\w-k\(t>t+£Qk{w)(K{x)<t>x ) x \dtdxJr™Jo J

> J \w{x,At)-k\<f>{x,At)dx-J \w{x,o) - k\<f>{x,o) dx

Const At{VAt + Ax),

t n 771
[ I m+l \\uv - k\(t)t +{m + l)£j2\Qj({lv’ k )\{Kj{x)(l)Xj ) Xj } dtdx

j= i

> j MC+i) -k\Hx,t^+l )dx- j |un (C) -k\(f){x,t^)dx

Const At(V/At + Az).

(37) C{uv ,(j),k-J,V, A,uO ,T) >Es+E* + En - ConstT(VAt +Ax + S),
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where

The three terms can be identified with the following sources for entropy production:
Es comes from the hyperbolic steps, E77 from the projections in the hyperbolic
steps, and En from the (degenerate) parabolic steps. We shall next bound the
three terms Es , En , and Eu , starting with Eu . By first splitting the integration
over [O,T] into a sum over intervals [tn~ 1 ,tn], we see that the sum over n can be
taken outside the double integral. Then writing

x v {t),k) - Qj{uv {tn I ),k)^dXj {KjdXj (p) dtdx

In El1 we can use the smoothness of ø( •, t ) to write

for t G {tn 1 , tn ) and some suitable Cj <n {x, t ) uniformly bounded (in j, n, x, t , rf) by
a constant C > 0. Inserting this into gives (where fl = supp(ø))

m „ N

ES =SZ // [l-(m + I)E^?(t)] ii J'(“i> l! {(f)Vj{x,t)) dtdx,
j=l J J Qt n= 1
N rn ~

Eir = / (Sk{nv - Sk{nuv [x,t 1-))^j(j)[x,t^)dx,n—lj=l'®

r f r N m

EH =e jj [l -(m+ 1) Xm+i {t)\^j Qj{uv ,k)dx .(KjdXj 4>) dtdx.Qt n= 1 j=l

Qj{uv {t),k) = Qj(uv {tn 1 ),k) 4- \^Qj (uTl {t), k) Qj{uv {tn 1 ), A:)j,

becomes + El1 , where

E?=sTf I [l -(m + 1 ),k) {KjdXJ <f>) dtdx,
j,n L J

f fl-(m + l)x" +I (t)
jn L J

(dXj {KjdXj <j>)) | (x f) = (dXj {KjdXj (j))) +Cj,n {x,t){t -tn 1 ),

\E?\ - £ YI I( f _ Qj&vit™ *)) {dXj iKjdXj (f))) I (a. >tn _ a) [l -(m + l)Xm+irø] dt

+J 1 C{t -tn x ) [l -(m + l)Xm+i (*)] dx

=Y2 f [ c{t {m + l)x^n+l it)\dtdx = O(At).
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For the second term, we have

For Es we use a similar argument (to obtain a similar estimate), so that

Now it remains to determine the entropy production due to the projection op
erator tt. For simplicity we present the argument for m 1; recali that each hyper
bolic operator is one-dimensional, see also [23, 33]. Introduce the grid boundaries
x l iAx, let v = v{x) be some function of bounded variation and let cp 4>[ x) A 0
be a test function. Then

The second term I 2 is straightforward estimated as follows:

To estimate the first term, let us first assume that Sk{u) is aC2 approximation of
|u k\. We can then obviously write

The first term integrates to zero and the second is always positive, so that ii > 0.
This latter inequality can also be made rigorous for Sfc(it) = \u k\ by suitably
approximating | u —k\ with C 2 functions, see [23]. Hence, I\ +12 > —CAx. From
this we conclude that also

Summing up, we have derived the following entropy estimate for uv .

In view of (30), this estimate translates into the following similar entropy estimate
for uv :

\E?\ < sup | A'(u) | me sup| dXj {KjdXj (f>)
|u|<i|uo l|oo Qt

x / / \uv {x,t) - uv {x,tn 1 )| dtdx
jßrrJtn-l
r

/ Vt dt = Const E At3/2 = O{VAi).
j,n n

Es +En > -ConstTVAt.

j (Sk {v)-Sk {7Tv)'Sj(l){x)dx = h +h

f [Skiv) -Sk dxi Jx '

+ f (sk {v) -Sk fø(x) - dx.
I Jx i

rm+ l

\i2 I V 7TV | dx

i

I f v{y)-v{x)dy dx < Const Ax TV {v).
£ JX{ JXi

Sk(v) = Sk{ttv) + S'k {7Tv){v - ttv) + C(x)(v - 7tv) 2 for some C{x) >O,

and therefore

Ix = f S'k {nv){v - ttv) + C{x){v - Tru) 2 dx.
i -'x '

E77 > ConstAx.

£(£,,, fc;/, V, A, uo ,r) > -ConstT(\/At +Ax + 5 2 )
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Lemma 4.1. The entropy production of the splitting method (15) is of order
o{VAi+ Ax + 5), or more precisely

(38)

for some constant C> 0 independent of the discretization parameters 77 = (Ax, At, 6)

From this lemma we can conclude that if the approximating sequence
generated by (15) converges, then it does so to an entropy solution of (1).

5. Summary

In this paper we have presented operator splitting methods for degenerate
convection-diffusion equations and shown that these approximations converge to
entropy weak Solutions. In a companion paper, [27], we apply these methods to
examples from the simulation of two-phase flow in porous media and certain models
for sedimentation-consolidation processes. We demonstrate that although the op
erator splittings may have certain potential pitfalls, such as splitting errors, lack of
mass conservation and grid orientation effects, they perform very well on most cases
and deliver more than the standard resolution with surprisingly high efficiency.
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