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Abstract. Fractional step techniques for simulation of ocean circulation are
potentially interesting because of their computational simplicity. Several disad-
vantages with such techniques are however reported. In this paper the propaga-
tion of Poincaré Waves in a channel with uniform width and the propagation of
the M, tide in the North Sea are studied with different fractional step methods
and several methods in current use. For these problems symmetrical spatially
split fractional step techniques proves to be almost as accurate as implicit meth-
ods applied directly on the coupled system of differential equations. Spatially
split fractional step methods may as implicit methods be unconditionally stable.
This benefit is achieved to a cost which is of the same order of size as for explicit
methods.

Subject classification: 65M, 76B

Key words: Shallow water equations, inertia-gravity waves, fractional step meth-
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1 Introduction.

The CFL-criterion imposed when applying explicit methods in free surface ocean
circulation studies, very often forces us to apply smaller time steps than necessary
to resolve the major physical processes. This is especially the case when we want
to reduce the spatial resolution in areas with large depths. Skagerrak and the
Norwegian fjords are examples of such areas.

When applying implicit methods, the CFL-criterion may be avoided or the
bound on the time step increased, and the time steps may be chosen according
to the time scales of the major processes. On the other hand linear systems of
equations have to be solved at each time step and the extra cost of using implicit
methods may be significant.

A third approach is to split the system of differential equations in several
subsystems of equations. By choosing appropriate numerical techniques for each
subsystem the CFL-criterion is affected and may be removed. The cost of solving
each sub-problem and also the total cost is often only a small fraction of the cost of
applying implicit methods to the complete system of differential equations. The
difference equations we get when discretizing the complete system of differential
equations may also be split in a similar manner. Combining the two approaches
is also possible. All these techniques may be denoted as fractional step methods.

Several disadvantages with fractional step methods due to for instance polar-
ization /one-dimensionalization, need for intermediate boundary conditions and
loss of accuracy are reported. Also techniques for avoiding (some of ) these prob-
lems are suggested. See [4, 6, 9, 13, 14] for further references.

In the present paper the propagation of Poincaré waves in a channel with
uniform width and the propagation of the M, tide in the North Sea are studied
with some potentially interesting fractional step methods.

2 The numerical techniques.

Let f be the Coriolis parameter, g the gravity constant, U and V the depth inte-
grated transports in z and y directions, respectively, 7 the sea surface elevation
and H the undisturbed water depth. The linearized shallow water equations in
Cartesian coordinates (z,y) may then be written
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The quality of different numerical methods for computing approximate solutions
to (1) will be studied. The variables are approximated in an Arakawa C-grid,
see Fig. 1. H too is known in the 7 points. The same spatial discretization is
applied for all time stepping techniques
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where

peF(z,y) = (F(z+Az/2,y)+ F(z - Az/2,y))/2

6, F(z,y) = (F(z+Az/2,y)— F(z — Az/2,y))/Az

ey BT 1) (F(z + Az/2,y+ Ay/2) + F(z + Az /2,y — Ay/2) +
F(z — Az/2,y— Ay/2)+ F(z — Az/2,y+ Ay/2))/4.

Az is the grid size in the z-direction. The grid size in y-direction, Ay, will be
equal to Az in all our experiments. The remaining averaging and difference op-
erations in (2) are defined correspondingly. Different techniques for stepping the
numerical approximations forward in time are considered.

Vij+1

Uijx *70ij b Ui

Vij

Fig. 1 The variables in an Arakawa C-grid.



2.1 The forward-backward scheme.
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This is a much referenced explicit scheme, see for instance Haltiner and Williams
[8] and Beckers and Deleersnijder [3]. We note that the treatment of the Coriolis
term is explicit in the U-equation and implicit in the V-equation. In the next
time step the V-equation is treated before the U-equation and the Coriolis terms
are then treated explicitly in the V-equation and implicitly in the U-equation.
For gravity waves this scheme is stable as long as the time step At satisfies the
CFL-criterion At < Az/+/2gH.

2.2 The Crank-Nicolson method.

The method due to Crank and Nicolson [5] applied to our system of equations
may be written

e n At n n Y/ rn

Uptt = U - ‘é‘(g(#rHij)éx(ij +05) = fuey (VI + V) (3)
i n At i n n n ™m

Vit = Vi = (el Hig)éy (G + ) + ey (UG + US)) (4)
n n At n TL n T 4
gt =l = S (6(UET UG + 6, (VT + VD)), (5)

This method is 2nd order accurate in time and space and unconditionally stable.
When computing the solution at time step n + 1, we may follow Backhaus [1]
and insert (3) and (4) into (5) to find that 77?]»+1 depends on unknowns in 13 grid
points. The three equations above will still be coupled with this insertion.

2.3 Inertia-Gravity splittings.

The linearized shallow water equations (1) may be split into two sub-systems of
differential equations
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The first sub-system (6) is a coupled system of two ordinary differential equa-
tions which may, for given initial values, be solved exactly if U and V' were defined
in the same points in space. For the C-grid the solution of (6) is approximated by

Uir = aUj+ Buzy Vi (8)
Viir = Vi =B Uj (9)
where a = cos(fAt), § = sin(fAt) and the superscript n* (instead of n + 1)

indicates that this is only an intermediate solution. The Crank-Nicolson method
applied to sub-system (7) of equations may be written

At

o= UL = (ke Hi)éa(ni + i) (10)
v = v = 2, )6, (i + '
o= 75](#1, i7)0y(n5" + ;) (11)
L% n At TTI* T TL*x n
Mg = Ty — 7(59:(015 GG e (L R (12)

Here too we may insert (10) and (11) into (12) when solving for 7" Using the
notation

Y=z = Atg(,utz])é.r/Q
vy = Atg(pyHij)by/2
Ae = g(A)26(uaHij)ér/4
Ay = 9(At)%6,(uyHij)b,/4

we may, after insertion of (10) and (11) into (12), write

L = Ug v ) (13)
Vit = Vvl + ) (14)
my = m = AUSUL + &VE) + (Ae + A )0 + 053). (15)
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We note that n/" is decoupled from U and V' at intermediate time step n* and

involves 5 unknowns at time step n*. The computational complexity is therefore
considerably reduced by introducing the suggested splitting. The quality of the
model results may however be reduced also and will depend on the order in which
the systems (6) and (7) are solved. Introducing

Wi = Vij
(8) and (9) may be written

Wf{]l_ “ = C ‘{/ ;;'

where the operator C is given by

o  Bpgy O
¢ = —Blizy o
0 0 1
(13), (14) and (15) may be written
10 Ve 1 0 =T
0 1 % y W/;‘;'* = 0 1 = y W;]l
0 0 1-Az—MXy —Atd, —Até, 1+ A+ A,
or formally
Wi = GWh. (16)

The operations may then be combined in different ways to compute values at
time step n + 1

Alternative 1: WZ}H = GCW/.

Alternative 2: WZ-’;-H = CGW/.

The operations may also be symmetrized over a double step
Alternative 3: WZ}H = CGGCW,.

Since the two operators G and C do not commute only the third alternative will
be 2nd order in time regarded over a double step, see Strang [12].



2.4 Spatial splitting of the gravity difference equations.

Even if the splitting introduced above reduces the computational complexity
considerably, the cost of solving the linear system (16) will be significant and for
iterative techniques the cost will depend on the size of the off-diagonal elements.
that is At and H. As indicated above we first solve for n;;" and then for U/;" and
V7™ when performing the operations (16). We may apply a Douglas-Rachford
type alternating direction implicit technique, see Weiyan [14] p. 367, to split the
G operator spatially, and the following sequence of operations may get us from
time step n to time step n + 1.

1. The Coriolis terms. W[* = CW/} .

2. Implicit split in z-direction.

1 0 0 il 0 =
01 o |wrr=| o 1 . |wr
00 1-A; —Até, —At6, 1+ A +2),

3. Implicit split in y-direction.

1 0 0 00 0
0 1 0 W{;“" = W’,-’}"+ 00 O W
0 0 1-2, 0 0 —A,
4. Solve for U and V.
1 0 7
0 1 =y Wg“ = Wi?"**.
0 0 1

The steps 1 to 4 may formally be written

n+1 _ n

The Coriolis terms may be treated in the final substep

witt = CG, W}

or we may symmetrize the operations over a double step



W2 = CGayGuyCWE. (7)

We may also step implicitly in y-direction before taking an implicit step in z-
direction. Such a procedure may formally be written

n+1 _ 1 T

The procedure (17) will be 2nd order both in time and space regarded over a
double step. In order to reduce the effect of polarization, it may be useful to
symmetrize the order in which the directions are treated

Wit = CGyuGeyCWE.

Replacing G' by Gy or Gy, we get two three-diagonal systems of equations to
solve at each time step. This means a considerable simplification in computational
complexity. On the other hand this splitting may result in stability problems and
loss of accuracy.

2.5 Spatial splitting of the gravity differential equations.

Instead of splitting the discrete operator G spatially, the subsystem (7) of differ-
ential equations may be split in two new subsystems
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Fach subsystem is one-dimensional and may be propagated in time with the
Crank-Nicolson method. The following sequence of operations may get us from
time step n to time step n + 1.

1. The Coriolis terms. W’i’}* = CVV&L- .

2. Crank-Nicolson on subsystem (18).

1 0 Wiz 1 0 —79;
0 1 0 Wi = 0 1 0 = (20)
0 0 1—-X; 0 0 1+AX;

3. Crank-Nicolson on subsystem (19).
10 0 10 0
01 vy witt = 01 =—v, |Wi (21)
0 0 1-2X 0 0 144,

The steps 1 to 3 may formally be written

n+1 _ n

As for the previous splitting technique the order of the operations may be reversed
or symmetrized over a double step.

According to von Neumann stability analysis for free waves all methods above,
except for the forward-backward method, are unconditionally stable. For waves
in regions with varying topography and/or non-straight coasts, the eigenvalues
of the corresponding propagation matrices must be studied before any firm con-
clusions with respect to stability can be drawn.

Intermediate boundary conditions are a problem when applying fractional
step methods. With all variables defined in the same points (A-grid) and non-
rectangular regions, it is especially difficult to define intermediate boundary con-
ditions when applying ADI type techniques. With the C-grid U = 0 or V =0
in land/sea points and the 7-points closest to land cells become decoupled from
boundary points.

When applying non-spatial split implicit methods, the solutions of the corre-
sponding linear systems of equations are iterated to machine accuracy using the
Gauss-Seidel iterative technique.
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3 Poincaré Waves.

In Gill [7] it is shown how waves in a channel of uniform width, W, and uniform
depth., H. may be combined to form a solution of our system of equations (1).
The solution is

. y.1) = (izo> (kfeos(ly) + wisin(ly))cos(kz — wt)
Uz, gt = <ng@> (klsin(ly) + (wf/gH )cos(ly))cos(kx —wt) (22)
Vi(z,y,t) = <2wfn0> cos(ly)sin(kx — wt)

where 79 is the amplitude, w the frequency, k = (k,l) the wavenumber, £ =
V'k% 4+ [2 the magnitude of the wavenumber, w, = /f? + {29 H and
w = w? + k?*gH. In addition | must satisfy

[ = n,o/W, =n,=13,5,..

We also choose k such that

= en Lo n =12 3

where L is the length of the channel. Numerical approximations to n will be
compared with the analytical solution (22) and Table 1 shows the physical pa-
rameters used in our experiments. The channel is placed such that the corner
points are (0,—W/2),(L,—W/2),(0,W/2)and (L,W/2)in the (z,y) plane. The
channel is discretized in a 20 * 20km Arakawa C-grid giving 150*30 horizontal
grid cells within the channel. At the inflow boundary (0,y),-W/2 <y < W/2
analytical values of U,V and 7 are used to define boundary values. At the outflow
boundary a FRS-zone, see Martinsen and Engedahl [10], is added to the com-
putational domain. In the 10 cell wide zone the numerical approximations are
“relaxed” towards the analytical values. The boundaries (z,—-W/2),0 <z < L
and (z,W/2),0< z < L are closed (V = 0).

The analytical values of 7, U and V at time ¢t = 0 are used as initial values
in all grid points. For gravity waves the CFL-criterion for the forward-backward
method is At < Az/+/2gH = 451.52. We want to relate our time steps to this
criterion. To be able to compute statistics over periods in time, integer numbers
of steps over a period, 27 /w, are applied. The waves need approximately 39
hours to travel the distance L, and in all experiments the waves are simulated
50 hours. In Table 2 the maximum errors in the numerical approximations to 7
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(maximum in space and time) produced by the different methods are compared.
The operator splitting methods applied are defined in the previous section and
identified through their propagation operators. Results for a method applied by
Backhaus [2] are also reported. In this method the Coriolis terms are treated
exactly without separating them from the pressure terms. The linear system of
equations is iterated to solve the remaining implicit problem. We note that for
small time steps the errors are similar for all methods. This is as expected be-
cause the same spatial discretizations are applied and for small At the spatial
errors dominate. For At = 437s the maximum error for the forward-backward
technique is somewhat larger than for many of the other techniques, but taking
the computational simplicity into account it competes favorably. For larger time
steps the qualities of the model results measured in this norm are also similar for
all methods except for the forward-backward method. Therefore, we conclude
that the spatial splitting techniques compete very favorably with the more im-
plicit techniques on this problem. From the table we see that to symmetrize the
propagation matrices over a double step does not result in obvious improvements
in the approximations to . We also note that all the splitting techniques compete
favorably with the method applied by Backhaus.

In some cases we are not primarily interested in these waves themselves, but
in their influence on the mean circulation. For the solution (22) average time
integrated values are

_""%dto 23
P arly #= )

for ¢ = U,V or n. The numerical solution should also satisfy the condition of no
net flow over a period.

In the figures 2 to 6 the spatial distribution of approximations to U are plotted
for different methods. The integrals (23) over the 5th period are computed with
50 time steps over a period. (At = 437s). Measuring in this norm the differences
between the techniques become more apparent. The techniques with smallest
errors are the Crank-Nicolson method and the symmetrical splitting technique.
These are also the 2nd order in time methods. The effect of making the splitting
operators symmetric over a double step is illustrated in the sequence of figures 4,
5 and 6. We note that areas with too large net flow cancel areas with too small
net low when we make the operator symmetric and 2nd order over a double step.

12



Parameters Values Parameters Values

g 9.81ms™2 l 5.236 x 10=5m ™!
f Laxioi st % 6.283 x 1075m 1
H 100m K 8.179 x 107 5m™!
w 6 x 10°m w 2.873 x 1074571
L 3 x 10°m s 218725

Ny 6 ;)—“]: 21.46ms™1

oy 1 VoH 31.32ms™!

Mo 0.5m

Table 1. Physical parameters.

Time steps (s)
Method 73 109 219 437 || 875 | 1458 | 2187
Forward-backward | 0.061 | 0.067 | 0.085 | 0.154 & i *
Crank-Nicolson 0.052 | 0.054 | 0.066 | 0.110 || 0.28 | 0.72 | 1.58
Backhaus-Wais 0.051 | 0.053 | 0.063 | 0.101 || 0.25 | 0.62 | 1.41
GC 0.052 | 0.054 | 0.063 | 0.097 || 0.23 | 0.51 | 1.15
CG 0.053 | 0.056 | 0.069 | 0.107 || 0.25 | 0.58 | 1.27
CGGC 0.052 | 0.053 | 0.066 | 0.108 || 0.28 | 0.71 | 1.76
G pyC 0.052 | 0.054 | 0.064 | 0.094 || 0.22 | 0.50 | 1.20
G 0.053 | 0.056 | 0.068 | 0.107 || 0.25 | 0.59 | 1.31
CG G 0.051 | 0.053 | 0.064 | 0.105 || 0.27 | 0.71 | 1.70
G, G0 0.053 | 0.058 | 0.079 | 0.141 || 0.32 | 0.66 | 1.32
OGLGY 0.060 | 0.067 | 0.095 | 0.164 || 0.35 | 0.78 | 1.58
CGGyGyG.C | 0.051 | 0.053 | 0.063 | 0.103 || 0.27 | 0.74 | 1.78
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Fig. 2 Errors in the approximations to U for the forward-backward
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Fig. 4 Errors in the approximations to U for the method with propaga-
tion matrix G,G,C. Max. error = 0.808m?s™'.
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Fig. 5 Errors in the approximations to U for the method with propaga-
tion matrix CGG,. Max. error = 0.912m?2s~1.
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Fig. 6 FErrors in the approximations to U for the method with propaga-
tion matrix CG,G,G,G,C. Max. error = 0.165m?s~!.

4 M, tide in the North Sea.

In order to study the quality of the time stepping techniques for a more realistic
case, models for approximating the circulation and water level of the North Sea
are implemented. In Fig. 7 the bottom topography is given. The resolution
is 20km. Estimates of the M;-tidal values are added to monthly climatological
values and applied as initial and boundary values, see Martinsen et al. [11]. The
boundary values in a 10 cell wide FRS-zone are updated every model time step.
The CFL-criterion for the forward-backward method is 75.8s. In Fig. ] the water
level after one My-cycle (12.42 hours) is approximated with the Crank-Nicolson
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method and At = 18.6s. For small time steps the spatial errors dominate and
because the spatial discretizations are the same for all time stepping procedures,
the differences in maximum water levels after one Mj-cycle are less than 0.01m
for all the suggested techniques. The total errors in the approximations presented
in Fig. 8 are uncertain. However, the time discretization errors are considered
to be small and results produced by the Crank-Nicolson method and At = 18.6s
will therefore be used as a reference when discussing time discretization errors
for the suggested techniques for longer time steps.

The fields vary rapidly in space and time and the pointwise errors may there-
fore be very large. We therefore prefer to study the errors in M;-period integrated
values of n and U/ H which are denoted as 7 and (U/H ), see (23). We also mea-
sure the the average absolute errors in the fields over all sea cells

1
la = Lumber of sea cells Z 17 = Tiezac
all sea cells
where 7,,,.; are the results as computed by Crank-Nicolson and At = 18.6s.
Correspondingly also (U/H ), is computed. In Table 3 values of 7, for different
time stepping techniques are presented and in Table 4 values of (U/H), for
different time stepping techniques are given. The results of tables 3 and 4 indicate
that we may apply considerably longer time steps than the CFL-criterion and still
get acceptable results for the average flow. We note that to split the Coriolis terms
from the gravity terms to reduce the computational complexity does not decrease
the quality significantly and this splitting does not cause any stability problems.
The spatial splitting techniques with propagation matrices G.,C and CG,,G,,C
become unstable for the time steps applied in this experiment that are longer than
the CFL-criterion. However, by making the spatial splitting symmetric over a
double step, we get acceptable results for time steps that are 10 times longer
than the CFL criterion. (60 steps per M; cycle.) For even longer time steps also
the symmetrical splitting technique CGy.G;,C will, however, become unstable.
In order to illustrate the effect of alternating the order in which the operator is
split spatially, n after one M; cycle as computed by the Crank-Nicolson method
and At = 745.2s is plotted in Fig. 9. Corresponding results for the spatial
splitting techniques CG.yGz,C and CGy; G,y C are presented in figures 10 and
11. Comparing figures 8 and 9 we find differences in water levels in many areas.
The largest difference is 0.95m and located south-east of England where we also
find large spatial gradients. The main features of the tide are, however, still
present and the positions and strengths of the maxima/minima are similar. From
Fig. 10 we note that performing an unsymmetric spatial split introduces many
1-D structures in deeper waters, along the Norwegian coast and in Skagerrak.
These 1-D structures are removed when the operators are symmetrized over a

16



double step as we see from Fig. 11. The time discretization errors are now
similar to the corresponding errors for the Crank-Nicolson method.

The results for spatial splitting techniques with propagation matrices G\,G,.C'
and especially CG.G,G,G,C are even more promising,. see figures 12 and 13. The
methods seem unconditionally stable. This was a surprise because all spatial
splitting techniques suggested here are according to a von Neumann stability
analysis stable for free waves, but it seems that the techniques based on splitting
the differential equations have much better stability properties for realistic cases
with varying topography.

Weare [13] studied the errors arising from irregular boundaries in ADI solu-
tions of the shallow water equations. The ADI method analysed is similar to our
method G,. Our results indicate that to regard the problem in substeps as 1-D
problems may have a significant effect on the stability properties.

Time steps (s)
Method 18.6 | 74.5 | 372.6 | 745.2 | 1117.9 | 1490.5
Forward-backward | 0.003 | 0.002 * * * -
Crank-Nicolson exact’ | 0.007 || 0.023 | 0.030 | 0.032 | 0.033
GC 0.001 | 0.005 || 0.019 | 0.030 | 0.037 | 0.043
CGGC 0.001 | 0.007 || 0.021 | 0.029 | 0.034 | 0.039
Cho 0.001 | 0.006 * * * x
Gl Gl 0.002 | 0.013 * * ¢ S
CG G0 0.001 | 0.013 || 0.030 | 0.033 * 4
Goa 0.004 | 0.013 || 0.051 | 0.085 | 0.110 | 0.134
CG6 GGG C 0.001 | 0.005 || 0.023 | 0.033 | 0.047 | 0.066

Table 3. Values of 77, (m) over the 5th M, cycle. ( * = instability)



Time steps (s)

Method 18.6 | 74.5 || 372.6 | 745.2 | 1117.9 | 1490.5
Forward-backward | 0.002 | 0.002 * * # &
Crank-Nicolson ’exact’ | 0.005 || 0.020 | 0.031 | 0.039 | 0.044
GC 0.001 | 0.007 || 0.030 | 0.049 | 0.063 | 0.073
CGGC 0.001 | 0.007 || 0.030 | 0.048 | 0.061 | 0.071
G C 0.001 | 0.007 & * i *
CGCnG 0 0.002 | 0.011 * & * &
CG G0 0.001 | 0.011 || 0.036 | 0.052 B i
GG C 0.002 | 0.006 || 0.030 | 0.051 | 0.067 | 0.080
CG 6 CuG ;0 0.001 | 0.007 || 0.039 | 0.070 | 0.090 | 0.109

Table 4. Values of (U/H), (ms™!) over the 5th M, cycle.

( * = instability)
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Fig. 7 Bottom topography of the North Sea.
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Fig. 8 n after 1 Mj-cycle produced by the Crank-Nicolson method and
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Fig. 10 7 after 1 Mj-cycle produced by the CG .y G;yC method and At =
745.2s. Max. |n| = 7.33m.
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Fig. 11 75 after 1 M,-cycle produced by the CGy.G,,C method and At =
745.2s. Max. |n| = 3.23m.
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Fig. 12 7 after 1 M,-cycle produced by the G,G,C method and At
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5 Conclusions.

When applying implicit methods in free surface ocean models, the CFL-criterion
is avoided, but large linear systems of equations with large bandwidths may have
to be solved at each time step. The question raised in this paper is whether it is
possible to split the original problem into a series of subproblems in such a way
that: a) The computational complexity of a subproblem will be at most to solve
a three diagonal system of equations and b) the qualities of the model results are
acceptable when we use time steps substantially larger than the CFL criterion
for explicit methods.

We have approached the answer to this question in two stages. The differential
equations are first split into two subsystems, one including the Coriolis terms only
and one with the gravity terms and the equation of continuity. Then the last
subsystem is split spatially, either by splitting the gravity difference equations or
by splitting the corresponding differential equations before discretization.

The results from our experiments indicate that the differential equations may
be split into our two subsystems without any significant loss of accuracy. At least
this is the case when the operations are symmetrized over a double step. Such
a split reduces the computational complexity considerably, but we still have to
solve linear equations with large bandwidths at each time step.

All spatial splitting techniques suggested are for free waves and constant depth
unconditionally stable. For the case with varying topography and non-straight
coasts the techniques based on splitting the gravity differential equations spatially
proves to have much better stability properties than the technique based on split-
ting the difference equations. The former techniques seem to be unconditionally
stable, but a study of the eigenvalues of the corresponding propagation matrices
remains to be done. Taking the computational complexity and the apparent ro-
bustness into account, we regard the symmetrized splitting technique based on
splitting the differential equations spatially to be a very attractive alternative to
the Crank-Nicolson method applied to the coupled system of equations.

The experiments described in this paper are performed without any horizontal
eddy diffusion. Introducing diffusion smooths the numerical approximations and
the results become even more in favor of symmetrical spatial splitting techniques.

Nonlinear terms or advection of momentum are avoided in this study. The
CFL-criterion time step invoked when introducing these terms and applying ex-
plicit methods is typically much larger than the corresponding criterion for free
surface gravity waves. It is therefore hoped that these terms may be treated in
separate fractional steps with explicit methods.
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