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Abstract

Some general subspace correction algorithms are proposed for a convex
optimization problem over a convex constraint subset. One of the nontriv
ial applications of the algorithms is the solving of some obstacle problems
by multilevel domain decomposition and multigrid methods. The essen
tiai new features of the algorithms when applied to domain decomposition
and multigrid are the treatment of the coarse mesh problems. The sub
problems over the coarser meshes are solved without any constraints. If
the coarser mesh correction values are dragging the iterative solution out
of the constraint set, we use the iterative Solutions of the subproblems
over the finest mesh to drag it back to the constraint set. The rate of con
vergence for the algorithms for the obstacle problems is of the same order
as the rate of convergence for jump coefficient linear elliptic problems.

Keywords: Parallel,' domain decomposition, multigrid, nonlinear, varia
tional inequality, obstacle problems, space decomposition

1991 Mathematics Subject Classification: 65N55, GSYOS, GSJIS, GSKIO

1 Introduction

In this work, we extend the space decomposition and subspace correction algo
rithms of [54, 49] to solve convex optimization problems over a convex constraint
subset. One of the main concerns of this work is the rate of convergence when
multilevel domain decomposition and multigrid methods are used to solve some
obstacle problems.
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Norway. Email; taiami.uib.no and URL: http://www.mi.uib.no/'tai. This work was par
tially supported by the Norwegian Research Council under projects 128224/431 and SEP
-115837/431.
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From the time that multigrid and domain decomposition methods are get
ting the attention of numerical mathematicians and engineers, efforts have been
continuously devoted to the study of using domain decomposition and multigrid
methods for obstacle problems, see [l, 3, 2, 7, 14, 18, 23, 21, 22, 24, 25, 19, 20, 29,
27, 28, 30, 31, 32, 34, 33, 15, 35, 37, 39, 50, 51, 42, 43, 41, 40, 45, 48, 56]. In the
book of McCormick [35, p.loo], treatment of constraints for multilevel methods
was listed as one of the open and challenging problems. For linear elliptic partial
differential equations, it is known that the solution will be influenced globally if
the boundary value or the right hand is perturbed around a point. This justi
fies the need for coarser meshes in using iterative solvers to solve the problems.
However, this is not the case for obstacle type problems. A small perturbation
of the input data may only infiuence a small part of the solution domain due
to the appearance of the obstacles. This leads to the speculation that coarser
meshes may not be necessary or should be handled differently for obstacle prob
lems. Related to this difficulty, the algorithms in [lB, 23, 25] are trying to use
the active set strategy to separate the obstacle from the solving of the partial
differential equations, i.e. during the iterative procedure, the algorithms are
trying to identify the active regions of the obstacles and then solve a partial
differential equation where the obstacle is not active. The algorithms proposed
in [l, 2, 19, 30, 32, 50, 51, 56] are specified for domain decomposition methods.
Due to the absence of the coarse mesh in the algorithms, the convergence of
the algorithms depends on the number of subdornains. In Tai [4s], the obstacle
function is decomposed into a sum of obstacles from the subspaces, and the
subproblems are solved with the subspace obstacles. The algorithms of [4s] are
applicable to multilevel methods, however, the convergence was only proved for
overlapping domain decomposition methods without a coarser mesh. Compar
ing our algorithms to the ones of [7, 18, 23, 21, 22, 24, 25, 27, 28, 34, 33, 15, 37]
for multigrid applications, the good point for our algorithm is that we do not
impose any constraint on the coarser meshes. Our algorithms can be irnple
mented in the same way as for linear problems. The only difference to the
linear problems is that we need to project the solution of the one dimensional
subproblems at the finest mesh into an one-dimensional obstacle constraint. In
term of computational cost, the algorithms here are cheaper. Another contri
bution of this work is the convergence rate estimates. For the obstacle problem,
it is shown that the algorithms have a convergence rate which is of the same
order as the linear non-constrained elliptic problems when the diffusion coeffi
cients have large jumps. Moreover, the convergence estimates are valid right
from the first iteration. We do not need to assume that the obstacle problem is
nondegenerate ( c.f. [34, p.B4]) and also do not need to assume that the active
region of the obstacle has been identified, see [27, 28, 34, 15]. It seems that
the only available earlier convergence rate estimates for obstacle problems with
multilevel methods are the ones of [27, 28, 34, 15].

Even though our main concern is the obstacle problem, our algorithms are
presented in a general setting for general space decomposition. The general
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algorithms as well as the assumptions are given in §2. The convergence anal
ysis for the general algorithms under the given assumptions are stated in §3.
The convergence rate depends essentially on two constants C\ and C2) see (18)
and (19). In section §4, we show that domain decomposition and multigrid
methods can be interpreted as space decompositions and be used for solving the
obstacle problems. The constants Cx and C 2 are estimated using some techni
cal estimates of Bramble and Xu [6]. The rate of convergence for the obstacle
problem is essentially the same as the non-constrained elliptic problems when
the diffusion coefficients have large jumps, see [6].

2 The optimization problem and the algorithms

2.1 The optimization problem

Given a reflexive Banach space V and a convex functional F: V R, we shall
consider the following nonlinear optimization problem

(1)

The nonempty convex subset K is assumed to be closed in the strong topology
of V. We are interested in the case where the space V can be decomposed into
a sum of subspaces Vz , i.e.

(2)

This means that for any v, there exists v{ €V{ such that v = vi Due to the
appearance of the constraint K , we require that there exists an / ( 1 < / < m)
and a nonempty convex subsets Kt cVt , i=l,l+l, • • •, m such that

For reasons related to the existence of the subproblems, we require that Ki is
closed in the strong topology of V. From (2), we can see that / = 1 is always
a valid choice. In applications to domain decomposition and multigrid, due to
the appearance of the coarser meshes, we can always choose an l > 1 such that
(3) is valid.

We assurne that the functional F is Gateaux differentiable (see [B]) and that
there exists constants k., >o,p> q > 1 such that

(4)

min F(v), KC V .v£K

m
V = Vi + V 2 + • • - + Vm = yi

i= l

m m

K = '£ku (3)
i=l i—l

(F'(w) - F'(v), w- v) > «||iy v\\y, \/w,v €V ,
|| F'(w) - F'(v)lj v , < £\\w - v\\ qy l , Vw,veV
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Here (•, •) to is the duality pairing between V and its dual space V. Under the
assumption (4), problem (1) has a unique solution, see [l2, p. 35]. For some
nonlinear problems, the constants k and £ may depend on v and w.

For simplicity, we define

P _ P(P ~ 1)
p-q +1 ! r 9(9-1)'

When p q = 2, we have a = 2, r = 1. For a given function w G V, we denote
by K w the subset:

K w {v —w | v £ K] .

The general theory developed for (1) will be applied to the following obstacle
problem in connection with finite element approximations:

(5)

with

It is well known that the above problem is equivalent to the following minimiza
tion problem

assuming that f {v) is a linear functional on H For simplicity, the domain
Q c Rd is assumed to be bounded and to have a smooth boundary. Neumann
boundary condition is imposed for the obstacle problem to ease some of the
technical analysis.

For the obstacle problem (5), the minimization space V Hl (fi). Corre
spondingly, we have p = q 2 and k = t 1 for assumption (4).

Standard notations for Sobolev spaces i7 1 (fl), Wk,p {o,) will be used, i.e
||  \\k,p,D denotes the VF fc ’ p -norm on a domain D , (| • || k,D denotes the Hk
norm on a domain D. In the case D Q, we will omit D. The generic positive
constant C, which may differ from context to context, will be used to denote
a constant that is independent of the variables appearing in the inequalities or
equalities and the size of the finite element meshes.

Obstacle problems arise from many important applications. For some con
crete examples, we refer to Baiocchi and Capelocite [4], Cottle et al. [lo],
Duvaut and Lions [ll], Elliot and Ockendon [l3], Glowinski [l6], Glowinski et
al. [l7], Kinderlehrer and Stampaccia [26], Kornhuber [29], and Rodrigues [36].

2.2 The algorithms

The following two algorithms for general space decomposition can be regarded
as a generalization of the Jacobi and Gauss-Seidel methods, see [54, 49]. In

Find u€ K, such that a{u, v—u)> f {v u), V?; G K

n{v,w)= I Vv-Ww + vwdx, K={v e H 1 (Q)| v{x) > ip{x) a.e. in ft}. (6)
Jn

min F{v), F{v) = ]-a{v,v)-f{v) l (7)vEK Z
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applications to domain decomposition methods for linear elliptic partial dif
ferential equations without constraints, Algorithm 2.1 is in fact the Additive
Schwarz method and Algorithm 2.2 is the multiplicative Schwarz method. In
applications to rnultigrid methods for linear elliptic partial differential equations
without constraints, Algorithm 2.1 is essentially similar to the ideas used in the
BPX preconditioner [s] and Algorithm 2.2 reduces to sequential rnultigrid meth
ods. Algorithm 2.1 is sometimes called the additive space decomposition method
and Algorithm 2.2 is sometimes called the multiplicative space decomposition
method (c.f. [47]).

Algorithm 2.1 [A parallel subspace correction method].

1. Choose initial values ?/° eV\ such that x G K and a relaxation
parameter a G (0,1/m],

2. For n > 1, solve the following problems in parallel for different i:

2.2. Find convex closed subsets Kf C Vt for i = /, l + 1, • •• ,m such that

2.1 Set

(10)

and go to the next iteration if not converged.

Algorithm 2.2 [A successive subspace correction method].

1. Choose initial values u] € Vi such that u] G K and a relaxation
parameter a G [O, 2],

2. For n > 0, solve the following problems sequentially for i = 1, 2, • • •, rn:

2.1. Find u^+1 GVr for i = 1,2, •••,/ 1 such that

F ( il u" + +l )<p( jt V«i€Vi. (8)
S=Wi 7 K j=l,j*i 7

/ —1 m
a'-E< = Eati=l i=l

2.‘J. For i 1,1 +l,• • •, rn, find u™+1 6K™ such that

F ( Z +l )<f( «"+«.), WiSivT". (9)

«"+1 = <+a(u”+1 -<)



6

2.1. Find •u(l+l £V* for i = 1,2, •••, l 1 such that

and set

2.jg. Find convex closed subsets Kf CV* /or i=Z,Z+l, • • • ,m such that

i- 1 m

K~Turi K?-

and set

Co to the next iteration if not converged.

Before we go any further, we shall remark on the existence of the subsets K™.
From assumption (3), we know that there must exist w™ £ Vi, i = 1,l + l,    ,m
such that

Thus for Algorithm 2.1, one of the choices of the subset Kf is

(16)

This glves aKf which is nonempty convex and closed in V. However, there may
also exist other alternatives for Kf. In applications to domain decomposition,
different decompositions Kf may give different iterative Solutions u”+1 , but
the sum w always converge to the same solution, see Tai [4s]. In
applications to multigrid methods, we shall only impose constraint for the finest
mesh and the decompositions Kf are in fact unique. The decomposition Kf
for Algorithm 2.2 can be done sirnilarly as for Algorithm 2.1.

We note that the above two algorithms are well-defined since the subspace
problem (8), (9), (11) and (13) are uniquely solvable under the assumptions for F
described earlier (see [l2]). The above algorithms are proposed for general space

/ 1 m \ / j —l m \
F { E“"+I+,'"+1+ E «”) F (E“"+I +«<+ E«")  e •

'7= 1 J=i+l J= 1 .7=l+l '
(11)

«r I=<+Q(«1 =<+ Q(«r 1 - o. (i2)

i=l i—l

2.3. For i = 1,1 + m, find u™ +1 GK™ sequentially for i = 1,1 +
1,  • •, m such that

(i 1 771 \ /i 1 771 \E u"+1+“"+1+ Eu? f E“" E “")  v”- eK>
j—i j=i+ l ' ' j=l j=i+l

(13)

<+l =<+a«+I -<). (14)

l— l m

E“” = £>•” (15)
i=l i=l

KT =Ki- <.
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decompositions. In real applications, the algorithms can be implemented in
different ways depending on the structure of the decomposed subspaces, see Tai
[44, p.39] and Tai and Espedal [46, p.725] for some implementation issues with
the two-level domain decomposition methods. Note that the constraints are only
imposed for some of the subspaces. For the subproblems on Vi, i = 1,2, •••,/-1,
we have no constraint.

Let übe the exact solution of (1) and un and etn+l be defined by

n
U (17)

As in [47, 49, 48], we shall use two constants in the estimation of the rate of
the convergence of the algorithms. First, we assume that there is a Cx > 0 such
that for any n > 0, we can find w, G Vi to satisfy

Observe that ut may depend on the iteration number n. In addition to the
assurnption of the existence of such a constant Ci, we also assume that the is
a C 2 > 0, which is the least constant satisfying the following property: for any
wij V,v.i €V{ and Vj GVj the following inequality holds:

The existence of C 2 is obvious by the assurnption (4). A simple application of
Holder’s inequality would give the following rough upper bound:

C 2 < Lm..

But better bounds may be obtained in applications.

3 Convergence analysis

We need to estimate the rate of reduction of the error u- un for each iteration.
As in Tai and Xu [49], we shall use

(20)

as a measurement of the error between u and vn .

m
<+l = *"+1 - «r. Vn>o.

I=l

C “i + «"+1 -<+1 e.K". i = +

| «=f>, and (f < Ci||u-un+l || v . (18)

771 ' / m \ / m \  -
Y,(F'(wij + ui)-F, {wij ),vj )<C2 [ ) P • (19)

»..7 = 1 'i=l / V 7 = 1 /

dn = F{un )-F{u),
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3.1 The convergence of the parallel subspace correction
method

The convergence of Algorithm 2.1 is given in the following theorem.

Theorera 3.1 Assuming that the space decomposition satisfi.es (18), (19) and
that the functional F satisfies (4). Define

Then for Algorithm 2.1 and dn given by (17), we have

1. If r = 1, the error satisfies

(21)

(22)

Proof. Dehne
m

wn+ - (23)

From (10) and (17), we see that nn+ ™ =nn + e*+1 and it is easy to calculate
that

Using the notations of (17) and the fact that F is differentiable and convex, it
is known (see Ekeland and Temam [l2]) that (9) implies

As tliere is no constraint for the subproblem for i = I,2it is true that

(2G)

Under the assumption of (4), it is known that (See Tai and Epsedal [47, Lemma
3.2])

r / (p-l)(q-l) q-1 \"I P q

C,C2 [a > +a ’ ) p(t_y (r-l)
6 k « V<77 ’ 00 rd5-1 +C*

dn+ l f;

2. If r > 1, the error satisfi.es

cL-i
d" -ri:

(1 + Co< 1

< —, Vn > 1
(1 + codrQ- l n)

<+K"+I

m

wn+l =(l am)un 4- aun+ ~. (24)
i=i

{F'(un +e'l+I ),vi ~v1+l ) >O, Vu4 € i = 1,1 +!,   , m. (25)

(F'(u" + e”+I ),tii ) =O, Vfc,€VJ. » = 1,2,    ,/.

F{w) F{v) > {F'{v),w —v) +—\\v! v\\y , Wv,w GV . (27)
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Using (25), (24), the convexity of F and (4), and applying similar techniques as
in [47, p.1563], it can be proved that

>

For simplicity, we define

£n‘v

For i = 1,1 + 1, • • • ,7i7,, let u* be the functions given in assumption (18). By (18)
and (25), we see that

(F'(«n+e,»+1 ),«?+1 -ui > = < 0. (29)

We shall use (18), (19), (10), (20) and (29) to estimate

m

F{un ) - F{un+l ) > F{un ) aF (un + e™ +1 ) -(1 - am)F{un ) (28)
i=l771 rn rn

E «<*>"+<+1 ).  o + “K+I iiv >- Et=i p t=i p »=i

j m

E<+1 + E <•
i=l i=J+ l

{F'{un+l )-F'{u),un+l -u)
m

< (F,(«"+1 ),«"+1 -u) =^(f'{u"+I ),u"+1 -uAI=l
m

< Y, (f>"+1 ) ~ *>" + e,"+1 ),<+1 - u,)
I=l
m

I=l
m

I=lmm m
E E (F'((") - -nA+ e (*>" + ) - *>n).<+1i=lJ=l i=l
/\/m \ £ m

- 2 ( ii(ae?)iiv) Einiiv + E ikrfv' .7 = 1 7 V i=l 7 i=l

fm \ -
< CM*^1 (E“l«j •c1 K«-«n„

+C2a -Cl ||ji"+i



10

< CiC2 + a-*?) [£ (f(u") - F(un+l ))] V •K+1 -«llv •

The rest of the proof is the same as in [49].  

3.2 The convergence of the successive subspace correction
method

The convergence of Algorithm 2.2 is similar to Algorithm 2.1. The convergence
is only proved for the case that the relaxation parameter a is taken to be 1, i.e.
a=l in (12) and (14). Note-that u™ +1 = n"+1 in this case.

Theorem 3.2 Assurning that the space decomposition satisfies (18), (19) and
that the functional F satisfies (f). Define

Taking the relaxation parameter a = 1 for Algorithm 2.2, then we have

(31)

(32)

Proof. Define

(33)

(34)

Using (27) and (34), we get that

(35)

r'-L(9l£l\ (’•-!)
K, V K ) 1 +

1. If r = 1, the error satisfies

5; dn , VTL > 1 .

2. If r > 1, the error satisfies

dn —i
dn < ' i

(1 + c 0dn _ 1 ) r 1

< i—, Vn >1 .
(1 + Codo -1 ?!)^

i—l m

“"+* = E“"+I +*r+1 + E «"•

.7 = 1 .7=l+l

Since un+ ™ miuimizes (11) or (13), it satisfies

(F>n+£), Vi) =O, Vvi e Vi, i = 1,2, •••,/- 1.
(F/ (u - w”+1 ) >O, G K?,i =Z,/+l,• • •, m.

F{vn+{i~ 1)/rn ) - F{un+l/rn ) > -He"+I ||^
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Thus, estimate (35) leads to

Note that <+l = <+l when a= 1. Similar to the proof of (30), we use (18)
(19) and (34) to get

(37)

The rest of the proof is the same as in [49].  

4 Space decomposition for and K

4.1 Overlapping domain decomposition

In this subsection, we show overlapping domain decomposition can be used to
decompose a finite element space and the constraint set K.

4.1.1 Decomposition of if 1 (f]) by overlapping subdomains

Let be a quasi-uniform finite element division, or a coarse mesh, of
il where Hi has diameter of order H. We further divide each Hi into smaller
sirnplices with diameter of order h. If H has a curved boundary, we shall also
fill the area between dH and dH here Hh = with finite elements
with diameters of order h. We assume that the resulting elements form a shape
regular hnite element subdivision of H, see Ciarlet [9]. We call this the fine mesh
or the h-level subdivision of H with mesh parameter h. We denote Hh = Urer,, f
to be the fine mesh subdivision. Let SH C Wl,oo and Sh C W1,00 (Q/l )
be the continuous, piecewise linear finite element spaces over the i/-level and
h-level subdivisions of H respectively. More specifically,

m I- m
F(«") - F(un+l ) =Y. F(«n+ < i -W’") - F(un+i/m)l >~Y lkr+I |lv- (36)

i= 1 J P I=l

{F'{un+l )-F'{u),un+l -u)
m

= v (f'(«"+1 ) - F'(«"+i /"‘) > «"+1 -I=l /
m m

EE(F'{un+j/m ) - F/ (wn+ (-7 ~ 1 )/m ), - Wi \
i=l j>i

(m 2—L ,rn . iEkii* Ek+1 -^Hv).7 = 1 ' ' t=l '
/ rn . 3^zl

< c,c2(Ell«r+1 llv) ’ •ll«"+1 -«||v.' i=l '

SH —{v e I>oo €Pi (fit), Vi} ,
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Sh = {ve W' I ’“(fi,l )| v\t € PI(T),VT s T*} .
For any v G Sh , the following estimates are known from Bramble and Xu [6,
Lemma 2.3] and also Xu and Zou [55, §4].

(38)

For each Q;, we consider an enlarged subdomain Df consisting of elements
TG Th with dist{T, fit) < The union of Of covers 0/j with overlaps of size 8.
Let us denote the piecewise linear finite element space with zero traces on the
boundaries <9of \OQ as Sh Then one can show that

(39)

For the overlapping subdomains, assume that there exist m colors such that
each subdomain Of can be marked with one color, and the subdomains with
the same color will not intersect with each other. For suitable overlaps, one can
always choose rn = 2 if d = 1; m < 4 if d = 2; m < 8 if d = 3. Let 0' be the
union of the subdomains with the i th color, and

By denoting subspaces Vb = SH , V = Sh , we find that decomposition (39)
rneans

and so the two level rnethod is a way to decompose the finite element space.

4.1.2 Decomposition of Kby overlapping subdomains

In using our algorithms, we choose to solve the coarse mesh problem without
any constraints. The subdomain subproblems are solved with the constraints
K™. In order to get K™, we first need to decompose K into a sum of Ki C V.
Let x/’ € V, i.e. the obstacle has been replaced by a finite element obstacle
which is often the interpolation of the continuous obstacle. Due to the overlaps
between the subdomains, there must exist GV, i 1,2, •• •, m, which may
not be unique, such that

fpi-

Correspondingiy, by dehning

( Nli, if d- 1;
IMlo.oo < l |log/i| I|v||i, if d= 2;

[ if d= 3;

sh =sH + Y/ 3h {n6i )

Vi ={v e Sh | v (x) =O, x £ Q'} i = 1,2, ••• ,m

m

i/ = y 0 + XX (4°)
t=l

rn

= y

=1

Ki = | Vi>rf)i, Vi € Vi} ,i = 1,2, •••, m,
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we find that (3) is satisfied. At each iteration, we also need to decompose the
c.oarse mesh solution u% (or u£+1 ) into a sum of wtn GVi (c.f. (15) and (16))
which can be done similarly to the decomposition of the obstacle ip.

Due to the non-uniqueness of the decomposition of the functions, the con
straint subsets Kf are also non-unique. Different decompositions K may give
different iterative Solutions However, the sum YliLt will always con
verge to the same solution, see Tai [4s].

4.1.3 Estimations for C\ and

In order to verify the conditions concerning the constants C\ and C2, we need
the following technical lemma:

Lemma 4.1 Let SH and Sh be defined as above. For any v G Sh , there exists
vq GSh such that

(41)

Proof. For a given v G Sh , let Vq be the standard Lagrangian interpolation
of vin the coarse mesh space SH using the coarse mesh nodal values. Denote
hy the coarse mesh nodes. For a given we define 77* to be the union
of the coarse mesh elements håving x° as one of its nodes. We shall construct
vq by defining its nodal values as

For simplicity, we define po(x) GSH to be the coarse mesh function håving the
nodal values

In addition

As p 0 G SH , it is known that the L 2-norm is equivalent to

vo<v, |(vo - «Ho < CdHWvWi, ||vo ||i < cd |M|i,

where cd =Cifd= 1; cd =C (1 + |logf |) rf d= 2 and cd = C (%)" i/d =3.

vo(x i) = ?;q(x°) - max (vq(x) - v(x)) , Vx°.xevi

po (x“)=max(i;0/ (3:)-w(a:)), Vx°.

It is easy to see that po{x) > Vq{x) v {x), which implies

?;0 (.r) = (x) - po {x) < - (v£(ar) - v(x)) = v(x).

IN - u||o < ||«o - + \\po (jo*

no
IMii = Ci/‘'£>o(z?)|2 .

I=l
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Using a linear mapping to transform the domain rji into a domain of unit size
and applying the inequalities (38), we get that

In the above inequality, we have used the regularity of the meshes, i.e. under
the minimum angie condition, the number of elements around a nodal point
is always less than a constant. Using the inverse inequality, we know that
11/>O ll l < CH~ l llpollo- Combining these estimates with standard estimates for
v Vq , we have proved the lemma.  

Following an argument in [s2], let {si}™ 2 be a partition of unity with respect
to i.e. 6i G Co°(o' fl Q), 6i > 0 and x =l. It can be chosen so
that

Let be an interpolation operator which uses the function values at the h-level
nodes. For any v G V, let vq G Vq be the coarse mesh function defined as in
Lemma 4.1. Take v= u un+l and vl Ih{oi{v no)). They satisfy

(42)

In addition, we have

The proof of the above inequality is essentially similar to the proofs for the
non-constrained cases, c.f. [s2], [53, 54] and [49].

At a given iteration n, we let

Ui 4- u™+l u‘i^ 1 <+l +vi > u™+1 and so U{ + u"+1 u*l+l G K™ .

As a consequence of (42) and (43), we see that

(44)

MO
M 3 < CHd Y. H - < ch24Hif.

i=l

IV7/3 i o / 1 if distance ><s and x G o',
|Wil 6‘W =[ o on OW,-

m

V = Vi =u ~ Un+l

i=o

(nii;+Einh?) - <^(m + i)^i+j Hi- ( 43 )

Ui w"+1 + Vi.

Due to the fact that Vq <v , we have vt > 0 for i 1,2, •• •, rn. Thus

and (^|k-<+1 ||u-un+l ||i
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Estimate (44) shows that for the overlapping domain decomposition methods
the constants in (18) and (19) are

where m is the number of color for the subdomains. The estimate for C 2 follows
from the standard Holder’s inequality.

4.2 Multigrid decomposition

In this subsection, we discuss the application of our theory to multigrid methods.
From the space decomposition point of view, a multigrid algorithm is built upon
the subspaces that are dehned on a nested sequence of finite element partitions.

4.2.1 Decomposition of Hl (Q) by multigrid

We assume that the finite element partition T is constructed by a successive
rehnement process. More precisely, T = Tj for some J > 1, and 7" for j < J is a
nested sequence of quasi-uniform hnite element partitions, i.e. 7) consist of finite
elements 7) = {rj} of size hj such that fl = for which the quasi-uniformity

constants are independent of j (cf. [9]) and rj_ x is a union of elements of (r)}.
We further assume that there is a constant 7 < 1, independent of j, such that
hj is proportional to 72j .

As an example, in the two dimensional case, a finer grid is obtained by
connecting the midpoints of the edges of the triangles of the coarser grid, with
T\ being the given coarsest initial triangulation, which is quasi-uniform. In this
example, 7=l/ \/2. We can use much smaller 7in constructing the meshes,
but the constant C\ is getting larger when 7 is becoming smaller, see (47).

Corresponding to each finite element partition Tj, a hnite element space _A4 7
can be dehned by

Each hnite element space Mj is associated with a nodal basis, denoted by
{øjirii satisfying

where is the set of all nodes of the elements of Tj. Associated with each
such a nodal basis function, we dehne a one dimensional subspace as follows

It is easy to see that

Cl = C(m) + (— V C 2 = Lm,

M, ={« S : v€ Pj(r), V r g 7}}.

<t>i (**) = ««
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4.2.2 Decomposition of Kby multigrid

In using our algorithms, only the one dimensional subproblems at the finest
mesh, i.e. at level J, are solved with the constraints K*. All the other one

dimensional subproblems at the coarser meshes, i.e. at levels j = 1,2, •• •, J— 1,
are solved without any constraint.

We use u^ 1 to denote the iterative Solutions of the algorithms from the
subspaces A4j, c.f (8), (9), (11) and (13), and vQ^ 1 to denote the updated
Solutions of (10), (12) or (14). As we only have constraints at the finest mesh,
the decomposition of K is in fact unique, i.e.

satisfy

The constraint subsets K?j are also unique. For Algorithm 2.1, they are

For Algorithm 2.2, K™j can be defined similarly, i.e. just replace 3 by w^ 1 .
The subset K™j is one dimensional which requires the function value at the
node x l j to be bigger than or equal to a number. The functions from K?j are
zero at the other nodes, i.e. at nodes Xj, k i.

To State it simply: the obstacle for the one dimensional subproblems at
the finest mesh is i]) minus the sum of the Solutions of all the one dimensional

subproblems at the coarser meshes.

4.2.3 Estimations of C\ and C 2

For any j < .7, let Qj be the constrained L 2 project operator to the finite
element space A 4, at level j, i.e. for any v € A4j, QjV G Mj is the solution of

The solution QjV has the shortest distance to v in L 2 among all the functions
of øE M ? satisfying ø< v, i.e.

With the help of Lemma 4.1 and the inverse inequalities for the' finite element
functions from Mj, it is easy to show that

(45)

Ki,j = {w| v«E Mj, v{x l j) > ip{x l j)} ,i ~ 1,2, • • •, nj ,

nj
K = T,Ki.J-i=l

{J- 1 n l 1
1; | v e Mj, u(a:j) > - [

j= i fc=i J

QjV <v, (QjV —v,(p Qjv) >O, V</> € M.j satisfying <f> <v.

\\QjV ?;(|o < ||ø t;||o, Vø GMj satisfying ø< v.

WQjV ~ v|| o < ChjWvlh, \\Qjv\h < CMU
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where

Let wn+l be the solution of Algorithms 2.2 and 2.1 at iteration n+ 1 and let w
be the true finite element solution of the obstacle problem (5). We shall define
vj (Qj ~ Qj-i){u un+l ),j = 1,2, •• •, J. It is clear that

A further decomposition of Vj is given by

Lemma 4.2 For the decompositions vl-, we have

J rij

v* , and

where

Proo/. We first consider the case that d = 2. We estimate

In the above, we have assumed that Q C Ad , d= 1, 2,3,  • Using the fact that,
in the finite element space, an L 2 norm is equivalent to some discrete L 2 norm,
narnely

( c, if d= 1;

c= | c (-1 + log it ) » if d = 2 ;

k c(lf-) , if d= 3.

Vj ={u - un+l ) - Qj-i(u - un+l ) >O.

ni

vj = J2 vi with v) = vÅx]) (t)lr
i= 1

J 71j \

EEHii?) <<yh‘-«n+l iii, (40)T= 1 7= 1
u - un+l =

.7 = 1 *=l

r C'7 -2 ) log7| -1 | log h\, if d= 1;
cd = < C'7" 2 ! log/i|, if d= 2;

[ C^f~ 2 if d= 3.

E Hl’ = E MH)I 2 Hl 2 < f. MH)I 2i= l i=l i=l

INIo -bj Y^\ vÅx))\ 2

we get that

E l'C 2 Chf-V E \vM)f < Chf iKUS,



18

As a consequence,

(47)

The proof for d 1 and d = 3 only differs in using different values for the
constant C of (45) and follows the same argument. For d = 1, we have used the
relation .7 = 0(| logh|| log^l" 1 ).  

With Vj as given above, we decompose u into

The relation ui,j ~u ig easY to deduce from (46). By the inequality
of (46), we have that the inequality of (18) is true with C\ = The estimation
of C 2 is the same as for general second order elliptic equations, which is inde
pendent of the mesh size h and the number of levels J. Standard proofs can be
found in [3B], [s4] and [49].
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