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PARAMETER ESTIMATION WITH THE AUGMENTED
LAGRANGIAN METHOD FOR A PARABOLIC

EQUATION

TRYGVE K. NILSSEN AND XUE-CHENG TAI

Abstract. In this paper, we investigate the numerical Identifica
tion of the diffusion parameters in parabolic problems. The identi
fication is formulated as a constrained minimization problem. By
using the augmented Lagrangian method, the inverse problem is re
duced to a coupled nonlinear algebraic system, which can be solved
efficiently with the preconditioned conjugate gradient method. Fi
nally, we present some numerical experiments to show the efficiency
of the proposed method, even for identifying highly discontinuous
parameters.

1. Introduction

The purpose of this paper is to investigate some numerical methods
for efficiently identifying the unknown coefhcient q[x) from the follow
ing parabolic problem

(1-1) ut -V • (q{x)Vu) = f(x,t) inOx (O,T),

with the initial-boundary condition

Here fl can be any bounded domain in Rd , d > 1, with piecewise smooth
boundary dfl, and /(•,£) e H~ l { fl) t e (O,T), is a given source term.

The identification process is carried out in a way that the solution
u matches its observation data u d optimally. In many practical appli
cations, it is easier to measure the solution u at various points in the
medium than to measure the parameter q{x) itself. In this work we
assume that we have available measurements of u at some single points
for all time ud {xl ,t), i = 1,...,n; t G (O, T). The measurements
may contain noise.

For the identihcation problem, the hybrid method of [4, 5, 6, 1] will
be used, i.e. both the State variable u and the coefhcient q will be
regarded as unknown variables and the equation is considered as a
constraint. The augmented Lagrangian method will be used to solve
the constrained minimization problem. To hnd a saddle point for the

This work was partially supported by the Research Council of Norway (NFR),
under grant 128224/431.
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(1.2) u(x, 0) = uQ {x) in Q and u(x,t) = g{x,t) on dCI x (O,T).
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Lagrangian functional, we need to solve some coupled nonlinear Sys
tems. In Chan and Tai [l], the nonlinear systems were solved by the
sequential linearization approach of [6]. To solve the linearized equa
tions, it is rather expensive to assemble the system matrices. In this
work, we also use the linearization approach of [6] for time dependent
problems with sparse point observations. The costs of assembling the
matrices in the linearized systems are even more expensive. Thus we
have proposed an approach that avoids assembling matrices. Another
good point about the approach is that the meshes we use for the state
variable u and the coefficient q can be independent of each other. This
makes the algorithm very flexible with respect to varying the dimen
sion of the space where q is approximated, which is dependent of the
information available from the measurements.

The rest of this paper is organized as follows: The next section
presents the numerical scheme that is used to solve the forward prob
lem, and it shows how the numerical parameter estimation problem is
formulated and solved with the augmented Lagrangian method. There
after we show how the conjugate gradient method can be used to ex
ecute the steps in the augmented Lagrangian method in a way which
avoids assembling matrices. Finally we give some numerical experi
ments to show the efficiency of the method.

2. The augmented Lagrangian method

We shall first present an approximation for the forward problem
and then specify the augmented Lagrangian approach in a discrete
setting. The forward problem can be discretized in different ways. The
Lagrangian functional will be different with different approximations.
In this paper, we are going to use a finite element method for spacial
approximation and an implicit Euler scheme for the time variable. In
real industrial applications, finite difference or finite volume methods
may be used for the spacial variables and explicit schemes could be
used for the time integration. The Lagrangian functional then need to
be modified correspondingly.

2.1. Approximations for the forward problem. For simplicity, as
sume that CRd is a polyhedral domain and 'Th is a regular triangu
lation of 11 with simplicial elements (cf. Ciarlet [3]). The superscript
h denotes the diameter of the largest simplex of the triangulation. Let
\ h be the standard piecewise linear finite element space over this tri
angulation. This is the finite element space where u and / are defined.

To define the space for q , we let TH be a similar triangulation of 11
as the one above with either simplicial or rectangular elements. Let
WH denotes the piecewise constant finite element space over this trian
gulation. Note that the tnangulations for TA and Wjj might differ. In
practical applications, the dimension for TA is normally required to be
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much higher than the dimension of Wh- In case that Th is a refined
mesh of TH , the implementation is much simpler.

To fully discretize the parabolic system, we also need a time dis
cretization. To get that, we divide the time interval (0, T) into M
equal subintervals by using tn = nr , n = 0,..., M with r = T/M. We
initialize by setting:

where Ih is the linear interpolation operator into Vh using the nodal
point values. The discretized solution u JJ is then defined recursively by
solving:

(2.1)

In the above and also later, (•, •) is used as the inner product of L2 {Q)

h.
, we need to regard the equa-

tion as a constraint. To minimize the equation error, we need to use a
proper norm to measure the equation error. In our simulations, we have
used the following two inner products to produce different measures for
the equation error:

The corresponding norm is || • ||y = (-,-)y. When r = 0(h2 ), the
two norms produced by the two inner products are equivalent with an
equivalence constant independent of h and r for functions from Vh . In
such cases, we will use the inner product (2.2.b). When r is big, then
we need to use the inner product (2.2.a). In order to evaluate this
norm, we need to solve a large linear system. This can be avoided by
using equivalent norms produced by multigrid or domain decomposition
methods as in [7].

For any u G 04) M+l and q G Wh , the discretized equation error
e = e{q, u) G {Vh) M is defined

(2.3)

We see that en depends on q, un and un 1 . For any given q G Wjj and
u G {Vh ) M+l , we say that (g, u) satisfies the equation (2.1) if en = 0, Vn.

u°h = Ih {u0 {x)) e Vh

/ ni n ii n \
fh / ,vj +{qVu"h ,Vv) = (r,v), VveVh .

and fn = f{x,tn ). The equation (2.1) defines

Uh = : e(Vh ) M+l .

In the rest of the paper we drop the subscript /
In the augmented Lagrangian method, we ne

tion as a constraint. To minimize the equation

(2.2) a). (w, v)v = (m, v) + r(Vu, Vv), 6). (u,v) v = {u,v).

(en , v)v = («" - un~\v)
+T(gVu",V») -t(/",u), V'ij e Vh , Vn >O.
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In an explicit form, the equation for en in fact can be written in the
following form if we use the inner product (2.2.a):

(2.4) en (q : u) =(7 - rAh )-\un - un~ l - rV, • (q\/hun ) - r/n ),
where the subscript h denotes that we use a discretized version of the
operator. The operator (7 rA/j)" 1 can be replaced by some corre
sponding operators produced by domain decomposition or multigrid
methods, see [7]. If we use the inner product (2.2.b), the equation
error is:

(2.5) e n (g, u) =un - un~ l - rV/j • tøVh un ) - rfn .

2.2. Discretized minimization. In case that only point observations
are available for the State variable u, we shall solve the following min
imization problem to find the corresponding coefficient q:

(2.7)

and R{q) is a regularization functional which will be specified later, and
P is a small positive parameter that will be determined by the mesh
sizes and the noise level.

2.3. The augmented Lagrangian method. We shall use an aug
mented Lagrangian method to solve the constrained minimization prob
lem (2.6). The discretized augmented Lagrange functional Lc : Wjj x
(I4) M+l x {Vh ) M —> R is;

Lc {q, u,X) = rJ2 E{u") + pR(q)+ en )v + -||e"|| 2v. .
n n n

In the above, c > 0 is a penalization constant which does not need to
be very big. In the discrete setting, it is known that Lc has a saddle
point and the saddle point is a minimizer for (2.6), see [4, 6, 2].

We will use the following modified Uzawa algorithm to find saddle
points for this functional. A linear convergence for this algorithm has
been proved in [6, 2].

Algorithm 2.1. (The global minimization algorithm)

(3) Set u°k =u° and find uk = {u^}^=l from
( 2 - 9 ) Lc {qkl uk , Ajfc_i) = min Lc (qk , u,

(2.6) min r E[un ) + (3R{q)e{q,u)—o Jn

subject to qG Wh and u G (14) M+l satisfying u° = Ih {u0 {x)). Here

£K) = E^n (**) -<(* ) I 2l

(1) Choose initial values for A O , u 0 eVh and set k=l.
(2) Find from

(2-8) Lc {qk ,uk _ i,A fc _i) = min Lc (q, uk-i, Xk -i).qewH

LMk: uk , = min Lc {qk , u , Xk-i).uevh
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(4) Update the Lagrange-multiplier as

Xk 1 + ce{qk , Uk).

If not converged: Set k=k+l and GOTO (2).

3. IMPLEMENTATION ISSUES WITH THE CONJUGATE GRADIENT

METHOD

In this section, we study an efficient method to solve the two sub
minimization problems in the modihed Uzawa algorithm. We will use
the notations L'c -q = L'c {q , r, X) -p = and L'c -w L'c [q , r, A) •
w • w to denote the Gateaux derivatives of the functionalOU
Lc {q , r, A). Note that when writing L'c  p , the p indicates that we take
the derivative with respect to q in the direction p. Similary the w in
L'c  w indicates that we take the derivative with respect to u in the

direction w. The notations L"{q,u, A) • [p,p] = 9 L^’U ’ A) • (p,p) and

L"(q,u, A) • {w, w) = d Lcq^2 • {w, w) are used for the second order
derivatives.

The augmented Lagrangian functional Lc {q,u, A) is linear with re
spect to A. For fixed (r, A), the functional Lc {q,u,X) is quadratic
with respect to q , and for fixed {q, A), the functional Lc {q,u,X) is
quadratic with respect to u. Thus there must exist linear operators
A{u) :Wh Wh and B{q) :14 14 and functions q;i(r, A) GWh
and a2 {q,X) G 14 such that

Due to the quadratic nature of the augmented Lagrangian functional,
it is true that

In the implementations, A{u) and B{q) are matrices depending on u
and q respectively, and a\ and a 2 are vectors depending on (r, A) and
{q, X) respectively. Thus the subproblems (2.8) and (2.9) are equivalent
to solving equations of the following form:

In Chan and Tai [l], the matrices A, B and the vectors ai,a2 are
assembled at each iteration and the linear systems are solved exactly.
The cost of the assembling for time dependent problems is getting

(3.1) = A(u)q - ai{u , A),

(3.2) = B{q)u ~ a2 {q , A).

(3.3) (A{u)p,p) = L"c {q,u, X) • (p,p) Vp G 14,

(3.4) (B{q)w,w) = L"{q,u, A) • (w, w) Mw

dL
(3.5) = A(u)q ai (w, A) = 0

dL
(3.6) = B[q)u - a2 (q, A) =O.
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too high. Therefore we look for ways to solve the system without
assembling the matrices and the vectors. In the next subsection we
will present the preconditioned conjugate gradient method, and then
show that this method can be used to solve the equations Aq = oq and
Bu = 02.o 2 .

3.1. The preconditioned conjugate gradient method. The pre-
conditioned conjugate gradient method solves the equation Ax = b
with a symmetric positive dehnite preconditioner B. The algorithm is
written as:

end

In the algorithm, we do not need to form the matrix A. For simula
tions, we just need subroutines to calculate b Ax and pTAp for given
vectors x and p.

Domain decomposition and multigrid methods shall be used for the
preconditioner B. When using domain decomposition methods, only
very small subproblems defined on the subdomains need to be solved.
If multigrid method is used, we do not need to solve any systems of
linear algebraic equations. We just need to update the residuals of
some equations over all the nodal points from the different levels.

In order to use conjugate gradient methods to solve equation (2.8)
and (2.9), it is enough to design some subroutines to calculate (Ap,p),
( Bw,w ) and the corresponding residuals for the two equations with
given p and w.

3.2. Minimization with the conjugate gradient method. All we
need to solve equation (3.5), is to calculate Aq-aY and pTAp for given
vectors q and p. Similarly, we need to calculate Bu -o2 and wTBw for
given vectors u and w to solve equation (3.6).

k = o, x 0 = 0, r 0 =h, z 0 = B Vo, Pl = 20 ,

while r* /0,

ak =
xk = xk _i +

= rk_ x - =h - Æc fc ,
Solve Bzk = r*,

Pk+i = rfzk /rl_ lZk_ u

Pk+ l Zk + Pk+lPk,

X = Xk

the definition of Lc , we get that

(3.7) L'c -p = ØR'{Q)  P+'£(--p, A")v + elv
n n V
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Thus, we need to calculate d" for all n to get ().
In order to use conjugate gradient method to solve (3.6), we d Define

dy = •p. From the definition of en , we see that dy satisfies

(3.8)

and thus

(3.9)

Assume that {<j>j) are the basis functions for Wh and ri = [n(j)] is
the residual vector for equation (3.5), i.e. ri{j) = L'c • <f>j. From the
calculations above, we see that r\(j) can be calculated by

When solving (3.5), un and X n are known and we only need to compute
en for each nto get the residual iq from the above formula.

To calculate (Ap,p) for a given p G Wh, we use the quadratic prop
erty (3.3) to get that

Thus, we need to calculate dy for all n to get {Ap,p).
In order to use conjugate gradient method to solve (3.6), we define

dy =  w. We see that dy satisfies

(d»v = r(pW, VU) Vwel4,

L'c -p = PR'{ q)-p + Y,(d", Xn + °en )v
n

= f3R'{q) -P +J2 T(pVun , V(A" + ce"))
n

n(j) = /3R'{q)  h + V(An + cen )).
n

(3.10) {Ap,p) = L"(q,u, A) • (p,p) = (3R"{q) • (p,p) + c]T](d?,d?)v
n

(3.11) {i%,v)v = (wn ~wn~\v)+r(9Vwn ,Vt>) VneV).
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Similarly, we have the following formulations for calculating the
residual for equation (3.6):

where we have dehned AM+l = ceM+l =w°= 0 to simplify the nota
tion. For the second order derivative it is true that;

(3.13)

Assume that {ipj} are the basis functions for Vh and r 2 = [r2 (n, j)] is
the residual vector for equation (3.6) which contains residuals on all
the time levels for all the nodal basis functions. Then r2 {n,j) can be
calculated by

These calculations can be used in the conjugate gradient method to
solve the equations Au = and Bq = o;2 to execute (3.5) and (3.6) in
the modihed Uzawa algorithm.

3.3. Efficient minimization algorithms. The most time consuming
part of the minimization algorithm is the solving of (3.6), i.e. the
minimization of u. This is because u{x, t) is a function of both space
and time, and therefore have most degrees of freedom. Usually the
dimension of the space Vh is bigger than the dimension of WH . In this
section we suggest two alternative minimization algorithms to the one

f)pn r)pn

L'c  w=E+E( »> A> + <=£%•». e")vn n n

= t - und (xt ))wn (xi) + £(dj, A" + ce>
n,i n

= T n {ooi) - u^{xi ))wTl {xi )+
n,i

E(w" - wn-\\n + ce") +J2 ,V(A" + ce"))
n n

(3.12) = T^(un [xi) -u^{xi ))wn {xi )
n,i

+ E(w"’ ( A"+ æ") - ( A"+I + ce"+1 ))
n

+ '}2T(qVwn ,V(Xn + cen )),
n

(Bw,w) =L" • {w, w) =rJ2E"{un )  (w, w) + cj^(d%,d%) v
n n

) =r^(w"(x.)) 2 + c^(d",^)v .
n,i n

riinj) = T^2(un (xt ) - u^XiWjixi)
i

(An + ce") (A"+1 + cen+1 ))

+ cen )).
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presented in the section above. The new minimization algorithms will
not minimize (2.9) exactly as in Algorithm 2.1. Instead, we are trying
to use some cheaper and approximate solver for the sub-minimization
problem (3.6).

3.3.1. Matching minimization algorithm. For the forward problem (2.1),
it is known that un ~ l must be computed before we can compute un .
This is not correct for the sub-minimization problem (3.6). For (3.6),
all the un are coupled to each other. If we first compute ul and then
take the computed u l to compute u 2 as described in the following and
continue, the obtained solution u = {un }^Lo is not a minimizer for
(3.6), but is a rather good approximation for the minimizer of (3.6).

To be more precise, let us define

It is clear that F{un , un ~ l ) also depends on A and q. Since we only use
this notation for the solving of (3.6), we will omit q and Ain F(un , un ~ l )
for notational simplicity. It is easy to see that

The following algorithm will be used as a replacement for Algorithm
2.1:

Algorithm 3.1. (The matching minimization algorithm)

(1) Choose initial values for A 0 ,Ro € Vh and set k=l.
(2) Find qk from

(3) Setuk =u° and find uk = {uk })f=l sequentially for n = 1, 2, •• • M
such that

(3.14)

(4) Update the Lagrange-multiplier as

When solving (3.14), the newest values for q and A are used. Step
(3) in Algorithm 3.1 dehnes uk = {uk })f=o sequentially for the time
steps.

To use the conjugate gradient method to solve this new minimization
problem we should do some calculations similar to those in the previous
section. The difference is that we now take the Gateaux derivative in
the direction of one time level wn instead of in all time levels.

F(u\un~ l ) = ~E[un )+ (A", + -\\en \\ 2v .

Lc (g,u, X) = YJ F(ur\un^)+Pßi.Q)-
n

qk = arg min Lc {q,uk_qewH

< = arg min F{v,unk x )vevh

+ ce{qk, u^.

If not converged: Set k=k+l and GOTO (2).
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The Gateaux derivative of F{un ,un in the direction wn is:

(3.16)

and the second order derivative is

(3.17)

3.3.2. A Gauss-Seidel algorithm. Another alternative to find an ap
proximate solution for (3.6) is to use the foliowing block Gauss-Seidel
algorithm to compute uJJ:

Algorithm 3.2. (The block Gauss-Seidel minimization algorithm)

(1) Choose initial values for XO ,r0 € Vh and set k=l.
(2) Find qk from

Set u° and find um = {uTfl }fL l sequentially for n
1, 2, • • • M such that

(3.18)

(4) Update the Lagrange-multipher as

Here 11 r2 1) is the Zv-norm of the residual from the previous section
(3.6), and e is the stopping criteria. When solving (3.18), the newest
values for q and A are used.

We define ÆJ = (en )'  wn = • wn . Then d" satisfies

(3.15) (dS,v) v = (wn ,v) + T(gVwn ,Vv) Vv GVh

den r)pn
F'  wn = TE'(u n ) •»" + (— w", X") v + c(— •«A e")v

= T23{u"(x.) - Uj(xi))wn {xt ) + i fli, X n + cen )v
i

) = r - und (xi))wn [xi)
i

+ ( wn,\n + ce n ) + T{qVwn , V(An + cen ))

F"  (wn ,wn ) =tE"(u")  ( wn , wn) + c(d" d")v

=T EKfe))2 + C ( rf3> rl’ih~
l

Qk = arg min Lc {q, w*_i, Xk-i).qeWH

(3) Set u 0 = Uk- 1 and m= 1.
While ||r2 || > e do:

“m = arg min(F(u, uJJ,') + F{ul+_\,v))

m = m + 1.
End while.

Set Ufo Urn-

~ Afc_i + ce(gjt, Uk).

If not converged: Set k=k+l and GOTO (2).
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We use the same notations as in the previous subsection. The Ga
teux derivative of F{un ,un ~ l ) + F(un+l , un ) with respect to un in the
direction wn is calculated:

(3.19)

and the second order derivative is calculated:

(3.20)
l

4. Numerical EXPERIMENTS

We now show some numerical experiments on the proposed method
for parameter identihcation. For the tests, we have taken £1 = [o,l] x
[o,l], T = 0.01, uq{x) = sin(7r:r) cos(tn/), g{x) = 0 and q(x) is piecewise
constant;

0,0.5] x [0,0.5]
0,0.5] x [0.5,1]
0.5,1] x [0,0.5]
0.5,1] x [0.5,1].

(4.1)

4 unless otherwise defined. The

where X{ for i = 1,..., 4 are the corners and x 5 is the center of Q and
5 is Diracs delta function.

The domain is triangulated by first dividing it into squares of size
h x h. Then each square is divided into two triangles by the diagonal
with positive slope to get Th . The element functions u{:r, t) and f {x, t )
are defined over this triangulation with linear finite element functions.
The number of time steps is M= —. Square meshes TH are used for
approximating q, and H is used to denote the mesh size. Moreover, the
finite element functions for q are piecewise constants over each square.

F'(un , u"- 1 )  wn +  w"

= T - Uni (xi ))wn (x l )
i

+ (wn , A" + cen ) + T{qVwn , V(A" + ce"))

+ {(en+l )'  wn ,cen+l + \"

= ry](n"(ii) - Uj(xi))wn (Xi)
l

+ ( wn, cen + A") +r{qVV(A" + ce"))

- (wn , cen+l + An+l ),

F"(un,u"-') • ( wn,wn) + F"{un+\un ) • ( wn )

=T Wn(Xi))2+ +

9i, x €
/ \ . q2, % e

q(x) = s
93, x £

k 94, z G

In the examples qz = z, i = unless otherv
source function is

4

(4.2) = iå{x-x5 ),
1=1
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In the implementations, the mesh Th that we use for approximating u,
is always a rehnement of the mesh TH we use for q.

With the numerical method described in Section 2, the forward prob
lem can be solved. The solution from this, u : will then be used as a
source for the observations that our algorithms will use to recover the
permeability, q.

In Example 4.5 we will add normally distributed noise to the obser
vations in a multiplicative way, i.e.:

(4.3)

Here rand (xl: t) is a vector of normally distributed numbers with ex
pectation 0 and standard deviation 1. We refer to o as the noise level.

In the hgures in the following examples we illustrate the convergence
rates of the Uzawa algorithms. In all examples we plot \\qk - q\\ L 2
with increasing k-value, where q is the true permeability. In Example
4.1 we also illustrate the convergence rates of u in L2 -norm, i.e. we
plot f 0\\ uk ~ u\\ L2dt. In the examples the Uzawa algorithm has been
stopped by inspection of these plots.

As an initial value for q , we use qo equal to a constant. The constant
that is used is the average of the exact permeability, i.e: q 0 = fn q dx.
The initial value for uis the spatial linear interpolation of ud {xll t). The
c-value is found by trial and error.

In the following examples we have observed convergence when either
the inner products (2.2.a) or (2.2.b) are used. We have seen that the
conjugate gradient method converges in fewer iterations when (2.2.a)
is used, but since (2.2.b) is cheaper this has been preferable in our
examples.

For simplicity, we have taken R{q) =fn q2 dx. For examples without
noise we can set the regularization parameter to [3 0.

As a preconditioner B for the conjugate gradient method we have
used domain decomposition to approximate the operator (/ - rA) -1 .
This is tested with and without coarse grid.

The stopping criteria for the conjugate gradient method is that the
relative L2 -norm of the residual is < e. In the following examples we
have chosen e = KU6

In all examples except Example 4.4 we have used H = h= -,
M = 20 and T = 0.01. In the center of each square element of 1~H ,
there is one observation point. That means we have 16 observation
points for ud and 16 parameters representing q.

Example 4.1. In the first example we use the global minimization
Algorithm 2.1. In this example the c-value was set to 8 • 10“5 . The
convergence rate of q is shown in Figure 1, and the convergence rate of
u is shown in Figure 2.

Ud{xl: t) = u{xi , t) +cr w (x*, i) t).
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FIGURE 1. \\qk~ q\\l2 versus k. Logarithmic scale on the
vertical axis.

Figure 2. J0T \\uk u\\ L2dt versus k. Logarithmic scale
on the vertical axis.

Example 4.2. In this example we use the matching minimization Al
gorithm 3.1. The c-value was set to 8 • 10~ 5 . The convergence rate of
q is shown in Figure 3.

Figure 3. \\qk q\\L 2 versus k. Logarithmic scale on the
vertical axis.

We see that this algorithm takes more iterations to converge (see
Figure 3). Since each iteration is much cheaper than in the previous
example, this algorithm is much quicker.
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Example 4.3. In the first example we use the Gauss-Seidel Algorithm
3.2. In this example the c-value was set to 8 • 10~ 5 . The convergence
rate of q is shown in Figure 4.

Figure 4. \\qk-q\\L2 versus k. Logarithmic scale on the
vertical axis.

We see that the convergence is slower in this example than for the
matching scheme (see Figure 4 and Figure 3). In addition each iteration
is more expensive. This algorithm is not preferable.

Example 4.4. In this example we see what happens if the number
of parameters representing q is bigger than the number of observation
points for u. The example is specified with H = h=— M = 10,Gl O 1 16
T = 0.01 and c = 2 • 10“ . H = g gives 64 parameters representing
q. The observation points u d is taken to be the corners of TH in
the interior of fl, i.e. we have 49 uniformly distributed observation
points for u. The global minimization Algorithm 2.1 is used to identify
q{x). We see that it takes more iterations to converge and that the
convergence is unstable, see Figure 5.

Figure 5. \\qk q\\L2 versus k. Logarithmic scale on the
vertical axis. We have used 64 parameters representing
q and 49 observation points for u.
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Exact Esimated Error

Figure 6. The exact- and approximate solution and er
ror in permeability q{x) after 400 iterations.

Example 4.5. We repeat the test in Example 4.1 and Example 4.2,
but add noise to the observations (see Equation (4.3)). The convergence
rate of q when the noise level is a 10~ 3 is shown in Figure 7, and
the same convergence rate when the noise level is o 10“2 is shown
in Figure 8. Here the global minimization Algorithm 2.1 is used to
identify q{x).

In Figure 9 we show the convergence rate when the matching min
imization Algorithm 3.1 is used, and the noise level is a = 10~ 2 . The
c-value was here set to 2 • 10~ 5 .

To show the influence of a noise level of magnitude 10“2 on the data,
we have in Figure 10 plotted the pressure with and without noise in a
point xi = (-, |) as a function of time.

Figure 11 shows the result after 30 iterations, when a = 10 2 and the
global minimization Algorithm 2.1 is used (cf. Figure 8). The relative
L 2 error in q is ~ 0.0014.

We have used the regularization term R{q) = ||g|l 2 2 . However, the
results seems to be best when the regularization parameter is chosen
(3 =O. The reason for this is probably that the dimension on TH is
relatively small in our examples.

Example 4.6. In oil reservoirs the permeability does often have very
large jumps. In this example we try Algorithm 2.1 with permeability
as described in (4.1) with qt = 101-3 , i 1,..., 4.
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FIGURE 7. \\qk~ q\\l2 versus k. Logarithmic scale on the
vertical axis. The noise level is o = 10~ 3 .

Figure 8. 1 1 (jk 9 1 1 l 2 versus k. Logarithmic scale on the
vertical axis. The noise level is a = 10~ 2 .

Figure 9. || q ||l2 versus k. Logarithmic scale on
the vertical axis. The noise level is a = 10~ 2 and the
matching minimization Algorithm 3.1 is used.

In this example the c-value was set to 2.6 • 1CT 5 . The convergence
rate of q is shown in Figure 12. We see that the convergence is a little
bit slower than in the previous examples. In addition every iteration is
about twice as costly as in Example 4.1, because the conjugate gradient
method converges slower.
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FIGURE 10. The pressure with and without noise in po
sition x\ = (-, -) i.e. u{x\,t) and Ud{xi,t), t G (O,T)
The noise level is o = 10“2 .

Estimated ErrorExact

FIGURE 11. The exact, the estimated and the error in
permeability q(x) with noise level o 1CT 2 .

5. Conclusion

We have seen how the augmented Lagrangian method can be used to
solve parameter estimation problems in parabolic PDEs. When using
the Uzawa algorithm, the minimization for the pressure is the most
time consuming part. In this paper we have suggested three different
algorithms for this minimization. The global minimization algorithm
performs well in all examples, but the matching scheme is much quicker.
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FIGURE 12. || qk q\\ L 2 versus k. Logarithmic scale on
the vertical axis.
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