Regovt e
UV\A\«' W&/’L\t{ﬁgﬁ“' L &¢ ""_-}:;‘:--L’”‘-.,

am—

Department Modemafiak insb
of =
APPLIED MATHEMATICS

PARALLEL FUNCTION DECOMPOSITION
AND SPACE DECOMPOSITION METHODS
— PART II. APPLICATIONS TO
SPLITTING AND DOMAIN DECOMPOSITION

by
Xue-Cheng Tai

. Report No. 95 April 1994

UNIVERSITY OF BERGEN
Bergen, Norway







Department of Mathematics ISSN 0084-778x
University of Bergen
5007 Bergen

Norway

PARALLEL FUNCTION DECOMPOSITION
AND SPACE DECOMPOSITION METHODS
— PART II. APPLICATIONS TO
SPLITTING AND DOMAIN DECOMPOSITION

by
Xue-Cheng Tai

Report No. 95 April 1994



e

PARALLEL FUNCTION DECOMPOSITION AND SPACE
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ABSTRACT. This is a continuation of [39]. There, general convergence theory was
discussed both for function decomposition and for space decomposition. Here, we
are going to use the developed methods to solve partial differential equations and
variational inequalities. With the applications, we show that the splitting meth-
ods are ways to decompose a function of a minimization. By regarding domain
decomposition as ways of function decomposition or space decomposition, we can
get some preconditioned domain decomposition methods. We demonstrate by the
applications that the methods of [39] can be used for linear problems as well as for
nonlinear problems.
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§ 1. Tntroduction

In paper [39], we have proved tne convergence of some algorithms involving
a general function decomposition or a general space decomposition for a convex
programming problem. Here we are going to apply them to some specific partial
differential equations and variational inequalities. Our methods can treat linear
problems as well as nonlinear problems.

Before we go to the applications, we first recall the basic results of [39]. The
algorithms in [39] are proposed for the minimization problem

%IEF(D) ; (1.1)

where, K is a closed convex subset in a Hilbert space V, and the function F is
convex. We can reduce problem (1.1) into a number of simpler problems and solve
them in parallel if either the function F' can be decomposed into the sum of convex
functions or the space V can be decomposed into the sum of subspaces.

If the function F' can be decomposed into the sum of convex functions, we need
the following assumptions to use our proposed algorithms:

(F1). V is a Hilbert space and there exist Hilbert spaces V;, : = 1,2,--- ,m such

that m
=Nl (1.2)
i=1
(F2). F:V — R is a convex, lower—semicontinous function in V and there exist
convex, lower—semicontinous functions F; : Vi » Rin V;, : =1,2,--- ,m
such that o
F(v)=)» Fi(v), YveV. (1.3)
=1

(F3). K is a closed convex subset of V. There exist closed, convex subsets
K,cV, 1:=1,2,--- ,m such that

K=ﬁm. (1.4)

(F4). There exists a Hilbert space H such that
VeV, cH, i=1,2,--- ,m. (1.5)

Different algorithms were developed for minimization (1.1) under the above
assumptions. The algorithms not only reduce problem (1.1) into a sequence of
simpler problems and solve them in parallel, but also offer us different ways in
dealing with the constraints K and K;, ¢t = 1,2,--- ,m. To prove convergence of
these algorithms, we need the following properties of the functions:

(F5). For each i, F; is differentiable in V; C H and for any M > 0, there exists
&% : [0,2M] — R, which is continuous, strictly increasing and satisfies
64,(0) = 0 such that

(Fi(w1) = Fi(u2),u1 — u2)m 2 8y (|lur — uella)

(1.6)
Yui,uz € Vi, |lwillm, lluzlla <M .
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(F6).

o) o 212 m. (1.7)

1m =
llvi llr —oo ||vill B

If each F} is coercive, explicit error estimates are given for the proposed algorithms.
For the convergence of algorithms of §3.7 of [39], we need slightly different condi-
tions than (F5)—(F6) to have the convergence. These are assumptions (F5')-(F6')
in [39].

If we do not split the function F' of problem (1.1), but we split the space V,
then we also can reduce (1.1) to a number of simpler problems and use parallel
processors. In this case, we need to assume:

(S1). V is a Hilbert space and there exist Hilbert spaces V;, : = 1,2,--- ;m such
that

V=W+V+ - +V,. (1.8)

(S2). K is a closed convex subset in V. There exist closed and convex subsets
K; of V;, 1 =1,2,--- ,m such that

K=Ki+Ky+: -+ Kpn . (1.9)

(S3). F(v) is uniformly convex and differentiable in V.

Under these assumptions, let us consider the minimization

‘;.'nellr}; Flvy+ve 4+ vm) . (1.10)

It is simple to observe that if (u;,uz,  -um) is the minimizer of (1.10), then
u =y * u;is the minimizer of (1.1). Problem (1.10) is a minimization problem
in a tensor product space. We are going to use the Gauss—Seidel method and the
under-relaxation Jacobi method to solve it. Convergence for them was proved
under the conditions

(S4).
F(v)
im ———=-+00. 1R
llvlly —+oo [|v]lv (111)
(S5). There are constants Cy, C; such that
CO“ Zvl”i < Z ”U,‘“%/, V’U,' = V'l" 1= 1a27' L (112)
1=1 1=1

and
YveV, Jv; € V;,1=1,2,--- ;m such that

m

m
Sovi=vand Y [l < Culolly

=1 =1

(1.13)




Condition (S5) is always satisfied for the commonly used overlapping domain
decomposition, see [9]-[11], [25]-[27], etc. For the case when F' is Lipschitz
continuous and coercive, explicit error estimates were obtained in [39]

For space decomposition methods it is sufficient to assume that the spaces V' and

Vi, 1 =1,2,--- ,m are just reflexive Banach spaces. For function decomposition
methods, the results can also be extended to certain cases when V and V;, : =
1,2,--- ,m are reflexive Banach spaces, see Remark 3.7.4 of [39].

In the following applications, we will use the standard notations for Sobolev
spaces and for finite element methods. For a domain Q C R¢, d is always the
dimension, 0f? its boundary and we will denote its unit outer normal vector by

d

= (ni,ng, - ,nq), En? — Il

i=1

Notations D; = %, i) :—j;, etc., will be used. 33;; denotes the outer normal

derivative on 0S2. For a given Hilbert space H, an operator A : Dom(A4) C H — H
is coercive if Ja > 0 such that

(Auy — Aug,u; —u2)g 2> allu; —us|| .
We call F; locally uniformly convex if (F5) is satisfied.
§ 2. Applications to splitting methods

§ 2.1. A PARALLEL SPLITTING METHOD FROM A PENALIZATION METHOD

In papers by Lu, Neittaanmaki ard Tai [30], [31], Lions and Temam [28, p.206]
and Bensoussan, Lions and Temam [1], some parallel splitting methods were stud-
ied. They use different approaches. Here we will show that these methods coincide
with the parallel penalization method when applied to elliptic problems that can
be regarded as minimization problems.

We consider an elliptic problem (linear or nonlinear)

Au=0 (2.1.1)
and we assume that this equation is derived from the minimization problem

{)réi;} F(v) . (2.1.2)

Here H is a Hilbert space, F is a convex function

F:D(F)CH~R (2.1.3)
and A is its differential in H.
Now, if F' can be split as
d
F(v)=) F(v), VveD(F), (2.1.4)

1=J]




and

F,:D(F)CH~R (2.1.5)

has a differential A; in H, then (2.1.1) is equivalent to

d
> Am=0. (2.1.6)
=11

We assume that Dom(F') and Dom(F;), : =1,2,--- ,m are Hilbert spaces and
d
Dom(F) = ﬂ Dom(F;) .
1=1

If each F; is locally uniformly convex and we take
= Dam(F A = =D am(F | = RIEC
then conditions (F'1) — (F'6) are satisfied. Using algorithm 3.3.1 of [39], we will

find
Algorithm 2.1.1.

Step 1. Choose an initial value u® € H and a parameter r large enough.
Step 2. For n > 1, find u?? € D(F;) from the following problem in parallel for
=12 d:

1 A X L M2
vED(F:) (F'(v')+2d|‘v' u ”H) : (2.1.7)

This is equivalent to finding u? € Dom(F;) such that

:%l(u:" == un) + Aiu? =0. (2.18)

Step 3. Set

un+1 _

d
> ul (2.1.9)
=1

ISHE

and go to the next iteration.

By defining 7 = %, we can see that this is exactly the algorithm studied in
Lu, Neittaanméki and Tai [30], [31]. The convergence is proved in [30] under the
assumption that each A; is coercive.

Remark 2.1.1. As we see from [39], the local uniform convexity of F; is very im-
portant in getting the convergence for algorithm 3.4.1 of [39]. The same is true for
the penalization methods. This restricts the applications of these methods mostly
to Dirichlet boundary conditions. When, for example, the Neumann boundary
condition is used, an integration by parts for a differential operator will produce a
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boundary term. This term destroys the ellipticity of the differential operator and
therefore destroys the convergence of the algorithms.
To see it clearly, let us take equations

d

- Z(D?u - fi)=0 inQ, (2.1.10)
i=1

u=0 ondf, (2.1.11)
Ou

or = = 0 ondf2. (2.1.12)

If the Dirichlet boundary condition (2.1.11) is enforced, then we can take

V = H}(Q), H=IL*9Q), (2.1.13)
Vi ={v| v, Dyve L*Q), v|sa =0}, (2.1.14)
d
F(v) = /Q Z (%|D,~v|2 = f,-v) dr | (2.1.15)
Fi(v) =/Q <?12-|D,-v|2 - f,-v) dz (2.1.16)

and F!(v;) is coercive in H = L%(Q) for v; € V;. Thus, we can use algorithm 2.1.1.
If the Neumann boundary condition (2.1.12) is enforced, we need to define

d
F(o)= [ =Y (3Dl = f)-vis,

(2.1.17)
Fi(v) =/ —(-1-D?v — fi) -vdz .
Q 2
It can be easily checked that for vy, vy € V;
(Fi(v1) — Fi(v2),v1 - v2)pg
(2.1.18)

=/ |Di(vy —vq)|?dz —/ Di(vy — v2) - (v1 — v2)nids
Q a0

which can even be negative. In order to avoid this, we may define the spaces in
another way, i.e.

ov

V ={v] ve H*R), e 0 on 09}, (2.1.19)
Vi ={v| v, Dyv, D?*v € L*(Q), D;v=0 on 89} ,

(2.1.20)
H = L*(Q) , (2.1.21)

and use the same definitions (2.1.15)-(2.1.16), we will get that F is coercive for
v; € V;, but now

d
V£V, (2.1.22)
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so we cannot get the convergence. Some numerical tests have been carried out
using the penalization methods. The numerical tests show that for the Neumann
boundary condition, if D;u # 0Oon 0 ¢+ = 1,2,--- ,d, then we can only have
lle® — el||g — 0, but not |le™||g — 0. If Diju =0 on 0%, then u € ﬂ?=1 Vi and
the numerical results show a first order of convergence for parabolic problems with

step size T = 7!,

Remark 2.1.2. The parallel splitting does not mean that we can only use d pro-
cessors. In the dimensional splitting case, each subproblem is again a series of
independent one dimensional problems, see Tai and Neittaanmaki [40], and they
can be computed again by parallel processors. If we solve each subproblem by L
processors, then we need d x L proczssors totally.

§ 2.2. THE ALTERNATING DIRECTION METHOD
AND THE LOCAL ONE DIMENSIONAL METHOD

The relationship between the alternating direction method and the augmented
Lagrangian method has been discussed in the book by Glowinski and Le Tallec
(16, p. 89]. Here we will show that a small change in the penalization function of
the last section will give us the local one dimensional method. Moreover such a
small change also turns the splitting method from a parallel one to a sequential
one, which means the fractional steps are not independent, but must be solved
one after another.

If (2.1.4) is true and V = Dom(F'), V; = Dom(F;) are Hilbert spaces, we can

see that the minimization problem (2.1. 2) is equivalent to solving

min F;(v;) . 2.2.1
veV,,veVZ (vi) (2.2.1)

v,=v

We put constraints v; = v, ¢ = 1,2,--- ,d as penalization terms into the cost
function and consider

v.-erai,f}eH [ZF(U )+ Z””' v”H] : (2.2.2)

It was proved in §3 of [39] that the minimizer of (2.2.2) converges to the minimizer
of (2.2.1) as r — oo. Algorithm 2.1.1 is an iterative method for minimization
(2.2.2). It is simple to observe that (2.2.1) can also be written as

v, €EV;

d
mia Y Fi(vi) . (2.2.3)
vi=v= =, =1
Instead of (2.2.2), if we put
Ve =v;, §=2,"d (2.2.4)

as penalization terms into the cost function, i.e. if we define the penalization
function as

d d

r
Z Fi(vi) + 24 Z |lvic1 — vill% (2.2.5)
1=11 1=2

and use the Gauss—Seidel method to minimize this function, we will get the fol-
lowing algorithm



Algorithm 2.2.1.

Step 1. Choose initial values u® € D(F).
Step 2. Forn >0, set u™*t! = u} , u? = u™"! and find u? € Dom(F;) sequentially
fori1=1,2,--- ,d by solving

S(uf —uf,) + A} =0. (2.2.6)

Step 3. Go to the next iteration.

If we take 7 = %, this is the well-known local one dimensional method, see
Yanenko [44] and Marchuk [34]. Its convergence can be proved as in the proof of
the convergence of the penalization method, see [39].

§ 2.3. THE AUGMENTED PARALLEL SPLITTING METHOD

The splitting and parallel splitting methods derived from penalization methods
introduce splitting errors. The accuracy depends on the parameter r. For fixed
r, if the iteration number n is getting large, the error may increase. The splitting
method derived from the augmented Lagrangian method does not have this draw-
back. The computed solution will become more and more accurate if more and
more steps of iterations are performed.

We apply Algorithm 3.5.1 of [39] to equation (2.1.6). We will have

Algorithm 2.3.1.
Step 1. Choose initial values /\? € H, and u? € D(F;), 1 =1,2,--- ,d.
Step 2. For n > 1, set

d d
n __ 1 § n—1 i § : n—1
u = -(_i ui + EI — Ai o (231)

=il

Step 3. Find u? € D(F;) in parallel fori =1,2,--- ,d such that

—g(u? —u™) + Al + %l/\?‘l =0. (2.3.2)
Step 4. Update the multipliers as
AP = AP 4 p(ul — u®) (2.3.3)

and go to the next iteration.

The bulk of computation is in step 3, but they can be done in parallel for
different ;. Step 2 and Step 4 are only arithmetic averages. This algorithm is as

easy and as quick as the algorithms of §2.1-2.2, but it is free of splitting errors.

For its convergence, we need not to take r — 0o. Forany r > 0,if 0 < p < ktf@r,

then u™ — u.




§ 2.4. A PARALLEL SPLITTING METHOD
FOR GENERAL BOUNDARY CONDITIONS

Consider the elliptic equation

d
=Y Di(ai(z)Diw) + cla)u = f(z) in @ C R (2.4.1)

with boundary conditions

u=0 onl; CON, (2.4.2)
d
> ai(z)Diun; + b(z)u =0 onT, C Q. (2.4.3)

=il

Above, 0 < ¢; < ai(z) < ¢ < 00, @ = 1,2,---,d, ¢(z) 2 0, b(z) > 0 and
Iy UT, = 0. Moreover, there exists c3 > 0 such that ¢(z) > ¢3 or b(z) > c3.
If I'; = 0, then this is the Dirichlet boundary condition. If 'y = @ and b = 0,
then this is the Neumann boundary condition; if 4 > 0, this is the third boundary

condition. The following approach can deal with all these boundary conditions.
Let’s define

V={v] veH(Q), v=0 onTl;}, (2.4.4)

d
1
F(v) = = /{;(Z a;|Div|* + cv®)dz — /Q fvdz + %/I‘ bv’ds . ( ;
i=1 2 2.4.5

V is a Hilbert space with the usual H'-norm and inner product. If I'; # 0, then
the corresponding seminorm is a norm. If I'; = @, then V = H(Q). If T; = 99,
then V = H}.

It is generally difficult to use splitting methods for Neumann boundary con-
ditions, see Remark 2.1.1 and Marchuk and Kuznetsov [35]. For more general
boundary conditions, it is even more difficult. In the following, we will see that if
we use Algorithm 3.7.1 of [39], we will get a parallel splitting method which has
a natural preconditioner in the discrete case and is convergent for (2.4.1)—(2.4.3).

Now, let us specify the functions and spaces. Assume f and c can be split as

d d
= o= @ (2.4.6)
=] =1
then, we can define
Vi={v| v, DiveL*Q), vlr, =0}, K;=Vi, (2.4.7)

Filv) = %/{;(ailD;vP + civ?)dz — /ﬂ fivdz + %/1‘ bn?vids . o
2 2.4.
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Space V; is equipped with the inner product

(v, v)v; = (u,v)r2() + (Diu, Div)r2(q) -

As ZLI n? =1 on 99, it is true that

d
F(v) = Z Fi(v), (2.4.9)
d
V=[V. (2.4.10)

With these definitions, F; is not differentiable in L%(Q) because of the boundary
term. However, we will show that F; is differentiable in V;, and F} : V; — V; is
coercive.
For any v € V;, let ¢;(v) = F}(v) € V;. By definition, see [39, §2], it means that
F; tw) — F;
lim DO =R vwev; (2.4.11)

t—0+ t

It i1s easy to check that
F,'(v + tw) — F,'(v)

lim+ :
s (2.4.12)
=/(aingD;w + civw — fiw)dz +/ bnvwds .
Q T,
It follows from (2.4.11) and (2.4.12) that ¢; should satisfy
/(aiD,-vD,-w + civw — fiw)dz + bn?vwds
& = (2.4.13)

=/(Di¢,-Diw +giw)ds, VweV;.
Q
Following the proof of Theorem 1.1 of Tai and Neittaanmaki [40], we can prove

that there exists one and only one ¢; satisfying (2.4.13). This ¢; is the solution of

~D?¢i + ¢i = —Di(a;Div) +civ— f; inQ,
D,’¢,‘ = a,-ng = bn,-v on Fg y (2.4.14)
¢i =0 on Fl 5

To show the coercivity of F} : V; — V;, we need to prove that there exists a > 0
such that
(Fi(v1) = Fi(v2),v1 — v2)v; 2> allor —val¥; - (2.4.15)

Writing v = v; — vz, we can get from (2.4.12) that
(Fi(v1) = Fi(v2),v1 — v2)v;
=/ﬂ(a,1D.-v|2 +c,~v2)d:c+/r bn?vids (2.4.16)
> min(ai,ci)|]v||%/‘ . 2
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This proves (2.4.15).

Therefore, the conditions of Theorem 3.7.1 of [39] are fulfilled and algorithm
3.7.1 and algorithm 3.7.2 of [39] are convergent. To use algorithm 3.7.1, in step 2
we need to find u™ € V such that

(Vu",Vo)r2(q) + (u,v)r2(0)

d
= [(Diu}, Div)p2() + (u},v)L2(e)]
1 d
+- (DX} ™, Div)raqa) + (A7 v)a)) , YoeV .

1

]

In step 3 we need to find u? € V; in parallel for : = 1,2,--- ,d such that

(a;D;u?,ng,-)Lz(m o (CiU?,vi)U(Q) =t (b"?u?’vi)m(l‘z)

T n n n n
+ = [(D,-(u,- —u"), Div;)p2(q) + (ui —u >U=')L’(Q)]

1 n— n—
=(f,vi)r2(q) — y [(DiA? =1, Divi)p2(a) + (AP Y vi) 2]
VYv; € V; .

(2.4.18)

Step 4 is just the updating of the multipliers: choose 0 < p, < 2r and set
AP = A" Lo (ul —u”) ,i=1,2,--- ,d. (2.4.19)
To write them in a partial differential form, equation (2.4.17) is
—Au"+u"=h" inQ,

u"=0 only,

(2.4.20)
ou" r
on =9 onlz,
where
d 1 d
T e —D?y® o W D2 ol
h ‘"Z( Dzuz +u:)+r2( Dz’\; +)‘; ),
1=1 1=1 (2421)
: 1
n _ YL s e = D ek
g —;(D,u,n,-}— ~DiA} " ) (2.4.22)
and equation (2.4.18) is
[ 2 -D?(u? —u™) +u® —u"] — Di(a; D;ul) + c;u?
1
TR S ) in Q
) fi= g X7 (2.4.23)

n
;ORI

1
k a;Diu] + bnu] + -SD,-(u:l —u") + ED,-)\?"I =0 onTl,.

1




For each 1, (2.4.23) is a series of independent one dimensional problems, which can
be solved using one dimensional methods in parallel, see Tai and Neittaanmaki
[40] and Tai [38]. In the discrete case, equation (2.4.23) has a preconditioner
(I = D,‘Z)_l .

If we multiply the boundary condition of (2.4.23) on I'; by n; and sum up for
1 =1,2,---,d, we will find that

d d
Doulr - bin2y™) 4 " e 4 Lpoan—1,._ T Ou" _
;(G:Dzui n; + bzniui ) ar (_i ;(D;Ui n; + ;D'/\i n:) — 2 6n =0 on F2 .
(2.4.24)
From the definition of ¢™ in (2.4.22), this means that
4 r r Ou™
E(aiDiu?ni + binul) + (—ig" 939 = 0 onTy.

=)
But in (2.4.20) we have aa“—: = g™, thus

d d
Z ajuln; + Z niu? =0. (2.4.25)
=1 1=l
From this, we see that to solve equation (2.4.20) is to project an element from

‘.l= Vi to the diagonal subspace 7 and this projection enforces the condition
=1 g
(2.4.25) to be valid on T',.

Algorithm 2.4.1.

Step 1. Choose initial values \? € V;, 1 =1,2,--- ,d, then forn > 1,

Step 2. solve u™ € V such that it satisfies (2.4.20).

Step 3. Solve u} € V; in parallel for i = 1,2,--- ,d such that it satisfles (2.4.23).
Step 4. Update the multipliers as in (2.4.19) and go to step 2.

This algorithm is efficient only if we have a fast solver for (2.4.20). From
Theorem 3.7.1, the convergence for this algorithm is not only in L?(2), but in the
norms of V and V;, i.e.

|lul —ully, =0, n—oo00, Vi, (2.4.26)

|lu™ —ully =, n—oo. (2.4.27)

For this algorithm, we get both inner and outer iteration preconditioners by
paying the effort to solve (2.4.20) in each iteration.

The above algorithm can also be generalized for the more general elliptic equa-
tion

(4 d
=3 Di(aij(z,u)Dju) + c(z,u)u = f(z,u,Vu) inQCR?,
1i=1 j)=1
j u=0 onl; CON, (2.4.28)
d
Z aij(z,u)Djun; + b(z,u)u = g(z,u) onT,; CIN.
\ 1,7=1

13



We assume
aij(z,u) = aji(z,u) , Vi,j,Vz,u. (2.4.29)

We do not specify the other assumptions on the functions.

Let’s first assume (2.4.28) is a linear elliptic equation, i.e. the functions a;j,c, f, b
and ¢ are independent of u and only depend on z. A selfadjoint elliptic equation
is equivalent to a minimization problem. This means that (2.4.28) can be solved

by

min F(v) . (2.4.30)

vEHY(Q)

v|r1=0

Above
T L 1
F(v —_-—/( a;;DivD;v + :v2)d:z—/fvd:c-+—— bvzds—/ gvds .
/=3 Jol 2P AT R 3

(2.4.31)

If we split b,c, f, and ¢ as

d d d d
b:an?, c=Zc.-, f=Zf.‘, g=zgi, (2.4.32)
i=1 i=1 =1 =1

and define
1 . 1
Fii(v,v) = = [ (aii|Div|* 4+ ¢ijv®)dz — = | fivdz
4 Jo 2 Ja
1 2 5, 1
+ - bnjvds — - givds , (2.4.33)
4 g 2 It
Fij(vi,v5) = % / a0 s D d e S =N (2.4.34)
Q
then
d d
F(v)=)Y_> Fij(v,v), VYveHY(Q). (2.4.35)
=1 ;=1

We can use the augmented Lagrangien method to turn (2.4.30) into a minimization
problem in a tensor product space. Let us define V; as the same as in (2.4.7), i.e.

Vi={v| v,DiveL*Q), v=00nT,}. (2.4.36)
and define X as
d
X =[] Vi={(vr,v2,--- ,0a)| vi€ Vi, i=1,2,---,d}. (2.4.37)
1=1
We can see that
Fi; :VixVimR, (2.4.38)
Fi; :VixV;—>R (2.4.39)

14




are well defined. Define

d d
J(v1,v2, -+ ,vq4) = ZZF,J(‘U“UJ . (2.4.40)

=18 =il
We see that (2.4.30) is the same as
min J(v1,v2,- - ,v4) - (2.4.41)
(v1)v2a"'vvl1)€X
vI=v2=-=v4g

Define the augmented Lagrangian function for J as

d
r
Jr(vavinu'i) = J(U1,’U2,' o ,Ud) + E 'Z_; ”’U,‘ - ‘U”%/‘

(2.4.42)
1 d
2 Z -, ﬂ'i)Vi :
For known u™, /\?'1, t=1,2,---,d, if we use the Gauss—Seidel method to minimize
- d
Jr(unvvi3 /\?—l) = J('Ul, U2, ,Ud) + E Zl ”’U,‘ - un”%/.
= (2.4.43)

d
1 n n—1
+3;(vi—u AL

we will get a sequential splitting method. If we use the Jacobi method, we will get
a parallel one. The extension to general nonlinear equation (2.4.28) is to combine
the above procedure with the following linearization

d d
- Z ZDi(aij(x,u")Dju""’l) + ¢(z,u™)u™! = f(z,u",Vu™) in Q

=1 =1
{ u"*'=0onT,
d
Z aij(z,u™)Dju" 'n; + b(z,u™)u"t! = g(z,u™) on T, .

\ 1,7=1

(2.4.44)
Such a linearization approach has been used in literature, see Douglas and Dupont
(6], Hayes [18], [19], [20], Douglas, Dupont and Percel [7], Hlavacek, Kfizek and
Maly [21] etc. The convergence can be proved under certain conditions. As the
convergence does not follow from the analysis of §3, we may report on it in a later
paper.

Remark 2.4.1. The finite element method is flexible in dealing with general bound-
ary conditions on complex geometry. In the literature, there are some papers that
try first to discretize the equation (2.4.28) by the linear finite element method
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and then split the matrices in some way. In Marchuk and Kuzin [36], the linear
finite element method is used first and then the matrices are split into four parts,
actually in four directions. In Hayes [18], [19], [20], the finite element patch ap-
proximation method is used, which first discretizes a domain 2 into triangular or
polyhedral elements, then there exists a mapping which transforms each element
to a triangle or a rectangle. The urion of these triangles and rectangles can be,
for example, a unit square. If we use the dimensional splitting in the unit square
and use patch approximations, it corresponds to alternating along curved element
boundaries in the original complex region.

For special boundary conditions, there exist some methods. In Fryjazinov [13], a
method to deal with the third boundary condition was proposed. The convergence
is of half order with the penalization parameter r. In Dryja [8], a linear finite
element method was studied for the third boundary condition.

If the domain  is the union of rectangles, the boundary conditions are easy
to deal with. In the literature, there are many papers that consider the splitting
methods in rectangular domains. f the domain is a general domain, but only
with the Dirichlet boundary condition, then it is also easy to use the splitting
methods. In fact, in the literature, most of the papers deal with Dirichlet boundary

conditions. If the Dirichlet boundary conditions depend on time, special care
should be taken, see [44], and [22], [37].

§ 2.5. APPLICATIONS TO VARIATIONAL INEQUALITIES

As one example of application, we will use algorithm 3.6.1 of [39] to solve the
obstacle problem

—Au=finQCR?,
u>¢in ), (2.5.1)
u =0 and ¢ < 0 on 09 ,

see Ciarlet [4, p.289] for specific assumptions on the functions. We split f as

= 0 (2.5.2)

and define the functions F, F; as

F(v) = A <%|Vv|2 —fv) dz ,

Fi(v) = /9 (%]D,-v|2 - fgv) dz .

Spaces V, H and V; are taken as the same as in (2.1.13), (2.1.14). If we take
K={v] veH(Q), v>sae inQ}, K;=K,Vi,

then the conditions (F'1)-(F'7) are satisfied. We use algorithm 3.6.1 of [39] with
step 2 and step 3 decoupled for (2.5.1). This gives
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Algorithm 2.5.1.

Step 1. Choose initial values \? € L?(Q), u? € V; fori =1,2,--- ,d.
Step 2. Forn > 1, set

d d
n ]‘ n— 1 n—
u =max(¢,3 E u; 1+r_d E APy (2.5.3)
1=1 1=}

Step 3. Find u? € V; in parallel fort = 1,2,--- ,d such that

1

T(u® —u™) = D% = f, —
d(uz 'Lt) Dlul f' d

At (2.5.4)
Step 4 Update multipliers and go to the next iteration:

AP = AP 4 pa(ul —u™) . (2.5.5)

Above, step 2 is the projection from L?() to the constraint set K. The operator
”max” is in the distribution sense. In step 3, (2.5.4) is an independent two point
boundary problem with a homogeneous Dirichlet boundary condition in every
line in the z;—direction. Each one dimensional problem is as simple as a Laplace
equation. They can be solved by parallel processors, see Tai [38]. Equation (2.5.4)
does not have a preconditioner like equation (2.4.23), because the penalization here
is done in the space L?(Q).

§ 3. Applications to nonoverlapping
domain decomposition

§ 3.1. INTRODUCTION

A given energy function over a domain 2 can always be decomposed into the
sum of the energies over the subdomains, regardless of whether the minimization
of the energy function leads to linear or nonlinear problems. Let us take the
minimization problem

mir’./ L(v)dz . (3.1.1)
Q

veV

If L is differentiable in V', minimization (3.1.1) is equivalent to solving

L'(u)=0, ueV. (3.1.2)
If we partition the domain into nonoverlapping subdomains Q;, : =1,2,--- ,m,
D= s i@ =0, ok (3.1.3)
=1

then

/Q L(v)dz = i:: /Q | L(v)dz . (3.1.4)
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By choosing suitable spaces, the problem will fit into the theory we studied in §3
of [39]. Therefore, we can reduce (3.1.1) to smaller size problems and use parallel
methods to solve it. In the following sections, we will use a specific mapping
L. In §3.2, by applying the projection multipliers method of §3.7 of [39] to a
linear elliptic equation, we get a p-econditioned parallel domain decomposition
method. This method needs to solve an equation like the Laplace equation in
each step. In §3.4, we transform the solving of a partial differential equation into
a minimization problem of functions on the interfaces, and thus get a parallel,
but not preconditioned, domain decomposition. The method is neat and easy to
implement. Applications to nonlinear and variational problems are also discussed

in §3.2 and §3.3.
§ 3.2. PARALLEL PRECONDITIONED DOMAIN DECOMPOSITION METHOD

Let’s solve the elliptic linear equation

d d
=" (Diaij(z)Dju) + e(z)u = f(z) in QCR?,

=1 j=1

u=0o0nodN .

(3.2.1)

More general boundary conditions can also be considered, see Remark 3.2.2. As
usual, we assume

ay; € L=(Q), a5 = a5z, Ve, 3. (3.2.2)
d d
aij(e)6ikj 21y & Q. (3.2.3)
i=1 j=1 i=1
ce€L>®(), ¢20inQ. (3.2.4)

For simplicity, we use the notations

d d
Av = — Z Z Di(aijDjv) + cv (3.2.5)
1= ="1
Bv=-Av+v. (3.2.6)
We partition the domain 2 into nonoverlapping subdomains Q, £ =1,2,--- ,m.
We use
= (nf’ né, "0 g "5) (327)

to denote the unit outer normal vector of 9Q; and use

Ov 4

ok = .Zl a;;Djun¥ (3.2.8)
i,j=

Ov 4 k Ov Ov
i=1
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to denote the normal derivatives.
With assumptions (3.2.2)-(3.2.4), the elliptic equation is a minimization prob-

lem

where

in F(v), 3.2.10
) (D)

F(v) = i[/m %(iiaiju,-wjv +cv2) dz — /m fvda:] . (3.2.11)

k=1 i=1 )=1

Let us define

with inner product

H={v] ve H (%), k=1,2,--- ,m} (3.2.12)
(u,v)H = Z(u,v)Hl(Qk) . (3213)

=1

It is clear that F'(v) is also well defined over H.
We regard H}(2) as a constraint set in H, i.e. define

U= dd = () (3.2.14)
and write (3.2.10) as
rréif(lF(v) L iCE (3.2.15)

If we use the project multipliers method Algorithm 3.7.3 of [39] (with step 2 and
step 3 decoupled) for (3.2.15), we will get the following algorithm

Algorithm 3.2.1.

Step 1.
Step 2.

Step 3.

Step 4.

Choose initial values \° € H and u? € H.
For n > 1, solve u™ € H}(Q) from

(u™,v)mica) = O ("2 + A" v)me,), Vv € HY(Q) . (3.2.16)
=1
which can be informally written as

(3.2.17)

1

Bu"=Bu""*+-BA""! inQ,

T
u®=0 ondf).

Find u™*2 € H'(Q) in parallel in each of the subdomains Q,k =

1,2,--- ,m from the followirg equation
rB(u™t? —u”)+ Au"tT = f —BA"l  inQy
n+i A1 nt+d _ m (3.2.18)
Ju kz +6 i +r6(u 2k u )=0 on 8% .
on’ ong ong
Update the multiplier and go to the next iteration:
A" = A" 4 p(uttE — ) | (3.2.19)
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We can see that (3.2.16) is a simple equation. We should use an efficient fast
solver to solve it. Let us notice that (3.2.18) is preconditioned by B~!. In the
discrete case, the convergence of the computed solution of the algorithm to the
true solution should be independent of the mesh sizes used for each subdomain
and the mesh size used for (3.2.16). The convergence of this algorithm is also
independent of the number of the subdomains.

In (3.2.17), functions u™ and A"~! are only piecewise H!-functions, so Bu"
and B/\:'-1 produce § functions along the interfaces. In an actual computation,
we should use (3.2.16) to form the algebraic equations.

In order to guarantee the convergence, we need to know that F' is coercive in
H. This can be checked similarly as in (2.4.11)—(2.4.16) of §2.4

Remark $.2.1. We may see that this method can also be extended to some mono-
tone nonlinear and variational problems which can be regarded as a minimization
problem.

If we are solving a nonlinear problem, step 2 and step 4 are the same as in

algorithm 3.2.1, while in step 3, we need to solve a preconditioned nonlinear
problem in each subdomain in parallel. If the problem is extremely nonlinear, we
can choose each subdomain to be a single element. Then the unknowns are very
few and can be solved easier than when dealing with a lot of unknowns. We see
from Theorem 3.7.2 that the convergence to the true solution does not depend on
the number of the subdomains, because in Algorithm 3.7.3, the function is not
split into the sum of functions.

In solving a variational inequality, (3.2.16) should be solved in a constraint set
and all the other steps are the same. So the parallel problems in each subdomain
are without constraints.

Remark 8.2.2. There is no difficulty in extending this method to general boundary
conditions. For example, if we are solving (3.2.1) with general boundary conditions
(2.4.2)—(2.4.3), then we should solve (3.2.16) with boundary conditions

du™  utTr  19Am!
a“n = uan +-—5— only, (3.2.20)

u"=0 onl,, (3.2.21)

and for a subdomain Q, if 3 NT2 # 0, then the boundary condition of (3.2.18)
on 09 NI, should be replaced by (2.4.3).

§ 3.3. PARALLEL PRECONDITIONED DOMAIN
DECOMPOSITION METHOD FOR NONLINEAR PROBLEMS

In this section, we briefly describe how to extend the algorithms of the last
sections to a nonlinear elliptic equation. The method can also be used for other
nonlinear problems.

Let us take the problem

(3.3.1)

—V-(|Vul*?>Vu)=fin Q2 (1 <s< ),
u=0o0n 0N .
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This problem can be reduced to a minimization problem

Find u € V such that
{ (3.3.2)
Fu) < F(v), YveV,
where
V=W,%Q), F()= / |Vou|*dz —/ fvdz . (3.3.3)

The spaces considered here are reflexive Banach spaces, but not Hilbert spaces,
except for s = 2. As in Remark 2.5 of [39] and Remark 3.7.4 of [39], we may
redefine the energy function and use the proposed algorithms. However, since the
solution of the nonlinear problem (3.3.1) can not be expected to be smoother than
W,*(Q), we can prove that there is no saddle point for L, defined in [39] in the
continuous case. This forces us to consider the discretized problem.

As in Glowinski and Marrocco [15], Ciarlet [4, p.312], if we replace W, '*(R2) by
a finite element space and solve the minimization (3.3.2) over it, the finite element
solution will converge to the solution of (3.3.1). Therefore, we can concentrate on
treating the finite element problem.

Assume 2 has been partitioned into finite elements 7). We define S} as the
nonconforming finite element space, i.e.

Sk ={v| vle; € Px,Ve; € Th,v =0 on 0} . (3.3.4)

The inner product of Sy, is

(v,w)s, = Y (0,0)H1(ey) - (3.3.5)

e; €Ty

We assume Q;, ¢t = 1,2,--- ,m is a nonoverlapping decomposition for {2 and each
Q; is the union of a block of elements. If we write the function F defined in (3.3.3)

in another form:
Z‘ / (|Vv|* = fo)dz ,

e, €Ty

we see that the function F is also well defined in the finite element spaces S;. If
we take

H={v] ve H(Q)N Sk, i=1,2,--- ,m}
with the natural piecewise H! inner product ,
K=S,nH}(Q), V=H, (3.3.6)
the discretized problem of (3.3.1) cza be solved by

?élﬁF(v), KcV. (3.3.7)

We use Algorithm 3.7.3 of [39] (with step 2 and step 3 decoupled) to get
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Algorithm 3.3.1.

Step 1, Step 2 and Step 4 are the same as in Algorithm 3.2.1.
Step 3. Solveu™t* € H'(Q;)NS, in parallel in each subdomain Qi k = 1,2,--- ,m
from the following equation

(rB(u"t2 —u™) - V. (IVu"+%|’"2Vu"+%) =f—B\""!, inQ;.

e n—1
n+1 ’_2D' n+i k 2
2 [V 3| D ing + ank, (3.3.8)

i=1

A(u™ts —um)

ik =0 ondQ .

+r

In each subdomain, (3.3.8) is a nonlinear problem with a nonlinear boundary
condition. We can use iterative methods as in Glowinski [14] and Glowinski and
Marrocco [15] to solve it. Equation (3.3.8) comes with a preconditioner B!,
Therefore, the convergence of the computed solution to the true solution should
be independent of the mesh sizes used. As this algorithm does not decompose
the energy function, the convergence is also independent of the number of the
subdomains.

§ 3.4. AUGMENTED LAGRANGIAN ALONG THE INTERFACES

In this section, we will reduce the solving of a partial differential equation
to a minimization problem of functions on the interfaces, and this minimization
problem fits well into the theory studied in §3 of [39]. The advantage of this
approach is that the augmented Lagrangian is done along the interfaces, which
1s natural for the matching of functions. This kind of manipulations have been
used in the literature for domain decomposition methods. In Glowinski and Le
Tallec [17], an augmented Lagrangian interpretation has been given to some of
the nonoverlapping domain decomposition, detailed convergence analysis was not
given in [17]. The method here is similar, but not identical.

In order to explain the ideas, let us consider the linear elliptic equation

d d
- Z Z Di(aij(z)Dju) + c(z)u = f(z) inQC R?

1=1 j=1 (341)
u=0 onTl; COQ, (3.4.2)
d
Z aij(z)Djun; + b(z)u = g(z) onTy C 0N . (3.4.3)
i,7=1

We assume a;; and c satisfy (3.2.2)-(3.2.4), b(z) > 0 on ', T UT,; = 99Q.
Moreover, there exists a constant ¢z such that ¢(z) > ¢; > 0in Q and b(z) > 0 on
T,.

For simplicity, we use notations defined in (3.2.5)—(3.2.9). We assume that Q

has been decomposed into nonoverlapping subdomains 2;,z2 = 1,2,--- ;m. For a
function v € H, we will use v; to denote the trace operator on 0f;, i.e.
viv = the trace of v on 0Q; . (3.4.4)
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We define

Iij =0Q:;n0Q; , Vi, j. (3.4.5)

Clearly, if Q; and §2; are not neighl:oring subdomains, then I';; = 0. If we know
the values ( of the solution of (3.4.1)—(3.4.3) on the interfaces, then the parallel
solution of

fene i
u=( ondQ;, (3.4.6)
u satisfies (3.4.2)—(3.4.3) on 0Q2

will give the value of u in each subdomain §2; and these values satisfy the compat-
ibility condition

Ou
anj4

Oou

J
oQ; 6nA

— (TR o (3.4.7)
oQ;

Let us introduce some notations and then show that (3.4.7) can be enforced by
a minimization problem of functions on the interfaces. Define

B ={¢| 3ve HY (), v|r, = 0 such that |sq, = 7iv ,i =1,2,--- ,m} .
(3.4.8)
This means each ¢ € B is the trace of a piecewise H! function. Because there is
no matching condition, ¢ has two values on each I';;. It will be easy to understand
this space if we regard I';; and I'j; as two different sets. The norm of B can be

defined as
1 m
Il =5 D~ 1l omy - (3.49)
=3

We notice that the inclusion
HiCcL*CH™: (3.4.10)

is true for the trace spaces. Therefore, we can use the idea of Remark 2.5 of [39].
We choose the weaker Hilbert space to be

H={(| ¢|r, =0, ¢ €L*%), i=1,2,--- ,m} . (3.4.11)

As there is no matching condition for functions in H, each ( € H has two values
on the interfaces. We define the inner product of H as

(Cma =D _(C,n)r2as) -
=1

We take K as the subspace of H that "glues” the function values together on the
interfaces, i.e.

K = {CI C € H1 ClF.‘j = CII‘,‘H Vl,]} 0 (3412)
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For a given ¢ € B, we denote by u(() the the parallel solution of (3.4.6) and define

| Zm: B /Q (iiaﬁ D-‘U(C)Dju(C)Jrcu?(C))dx - /Q fu(¢)dz

k=1 =1 j=1

F(¢) = s +/an . (%bu%()—gu(())ds] , Y(eB,

| +o00, (€H\B.

(3.4.13)
We take V = H and consider the minimization
e F(), KcV. (3.4.14)

From the existence and uniqueness of the solution of (3.4.1)—(3.4.3), we can easily
prove that the minimizer of (3.4.14) exists and is unique. Moreover, if n is the
minimizer of (3.4.14), then u(n) is the solution of (3.4.1)-(3.4.3) which satisfies the
compatibility condition (3.4.7) and 7 is the trace of the solution of (3.4.1)—(3.4.3).
Therefore, the partial differential equations (3.4.1)-(3.4.3) can be solved by the
minimization problem (3.4.14) and this minimization problem fits well into the
theory studied in §3 of [39],

With the weaker Hilbert space H, we can define the augmented Lagrangian
function as

L,:HxHxH—R
r

If we use Algorithm 3.7.3 of [39] to search a saddle point for L, over H x K x H,
we will get
Algorithm 3.4.1.

Step 1. Choose initial valuesn’® € H and \° € H.
Step 2. Forn > 1, set

n [ o 1 ne . .
pll“.'j:E(T/ 1|F.','+77 llrji)+Z(A 1|Fi5+/\ III‘,“')’VZ,]’

. (3.4.15)
and  p"lr, =n""'|r, + A",
Step 3. Solve in each subdomain in parallel the following problem
( Au” = f in Q; ,
6u. +ru® =rp® —A""!  on 8Q;\09,
on',
(e (3.4.16)
e +bhut+rut=g+rp"—A""! ondQNTy,
on',
L =0on dU: iR

24




Having solved (3.4.16), we get the value of
n"|r;; =u"Ir;; , V4,5, and 7n"|r, =u"|r, . (3.4.17)
Step 4. Update the multipliers and go to the next iteration
A" =A""14p.(" —p") onT;andly;, Vi,j=1,2,---,m. (3.4.18)

In the above algorithm, step 2 is a projection from H to K. Step 3 is to find a
minimizer " for (see (3.4.20))

n r n n n n n—
F(n™)+ 5lln" —p 1% + (0™ = p™, A" D
T n n n—
<SF(Q)+ oIC ="y + (" A", VCEH .

As H does not "glue” the function value on the interfaces, problem (3.4.19) can
be solved in parallel in each subdomain as in (3.4.16).

In order to get convergence, we will show next that F'(n) is coercive in B. For
any ( € B, let ¢(() be the parallel solution of

Ap =0 inQ;,
¢ =C( ondf;,
<¢=0 Onrlv

94
2 Lo = ,
{ aTLA SF ¢ 0 on Pg
It is easy to see that Vn,( € B

F(n+1t¢() — F(n)

& t

lim
t—;O ) )

=2, [ /ﬂ (33 ai; Diu(n)D;4(C) + cu(m)d(() — F8(Q))dz
k=1

k=1 j=1

(3.4.19)

(3.4.20)
; / (Bu(m)$(C) — gb(C))ds
1979 B

[ mng,
o2 \T2 anA

k=1
This means that F(-) is differentiable in B and F'(7n) - ¢ is equal to the left hand
side of (3.4.20). So

F'(m —n2) - (m —n2)

m d d
=) [/ (3. aijDid(m —n2)Djé(m — n2) + c¢”(m — 12)) dz

k=1 LY =1 j=1

+/ bo? (1 — 772)(18] (3.4.21)

O NIy
>C Y llé(m = m2)lncau)
k=1

>Clin —n2ll -
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This means F'(n) is coercive in B. By (3.4.20), we observe that if the solution u of
(3.4.1)—(3.4.3) satisfies u € H%(Q2), then F'(u) € H, so assumption (F7’) given in
Remark 3.7.4 of [39] is satisfied. However this is not necessary if we consider the
discretized problem. It is easy to see that (F6’) in (3.7.38) of [39] is also satisfied.
Therefore, from Theorem 3.7.2 of [39] and Remark 3.7.4 of [39], we get

In™ —nllp = 0asn— oo, (3.4.22)
Z lu™ — ul|g1(q,) = 0asn — oo . (3.4.23)
k=1

In case ¢(z) = 0in Q or ¢(z) > 0 in Q, we can only get
Y IV(u™ —u)llz2a,) — 0asn — oo .
k=1

This follows from (3.4.21) and Theorem 3.7.2 of [39]. As mentioned in Glowinski
and Le Tallec [16], this recovers the algorithm proposed in Lions [27].

Remark 8.4.1. We should be aware that this method can be extended to some
nonlinear problems that arise in minimization problems, for example, the dis-
cretized strongly nonlinear problem (3.3.1). But for general elliptic nonlinear
equation (2.4.28), the use of the method is not straightforward. Generally, equa-
tion (2.4.28) is not equivalent to a minimization problem like the linear selfadjoint
equations. As a result, if we define F(!) similarly as in (3.4.13), the minimization
of (3.4.14) cannot enforce the compatibility condition (3.4.7). A possible alterna-
tive is first to linearize the equation as in (2.4.44) and then naturally embed the
domain decomposition into each iteration of the linearization. Another alterna-
tive is using the fact that equation (2.4.28) is equivalent to solving the following
equations

( d d

—ZzDg(aij(x,w)Dju)+c(z,w)u = f(z,w,Vw) in,
{ u=0 onT;CON, (3.4.24)
d

E aij(z,w)Djun; + b(z,w)u = g(z,w) onTy CIN,

L t,7=1

under the constraint

== (3.4.25)

We may be able to use the augmented Lagrangian method to deal with constraint
(3.4.25) and the other constraints from the decomposition.

§ 4. Applications to overlapping domain decomposition

§ 4.1. INTRODUCTION

Let us consider a partial differential equation in a bounded domain  C R9¢. We
decompose  into overlapping subdomains Q;,1 = 1,2,--- ,m, i.e. @ =, Q;
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and for any ;, there exists at least one ; such that Q; N Q; # 0. With suitable
overlapping, it can be proved, see Lions [25, p.7], that

H(Q) = HY(Q) + H3 () - + Hy(Qm) - (4.1.1)

Therefore, if we are solving a second order homogeneous Dirichlet problem, from
(4.1.1), we can see that the overlapping domain decomposition is a decomposition
of space, which decomposes a large space into the sum of smaller spaces. As we
have proved in §4 of [39], we can use parallel and sequential methods for such a
decomposition.

Another observation for the overlapping domain decomposition is that

H(Q = ﬁ HY () . (4.1.2)

From this we see that if we regard H! as a constraint set, it is the intersection of
some smaller constraint sets. We may use the parallel algorithms of §3 of [39] to
decompose the constraints. This possibility is still not studied.

§ 4.2. EQUIVALENCE OF THE SCHWARZ ALTERNATING
METHOD AND THE GAUSS—SEIDEL METHOD

First we show that the Schwarz Alternating method, which is an overlapping
domain decomposition method, see P. L. Lions [25]- [27], is identical with the
Gauss—Seidel method.

As in P. L. Lions [25], let us consider the problem

—Au=f inQ,

{ u=0 ondN, &2

and divide {2 into two overlapping of the subdomains
=0, U (4.2.2)

We assume that the overlapping subdomains ensures
Hi () = Hy (1) + Hy () - (4.2.3)

Equation (4.2.1) is equivalent to minimizing

F(v) = /Q(%IVUIZ — fv)dz (4.2.4)

over H} (). If we use the Gauss—Seidel Algorithm 4.1.1 of [39], we will need to
minimize the following two problems

F(u;‘+1+u§‘) < F(vy +u3), VvleH(}(Ql),

4.2.5
F(u;’+1+u;+l)§F(u'l’+l+v2) , YVvg EH&(QQ) . ( )
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Define
1 1 1
wttl = PP Ll W22 = Pt (4.2.6)

Then minimization problems in (4.2.5) are just to solve equations

—Au?™t = fin Q,, —Au*2 = fin Q,,
u?"t1 =0 on Q0 NOQ, , and u?"*t2 =0 on 00N 0N, ,
u?™ ! = 42" on 90, \0900 , w?™t? = 42"t on 0Q,\00 .

(4.2.7)
We clearly see that this is the Schwarz Alternating method, which first solves an
equation in ; and then passes the Dirichlet data and solves in §2,.

It is important to observe that the Schwarz Alternating method is a Gauss—
Seidel method. With this observation, we can easily extend the method to more
general linear and nonlinear probleins and variational problems with general de-
composition of the domain. Morecver, we can use the Jacobi method instead of
the Gauss—Seidel method to get parallel algorithms.

§ 4.3. THE GAUSS—SEIDEL OVERLAPPING DOMAIN DECOMPOSITION

In this section, we extend the Schwarz Alternating method to more than two
subdomains by using the observation that it is the Gauss—Seidel method. From
the last section, we see that this method in case of two subdomains coincides with
the multiplicative overlapping domain decomposition, see Borgers [2], Widlund
[41]. In case of more than two subdomains, it seems they differ, see Dryja and
Widlund [9] and Zhang [45]. The numerical behaviour of the algorithms proposed
here still needs to be checked.

Roughly speaking, if we are solviag

Au=f, ueKCV. (4.3.1)

with A being the differential of a convex function in a Hilbert space V, A: V —
V*, f € V* and if we assume V and K can be decomposed as

V=> VW, K:Zm, (4.3.2)
1=1 =il
then, the Gauss—Seidel method needs to solve
AQ upt +ult 4> up)=f, uwteKiCcVi. (4.3.3)
k<i k>

In the following, we always have K; = V;, V.
Ezample 4.3.1. First, consider

d d

—EzDi((.iiju)+cu=f in §2 ,

1=l =1

u=0 onod).

(4.3.4)
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If we define
witt =) Cuptt a4 > up (4.3.5)
k<i k>i
then the Gauss—Seidel method of [39] needs to solve sequentially in subdomains
Q;,2=1,2,--- ,m the following equations

4

d d
—ZZDi(aiijw?+1)+cw?+1 =f in Q; ,
i=1 j=1
{ wl=0 ondQnoQ, (4.3.6)
wit! = Z uZ'H - Zuf on 9Q;\00Q
L k<i k>i
and in the memory we only need to store the values of u*! i =1,2,--.  m, which
are
ultl = P *1 — Zu?‘“ - Zuz in Q; . (4.3.7)

k<i k>t
n+1

Ezample 4.3.2. The Stokes problem
—Au+V-p=f mQ,

The value of u outside of (Q; is zero.

divu=0 inQ, (4.3.8)
u=0 on 0N
is equivalent to solving
f)r‘leig F(v) (4.3.9)
with
F(v) = /Q (%1\71)[2 — fv)dz , (4.3.10)
V={v] veHj), divv=0in Q} . (4.3.11)
For each subdomain 2;, we define
Vi={v| veHy(Q), dive =0in Q;} . (4.3.12)

If the subdomains overlap uniformly, it can be proved as in Lions [25, p. 12-14]
that

m

V=> V. (4.3.13)
=1
Therefore, if we define w*! similarly and use the Gauss-Seidel method of [39] for
(4.3.8), we need to solve sequentially the following equations in each subdomain:
(—Aw!' 4+ V.Ml =f inQ,,

divw?!*! =0 in Q;,

\ wlt! =0 on 89, NN, (4.3.14)
witt =) "uft + ) uf  on 82:\09 .
\ k<t k>
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After solving (4.3.14), set

wf =Pt =S uptt =Y upin @ (4.3.15)
k<i k>1

and store its value in the computer.

Ezample 4.3.3. For the strongly nonlinear equation

{—V “([Vul*7?Vu)=f inQ(1<s<o0), (4.3.16)

u=0 ondQ,

the Gauss—Seidel method needs to solve the following problem sequentially in each
subdomain Q;, : =1,2,--- ,m:
—V (VP 2Velrt) = f in Q;,
w?“ =0 ondQ;NoN,
wit =Y "uft + ) up on 80;\09Q .

k<i k>i

(4.3.17)

After the solving, set the value of u*! € H}(;) as in (4.3.15).

By Theorems 4.2.1 and 4.2.2, and Remark 4.1.2 of [39], all the above schemes
are convergent with corresponding error estimates.

§ 4.4. THE JACOBI OVERLAPPING DOMAIN DECOMPOSITION

In this section, we apply the Jacobi method of [39] to the overlapping domain
decomposition. The method is different from the parallel additive overlapping
domain decomposition, see Widlund [42], Dryja and Widlund [10], [11] and Zhang
[45].

The difference between the Gauss-Seidel method and the Jacobi method is
that the first one is sequential and the latter one is parallel. When using them for
partial differential equations, with tt.2 introduction of w?*?, the difference appears
only in the boundary conditions. Let us state the Jacobi method for the problems
considered in the last section without going into the details. In the algorithms, we
use the notations

m
U= S R
=1
m (4.4.1)
Judl n+i o
wit! = E up +u; 2 =u—ul+u; ?,Vi,n.
EeE

Algorithm 4.4.1. (Jacobi method for the linear elliptic problem).

Step 1. Choose initial guesses u} € H}(§;) and the relaxation parameters a;, i =
1,2,--- ,m such that 3 v a; <1
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Step 2. For n > 1, solve in parallel for : = 1,2,--- ;m in each subdomain ); the
following problem

d d
=YY Di(ai;Djwit) +cwit = f  in Qi
t=118)=1
¢ w!Ml=0 ond0Nnaq;, (4.4.2)
B = Z uy =u"™ on 09;\0N .
. k=1,k#i
Step 3. Set
ut ' = ul? +a;(wPt' —w™) inQ; and W' =0inQ\Q;, (4.4.3)

and go to the next iteration.

Algorithm 4.4.2. (Jacobi method for the Stokes problem).

Step 1. Choose initial guesses u? € H}(Q;) and the relaxation parameters «;, t =
1,2,--- ,m such that )~ a; < 1.

Step 2. For n > 1, solve in parallel for 1 = 1,2,--- ;m in each subdomain §); the
following problem

—Aw!M 4+ V.pMl =f inQ;,

2

divw!*' =0 in Q;,
witl =0 on 80N AN, (44)
w?’“ =u" on 0Q;\00 .
Step 3. Set
u!t = ul 4 oi(w —w®) inQ; and W' =0in Q\Q;, (4.4.5)

and go to the next iteration.

Algorithm 4.4.3. (Jacobi method for the strongly nonlinear equation).

Step 1. Choose initial guesses u? € H} (%) and the relaxation parameters a;, 1 =
1,2,--- ,m such that 3 .= c; < 1.

Step 2. For n > 1, solve in parallel for : = 1,2,--- ,m in each subdomain Q; the
following problem
-V (Vw1 2vu?t) = f  in Q)
w'tl=0 ondQ; NN, (4.4.6)
wltl =u™  on 80;\09 .
Step 3. Set
= u? 4wt —u") inQ; and T =0in Q\Qi, (4.4.7)

and go to the next iteration.
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By Theorems 4.3.1 and 4.3.2, and Remark 4.1.2 of [39], the sequence {u"}
produced by the Jacobi method is convergent.

It is novel to observe the relationship between the Jacobi method and the paral-
lel overlapping domain decomposition method. By using the Jacobi method or the
Gauss—Seidel method, we can get the same or similar algorithms that have been
proposed in the literature. For example, in Lu et al. [33], the following problem
was considered

a(u,v—u) 2 (fv—u)y, YweKCV. (4.4.8)

Above, a(-,-) is symmetric, bilinear and elliptic in a Hilbert space V. If assump-
tions (S1)—(S3) are valid and we use the Jacobi method for this problem, we need
to solve the following problems in parallel forz = 1,2,--- ;m

1
n+% n+3

1
a(ulTF —ul tut v —ul ) 2 (fvi—up *)y, VYui€ K, (4.4.9)

and then set
"+'1i

u?+l = ul + a;i(u] —u?). (4.4.10)

This is the same algorithm as in Lu et al. [33]. In [33], the convergence of the
above scheme was proved for the continuous and for the discrete case under the
condition that ) .-, a; = 1. The comain reduction method of Douglas [5] and
the domain decomposition methods of Lu et al. [29], [32] are also related to the
Jacobi method.

Remarks 4.4.1. We can also apply the Gauss-Seidel method and the Jacobi method
to equations with general boundary conditions.

§ 5. Conclusions and discussion

1. In order to ensure the convergence of the algorithms, we have always assumed
that the functions are convex, but the idea of transforming a minimization problem

m

min 2 Fi(v), K= QK,- cvV (5.1)

into a minimization over a diagonal subspace

m
min Y _ Fi(v;) (5.2)
vtj;t_:ISi i=1
can be used for certain other minimization problems where the functions and
constraint sets are not convex, for example, for the inverse problems.

In order to solve an inverse problem, a widely used method is the output-least-
squares method, i.e. minimizing the output error in the entire domain. If we
decompose the domain into nonoverlapping subdomains, the output error in the
whole domain is equal to the sum of the output errors in the subdomains. So we are
facing a minimization problem (5.1), which is not a convex programming. However,
by turning (5.1) into (5.2), we can get a convergent algorithm, see Kunisch and
Tai [23].
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2. To solve a partial differential equation is often to minimize an energy func-
tion, but there are some equations which are not directly related to minimization
problems. The non-selfadjoint linear elliptic equations and the general nonlinear
elliptic equation (2.4.28) are such examples. To extend the methods studied here
to these problems, we may need to consider their dual problems or use other ways
as in Cai [3], Xu [43], and Kuznetsov [24].

3. To solve the nonlinear problem

5.3
u=0 on 90N (&)

{ V- (|[Vu|**Vu)=f inQ(l<s<o),
by an overlapping or a nonoverlapping domain decomposition method, we need to
solve in parallel in each subdomain a nonlinear problem like (5.3), see (3.3.8) for
an example. For (3.3.8) in each subdomain, we can use the augmented Lagrangian
method as in Glowinski and Marrocco [15] to solve it. But we can also start from
another point. We consider a more general minimization

géigz;(Fi(Biv) +Gi(v)), KCV

and extend the results studied in §3 of [39] to it. We will get some algorithms which
naturally combine the domain decomposition and the augmented Lagrangian meth-
ods.

4. Motivated by the application of the parallel function decomposition methods,
we have up to now assumed that F; is differentiable and locally uniformly convex.
In order to use these parallel methods for more general variational problems, we
may need to relax this assumption by only assuming that

F, = F} + F}, (5.4)

and that F? is differentiable and locally uniformly convex, and F?}! is only convex.

We can observe that the function decomposition (2.4.35) in fact belongs to this
class if we take

F? = Fy, (5.5)
Fil = Z F'iJ' ’ (56)
J=1,j#i

. . . I . S S (/& .
where F? is differentiable and F" is coercive, F} is convex, but F} is not coercive.

Using a Jacobi method for this decomposition, we get a parallel splitting method.
Using the Gauss-Seidel method, we get the local one dimensional method.
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