Department of APPLIED MATHEMATICS

Perturbation about neutral solutions occurring in shear flows in stratified, incompressible and inviscid fluids.

Leif Engevik

eport No. 43
June 1973

UNIVERSITY OF BERGEN
 Bergen, Norway

Perturbation about neutral solutions occurring in shear flows in stratified, incompressible and inviscid fluids.

by

Leif Engevik

June 1973

Summary.

The unstable solution $\varphi\left(y, k^{2}, c\right)$ contiguous to the neutral one $\varphi_{S}\left(y, k_{S}^{2}, c_{S}\right)$ which may occur in shear flows in stratified, incompressible and inviscid fluids, can be expressed as
$\varphi=\varphi_{S}+\sum_{I=1}^{\infty} \varphi_{I}\left(c-c_{S}\right)^{I}$, where $k^{2}-k_{S}^{2}=\sum_{I=1}^{\infty} k_{I}\left(c-c_{S}\right)^{I}$.
Here k is the wave-number and c the wave-velocity corresponding to the unstable solution, and k_{S} and c_{S} the wave-number and wave-velocity of the neutral solution. Expressions for φ_{I} and k_{l} are given.
I. Introduction.

In this paper we are corcerned with the unstable solutions contiguous to the neutral ones which may occur in shear flows in stratified, incompressible and inviscid fluids. In this connection we have to find solutions of the equation:

$$
\text { (1.1) } \quad \varphi^{\prime \prime}+\left\{\frac{\beta g}{(U-c)^{2}}-\frac{U^{\prime \prime}}{U-c}-k^{2}\right\} \varphi=0
$$

Here $U(y)$ denotes the unperturbed flow velocity, and $\beta(y)=-\rho^{\prime}(y) / \rho(y)$, where $\rho(y)$ is the unperturbed density field. The prime denotes differentiation with respect to $y . U(y)$ and $\rho(y)$ vary in the y-direction perpendicular to the flow direction, which is taken to be the x-direction. This basic state is perturbed, and the perturbation stream function is
$\Psi(x, y, t)=\operatorname{Re}\left\{\varphi(y) e^{i k(x-c t)}\right\}$, where k is the wavenumber (real), and $c=c_{r}+i c_{i}$ is the wave-velocity (which may be complex, $c_{i} \neq 0$). Re\{...\} means the real part of the quantity within the brackets. Eq.(1.1) is the equation for the amplitude function $\varphi(y)$. The fluid is supposed to be confined between two rigid horizontal planes at $y=y_{1}$ and $y=y_{2}$. The boundary conditions to be satisfied are therefore:

$$
\begin{equation*}
\varphi=0 \quad \text { at } \quad \mathrm{y}=\mathrm{y}_{1}, \mathrm{y}_{2} \tag{1.2}
\end{equation*}
$$

\qquad

 3 :

In this paper we assume that $U(y)$ and $\beta(y)$ are analytic functions of y on the interval $I=\left\{y \mid y_{1} \leqq y \leqq y_{2}\right\}$ of the real axis. Then $U(y)$ and $\beta(y)$ are analytic in some region in the complex plane close to this interval. Further it is assumed that $U^{\prime}(y) \neq 0$ on I. Let us take $U^{\prime}>0$ on I. The case $U^{\prime}<0$ can be treated in an analogous way.

We consider the case when the fluid is statically stable. In this case there may exist singular neutral solutions, i.e. solutions which are located on the stability boundary in a wave number - Richardson number plane, see for instance [1]. The singular neutral solution φ_{S} with the wave velocity c_{S} and the wave number k_{S} satisfies eq. (1.1) with $c=c_{s}$ and $k=k_{s}$ and the boundary conditions eq. (1.2). Since $U^{\prime} \neq 0$ for $y \in\left[y_{1}, y_{2}\right], \varphi_{S}$ must be of the form, see [1]:
(1.3) $\quad \varphi_{S}=\left(U-c_{S}\right)^{\frac{1}{2}+\mu} Y_{S}$, where $\mu \in\left[-\frac{1}{2}, \frac{1}{2}\right]$.
$\mu=\left(\frac{1}{4}-R_{S}\right)^{\frac{1}{2}}$, where $R_{S}=g \beta /\left(U^{\prime}\right)^{2}$ is the Richardson number at the critical layer defined by $U\left(y_{S}\right)-c_{S}=0$. Y_{S} is analytic on I since U and β are assumed to be analytic there. We define $\arg \left(U-C_{S}\right)$ in the following manner: $\arg \left(U-C_{S}\right)=0$ when $U-c_{S}>0$, and $\arg \left(U-c_{S}\right)=-\pi$ when $U-C_{S}<0$. If $\arg \left(U-C_{S}\right)$ is defined in this way, we have shown in [2] that φ_{S} coincides almost everywhere with the viscous solution within the limit of zero viscosity. Also with this definition of $\arg \left(U-C_{S}\right) \quad \varphi_{S}$ will
be the limit when $c_{i} \rightarrow 0^{+}$of the unstable solution.
Let I be the contour shown in fig.1. φ_{S} given by the eq.(1.3) is analytic along

Fig. 1
I if ρ is made small enough. (Note that $U^{\prime}>0$ for $y \in\left[y_{1}, y_{2}\right]$). We also observe that an
unstable solution is analytic on I, and will therefore also be analytic along I if ρ is made small enough. We also see that $-\pi \leqq \arg (U-c) \leqq 0$ when $c_{i} \geqq 0$ both when $y \in I$ and $y \in I$.
II. Perturbation about the neutral solution. We assume that there exists a neutral solution φ_{S} as defined in eq. (1.3). As mentioned this solution is analytic along I if ρ is made shall enough. Let $\left|c-c_{S}\right| \leqq \rho_{1}$, where $\rho_{1}<\rho$. Further let us define $\arg (U-C)$ in the following manner: $-\pi-\epsilon_{2}<\arg (U-C)<\epsilon_{1}$, where $\epsilon_{1}>0$ and $\epsilon_{2}>0$. Our choice of ϵ_{1} and ϵ_{2} will depend on ρ_{1}. We see that if $c_{i} \geqq 0$, $-\pi \leqq \arg (U-C) \leqq 0$; and if $c_{i}<0,-\pi-\epsilon_{2}<\arg (U-c)<\epsilon_{1}$. A solution φ of eq.(1.1) is an analytic function of $y \in I, \quad c \in\left\{c| | c-c_{S} \mid \leqq p_{1}\right\}$ and k^{2}, with $\arg (U-c)$ defined as above. This solution can therefore be expanded in a series:
(2.1) $\quad \varphi=\varphi_{0}+\left(\frac{\partial \varphi}{\partial c}\right)_{s}\left(c-c_{s}\right)+\left(\frac{\partial \varphi}{\partial k^{2}}\right)\left(k^{2}-k_{s}^{2}\right)+\ldots$,
where $(\ldots)_{s}$ means that the quantity within the brackets is calculated at $c=c_{s}$ and $k^{2}=k_{s}^{2}$.
Assume that there exists a solution φ of eq.(1.1), with a c near c_{S} and a k^{2} near k_{S}^{2}, that satisfies the boundary conditions eq.(1.2). By introducing eq. (2.1) into eq.(1.1) and eq.(1.2) we get within the limit when $c \rightarrow c_{s}$ and $k^{2} \rightarrow k_{s}^{2}$:
(2.2) $\varphi_{0}^{\prime \prime}+\left\{\frac{\beta g}{\left(U-c_{S}\right)^{2}}-\frac{U^{\prime \prime}}{U-c_{S}}-k_{S}^{2}\right\} \varphi_{0}=0$, and $\varphi_{0}=0$ for $y=y_{1}, y_{2}$.

Wee see that φ_{0} must satisfy the same equations as φ_{S}, and we get that $\varphi_{0}=A_{O} \varphi_{S}$, where A_{O} is a constant. By using the equations which govern φ and φ_{S}, we get:
(2.3) $\int_{L}\left[\left(\frac{\beta g}{(U-c)^{2}}-\frac{U^{\prime \prime}}{U-c}-k^{2}\right)-\right.$

$$
\left.-\left(\frac{\beta g}{\left(U-c_{S}\right)^{2}}-\frac{U^{\prime \prime}}{U-c_{S}}-k_{S}^{2}\right)\right] \varphi \varphi_{S} d y=0
$$

Let us denote by E the expression $\frac{\beta g}{(U-C)^{2}}-\frac{U^{\prime \prime}}{U-c}-k^{2}$, and by E_{S} the same expression with C_{S} and $k_{S}{ }^{2}$ instead. of c and k^{2}. By introducing eq.(2.1) into (2.3) we get:

$$
e_{0}+b=\square
$$

$$
\begin{aligned}
& \left(k^{2}-k_{S}^{2}\right) \int_{L}\left[\frac{\partial}{\partial k^{2}}\left\{\left(E-E_{S}\right) \varphi\right\}^{?}\right]_{S} \varphi_{S} d y+ \\
& +\left(c-c_{S}\right) \int_{L}\left[\frac{\partial}{\partial c}\left\{\left(E-E_{S}\right) \varphi\right\}\right]_{S} \varphi_{S} d y+\ldots \\
& \frac{1}{1!} \int_{L}\left[\left\{\left(c-c_{S}\right) \frac{\partial}{\partial c}+\left(k^{2}-k_{S}^{2}\right) \frac{\partial}{\partial k^{2}}\right\}\left\{\left(E-E_{S}\right) \varphi\right\}\right]_{S} \varphi_{S} d y+\ldots=0
\end{aligned}
$$

where $[\ldots]_{\text {S }}$ means that the expression within the brackets is calculated at $c=c_{s}$ and $k^{2}=k_{S}{ }^{2}$. The integrals in eq. (2.4) will exist because φ is an analytic function on I.
We assume that the coefficient of $\left(k^{2}-k_{s}{ }^{2}\right)$ in eq. (2.4), 1.e. $\left.\int_{L} \frac{\Gamma}{i} \frac{\partial}{\partial k^{2}}\left\{\left(E-E_{S}\right) \varphi\right\}\right]_{S} \varphi_{S} d y=-\int_{L} \varphi_{S}^{2} d y$, is not equal to zero. Then if eq. (2.4) is to be satisfied within the limit when $c \rightarrow c_{S}$, we must have that:
(2.5) $\quad k^{2}-k_{s}^{2}=k_{1}\left(c-c_{s}\right)+k_{2}\left(c-c_{s}\right)^{2}+\ldots k_{l}\left(c-c_{s}\right)^{1}+\ldots$,
where $k_{1}, 1=1,2, \ldots$ are constants.
When U is an odd and β is an even function of y, $y_{1}=-y_{2}$, and φ_{S} is a singular neutral solution with wave velocity $c_{S}=0$, the coefficient of $\left(k^{2}-k_{S}{ }^{2}\right)$ in eq. (2.4) is equal to $\left(e^{-i 2 \pi \mu}-1\right) \int^{y_{2}} U^{1+2 \mu} Y_{S}{ }^{2} d y$, where it has been assumed that $U^{\prime}>0$. This expression is not equal to zero when $|\mu| \in\left(0, \frac{1}{2}\right]$. In section III we have considered an example of this type.
When $\mu=0$, i.e. $R_{S}=\frac{1}{4}$, the coefficient of $\left(k^{2}-k_{S}^{2}\right)$

$$
\begin{aligned}
& 2+2+2 \\
& 2-20
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) }
\end{aligned}
$$

is zero. However, to find the unstable solution close to the neutral one on this point of the stability boundary, we should expand φ and $\left(c-c_{S}\right)$ in a series in $\left(R-R_{S}\right)$ keeping $k^{2}=k_{s}{ }^{2}$ fixed, rather than expanding φ and $\left(k^{2}-k_{S}^{2}\right)$ in a series in $\left(c-C_{S}\right)$ keeping $R=R_{S}$ fixed, as is done in this paper. In [1] we have found the formula for $\left(\frac{\partial c}{\partial R}\right)_{k_{S}}$, i.e. we have found the first term in the series for $\left(c-c_{S}\right)$ in powers of $\left(R-R_{S}\right)$, keeping $k^{2}=k_{s}{ }^{2} \quad$ fixed.
The coefficient of $\left(c-c_{S}\right)$ in eq. (2.4) may be zero, (see the example in section III), and that is the reason why we have expanded $\left(k^{2}-k_{S}^{2}\right)$ in a series of $\left(c-c_{S}\right)$. If the coefficient of $\left(c-c_{S}\right)$ is not equal to zero, $k_{1} \neq 0$, and $\left(k^{2}-k_{s}^{2}\right)$ behaves as $k_{1}\left(c-c_{S}\right)$ for c close to c_{S}. If this coefficient is equal to zero, $k_{1}=0$, and $\left(k^{2}-k_{s}^{2}\right)$ behaves as $k_{2}\left(c-c_{s}\right)^{2}$ for c close to c_{S}. This shows that if we had expanded $\left(c-c_{S}\right)$ in a series in $\left(k^{2}-k_{s}{ }^{2}\right)$, we would have had to treat these two cases separately.

We have assumed that there exists a solution φ for a c near c_{s} and for a k^{2} near k_{s}^{2}, which satisfies the boundary conditions eq.(1.2), i.e.:
(2.6) $\varphi\left(y_{1}, k^{2}, c\right)=0$ and $\varphi\left(y_{2}, k^{2}, c\right)=0$.

 $\operatorname{tanit} S+5=S$
 20.

The functions in the eqs. (2.6) are analytic functions of $c \in\left\{c\left|\left|c-c_{S}\right| \leqq \rho_{1}\right\}\right.$ and k^{2}, so that all the derivatives with respect to c and k^{2} exist. Derivating the eqs. (2.6) with respect to c, yields:
(2.7) $\frac{\partial \varphi}{\partial c}+\frac{\partial \varphi}{\partial k^{2}} \frac{d k^{2}}{d c}=0$,
where the value of y is either y_{1} or y_{2}. $\left(\frac{\partial \varphi}{\partial K^{2}}\right)_{S} \neq 0$ because of the assumption above that the coefficient of $\left(k^{2}-k_{s}{ }^{2}\right)$ in eq. (2.4) is not equal to zero. It then follows from eq. (2.7) that $\frac{d^{2}}{d c}$ exists in some region around c_{s}. Therefore $\left(k^{2}-k_{s}{ }^{2}\right)$ is analytic in this region $\left|c-c_{S}\right|<p_{2}$, and can be expanded in a power series, which is valid for $\left|c-c_{S}\right|<\rho_{2}$. Consequently the series given by eq.(2.5) will converge whithin this region.

Taking into account eq. (2.5), we find that eq. (2.4) is satisfied if:

$$
\left\{\begin{array}{c}
\int_{L}\left[\frac{d}{d c}\left\{\left(E-E_{S}\right) \varphi\right\}\right]_{S} \varphi_{S} d y=0 \tag{2.8}\\
\vdots \\
\int_{L}\left[\frac{d^{I}}{d C^{2}}\left\{\left(E-E_{S}\right) \varphi\right\}\right]_{S} \varphi_{S} d y=0 \\
\vdots
\end{array}\right.
$$

 $020-2+2$
ancoly
\qquad 1
where $\frac{d^{I}}{d c^{I}}=\left(\frac{\partial}{\partial c}+\frac{d k^{2}}{d c} \frac{\partial}{\partial k^{2}}\right)^{I}$, and the derivatives of k^{2} with respect to c at $c=c_{S}$ are given by eq. (2.5). By introducing eq.(2.5) into eq.(2.1), the solution φ can be written as:
(2.9)
$\varphi=\varphi_{0}+\varphi_{1}\left(c-c_{S}\right)+\ldots \frac{1}{1!} \varphi_{I}\left(c-c_{S}\right)^{I}+\ldots$,

$$
\text { where } \varphi_{I}=\left(\frac{d^{I} \varphi}{d c^{I}}\right)_{S}
$$

From the above it follows that this series is valid in some region $\left|c-c_{S}\right|<p_{3}$ for all $y \in L$.

From the first of the eqs. (2.8) we find that we have to know φ_{0} in order to find k_{1}. But $\varphi_{0}=A_{0} \varphi_{S}$, where φ_{S} is known. We find that k_{1} is independent of the value of A_{0}. A_{0} must of course not be equal to zero. In the expression for k_{1}, we may therefore put $A_{0}=1$, which is done. To find k_{l} we have to know $\varphi_{0}, \ldots, \varphi_{I-1}$ and k_{1}, \ldots, k_{I-1}. We observe that k_{I} does not depend on φ_{I}, which follows from the fact that
$\left[\frac{d^{I}}{d c^{I}}\left\{\left(E-E_{S}\right) \varphi\right\}\right]_{S}=\left[\left(E-E_{S}\right) \frac{d^{I}}{d c^{I}} \varphi\right]_{S}+I\left[\frac{d^{I-1}}{d c^{I-1}} \varphi \frac{d}{d c}\left(E-E_{S}\right)\right]_{S}+\ldots$
$+\left[\varphi \frac{d^{I}}{d c^{I}}\left(E-E_{S}\right)\right]_{S}$, where the first term on the right hand side of this expression is equal to zero. The equation for φ_{I} is obtained by differentiating eq(1.1) 1 times with respect to c. We write:

 tas gotjlith aci chaso.
$(-a)=$ $1502 x$

(2.10)

$$
\left\{\begin{aligned}
& \varphi_{I}^{\prime \prime}+\left\{\frac{\beta g}{\left(U-c_{S}\right)^{2}}-\frac{U^{\prime \prime}}{U-c_{S}}-k_{S}^{2}\right\} \varphi_{I}= \\
&-\left[\frac{d^{I}}{d c^{I}}\left\{\left(E-E_{S}\right) \varphi\right\}\right]_{S} \\
& \varphi_{I}=0 \quad \text { for } \quad y=y_{1}, y_{2}
\end{aligned}\right.
$$

We observe that the expression on the right hand side of eq. (2.10) is known if $\varphi_{0}, \ldots, \varphi_{I-1}$ and k_{1}, \ldots, k_{I} are known.

The homogeneous equation corresponding to eq. (2.10) has the two linearly independent solutions φ_{S} and θ_{S}. $\theta_{S} \neq 0$ for $y=y_{1}, y_{2}$, since $\varphi_{S}=0$ for $y=y_{1}, y_{2}$. The general solution of eq. (2.10) is easily found by the method of variation of parameters:
$\varphi_{I}=A_{I} \varphi_{S}+B_{I} \theta_{S}+\varphi_{S} \int_{y_{1}}^{y} \frac{J_{1} \theta_{S}}{W} d t+\theta_{S} \int_{y}^{y_{2}} \frac{J_{1} \varphi_{S}}{W} d t$,
where $J_{I}=-\left[\frac{d^{I}}{d c^{I}}\left\{\left(E-E_{S}\right) \varphi\right\}\right]_{S}$. The integration is along the contour $I . A_{1}$ and B_{1} are constants, and $W=\varphi_{S}^{\prime} \theta_{S}-\varphi_{S} \theta_{S}^{\prime}$ is the Wronskian which is a constant in this case because φ^{\prime} does not appear in eq. (2.10). φ_{I} satisfies the boundary conditions if $B_{1}=0$, because $\int_{y_{1}}^{y_{2}} J_{I} \varphi_{S} d t=-\int_{y_{1}}^{y_{2}}\left[\frac{d^{I}}{d c^{I}}\left\{\left(E-E_{S}\right) \varphi\right\}\right]_{S} \varphi_{S} d t=0$, where the integration is along L. This follows from (2.8). φ_{1} which satisfies the boundary conditions, is therefore:

$$
\begin{array}{lll}
& \cdots & \cdots \\
& \cdots & \cdots \tag{01,5}
\end{array}
$$

 4.

 $\therefore+\frac{1}{2}+1$
 Matand

 ?

[^0]\[

$$
\begin{equation*}
\varphi_{1}=A_{1} \varphi_{s}+\varphi_{S} \int_{y_{1}}^{y} \frac{J_{1} \theta_{S}}{w} d t+\theta_{S} \int_{y}^{y_{2}} \frac{J_{1} \varphi_{S}}{w} d t \tag{2.11}
\end{equation*}
$$

\]

where the integration is along L .
We see that if $\varphi_{0}, \ldots, \varphi_{1-1}$ and k_{1}, \ldots, k_{1} are known, φ_{1} can be determined except for the constant A_{1}.

It has been mentioned previously that k_{1} is independent of the value of A_{0}, except that A_{0} shall not be equal to zero. From the second of the equations in (2.8) it is easily found that k_{2} is independent of both $A_{0}\left(A_{0} \neq 0\right)$ and A_{1}. We may therefore put $A_{0}=1$ and $A_{1}=0$ when calculating k_{1}, and this is done. Generally k_{1} must be independent of $A_{0}\left(A_{0} \neq 0\right), A_{1}, \ldots, A_{1-1}$. This is equivalent to saying that the value of $\left(k^{2}-k_{s}^{2}\right)$ for a given c close to c_{S} is independent of the choice of the constants $A_{0}\left(A_{0} \neq 0\right), A_{1} I=1,2, \ldots$. Let us show this. Let ψ_{1} be the solution given by eq. (2.9) when the constants are chosen to be $A_{0}=C_{0} \neq 0, A_{1}=C_{1} \quad I=1,2, \ldots$. Let ψ_{2} be the solution when the constants are $A_{0}=D_{0} \neq 0, A_{1}=D_{1}$ $1=1,2, \ldots$. The wave number for a given c close to c_{s} which corresponds to ψ_{1} and ψ_{2} is k_{1} and k_{2} respectively. ψ_{1} and ψ_{2} satisfy the equation: $\varphi^{\prime \prime}+E_{S} \varphi=-\left(E-E_{S}\right) \varphi$,
and the boundary conditions eq.(1.2). Note that in the expression for E we have to put $k^{2}=\kappa_{1}^{2}$ when $\varphi=\psi_{1}$, and $k^{2}=k_{2}^{2}$ when $\varphi=\psi_{2}$. By using the equation for ψ_{1}, the equation for ψ_{2} and the boundary conditions, it is easily obtained that $\left(k_{1}^{2}-\kappa_{2}^{2}\right) \int_{L} \psi_{1} \psi_{2} d y=0$. We have assumed previously that $\int_{L} \varphi_{S}^{2} d y \neq 0$, from which it follows that $\int_{L} \psi_{1} \psi_{2} d y \neq 0$ in some region close to c_{s}. But then it follows that $\kappa_{1}^{2}=\kappa_{2}^{2}$ in that
region, which means that the series for $\left(k^{2}-k_{s}^{2}\right)$ is independent of the choice of the constants, except that $A_{0} \neq 0$.
ψ_{1} and ψ_{2} satisfy the same differential equation and the boundary conditions eq. (1.2). The Wronskian $\psi_{1} \psi_{2}^{\prime}-\psi_{1}^{\prime} \psi_{2}$ is zero, and ψ_{1} and ψ_{2} are therefore linearly dependent, i.e. $\psi_{1}=A(c) \psi_{2}$, where $A(c)$ is a function of c. This can also be shown directly by using the expressions for ψ_{1} and ψ_{2}, and then $A(c)$ is also found. This means that the solutions, eq. (2.9), which are obtained by different choices of the constants, are linearly dependent solutions.

Above we have shown that if there exists a solution φ of eq. (1.1) which satisfies the boundary conditions eq.(1.2), and which tends to φ_{s} given by eq. (1.3) when $c \rightarrow c_{s}$ and $k^{2} \rightarrow k_{s}^{2}$, it must be given by the eq. (2.9) with $\varphi_{0}=\varphi_{S}, \varphi_{I}$ given by eq. (2.11) and $\left(k^{2}-k_{s}^{2}\right)$ by eq. (2.5).

Now, if there exists a singular neutral solution φ_{S}, there will always exist a solution φ close to φ_{s} with a c close to c_{s} and a k^{2} close to k_{s}^{2} which satisfies the eq. (1.1) and the boundary conditions eq.(1.2). This solution φ tends to φ_{S} and k^{2} tends to k_{s}^{2} when $c \rightarrow c_{s}$. This follows from the fact that the solutions of eq. (1.1) are analytic functions of $c \in\left\{c\left|\left|c-c_{S}\right|<\rho\right\}\right.$ and of k^{2} especially for $k^{2} \in\left\{k^{2}| | k^{2}-k_{s}^{2} \mid<\gamma\right\}$ for all $y \in L$. From the analysis above it follows that φ is given by the eq. (2.9) with $\varphi_{0}=\varphi_{S}$, $\varphi_{I}(I=1,2, \ldots)$ given by the eq. (2.11) and $\left(k^{2}-k_{S}^{2}\right)$ given by eq. (2.5). We see that both φ_{I} and k_{I} are given when φ_{S} and θ_{S} are known, so that φ and $\left(k^{2}-k_{S}^{2}\right)$ can be found.

 ?

 $\begin{array}{lll}\therefore & 0 & 0\end{array}$ 20.

It is important to be aware of the following. φ given by eq. (2.9) is valid in some region $\left|c-c_{s}\right|<p_{3}$ for all $y \in I$. However, it is only the solution with $c_{i}>0$ for real values of $\left(k^{2}-k_{s}^{2}\right)$ which is relevant to the stability problem of shear flows in stratified, incompressible and inviscid fluids. This unstable solution with $\varphi_{0}=\varphi_{S}$ tends, when $c \rightarrow c_{s}, c_{i} \rightarrow 0^{+}$, to the singular neutral solution φ_{S} defined in eq. (1.3), where $\arg \left(U-c_{S}\right)=0$ when $\left(U-c_{S}\right)>0$, and $\arg \left(U-c_{S}\right)=-\pi$ when $\left(U-c_{S}\right)<0$. The solution with $c_{i}<0$ for real values of $\left(k^{2}-k_{s}^{2}\right)$ which is obtained from eq. (2.9), has no relevance to our stability problem. This solution with $\varphi_{0}=\varphi_{S}$ will also tend, when $c \rightarrow c_{S}, c_{i} \rightarrow 0^{-}$, to φ_{S} given by eq. (1.3), with the definition of $\arg \left(U-c_{S}\right)$ given above. The stable solution $\left(c_{i}<0\right)$ which has relevance to our stability problem, is the one which is obtained by taking the complex conjugate of the unstable solution, and this stable solution will tend, when $c \rightarrow c_{S}, c_{i} \rightarrow 0^{-}$, to $\left(U-c_{S}\right)^{\frac{1}{2}+\mu_{Y}}{ }_{S}$ where $\arg \left(U-c_{S}\right)=0$ when $\left(U-c_{S}\right)>0$, and $\arg \left(U-c_{S}\right)=\pi$ when $\left(U-c_{S}\right)<0$.

From eq. (2.5) we find for what real values of k^{2} close to k_{s}^{2} there is instability. It is for those real values which make $c_{i}>0$.

Note that φ_{S} and θ_{S} in general have singularities at $c=c_{S}$. Then also $\varphi_{0}, \cdots, \varphi_{I}, \ldots$ have singularities
at $c=c_{S}$, Let I_{r} be a contour of the same kind as L , but with the radius r of the small semicircle instead of $\rho \cdot \varphi_{0} \cdots \varphi_{1} \cdots$ will be analytic on L_{r} for every r such that $0<r \leqq p$, and for the integrals in eq. (2.8) we therefore have :

$$
\int(\ldots) d y=\lim _{r \rightarrow 0} \int_{L_{r}}(\ldots) d y
$$

We may use this when evaluating the constants $k_{1}, \ldots k_{1} \ldots$.

III An example.

In this section we will use k_{1} and k_{2}, and let us therefore write out the explicit expressions for k_{1} and k_{2}. From (2.8) we get :

$$
\begin{equation*}
\left.k_{1}=\lim _{\rho \rightarrow 0} \frac{\int\left\{\frac{2 \beta g}{L^{\prime}}\left(U-c_{S}\right)^{3}\right.}{} \frac{U^{\prime \prime}}{\left(U-c_{S}\right)^{2}}\right\} \varphi_{S}^{2} d y \tag{3.1}
\end{equation*}
$$

which is the inverse of the expression for $\left(\frac{\partial c}{\partial k^{2}}\right) R_{s}$ obtained in [1].
\qquad
 $2+2+2+2+2+2+2+2$
\qquad
\qquad
\qquad
\qquad $-2-2+0-2+0$ $2+20-2$
 (

$$
\text { (3.2) } \begin{aligned}
k_{2}= & \frac{\lim _{\rho \rightarrow 0} \int\left\{\frac{2 \beta g}{\left(U-c_{S}\right)^{3}}-\frac{U^{\prime \prime}}{\left(U-c_{S}\right)^{2}}-k_{1}\right\} \varphi_{1} \varphi_{S} d y}{\lim _{\rho \rightarrow 0} \int_{L} \varphi_{S}^{2} d y} \\
& +\frac{\lim _{\rho \rightarrow 0} \int\left\{\frac{3 \beta g}{\left(U-c_{S}\right)^{4}}-\frac{U^{\prime \prime}}{\left(U-c_{S}\right)^{3}}\right\} \varphi_{S}^{2} d y}{\lim _{\rho \rightarrow 0} \int \varphi_{S}^{2} d y}
\end{aligned}
$$

where
(3.3) $\varphi_{1}=-\frac{\varphi_{S}}{W} \int_{y_{1}}^{y}\left\{\frac{2 \beta g}{\left(U-c_{S}\right)^{3}}-\frac{U^{\prime \prime}}{\left(U-c_{S}\right)^{2}}-k_{1}\right\} \varphi_{S} \theta_{S} d y-$

$$
-\frac{\theta_{S}}{W} \int_{\mathrm{Y}}^{\mathrm{y}_{2}}\left\{\frac{2 \beta g}{\left(U-c_{S}\right)^{3}}-\frac{U^{\prime \prime}}{\left(U-c_{S}\right)^{2}}-k_{1}\right\} \varphi_{S}^{2} d y
$$

where the integration is along L.

Let us consider the case :
(3.4) $U=y, \beta g=Q y^{2}+R_{0}$, where $Q \geqq 0$ and $R_{0} \geqq 0$.

The horizontal rigid planes are at $y_{1}=-1$ and $\mathrm{y}_{2}=1$. This case has been studied in [1], where

38 π

$$
\cdots
$$

$$
x-1
$$

$$
0
$$

we have found that there may exist singular neutral solutions with $c_{S}=0$ when $R_{0} \leqq \frac{1}{4}$. These singular neutral solutions are:
(3.5) $\varphi_{S}=y^{\frac{1}{2}} J_{\mu}\left(\lambda_{j, \mu} y\right) \quad j=1,2, \ldots, n$, where $|\mu|=\left(\frac{1}{4}-R_{0}\right)^{\frac{1}{2}}$ and $|\mu| \in\left[0, \frac{1}{2}\right] \cdot \lambda_{j, \mu}$ is the $j^{\text {th }}$ zero of the Besselfunction J_{μ}. The wave number corresponding to the $j^{\text {th }}$ singular neutral solution is :
(3.6) $k_{j, \mu}^{2}=Q-\lambda_{j, \mu}^{2}$.

The number of solutions is given by the number n which satisfies $Q-\lambda_{n, \mu}^{2} \geqq 0$, but $Q-\lambda_{n+1, \mu}^{2}<0$.

When $\mu=-\frac{1}{2}, \varphi_{S}$ is proportional to $\cos \lambda_{j,-\frac{1}{2}}=\cos \left(\frac{2 j-1}{2} \pi\right) y$, and when $\mu=\frac{1}{2}, \varphi_{S}$ is proportional to $\sin \lambda_{j, \frac{1}{2}} y=\sin (j \pi) y$.

In the following we will discuss the case when $Q=15 \cdot$ In this case $\pi^{2}<Q<\left(\frac{3}{2} \pi\right)^{2}$, which means that the number n in the eq. (3.5) is equal to 1 , and that $|\mu| \in\left[0, \frac{1}{2}\right]$. Let us consider the cases $|\mu| \in\left(0, \frac{1}{2}\right), \mu=-\frac{1}{2}, \mu=\frac{1}{2}$.

1) When $|\mu| \in\left(0, \frac{1}{2}\right)$, the singular neutral solution is
 $\because+\cdots+\cdots+\cdots$

\qquad
\qquad

-

 an Su4 :
$(3,7) \begin{cases}\varphi_{S}=y^{\frac{1}{2}} J_{\mu}\left(\lambda_{1}, \mu \mathrm{y}\right), & \text { and the corresponding wave } \\ \text { number is: } \\ k_{1, \mu}^{2}=Q-\lambda_{1, \mu}^{2} & (Q=15) .\end{cases}$

The function θ_{S} defined in section II is :
(3.8) $\quad \theta_{S}=y^{\frac{1}{2}} J_{-\mu}\left(\lambda_{1}, \mu\right)$.

By introducing eq.(3.4), eq. (3.7) and $c_{S}=0$ into eq. (3.1) we get:
(3.9) $k_{1}=-i \operatorname{cotan} \pi \mu \frac{P f \cdot \int_{0}^{1}\left(Q y^{2}+R_{0}\right) y^{-2} J_{\mu}^{2} d y}{\int_{0}^{1} y J_{\mu}^{2} d y}$,
where Pf. in front of the integral sign means the finite part.

We see from eq. (3.9) that k_{1} is purely imaginary.
In [1] we have shown that the integrals in eq. (3.9) are positive when $|\mu| \in\left(0, \frac{1}{2}\right)$, so that k_{1} changes sign with cotan $\pi \mu$. Taking into account the expression for k_{1}, we get from eq. (2.5) that there is instability $\left(c_{i}>0\right)$ for $k>k_{1, \mu}$ when $\mu \in\left(0, \frac{1}{2}\right)$, and for $k<k_{1, \mu}$ when $\mu \in\left(-\frac{1}{2}, 0\right),(k \geqq 0)$. Both φ_{S} and θ_{S} are known, and by using the formulae in section II we can calculate the unstable solution for a given k in the vicinity of $k_{1, \mu}$. From eq. (2.5) we can find c which corresponds to a given k near $k_{1, \mu}$.
\qquad
2) When $\mu=-\frac{1}{2}$, the singular neutral solution is:
(3.10) $\varphi_{S}=\cos \frac{\pi}{2} y$, and $k_{1,-\frac{1}{2}}^{2}=Q-\left(\frac{\pi}{2}\right)^{2} \quad(Q=15)$.

$$
\theta_{\mathrm{S}}=\sin \frac{\pi}{2} \mathrm{y}
$$

By introducing eq. (3.10) together with eq. (3.4) and $c_{S}=0$, into eq. (3.1), we get: $k_{1}=2 i \pi Q$, which together with the eq. (2.5) yields instability for $k<k_{1,-\frac{1}{2}}$. Again the unstable solution for a given k near $k_{1,-\frac{1}{2}}$ can be calculated by the formulae in section II.
3) When $\mu=\frac{1}{2}$, the singular neutral solution is:

$$
\text { (3.11) } \begin{aligned}
\varphi_{S} & =\sin \pi y, \text { and } k_{1, \frac{1}{2}}^{2}=Q-\pi^{2} \quad(Q=15) \\
\theta_{S} & =\cos \pi y .
\end{aligned}
$$

We find that $k_{1}=0$ in this case. From eq. (3.2) we get:
(3.12) $k_{2}=\frac{\lim _{\rho \rightarrow 0}\left[\int_{L} \frac{2 Q}{y} \varphi_{1} \varphi_{S} d y+\int_{L} \frac{3 Q}{y^{2}} \varphi_{S}^{2} d y\right]}{\lim _{\rho \rightarrow 0} \int_{L} \varphi_{S}^{2} d y}$,
where $\varphi_{\text {S }}$ is given by eq. (3.11) and φ_{1} by eq.(3.3), i.e.:
\qquad
\qquad
-
\qquad
\qquad

\qquad
\qquad
\qquad

$$
x+5 x+x+1
$$

(3.13) $\varphi_{1}=-\frac{Q}{\pi} \sin \pi y \int_{-1}^{y} \frac{\sin 2 \pi t}{t} d t-\frac{Q}{\pi} \cos \pi y \int_{y}^{1} \frac{1-\cos 2 \pi t}{t} d t$.

Introducing eq.(3.11) and eq.(3.13) into eq. (3.12), we get:
(3.14) $k_{2}=6 Q \pi \int_{0}^{1} \frac{\sin 2 \pi t}{t} d t-\frac{2 Q^{2}}{\pi} \int_{0}^{1} \frac{1-\cos 2 \pi y}{y} d y \int_{0}^{y} \frac{\sin 2 \pi t}{t} d t+$
$+\frac{2 Q^{2}}{\pi} \int_{0}^{1} \frac{\sin 2 \pi y}{y} d y \int_{0}^{y} \frac{1-\cos 2 \pi t}{t} d t-$
$-\frac{2 Q^{2}}{\pi} \int_{0}^{1} \frac{\sin 2 \pi y}{y} d y \int_{0}^{1} \frac{1-\cos 2 \pi t}{t} d t \quad$,
where we have used that

$$
\int_{0}^{1} \frac{(\sin \pi t)^{2}}{t^{2}} d t=\pi \int_{0}^{1} \frac{\sin 2 \pi t}{t} d t .
$$

In the case $Q=15, \varphi_{S}=\sin \pi y$ is the only neutral solution with $c_{S}=0$ when $\mu=\frac{1}{2}$. In the general case when the value of Q is such that $\sin n \pi y$ is a neutral solution, we also find that $k_{1}=0$, and that k_{2} is given by :

\qquad

$2+3 \cdot \frac{1}{2}$
\qquad

\qquad
 \qquad
\qquad
\qquad
(3.15) $k_{2}=6 Q n \pi \int_{0}^{1} \frac{\sin 2 n \pi t}{t} d t-\frac{2 Q^{2}}{n \pi} \int_{0}^{1} \frac{1-\cos 2 n \pi y}{y} d y \int_{0}^{y} \frac{\sin 2 n \pi t}{t} d t+$

$$
\begin{aligned}
& +\frac{2 Q^{2}}{n \pi} \int_{0}^{1} \frac{\sin 2 n \pi y}{y} d y \int_{0}^{y} \frac{1-\cos 2 n \pi t}{t} d t- \\
& -\frac{2 Q^{2}}{n \pi} \int_{0}^{1} \frac{\sin 2 n \pi y}{y} d y \int_{0}^{1} \frac{1-\cos 2 n \pi t}{t} d t
\end{aligned}
$$

Using the result from Appendix I, we find that this expression for k_{2} is equivalent to the one found in [3] by a less general method.

When $Q=15$ we have shown in Appendix II that k_{2} given by eq. (3.14) is negative. From eq. (2.5) we find that $\left(k^{2}-k_{1, \frac{1}{2}}^{2}\right)=k_{2} c^{2}+\cdots$, and we see that there is instability for $k>k_{1, \frac{1}{2}}$. Again the unstable solution for a given k near $k_{1, \frac{1}{2}}$ can be found since φ_{S} and θ_{S} are known.

The case $\mu=0$ remains. In this case
$\varphi_{S}=y^{\frac{1}{2}} J_{0}\left(\lambda_{1}, O^{y}\right)$ and $k_{1,0}^{2}=Q-\lambda_{1,0}^{2}(Q=15) \cdot W e$ have shown in [1] that $\left(\frac{\partial c}{\partial k^{2}}\right)_{R_{0}}$, which is equal to k_{1}^{-1}, is equal to zero in this case. We have also shown that $\left(\frac{\partial c_{i}}{\partial R}\right) k_{1,0}<0$, so that there is instability

$2+2+2$
$2+\frac{12}{2}+$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
for $R<\frac{1}{4}$. The curve in the $k-R_{0}-p l a n e$ on which $c_{S}=0$, has a maximum $R_{0}=\frac{1}{4}$ at $k=k_{1,0}$, see [1], and therefore we should expand φ and c in a series of powers of $\left(R-\frac{1}{4}\right)$ keeping $k=k_{1,0}$ fixed in order to find an unstable solution close to this point on the curve. We would not find any unstable solution by expanding φ and $\left(k^{2}-k_{1,0}^{2}\right)$ in a series of powers of c, keeping $R=\frac{1}{4}$ fixed, which is the method used in this paper.

Acknowledgement

The financial support given by the Norwegian Research Council for Science and the Humanities is acknowledged.

Appendix I.

We will show that:

Proof.
It is easily found that:

$$
\left[\begin{array}{l}
\int_{0}^{1} \frac{1-\cos 2 n \pi y}{y} d y \int_{0}^{y} \frac{\sin 2 n \pi t}{t} d t \\
\quad=2 n \pi\left[\int_{0}^{1} \frac{\sin 2 n \pi y}{y} d y \int_{0}^{y} \frac{1-\cos 2 n \pi t}{t} d t\right. \\
+(2 n \pi)^{2}\left[\int_{0}^{1} \sin 2 n \pi y \log 2 n \pi y \log g^{2} y d y-\int_{0}^{y} \log \cos 2 n \pi t \log t d t\right. \\
\left.-\int_{0}^{1} \cos 2 n \pi y \log y d y \int_{0}^{y} \sin 2 n \pi t \log t d t\right]
\end{array}\right.
$$

Put:
$(A 1.3)\left\{\begin{array}{c}I(\alpha)= \\ \\ \\ -\int_{0}^{1} \sin \alpha y \text { logy } d y \int_{0}^{y} \cos x t \text { logt } d t \\ \\ 0\end{array}\right.$
The expression on the right hand side of eq.(A1.2) is then equal to:
$2 n \pi\left[\int_{0}^{1} \cos 2 n \pi y \log 2 \mathrm{~g} y \mathrm{~d}-\int_{0}^{1} \log ^{2} y d y\right]+(2 n \pi)^{2} I(2 n \pi)$.
From eq.(A1.3) it follows that:
(A1.4) $\quad I(0)=0$.

We differentiate eq.(A1.3) with respect to α, and find that:
(A1.5) $\left\{\begin{array}{r}\frac{d I}{d \alpha}+\frac{2}{\alpha} I=\frac{1}{\alpha^{2}} \int_{0}^{1} \cos \alpha y \log y d y-\frac{2}{\alpha^{2}} \int_{0}^{1} \log y d y \\ \\ +\frac{1}{\alpha^{2}} \int_{0}^{1} \cos \alpha(1-y) \log y d y .\end{array}\right.$
The solution of this equation which satisfies the condition eq.(A1.4), is:
(A1.6) $I(\alpha)=\frac{1}{\alpha^{2}}\left[-2 \alpha \int_{0}^{1} \log y d y+\int_{0}^{1} \frac{\sin \alpha y}{y} \log y d y\right.$

$$
\left.+\int_{0}^{1} \frac{\sin \alpha(1-y)}{1-y} \log y d y\right]
$$

Now:

$$
\begin{aligned}
\int_{0}^{1} \frac{\sin 2 n \pi(1-y)}{1-y} \log y d y & =\int_{0}^{1} \frac{\sin 2 n \pi(1-y)}{y} \log (1-y) d y- \\
& -2 n \pi \int_{0}^{1} \cos 2 n \pi(1-y) \log y \log (1-y) d y= \\
= & -\int_{0}^{1} \frac{\sin 2 n \pi(1-y)}{1-y} \log y d y-2 n \pi \int_{0}^{1} \cos 2 n \pi y \log y \log (1-y) d y
\end{aligned}
$$

from which it follows that:
(A1.7) $\int_{0}^{1} \frac{\sin 2 n \pi(1-y)}{1-y} \log y d y=-n \pi \int_{0}^{1} \cos 2 n \pi y \log y \log (1-y) d y$.
Further:
(A1.8) $\int_{0}^{1} \frac{\sin \alpha y}{y} \log y d y=-\frac{\alpha}{2} \int_{0}^{1} \cos \alpha y \log { }^{2} y d y$,

$$
\text { and } \int_{0}^{1} \log y d y=-1
$$

Taking into account eq. (A1.7) and eq. (A1.8), we find that:

$$
(A 1.9)\left\{\begin{array}{r}
I(2 n \pi)=\frac{1}{(2 n \pi)^{2}}\left[4 n \pi-n \pi \int_{0}^{1} \cos 2 n \pi y \log ^{2} y d y-\right. \\
\left.-n \pi \int_{0}^{1} \cos 2 n \pi y \log y \log (1-y) d y\right]
\end{array}\right.
$$

Now:
$(A 1.10)\left\{\begin{array}{r}\int_{0}^{1} \cos 2 n \pi y \log ^{2} y d y= \\ \quad \\ \quad \text { and } \int_{0}^{1} \cos 2 n \pi y \log ^{2}(1-y) d y,\end{array}\right.$
Introducing eq.(A1.9) into eq.(A1.2) and using eq.(A1.10), we get:
$\int_{0}^{1} \frac{1-\cos 2 n \pi y}{y} d y \int_{0}^{y} \frac{\sin 2 n \pi t}{t} d t-\int_{0}^{1} \frac{\sin 2 n \pi y}{y} d y \int_{0}^{y} \frac{1-\cos 2 n \pi t}{t} d t=$ $\frac{1}{2} n \pi \int_{0}^{1} \cos 2 n \pi y\left[\log ^{2} y+\log ^{2}(1-y)-2 \log y \log (1-y)\right] d y$, which is equivalent to (A1.1).

Appendix II.
By using the result from Appendix I, k_{2} given by eq.(3.14) can be written as:
(A2.1) $k_{2}=6 Q \pi \operatorname{si}(2 \pi)-Q^{2} \int_{0}^{1} \cos 2 \pi t \log g^{2}\left(\frac{t}{1-t}\right) d t-$

$$
-\frac{2 Q^{2}}{\pi} \operatorname{Si}(2 \pi) \operatorname{Cin}(2 \pi)
$$

where $\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t, \quad \operatorname{Cin}(x)=\int_{0}^{x} \frac{1-\cos t}{t} d t$.

It will be shown that k_{2} given by eq. (A2.1) is negative. $Q=15 . \operatorname{Cin}(\pi x)$ is tabulated in [4], and we find that $\operatorname{Cin}(2 \pi)=2,44$ approximately. From this it follows that $6 Q \pi \operatorname{Si}(2 \pi)<\frac{2 Q^{2}}{\pi} \operatorname{Si}(2 \pi) \operatorname{Cin}(2 \pi)$. Further:
$\int_{0}^{1} \cos 2 \pi t \log ^{2}\left(\frac{t}{1-t}\right) d t=2\left[\int_{0}^{\frac{1}{4}} \cos 2 \pi t\left\{\log ^{2}\left(\frac{t}{1-t}\right)-\right.\right.$ $\left.\left.-\log ^{2}\left(\frac{\frac{1}{2}-t}{\frac{1}{2}+t}\right)\right\} d t\right]>0$,
since $\log ^{2}\left(\frac{t}{1-t}\right) \geqq \log ^{2}\left(\frac{\frac{1}{2}-t}{\frac{1}{2}+t}\right)$ when $t \in\left(0, \frac{1}{4}\right]$.
From the above it follows that $k_{2}<0$.

References.

[1] Engevik, L.: On the stability of a shear flow in a stratified, incompressible and inviscid fluid, with special emphasis on the Couette flow. To appear in Acta Mech..
[2] Engevik, L.: The stream function within the critical layer of a shear flow in a stratified and incompressible fluid. To appear in Acta Mech..
[3] Huppert, H.E.: un Howard's technique for perturbing neutral solutions of the Taylor-Goldstein equation, J. Fluid Mech., 57, pp. 361-368, (1973).
[4] Abramowitz, M., and Stegun, I.A.: Handbook of Mathematical Functions, U. S. Dept. of Commerce, National Bureau of Standards, Appl. Math. Series. 55, Seventh Printing, May 1968, p. 244.

[^0]:

