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Abstract.

We solve a stationary, linearized and inhomogeneous
Fokker-Planck equation describing the electrons of a weakly
coupled and weakly inhomogenous plasma in a magnetic field

at times large compared to the effective electron - electron

collision time.
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We propose ourselves fto solve a stationary Fokker-
Planck equation. Motivation for this atudy 18 to be found in
reference [1], [2], vhere evolution of a weakly coupled and
weakly inhomogeneous plasma in a magnetic field is studied
by the multiple-time-scale method. The electron-ion mass
ratio and a weak inhomogenity parameter being introduced
as small parameters, kinetic equations for electrons and
ions are obtained at different orders of approximation in
these parameters. These equations appear as non-secularity
conditions in the multiple-time-scale expansion, and they
are valid at times which are large compared to the effective
electron-electron collision time. As 1is always the case
when applying the multiple-time-scale method to kinetic
theory, some assumptions are made, which are difficult to
give a strict justification. Therefore it is of some
importance to show that equations obtained as non-secularity
conditions do have solutions which are physically reasonable.

The kinetic equations for electrons obtained in
reference[2]contain, in addition to the linearized Fokker-
Planck operator, a diffusion term which is due to the fact
that electrons have a greater velocity than ions, and a
magnetic field term. The kinetilc equations for ilons [2] do
contain only the Fokker-Planck operator. We will here
concentrate on the equation for electrons. However,
similar results are easily obtained for the equation for
ions (by making ~=0, B=0). As to the possibility of

extending the results to equations where the right hand
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sides are of more general form than the ones we consider,
see comments in section [4].
In section 2, we expand the distribution function 1n
series of surface spherical harmonics. Thus we reduce the
problem to get the solution of an infinite set of ordinary
integro-differential equations. The number of inhomogeneous
equations is determined by the order of anisotropy of the
right-hand side. 1In our case this order is finite. It
seems to be very important to make use of this property.
Two parameters, a and v » are introduced; the choilce
o =% and vy = 0 corresponds to the case treated by Su [3]
and McLeod and Ong [4].

In section 3 we show that if the relations 2a =y + 1

and vy < 1 hold, we have: The obtained integral operators

2
W LQB’ are symmetric and completely continuous, and the

2
second-order differential operators, eVC L1£, are self-

2 2
adjoint. Thus e?° L;, @and eY° FL Lzz) have the same

essential spectrum. The choice v = 0 gives an essential
spectrum ranging from - Lo iory Whilerie i< yie it glves
a negative, discrete spectrum.

In section 4 we localize the spectrum to obtain the
necessary infcrmation on the inverse operators. We conclude
that the solutions cf the integro-differential equations under
consideration, do exist, under suitable conditilons.

We also touch upon a corresponding plasma model where
ions are neglected, and we give results in this case.

In section 5 we show that the solutions are twice
differentiable. We also give results concerning the

asymptotic behaviour of the solutions in different cases.
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2. Reformulatlion of the problem.

The kinetic equation to be solved is [2], Eq.(2.50)

FP11[f1M(Q1)f1M(_C_'1) aF f?M(g‘1)f}M(g1):\ X

As long as nothing else is indicated, index 1 refers vO

electrons and 2 to ions. C,, e,, m, are the peculiar

1,

velocity, charge and mass of electrons, n?, p?, i

4

the density, pressure and temperature of electrons, and gg

are

is the total mass transport velocity at zeroth order of

approximation. f?M is the Maxwell distribution function

at density n? and temperature T b L

o :
12 f1M + f1M 15 g

distribution function of electron velocity at first order
of approximation. B 1s an external magnetic field, E1
an external force. The Fokker-Planck operator FP11

describing electron-electron interactions and the diffusion

operator D1 of electrons by heavy ions are defined by

il

ey 11 3 d
FP11 m2 5_0_1 jdg_’ 1@ (_0_1 =gl 1 ).<8C1 T dC! >
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Tensors @11 and @12 are given by

ij " l —_ = i i =
Q (ﬂ) "f lJ ax j =X lJ Z{‘lJ _W_T] 1sd 1’ o

Specifying Qij to the Colomb potential and making the

appropiate cutoffs, we obtain, see for instance [3],

A 2
o (w) = 2mefe §1n A YA ¥
w3
where I 1is the unit tensor and
o) 2 A
ShpT o bR e
g B = 5
2e kT
1 1
A new unknown function ¢ is defined by f}M = f?M o)
fligys 1L,
and the non-dimensional velocity ¢ = ( 10)291 is intro-
2kT
1

duced. After some calculations the following forms are

obtained for FP,,, |31 and D,:

re, [ £5u(Cy)E (0 ) (olg,) + o(ey)) | =

8ﬂ2m1n?2e$ 1In A —02
= . e FP'11(®)
(2ﬂkT1)
= 8ﬂ2m n02e4 il /i 2
o e 1 -C

(2nkT?)3

(3)

(4)
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-c
Fpr ., (0) = {[?E’%_Cl(zc?_” MeY }I [%?‘Cl(%z_}) it
4 2e @ ~
z
-C 8 C :
e 10 BCIDJ
+ i3 R
27 ch } [2 dcde ac
(5)
2
e © erf(c) O o
+<2- 3>g- + 2e™° o(e) +
c c
2
-C 2 2 C
+Llac,e ! (= =l o e(c,)
1 g3 =i
~ ¢® 2 e 022_2.9' o
Do) =5 851 |70~ -2 | (6)
_ vmndes
Y
4n?e§
e
erf(c) =k/~e_X dzx
0
Thus Eq. (1) writes
FP', (@) + D', (2) - ¢ x B'- %%=ﬁ-g (7)
o
(2ﬂkT0)2

1

where B = s =
8m Jﬁ1n1ln A

and hec represents the right-hand side of Eq. (1) divided

2 o2 4 0oy-3 -02
by 8mm,n; e1ln1\(2 kT1) e”~ . Thus it is a known
quantity. In order to solve Eq.(7) with respect to o(c),

we introduce spherical polar coordinates c¢,6,x, the e
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i -

polar axis being directed along the magnetic field B. We
may formally expand ¢ 1n series of surface spherical

harmonics [3], [4]

o(c) = ) o i-eacgém(c)Ym(e ) (8)
28 = /__,\ c E /g s X
J=0 m=-J
-1 a02

The factor c¢ e , where a 1s a constant, unspecified

go far, is introduced for mathematical purposes. Let us
assume for the moment that the summation and the differential
operators in Eq.(7) do commute. Using Basl7), 18}y Parsevalls
theorem and Eqs{9), (10), we obtain after some calculations

the set of equations Egs{11), (12), (13), Uil b de )

1 %— Sl S e R SRRV (9)
o) T o il Bl
gz-Yz = i, (10)
.
ye P
e (L10 + LZO)QO =0 (11)
5 2
ye X = el i 2m .2 (y-alc (12)
V% (Lyy#Ly 128" )0y = -(hy 1h2kf5 ik
2 N 2
ve B am . 2 (y-a)c
e’ (Ly +lg oy = hBJB Sk .
o 2
ye : ; y [gj_ 2 (y-a)c
Y% (L,,+L, #12BN®, =- <h1+1h2>x 5~ 2cte (14)
2

¥ (L Ly Mi2mBr)@) = 0 , -f S m S 8, £22,3,4,..5 (15)
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Here the functions hi(c)’ i=1,2,3, are the projections )i

h(c) along three orthogonal vectors g;, e 18,5, 8

P

being parallel to the polar axis, §4 and gQ corresponding

to the 6 = 0 and 6 = &= directions. The L,, and L

2 14 22
operators are defined by
1 i A 4 g
erf(c e d & erfic
Ly gl = g }—i + [3 i g i
T 03 02 dc2 03 04
2 2
-C -C
v (sa2)SREfE) | g (1q)e AL 4 [5 eEle) sty
2 e lde 5 i
g g c
4 (16)
' -C
+ 2( 12 )-e_llf-éﬁl 4 (1—a)£-il‘i)— 4 (A emds et
@ ¢

2 L & 1
Iy bl aate, 0 AV ercf(02(202_1)+e o >_ 21“3@+1}J\U

C

a5 ~(1—a)c?—a02
L2£¢ = 4 /‘oc1e Kﬁ(o,c1)\}/(o1)dc1
: o

Iiﬁ(c,c1) is a symmetric kernel defined by (3], [4]

i ;
R e St e W Rsel Y ied)
| R 22+1LCE+1L 20+ 1 5-1 C£_1

RO gy SE

ngw comes from the integral part of FP',., , B {59,
The term with coefficient < in Ly, comes from the
diffusion operator D'1, Eq. (6), while the remaining part

of L1z is provided by the differential part of FP‘11,

Eq. (5). As it can be seen, both sides of Eqs{11)-(15)
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pindls ; o
”,“02
have been multiplied by e- , where v 1is a constant,
unspecified so far. This is done for mathematical con-
venience and helps only to invert Eqg.(13). As it does not
complicate arguments, we keep this Tactor zlgg 1n the other
equations in order to unify the notations. We will now

proceed to the solution of Egs(11)-(15).

3, Properties of the operators.

We find by inspection that the right-hand sides in the

equations all belong to Lz(o,w) when o > vy . Thus we
2

investigate e¥© LTZ and e¥© ng intthis i ames’ 1L 16
2
easily seen that the kernel Hz(c,c1) of e7° Lo, is
symmetric ans satisfies
s
J \/ Hﬂ(c,c1)dc de, < m
%
b
Sm o= ol T Bl e {47 )

We will throughout assume that o and -+ satisfy this
2
relation. It follows that e¥® ng is selfadjoint and
2

completely continous in L2(O,w). Symmetry of eY° L12

follows from Eq. (17), and selfadjointmess when f # O 1s
2 2
YycC
L,, and e (L1£+L2£),

£ # 0, will have the same essential spectrum. A study of

shown in appendix 1. Thus e¥©
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the differential operator eY° Ly, £ # 0, shows that the
essential spectrum is void when O <y < 1 and 1s the
negative semi-axis when vy = 0, see appendix 2 for the proof.
Finally, whew @ < o< eVCE(L1£+L2£), L # 0, shows to be
negative, as expected for physical reasons, and such that

every eigenvalue A satisfies
A< -2y g(g+1)M (18)

where M 1is a strictly positive constant, see appendix 5.
This result justifies the introduction of the factor e¥¢
it is only when O < vy < 1 that i1t is possible 0 dnvert

Eq. (13), as well as those of the following equations corre-

sponding to 4 > 1 amd B.= Q.

4, Existence of solutions.

It follows directly from Eq.(A.3.2) that Eq.(11) has

only solutions of the form

B
Ve

= bl 4

. 1+kgc?) (19)

where k1’k2 are constants. They correspond to conservation
of mass and energy in the interactions which are considered.
The only solution of Eq.(15) is zero: where m # O, this
follows from the fact that the operator is negative definite.

Accordingly, there are only a finite number of terms in
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expansion Eq. (8). It was easy to predict this result due to
the fact that the right-hand side in Eq. (1) has an order of
anisotropy equal to one, and since interaction- and magneto-
field operators do conserve the order of anisotropy for
physical'reasons. Thus the problem can be reduced by studying
the restriction of the operator in Eg. (1) to subspaces of
funetions with zeroth and first order of anisotropy. Ii the
right-hand side of Eq.(1) had not a finite order of anisotropy,
an infinite number of Egq.(15) would be inhomogeneous. As we
have seen, it is always possible to solve such an equation
provided the right-ahnd side belongs to L2(O,m). However,
one would have to prove the convergence in some meaning, of
the corresponding series in Eq.(8) to achieve the solution of
Eq.(1). This problem has not been treated so far.

The spectrum of eVCQ(L +L

i 21)
section 3, the left-hand side of Eqs(12) and (14) can be

being real, as shown in

inverted and these equatlons have a unique solution in L2(0,+m).
Zero is a regular value for the operator in Eq.(13) where one
chooses 0 < y < 1 and when v 1is different from zero (see

Eq. (18)) i.e. provided election-ion interactions are taken

into account. Thus Eq.(13) has a unique solution in L2(0,+w).
When vy =0, and O < y < 1, zero is an isolated eigenvalue

of eVCQ(L11+L21), see appendix 3. Then Eg.(13) has solutions

in 12(0,+ ) if and only if the right-hand side is ort ogonal

to c2e"a°2; then solutions are determined to a Cee—a02 near.

To check up that the orthogonallity condition indeed is fullfilled,

one has to turn back to the original egiation in [2] since making

¥ = 0 modifies the form of the right-hand side (see [2], p.38
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for an analogue).
We have thus shown that Eq. (1) has solutions depending
on arbitrary constants k; (two if ¥ # 0, three if y = 0)

given by

1 7 2E % ey iy =
f (61) = ho< > {—e‘ (@1(0)0039—&-@1 (c)singsiny +

(20)

2
1 ; -C 2 ,
+ @1(0)51necosx) + e [k1+k2c +(1—6§,O)x3c cose]}

iy

£
¢ 1is the nondimensional velocity, ¢ = ( o)egf
2kT
1 1l
and ¢, are solutions of Egs. (12), (13), (14), respectively,

= 1 o
il i

in L2(0,+m). (c,6,x) are the spherical polar coordinates
af € » the polar akle being directed along B. Thus the

solutions, Eg.(20) are such that

2
k/hdg e“‘"”)C \f}M(g4)12 AL TRV o BV o P

5, Properties of solutions.

Further properties of solutions of Eq.(1) are obtained.
First we establish differentiality of solutions of Egs(11)-
(15). We see by inspection that evchzzW(C) is continous
in (0,+0). Further a straight forward analysis gives a
rough estimation of e702L23W(C):

2
‘eyc ngw(c)l < (N02+Pc3)e = [\/ﬁ|¢|2dc}
0

=

(21)
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for all c¢ in (0,4+w), where N and P are independent of

2
¢ and VY. Defining (e7° 0, we get that
2

e¥© ngw(c) is continuous everywhere when  belongs to

L2zw)c=o iz

L2(0,+oo); since the right-hand sides of Eqs(11)-(15) are
continuous everywhere, and zero is the only singular point of
eV° L1z at finite distance, it follows that the solution of
these equations (which we know belong to L2(0,+m)) are twice
continuously differentiable on (0,+w). Continuity and
differentiality of solutions at ¢ = 0 follow from a study
of asymptotic properties.
Using Eq.(21), we estimate theBnon-differential terms

in EqsJ(11)-(15) to be of order o(cg) SY- O RGN A S
relevant equations in the neighbourhood of zero are

"

6 2 :
A gcy' o f% = ;Ey 4 2imB!y

Il
Q

Asymptotic solutions of this equation are obtained by using
the method of variation of coefficients and asymptotic
expansions Eq.(A.1.4) of the solutions of the correspond§pg
homogeneous differential equations. We get @T(c) = 0(02)

)

~
~

when 5 > 0 and ®T(c) = 0(c when y=0 as ¢ - O.
Using the same method, asymptotic behaviour of solutions
may be obtained for large c¢. Relevant equations in the

neighbourhood of ¢ = « are
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# Ay

When B # 0, we find that @?(c) = O(c7e_a02) and ®$1(c) =
s O(c4e—a02). When B = 0, we find that @T(c) = O(c7e—a02),
il = 0 R

Summarizing the results, we have shown that Hau i) has

solutions given by Eq.(20). These solutions are twice con-

tinuously differentiable everywhere and are such that

2
u/ ae shimdle {f}M(Q1)|2 e oneonEig <l

When ¢ — o, they tend towards zero at least as fast as
c6e“02(03e_02 if the magnetic field and/or gradients
parallel to the magnetic field are equal to zero). When

¢ - 0, the part of the solution arising from %be inhormogeneous
term tend towards zero at least as fast as ot e iy

election-ion interactions are not taken infto account ).
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Appendix 1.

We determine the number of boundary values needed to

make &Y% L selfadjoint,[5], p.1306, i.e. we study the

14
equation

-
e?® Ly =-M, Imm#A0, ¢ e (A, 1.1)

We show that Eq.(A.1.1) has exactly one solution which 1s
square integrable near ¢ = 0 and one near C = o. Hence the
operator is selfadjoint with no boundary condition imposed.

Equation (A.1.1) becomes near c¢ = 0

2
e g cy! - [3§£(£+1);g + £(£+1}%§}y - -2y (a.1.2)

c c
We consider the following two cases ¥y=0 or ¥ 3 0.
(1) ¥ = 0. We get,[3], [4],two linearly independent

solutions of (A.1.2) which for small c¢ behave as cz+1 and

c 4. Hence only one of them is square integrable near ¢ = QF

(11) ¥ > 0. We substitute
- s PR AN ¢ 4.10.3)

where a 1is a constant, a = 3vy£(4+1). For large z,

Eq. (A.1.1) becomes

This equation has subnormal solutions, [6]. For small c,

the two linearly independant solutions of Eq.(A.1.1) 2Lz
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asymptotically represented by

_3_ 00
y =(E) exp (£ % Z

o lo
[\)‘r\

X co;éo (o4
Only one of them is square integrable in the neighbourhood
of ¢ = 0.
Investigating the solutions of 2% [ - VL 1 Wi ol 2o R A8
we find that the relevant equation is

-1

Sl e cPoPa .t sl Nl g e oF 4a(a-1)c2y =0

and substituting

-

Assuming a >

v =uv u = exp[-(a-3)c

]

Il
8
[N
wn

the relevant equation for v near ¢

Asymptotic solutions of this equation may be obtained [T7]
in the form

E_
iz

v(ic) = e ii £ 0

O

Since <y < 1, we find that only one of the solutions of
Eq. (A.1.2) hence of Eq.(A.1.1), is square integrable near
¢ = 0. The case aq = 5 1is treated similarly with the same

2
result. We have thus shown that B i @Al e Bed T

18°
adjoint.
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Appendix 2.

We write

where p and q, are defined by this relation and Eq. (16).
2

In order to study the spectrum of eVC L1E we examine the

eigenvalue problem of the Sturm-Liouville equation

2

To reach standard form we apply the Liouville. transformation

1 ©
b bs
U, = [o(e)l®y;x = [ [n(e)1 20
s C _Ye i _gg i
ssfos HECEIEE) 2y Sy
A £ €
to get the following equation
d2
—————Ug + [x—Q(x)]Uz N I R Fol
dx

2 2 22
L A erf(c o S SR e o erf(c) _
p 3 gt i

5 :
- 2 2
_ X€ — - E(BZ1)<GP€50)(202~1) il i > b 215§£+1) i
i 2 @
2
=iC 2
(3 e — - : erggc} - Tl )2
© ©

2
(erf(c) - ce )
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We have two cases

(i) whep'it5 > 0, then 1im x = A< e
C—00
(1i) when <y = O, then 1lim X = o

C— 00

2
(1) When x - A the dominant term in Q(x) 1is (s %r)leyc

and 1im Q(x) = 4o when O < y < 2. On the other side
XA

1 glx) e e 24 £g1 + 2y L £;1) =+ o .
X—0 C—0 e ©
02
Noticing that the essential spectrum of e L1£ s i
2
union of the essenstial spectrum of eV® Ly, on (O,Ao] and

[AO,A), Ay < A, we get (see [5], p.1594 and p.1599) that the
2
essential spectrum of &Y L,, 1s void when 0 <7y < :

Hence the operator has only a discrete spectrum s hufclcais e

(11) We have still 1im Q(x) = + o while lim @il 0
X=0 X 00
For the same reasons as Dbefore we have now that the essential

spectrum of e¥° L;, 1s the negative semi-axis (-«,0].
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Appendix 3.

z
We study now the sign of SR A § A

" 2£>° To do so we

examine the quantity

It is standard work to show that

ov 5

for all Y which are bounded, <= bounded and é—%

(see [8] for an analogue) and that I =0 1if and only if

S e

where p,5 are constants and X a constant vector.

2 i
Further, let us specify v (c) = arieene w(c)Ym

i

(Ba®. 2}

continuous

Uig dLmue

Eqs(3), (4), (5), (6), (16) and (A.3.1) and assuming D a2t

we get

fmd v VCQ(L Tl ol
J cye 15 T bog U
O

02
e

1A

A

- 2§g(z+1)M/ I\‘uigdc
O

eﬂyc

where M = inf
c

semibounded on a set of functions Y which 1s dense in

LZ(O,m), and it can be extended [9] to an operator which

is selfadjoint and semibounded with the same bound.

- 2:/17,(%1)/ 5 N/lgdc
(©
@]

5= C € [0,+w). Thus the opwrator is
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2

2
'yC
e (L1£+L23)

When § = 0, i.e. when interactions with ions are not taken

is negative definite when 5 # 0 and 4 # O.

into account, total momentum of electrons 1s conserved during
electron-electron interactions, and zero is an eigenvalue for

2
s st (T, T is thus negative. Since 0 <y <1
11 Y

21)
is assumed, the essential spectrum is void, see appendix 2,
and zero is isolated. It is thus possible to invert

2
e¥° (L11+L on the subspace of element which are orthogonal

21)
ool e e (cogresponding to ¥(c) = k-c, k constant vector).
When § = 0, eYCL(L1O+L2O) also is negative, independent of
the value of 3 and B. Indeed zero is eigenvalue as can be
seen from Egs(A.3.1), (3), (4), (5) and (6). This corresponds
to conservation of mass and total kinetic energy Shurenlinge 2 lE@itieomi=
electron interactions, to conservation of mass and energy G
electrons during electrons-heavy lons interactions (see Eg.
(6)) together with the fact that the magnetic field operator

e

- —i-c % Bv2—— 1ig a differential rotation operator.
i Gl
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