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Abstrac

i

The propagation of discontinuities for solutions of
linear hyperbolic systems of the first order is studied.
The transport equations for systems with characteristics
of nonuniform multiplicity are found in geEnerailtes inase
transport equations are studied in detail in the nonsingu-
lar cases, and it is shown how discontinuous initialvalue

problems can be solved.
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INTRODUCTION.

Discontinuous solutions of hyperbolic partial differential
equations have been extensively studied in the literature. The
earlier treatments dealt mainly with second order equations. In
[2] R;Courant and P.D.Lax extended the theory to first order
linear hyperbolic systems with distinct characteristics. In [3]
R.M.Lewis extended the theory further to symmetric hyperbolic
systems with characteristics of constant multiplicity. D.Ludwig
and B.Granoff [5], and J.V.Ralston [6] have considered some pro-
blems for hyperbolic systems with characteristics of nonuniform
multiplicity.

In this paper we shall try to resolve the problem in gene-
ral for hyperbolic systems of the first order with characteris-
tics of nonuniform multiplicity. We are forced to restrict the
class of problems somewhat, but we hope that the theory covers
most of the interesting cases.

The study of propagation of discontinuities is of course im-
portant in itself since it gives us information about the solut-
ions. However, since the asymptotic behaviour of solutions of
hyperbolic equations is closely related to the propagation of dis-
continuities, a study of this is more important than one may rea-
lize at first glance (for further details on this see Courant-
Hilbert [1] and D.Ludwig [4]). The author will consider some of
the problems in this connection elsewhere, especially we shall

study how the problem of stability is related to the propagation
of discontinuities.



b o=

o -~
By £ G
3 e a

% S
T

Gk

s

]




1. ASSUMPTIONS AND FORMULATION OF THE PROBLEM.

We shall study hyperbolic systems of the following form

n
Lu = ug + E: al g +Bu=0 (1.1)
X
i=1
1 k b1
where u = {u', ... ,ul} , while B, A, 1 =1, ... ,n are

k X k matrices which may depend on the independent variables t
and X = {x1, ... ,X*} . The independent variable t (time) is
separated from x mostly for practical reasons, but also because
this separation is needed in later applications. It 1is well
known that any linear hyperbolic system of the first _ortler can be
transformed to a system of the type (1.1) at least locally. Our
study will be local in x,t-space. We shall only briefly indicate
how the local results can be glued together in hopefully wide
classes of problems.

As far as this author knows, a general theory of hyperbolic
equations and systems is still not well established. The meaning
of the notion hyperbolic above is therefore not clear. In this
work we shall by the notion hyperbolic mean that the assumptions
later in this section are satisfied, and furthermore that the
Cauchy problem for (1.1) is well-posed in "suitable" metric spaces.

We shall not give a precise definition of what we mean by a "suit-

able"}metric space, but it will suffice if for instance thé solut-

fon of (1.1) is in N

(the space of N-times continuously diffe-
; N
rentiable functions) when the Cauchy data is in C © for some

No 2 N . - Symmetric hyperbolic systems, which we are particular-
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1ly interested in, and which are covered by a well established
theory in the llterature, are easlily seen to satisfy all our
requirements (see [1]).

The characteristic equation associated with (1.1) is

det {-7\1 + i i Ai}= 0 (1.2)
=1 '

where I . denotes the k Xk unit mestrix. and g‘, g ,gn are
real numbers which are not all zero simultaneously. et e

roots in the equation (1.2) be given by

T N I S R Y 10 (1.3)

We shall assume that the functions Q% depend on the variables
x,t,€1, P o sufficiently smooth. The phrase "sufficiently
smooth" is chosen here and elsewhere in this paper to mean suffi-
ciently smooth for our later arguments to be valid. The func-
tions Q% are obviously homogeneous of degree one with respect
to the variables ¢ = {&1, ek % ,En }. Except in special cases
(weakly coupled hyperbolic systems), some or all of the functions
QCt will have a branchpoint for £ = 0 . and .possibly also for
other vectors § . Since £ =0 is already excluded above Trom
the smoothness requirements etc., only branchpoints for ¢ # O
can cause trouble. If branchpoints exist for £ # 0 , they have
to be treated separately; we shall give some comments on such

cases in section 5,

Let the eigenvectors associated with the eigenvalues (1.3)

be given by
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P x,t,¢)
o 1 -
8 = 1, - (1.4)

1%P(x, £, €)

where ro‘B denote the right- and laﬁ the left-eigenvectors.
We shall assume that the eigenvectors (1.4) depend sufficiently
smooth on x,t,€ . In general, this smoothness requirement will
be only partially vallid, because we have to allow discontinuities
in the set of eigenvectors rqB, 1@B L OThe discontlinuities ave
connected with changes in the multiplicity of a characteristic
manifold, and the points x,t,£ where raB, lar3 are discontin-
uous have to be treated separately. We shall in section 5 give
some comments on how the problem can be handled.

We may without loss of generality assume that P and 198

are normalized by the relations

( e ~ ‘e
laﬁ.rmb aa 6Bu

(1.5)

=9

Bb

rag-rab =

(1,57
We assume furthermore that raﬁ and laB form complete sets,
%
i.e. that 5 % =k . The relations (1.6) will not be used
o=1

anywhere in this paper, but will be needed in later applicat-~

ions., By definition we have the following identities

! n
{-—QO‘I ¥ Z e Ai}.raﬁ =0
‘ 4=

_0&-1, SESlai s By (1.7>

19
aB, J_ 'l
it { @) I + gl A%} = 0
i=
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We assume that all s g raB, :LO‘ﬁ are real for any real ¢ ,

and that
o #£0? when o #a (1.8)

If we for every choice of x,t,¢{ have that
% £0* when a £ a | 11,5

then the hyperbolic system (1.1) is said to have characteristics

of constant multiplicity. If in addition <y =k (or equivalently

=1 for a=1, ... ,v) , (1.1) 1is said to have distinct

characteristics and the system (1.1) is called totally hyper-

bolic. In general (1.9) will not be satisfied even locally in

x,t , but the multiplicities of the'characteristics will be de-
pendent on £ at every point x,t. There seems to be little
known for such systems in the literature; they are, however, not
excluded from the discussion in this paper (see also [5] and [6]).
In this paper we want to study propagation of discontinuities
for solutions of the hyperbolic system (1.,1). Since classical
solutions in the strict sense cannot have any discontinuities at
all, we have to define what we shall mean by a solution. We shall
work within the class of so<alled "weak solutions". To define
this we introduce the space S of all smooth k-dimensional vector-
testfunctions n(x,t) with compact support in the region under

consideration. We define the adjolnt operator M to the operator

L —=in (s 1)y

n
*
My = -v, - E:(Ai v) , + B*v (1.10)
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where * denotes transposing of the matrix. A measurable func-
tion u 1is defined as being a weak solution of the equation (1.1)

if

fuMgdxdt =0 Vv nes {30

By partial integration in (1.11) it is easily seen that a diffe-
rentiable weak solution of (1.1) is a solution in the strict sense,
and that a solution in the strict sense is a weak solution.

The problem of propagation of discontinuities in the whole
class of weak solutions is too involved to be studied in detail
(some results can be found in [6]). We shall therefore restrict
our study to weak solutions which locally are piece-wise smooth.
Here, a piece-wise smooth functlon is defined as being a function
for which there exists a finite set of smooth hypersurfaces di-
viding the domain of definition into a finite set of subdomains
in which the function is smooth, and furthermore that the limit
of the function and its derivatives exist in every subdomain
when we move out to the boundaries. Thus we assume that the dis-
continuities of the function and 1ts derivatives are everywhere
finite, and that locally they are located on a finite set of
hypersurfaces.

We are now able to formulate the problem we are going to
study in the rest of the paper: Suppose that a solution of by
has a discontinuity at the point xo,to , what then are the equ-
ations for the hypersurfaces in a neighbourhood of xo,to where
the solution is discontinuous? How are the magnitudes of the dis-

continuities related on these hypersurfaces?
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2. THE TRANSPORT EQUATIONS.

We shall in this section consider the special case where the
discontinuous solution we are considering, u , is smooth every-
where in & neighbourhood of xo,to except on a smooth hypersur-

face C gilven by thé equation

¢°(t,x) = 0 fo 1)

where Qo is nonsingular at xo,to. By our assumptions, u and
its derivatives have finite jump discontinuities across C 5 ‘and
the jump discontinuities are smooth functions defined on the mani-

fold C 1in a neighbourhcod of xo,to (which by assumption lies
an' ¢ Y.
In a neighbourhood of xo’to we introduce a regular coordi-

nate transformation
N (Dj(t'.){) ; J = 0;15 s e Fis) (2.2)

which utilizes ¢ as a coordinate surface. The equation for C

o} .
becomes y = 0. In the new coordinates we have

4 |
v }Z 1 oy 4+ Bu (2.3)
y
Jj=0

Here we have introduced the matrices HJ defined by

g
HJ = @-‘2‘ I + Z q)jv Av . | J‘ = 0’1; o 8 o ,n (2.4)
v=1 *
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Let D1 and D2 denote the regions on either side of C and

I1 uI ad

let u = uI + u where ® 0Y.1n D2 and u 20 in D1.

By Gauss' theorem it easily follows that

f ul My axat = f nut axat - f {nu nauTe® }eds

X

D1UD2
(2.5}
n
f- HMn dxdt = f ntullaxat + f {nuncpfg At te® }eds
D, UD, v=1 g
where 6 = 9(x,t) is a scalarfunction such that
G{ég, @oj, 54 ,@Zn} is a unitvector pointing out of the region
X

D1. Since Lu = 0 everywhere except on C , we are only left
wilth the following when we add the equations (2.5) and introduce

the notion [u] = uII SRS

n

\/qen {wt[u] + wov Ay[u]} dsS =0 (2.6)

y=1 4

Since 6 # 0 everywhere and the components of 1 are arbitrary,

it follows that

o

H'[ul] =0 on C (8.7
Here [u] 4s simply the jump of u across C s Chug ' fu] # 0

wherever u is discontinuous on € . From equation (2.7) we see

that in these points the matrix H° must be singular, 1i.e.
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n
det (52 I+ E: mov Av> = D (2.8)

v=1 %X
This is the characteristic partial differential equation for
the hyperbolic system (1.1)., By definition the hypersurface C ,
given by @O =0 and‘satisz1ng (2.8), is a characteristic mani-
fold for the operator L . Thus we can conclude ol G O
discontinuous across a hypersurface ¢ » then C must be charac-
teristic,

The function mo which determines the hypersurface ¢ in
equation (2.1), need not satisfy the characteristic differential
equation (2,8) identically; we only know that ¢° satisfies

o

e W - e e R every point x,t on this

characteristic manifold ¢ » there is at least one « such that

P o
m2+Qa(x,u,cp 10 R TP n) = 0 <2'9
X X

On the other hand, if a hypersurface ¢° = 0 satisfies‘(2.9) for
some cholce of a at every point, then the hypersurface must be
a characteristic manifold. In this sense the family of equations
(2.9) is equivalent to the characteristic equation (2.8), we
therefore call (2.9), with a = 1, ... ,v , the family of charac-
teristic partial differential equations associated with (1.1).

In general a characteristic manifold may, at some or all
points, satisfy more than one of the equations in the family of
characteristic partial differential equations (2.9). Furthermore

there need not be a single index q such that (2.9) is satisfied
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at every point on a characteristic manifold. However, if the

hyperbolic system (1.1) has characteristics of constant multi-

plicity, then a characteristic manifold satisfies (2.9) for one

cholce of o only, and this o 1s the same all over the manifold.
We shall now study the special case where the hypersurface

C in a neighbourhoocd of Xo’tc satisfies (2.9) for r different

¢holces of o , say Ogs voe 30y s and that nowhere in this

neighbourhood € satisfies (2.9) for any other choice of g

than Qys oo 50, ; we shall later see that the general result

can be deduced from this special case. Again the function @O

is only known to satisfy (2.9) for Qs --. s, on the hyper-

¥
surface C given by (2.1). However, we may here without loss of
generality assume that the function @O in a neighbourhood of
X,:t, satisfies (2.9) identically for at least one of the
indices Qs eon G, - In genieral 1T wlill not be possible to get
(2.9) satisfied identically for more than one of the indices

Cys see 5@, but ¢° can be chosen such that (2.9) 1s satisfied

¥
identically for any choice of one of these indices (compare with
Courant-Hilbert [1]).

If the hypersugface € rsatisfiss (2.9)!Tor énly"éns ehoice
of a at the point Xo’to’ then, by continuity, there exists a
neighbourhood of Xo’to where C satisfies (2.9) for this choice

of a only. Thus this is a special case of the situation we are

V2]

considering, namely the case where r = 1; this is the only case
that arises for hyperbolic systems with characteristics of constant
multiplicity. There seems to be little known for the cases r > 1
in the literature, some results are obtained in t5d andifé T

o)

From (2.7) we see that [u] is in the right nullspace of HC.

Since we assume that the equation for € satisfies (2.9) for
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Cys oo 3 Qo and these only, [u] can be expanded in the

following way

ful = %{: 0% > {2.9D)

where oé are scalarfunctions to be determined, and @OV are sub-

x
ayB
gtituted for &V, ¥ = 1, ves 30 , 4n the expressions for r -

Since Iu =0 on both sides of € , (2.3) gives on C

n
E: Hj[u J.] + Blu] =0 (2.11)

g0 e

For J#0, u 3 is a tangential derivative to C , so that
y

[u ;] = [u] .. Thus (2.11) may be written as
o d
h ¥
| n
H[u B > H'[u] , + Blu] = 0 2. 19)
v Lo yJ
=1
; av”‘
We mudtiply (2.12) on $he lefk By 1~ ¥ = 1, Jiv 2 &
%y EVLe
B T aee off o+ WBlNew DT hypotHesia "o HY e MR We get
2 ap a, i
z 1V wul J+1" Bfu] = 0 (e
J=1 {
N 5
In view of (2.10) we see that (2.13) is a system of k, = 2 ¢ %
i=1

partial differential equations with respect to the kc unknovmn

functions Oi (2.13) is a system of equations on the manifold

B -

¢, and [u] is only defined there. From this point of view
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it is meaningless to treat [u] as a function depending on Yo
However, if we in (2.13) let [u] depend on Y, &s a parameter,

1 does not affect our results as long as we remember that (2.13)

has relevance to our problem only for e 0. Thus we shall
ﬁ treat [u] as a function also dependent on Yo' because this
a. M .
will slmpiify/sour stugys oSinte "L e by hypothesis,
we may add the following term to (2.13)
a, b

it -Ho[u]y (2.14)

(o)

Thus the following system of equations will be equivalent to

2. o C

)l
a, b 0
| Z s H‘j[u]a.+lv Blu] = 0 (@yis)
j=o

. If we introduce x,t as independent variables instead of

o wind v, (2.15) becomes

[u}t }: i ) A‘j[u]x‘j + lavu Blu} =0 {2 16)

@,
Vo Vg enetaly B el e
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We substitute (2.10) into (2.16) and get

84 i ‘
@;EEZWWﬂ%@'

J=1 i=1
o, b o PR ¢ "
+ E: e Ml (Lr o ) oé = {2.4%)
i=1 B=1
a
Vo= 1, G SR A e Y

We shall call (2.17) the system of transport equations for the

hyperbolic system (1.1), it tells us how the discontinuities of
u propagate along C . The system of transport equations (2.17)
is a hyperbolic system of a very special type. To see this we

differentiate (1.7) with respect to ¢! ang get

C

g
{ X I+ Au} of i % i O }j éiAiw B p (2.18)
aeH 6&“
Multiplication on the left by ke 7 using (1.5) and (1.7),
gives us
a ap
18P gH 08 §9Q G R I i (2.19)
ot et

In particular, if o = o which is the case either if g = a

or if we consider a multiple characteristic, (2.19) gives us
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Hesh i

2 |
ab gi aB _ 00 588 bP " (2.20)

%
ot

The expressions (2.20) can now be substituted for the coefficients

to (oé) 5 in (2.17), which gives us on C
X

Z 21au< aiB)-;; o (2.21)
1=1

91

@) ) 5

V:’l’ " e 2 jr & um1J ¢ 8 ’q

We see that the system of transport equations [{2. 2%}, isiDnay

coupled through the nondifferentiated terms, i.e. (2.21) is a

weakly coupled system. Hence the system of transport equations
is trivially seen to be a symmetric hyperbolic system; we shall

discuss it further in the next sectilon.

In an analogous way we can derive the corresponding equations
for the discontinuities in the derivatives of u . From (2.3)

we have for » = 1,2,

o n
e J
x—<iu> = ;{: H uyﬁtyf +—Buyﬁo (2 22
=0
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Here the expression NGL-1)u involves derivatives of u of

order at most »e -1, Since Lu = 0O on both sides of C

- {B + se(H0)y. }[ug,&] (2.2}

If all the derivatives of u of order less than se+1 are contin-
uous across C , (2.23) shows that Ho[uaccx¢,> } = 0, If some
(< +1) % derivative has a non-zero jump, then [uggcxd,,J £ 0
and hence H° must be singular. Thus we may assert that if u
or any of its derivatives has a Jjump discontinuity across C ,
then C 1is a characteristic manifold.

Suppose now that [ufﬁs J 40 booun Tor 8w Bals sws a1
Then the jumps in all the derivatives of u of order -1 or

less are known. By substituting == for 22+71 , we can

rewrite (2.23) in the form

n -
TS P T (NG Y e PR
i=1

Here [PC'C")u] involves derivatives of u of order at most

®x-1, so 1t is known. We now expand [uﬁem_] in terms of ail

the right eigenvectors of H®
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qa

' a

2 o B (2.25)
1 B=1

(o ] -

0 i
Q=

Substituting (2.25) into (2.24%) gives

a

q
| U
o o ARTSR T A 1
= - J5
H[uw”] Z Al
a=1 PB=1
n !
(1) jad
st e G
J=1
When we make the same assumptions on C as before, i.e. that
¢ satisfies (2.9) for > ulhraedt and these only, then we see
that
o
CO%:QJ_QCI Pl b Y e B=1:---:qa' (2'27)

D EYeT) T ] T can e Cligsen ™o BE Yy, ST ey pand @21
gt

are substituted for the % in the O's.  In particuls&r we have

that

- A )
W, B0 for a=a D PP
¢ i} ; (2.28)
d% # 0 everywhere for all other a's & B's
Multiplication on the left in (2.26) by 1%° gives
-
€ _a _ 1 o - e ab| (- 12
J=1 (2.29)

8.740'.1, i=1,...,l‘ & bz.‘)"’.’q
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To obtain the other coefficients in the expansion (2.25), we

multiply (2.23) on the left by 1%°

n s

- + 574
Z g % H‘J[udg_w]?j oo {B +é‘(HO)‘J°}[U‘3"¢]
J=1

o Yo [T st u:l (2.30)

b
]

1’ LA )I’ &; b

il
.
.
fle]

Here [TG°°1) u] involves only functions we have assumed to be
knowm. The equations (2.50) are valid on the manifold C , and
U exe is only defined there. However, we may look at

ugox; as a function also dependent on ¥ |7 and apply the same
arguments as we used in going from (2.13) to (2.16). Thus in

the independent varizbles x,t (2.30) becomes

P

Ciib " ‘_]
A ULW}Z,C ,
d 2

0

a,b g

1 e, + )
it

a=i

. e s
Ty la.b{B 7 m(HO)%O}’L'u?MJ Tk LT (e Du]

If we substitute (2.25) into (2 31) and use the relations (2.20),

the system (2.31) can be written on the following form
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el

g%

r
g (0l N : v > =
w Qg XN [ee oy i Wb w . - Ab P
(cb )t $ z e (Ob ))ﬂ ; L Tmﬁ%ﬁ =g, (2.32)

X% m=1 (=1

Here we have introduced the following functions

R (AR S (2.33)

3

no ' (2.34)

When we have found the equation for C , the expressions (2.33)
and (2.34) are knovm from (2.29) and our assumptions.

The system of equations (2.32) constitutes the transport

equations of higher order for the hyperbolic system &0

We see that they only differ from the transport equations SRl

in the nondifferentiated terms.
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58 PROPERTIES OF THE TRANSPORT EQUATIONS.

We shall in this section study more closely the transport
equations which we obtained in the previous section. We shall
restrict ourselves to study only the transport equations of
lowest order-(2.21), but since the difference between these and
the higher order transport equations (2.32) is only in the non-
differentiated terms, similar results can be obtained for the
higher order transport equations.

The transport equations (2.21) tell us how the discontinui-
ties in u propagate along C . Even though the transport equ-
ations (2.21) may be defined in the whole x,t-space, their only
relevance to our problem is on the hypersurface C . The hyper-
surface C , given by the equation (2.1), was in the construction
assumed to satisfy (2.9) for a = Qs -+. 20 = qa, » and these
choices of o only. BEach of the equations (2.9) is a first
order partial differential equation with respect to the scalar-
function ¢°, and can therefore be solved by the well-~known
method of characteristics. For 'a .glven, the characteristic

equations associated with (2.9) are

at axt  3qc
“d"é““’) (IS-aO 1”1: Fpel (31)
Py
X
O
de a
dsx’*:-?.; H—=?,q‘g,n (3.2)
X

Thls closed system of ordinary differential equations is called

the bicharacteristic system of equations associated with the hyper-
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bolic systém (1.1), and the solutions of (3.1 & 3.2) are called
the bicharacteristic strips for (1.1). The t,x~-components of the
bicharacteristic strips are usually called the bicharacteristic
curves or simply the bicharacteristics for the hyperbolic system
(1,1). There are v -different bicharacteristic systems associ-
ated with (1.1), namely one for each o = 1,...57Y, and thus theré
are 7Y different families of bicharacteristics.

From (1.8) and the fact that 0% 1s homogeneous of degree 1

with ‘respdct to € ', 4t ds clear Hhat for any pair. g,a = 1,

o e BN B & # a'y there is at least one f = 1, ... ,n such
Ghabie
2 og widge (3.3)
3¢« aet :

This means that no two of the -+ families of bicharacteristics 4dre

identical. However, in general it may happen that the n equations

- i e (3.4)

are all satisfied simultaneously at certain points x,t,€ for

a # a. At such points the directions of bicharacteristics from
two different families are the same. If the equations (3.4) are
satisfied at all points on a bicharacteristic strip of the family
with index o say, then the families of bicharacteristics with

indices o and a . mst bhave: at least one bicharacteristic in

)

I

ommon. If the directions of the bicharacteristics from different

families are different at all points, i.e. if the n equations
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(3.4) for no points x,t,€ are simultaneously.satisfied, we say

that the hyperbolic system (1.1) has bicharacteristics of con-

stant multiplicity. If in addition <y =k, (1.1) is said to have

distinct bicharacteristics.

It is readlly seen that a hyperbolic system with characteris-
tics of constant multiplicity also has bicharacteristics of con-
stant multiplicity. The opposite is, however, not true as is
easily seen for instance for weakly coupled hyperbolic systems.

Thus it is less restrictive to consider the case with bicharacteris-
tics of constant multiplicity than the case with characteristics
of constant multiplicity.

We shall now study the transport equations (2.21) in view of

the abbve considerations on bicharacteristics. TLet us first con-

slder the special case where on € we have

Gl = 0 7 240
3®1ﬁ a@i@ﬂ
Relneueri el o= 1) owbrgeand . BB 1. 00 L e equations (3.5)
obviously contain no restrictions if r = 1. Thus the special
case we are considering includes all cases where the hyperbolic
system (1.1) has characteristics of constant multiplicity. When
r > 1, the equations (3.5) means that the bilcharacteristics of
the r different families with indices Qyseees0y,; are identical
on the hypersurface (.

In the transport equations (2.21) we see that the functions

v "

Gu are differentiated along the bicharacteristics of the family
with index G,. With the above assumption (3.5),all the functions
v . oy . 3 :

o, are in (2.21) dirferentiated in the same direction, we may
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| therefore interpret the system of transport equations (2.21) as
i

ordinary differential equations along the bicharacteristics

qd

w - L) 4) v

i=1

a,

Mo To.segil % i B 196, Je

We shall now study the expressions on the right hand side in

( %.6) a little closer. In general we have for a = V. ey @nd

B 1,...,qa
3 ap %‘f S ap
ap oy s A 5 af
Lr = + A + Br
e ]
i=1
(g
n n
6 ERR 1] ar*P
+ Z {(pm + Z 01y h aro
=1 i=1 P2

| We assume that @o satisfies (2.9) identically, by differentiation

with respect to x® we get

n
Q(i BQG
4+ —— =0 (3.8)
xﬂt Z; 8@ ; Pl 51 dx?

From (3.8) we see that (3.7) can be written

ap ap
1r2P gz 1 s ;ﬁ ¥ Br. + BraB
i=1
A (3.9)
o A ey praﬁ o I T4+ al ar®P
5% 530 @i i R 5
=1 %" Py g5t 4= P xt P x2
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If we differentiate (2.18) with respect to ¢’ we get

2.0 2_af
i M { GrL % E:E } g A
ath o’ aet otV
| (3.10)
(o4 aB a af
+{~-5~9---3:+1ﬂxLL s g --5-9;I+A”}5r = 0
ot 3t ot ot
From (3.5), (3.9) and (3.10) we get on C that
o;p &3 a;B .
1a9u(LraLﬁ) . 8@ S E: i 58 g BraLé}
2 g 4
J=1
a a;B
g i BQ la#“"aro (3.11)
o dxd 39,
n
2 a;
1 }: >; 0. TR
+ L IR LB N )
: =1 n=1 = a@i, aq:)ox’l g ﬁ
Here a 1s fixed, and equal to one of the indices Cg2 exe 20, -

Thus we see that in general the right hand side of (3.6) depends
on the second derivatives of @O. However, in (3.6) we only need
the second derivatives along the bicharacteristics, there they

must satisfy the following equations

¢O~ n n 5 o
x* ZJ T‘ a Q(Z e} (@) ‘3 Qa
e . E: / o OF Wend Wop o T
p=1 y=1 AP« 0P 0 dx* dx'
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In the special case we are considering, we have now obtained
a closed system of ordinary differential equations which must be
satisfied by the discontinuity functions and the discontinuity
surface. In fact, if we denote @Z; by gi and @2€xf by 53,

we see that the following closed system of equations must be satis-

fied:
Jiitee axt _ o
H‘S. ds agl
=R R e T
atl  ap®
a8 S;I*
i n n
dejz_gﬁ ZBEQO‘ e u_agcz“
g
41T, - v/-:i e o5t B{;F i a2 wE 3x9
N
S ¢ S
s e i L T
g:f; zgi:isj=7: atte Bl (3-13)
R s e n
= Z qy ’%M*g“‘-arabéwL }: el o8 el
ds i | ot &u B
i=1 g=1 J=1
r Q% p 8
+ Z Z ZB 1G¢IJ- o 7 ot 5t
e -
oy ey Yoo of
Tl 19}
"% z gj aQQa) oM
o W M L
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In (3.13) the index o 1is fixed, and equal to one of the indices
Ogs see 30y o From the construction of the equations (3.13) and
the general theory of: characteristics, we know that the initisl-
valueproblem for (3.13) with relevant initialvalues, is equiva-
lent to the initialvelueproblcm for (2:9)1and {2:84).» We shall
therefore also call (3.13) the system of transport equations. We
conclude that the discontinuities propagate along the bicharac-
teristice when {3.5) ds satisfied on' C

When (3.5) is not valid on C , the above conclusions will
no longer be true. The discontinuities will no longer propagate
along the bicharacteristics, but will spread out on C governed
by the transport equations (2.21). Since (2.21) is a symmetric
hyperbolic system, there is a well established theory for exis-
tence, uniqueness and other properties of solutions, see for in-
stance Courant-Hilbert [1]. B8ince (2.21) is a weakly coupled
system, there is also a more direct approach available. In fact,
essentially the same method as that used in [1] for hyperbolic
systems with two independent variables can be applied.

In our study which led to the system of transport equations
(2.21), we assumed that the jumpdiscontinuity for u across C
was a smooth function on C . When u 1s a piece-wise smooth
functicn, the jumpdiscontinuities of u on the finite number of
smooth hypersurfaces will also be piece-wise smooth functions on.
these surfaces. It is therefore of interest to study how the dis-
continuities of the jumpdiscontinuities of u prepasate, " NTRus
we want to study how discontinuities in the solutions of the Sys-
tem of transport equations (2.21) propagate on C , This problem

is of course a special case of the problem we started out with,
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we can therefore apply the results we have found so far. Since
the system of transport equations (2.21) is weakly coupled and
contains one independent variable less than the original problem
(because of the restriction to C), the problem we now want to
study 1s considerably simpler than the problem we started out
with, The assumptions in section 1 are trivially seen to be
satisfied, and the functions corresponding to 0% and the eigen-

af

vectors corresponding to r and laB are easily foumd," In
fact, if we let y1, reie ,yn"1 e yn = t be the coordinates on

C (since the hyperplanes t = constant are spacelike, there is

no loss of generality to take yn = t as one of the independent
variables on C), the system (2.21) can be written on the following

icloygiing @igy (G

n-1
el
Vv Y o ’ i
(o) + Gy (op) o Z Z JP~ J =0 (300
1=1 i=d J=i
g T R g e
where the coefficients d; v ;; SreNReE ilans e
By y},.,.,yn—1 . The functions corresponding to g% are
n~1
¥V il i
=i z ¢+ dj » v=1, ... ,7 (345
I=t

and the eigenvectors corresponding to rm3 and laB are simply

the unitvectors






A
*VH _ ¥V vi e S
r‘ — l R {6u1, LI 3 uq{x’. (3.

V=1,..ﬂ.,1‘ & uz“,u.o}qu

In general some of the functions (3.15) may be identical; for
instance will all of them be identical when (3.5) is satisfied.

If this is the case, one would have to renumber the functions

*V *VHL i l*vp

9] in order to get the

and the eigenvecters r
assumption corresponding to (1.8) satisfied. Obviously this
would complicate the notations, we shall therefore for simplicity

restrict our study to the case where the hyperbolic system (1.1)

has bicharacteristics of constant multiplicity, since such problems

cannot arise in that case. At the end of this section we shall
make a few comments on what the differences may be in the general
case.

Now, if we study the cases where the hyperbolic system (1.1)
has bicharacteristics of constant multiplicity, we know that all
the assumptions in section 1 are satisfied for the system of
equations (3.14). We can therefore apply the same procedure to
(3.14) as we did in section 2 to (1.1) when we wanted to study
the propagation of discentinuities. Again, we get that the dis-
continulties provagate along the characteristic hypersurfaces,

If we pull any characteristic surface for (3.t4) back tg the
t,x-space, we get an n-1 dimensional submanifold of C which

is generated by a n-2 parameter family of bicharacteristic

curves. If we restrict ourselves to characteristic hypersurfaces

for (3.14) which satisfy conditions analogous to those imposed on

= O pége 10, the transport equations will be of the same type
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as (2.21) but now the number of independent variables are reduced
to n-1 essentially. The number of equations In this system of
transport equations will depend on the multiplicity of the charac-
teristic hypersurface considered for {5.14%), When 1 > 2 the
system (3.14) has characteristics of nonuniform multiplicity since

it is weakly coupled, the number of equations in the system of

transport equations for (3.14) may therefore be difficult to tell

& prioyi,

However, if we apply the same procedure over and over again,
i.e. find the transport equations for the transport equations for
the transport equations etec. for (1.1), 1t is clear that sooner
or later (i.e. after at most n steps) we will arrive at a stage
where these transport equations are of the type (2.21) with

*
Y= R S )

As we saw in the beginning of this section, these tran-
sport equations will therefore be equivalent to a system of ordi-
nary differential equations of the form (3.13) with r = 1. As

a result of this we can say that when the hyperbolic system (1.1)
has bicharacteristics of constant multiplicity, then the discon-

tinuities of sufficiently high order (i.e. the discontinuities of
the discontinuities etc., sufficiently many times) will always

propagate along the bicharacteristics and be governed by (3.13)

with r = 1. 1In general we do not know a priori the lowest order

of the discontinuities that propagate along the bicharacteristics

*) At each step we have to restrict ourselves to characteristic
hypersurfaces which satisfy conditions analogous to those imposed
on C on page 10, This will normally require that we restrict
ourselves to a sufficiently small neighbourhood of Xo’to SR
obtain the global behaviour of the discontinuity functions at each

step, we have to apply the construction described in section i4.
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except in the case where the hyperbollc system (1.1) has charac-
teristics of constant multiplicity, in this case the discontinui-
ties of all orders propagate along the bicharacteristics. Finally
we note that in general the lowest order of the discontinuities
that propagate along .the bicharacteristics depends on the normals
of the characteristic and subcharacteristic manifolds, and may
also vary from peint to point in x,t-space.

In the general case where the hyperbolic system (1.1) does
not have bicharacteristi¢s of constant multiplicity, the situ-
ation may bte much more complicated than above, However, in the
non-pathological cases one can also here apply the technique which
we are going to describe in the next section, to glué the results
together. In short, we can describe the situation as follows:
The discontinuities of sufficiently high order will propagate
along the bicharacteristics, and locally the transport equations
will be of the form (3.13). However, in general we will not have
r =1 1in (3.13), but we will have that r may vary from point

o poldnt on O .
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4, DISCONTINUOUS INITIALVALUE PROBLEMS.

We shall now consider initialvalue problems for the hyper-

bolic system (1.1). The initialvalues considered

; | uf = uglx) (1)

| are assumed to be pilece-wise smooth functions. Thus ug i 1
assumed to be smooth everywhere except on a finite number of smooth
hypersurfaces; the jumpdiscontinuities of Uy and the derivatives
of u, are assumed to be piece-wise smooth functions on these
hypersurfaces,

Since we assume that the initialvalue problem is well-posed
when the initialvalues are in CNO for some NO s At sufficen to
study how the initialdiscontinuities of u and its derivatives
up to the order No propagate. In fact, if this is known the
discontinuous initialvalue problem (1.1) & (4.1) can be solved by

another initialvalue problem with cNo

initialvalues (for the de-
tails on this, see [3]). Furthermore, it suffices to consider

the case where Uy is smooth everywhere except on one n-1
dimensional smooth manifeld I . In fact, if ug for instance

is discontinuous along two crossing manifolds, the discontinuilty
ot ug is smooth everywhere on these n-1 dimensional manifolds
except on one n-2 dimensional submanifold. Thus the initial-
value problem for the discontinuity of the discontinuity function
of ug is of the above type in view of the considerations in the
preceding section. If this problem is solved first, the initial

value problem for the discontinuities of Uy and its derivatives
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can by the same construction as referred to above be transferred
to problems where the discontinuities of u, and its derivatives
are smooth on a n-1 dimensional manifold. This corresponds to
cases where uo is smcoth evervwhere except on one n-1 dimen-
sional manifold. - If several discontirnuiity mandfolds have &
submanifold in common we would have to start the construction by
considering the discontinuity of sufficiently high order and then
successively solve the problems for the lowér order discontinui-
ties. Since the discontinuities of sufficiently high order always
propagate along tihe bicharacteristics, the construction will con-
sist of a finite number of steps.

We have thus reduced the problem to the problem of finding
out how the initial discontinuities along I' of u and the deri-
vatives of u propagate. In the following we shall restrict our-
selves to the study of how the discontinuities of u itself pro-
pagate. The discussion of the propagation of the discontinuities
of* the derivaties of u is completely analogous and is therefore
ocmitted (see [3] for the construction in the case of symmetric
hyperbolic systems with characteristics of constant multiplicity).

In section 2 we found that discontinuities can only propagate
along the characteristics. Since the discontinuities are initially
located on I , we can therefore conclude that the discontinuities
must be located on the characteristics going through T . If &he
hyperbelic system (1.1) has characteristics of constant multipli-
cilty, there are exactly < different characteristic manifolds
going through T , namely one for each of the characteristic par-

tlal differential equations (2.9). In the general case, however,
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there may be a lot more characteristic manifold going through T .
In fact, a characteristic manifold may in this case satisfy dif-
ferent characteristic equations (2.9) in different regions. Glo-
bally there may therefore be an infinite set of characteristic
manifolds going through I’ . In the following we shall study
what happens locally and briefly indicate the global aspects.

Let C(a) be the characteristic manifold satisfying (2.9)
ior The dndex o &pd goibe thpouih  F o w002 by e 5% (some

o(a)

of the characteristics may partially or completely be

equal). We let | e ]F denote jumps across C(a) aad P
aB

respectively. Since the eigenvectors r form a complete set,

the jumps in the initial values of u across I' have a unique

decomposition
S qa'
5 a3
R LI W A (.2)
a=1 B=1
In the same way we may set
Yot
wi® = ) X oy 2°F (4.3)
a=1 =1
The initialeconditions are
j% [ul® = [uo}r anp P (4.%)

a=1

Multiplication by 1%° gives
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ji ok kg (4.5)

From the discussion in section 2 we know that in every point on
C(a) where C<a) only satisfies one of the equations (2.9),
& _ o if a #a . We may without loss of generality assume

af

that on I' this is true everywhere, since we shall see that we

o

are then led to a well defined construction of how the disconti-

nuities propagate.

Now let Xo’to be an arbitrary point on I’ . We want to

study how the discontinuities in the neighbourhood of Xo’to

propagate along one of the characteristic manifolds C(a)

c(a‘) near x ,t By definition c(a’) atisfi (2.9)
’ X sty Yy it satisfies i fer

, say

(o8
o= a,. It C(‘1 satisfies {2.9) at xo’to i ol W a, only,

then as we saw in section 2, the propagation of the discontinui-
{a,)
ties in a neighbocurhood of Xo’to "+ o ¢ is governed by the

transport equations found in section 2. So in this case every-
thing is nice, the discontinuities are propagated along the bi-

characteristics and are described by the system of ordinary

The initial conditions for the equations (3.13) are found from

I
l differential equations (3.13) with r=1 as we saw in section 3.
E the initial conditions given above.

l

I

The case above is the "normal® case in the sense that this

is the case most frequently met in applications. In general,

(ay)
however, C ' may satisfy (2.9) at Xo’to for one or several
)
a's different from ay - Assume therefore that C( y satisfiles
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(2.9) at Xo’to for Qysevesly By continuity there is then a
neighbourhood of x_,t  where C i does not satisfy (2.9) for
any other choice of a than PRI We may without loss

of generality assume that the equation for C(a1 near Xo’to

is given by -
o(x,t) = ¥(x) -t =0 (4.6)
Consider now the function

0 (5, 0(x), VoK), e Y ()

Qx) def

Gy
< S A STt eds. St 4 el

From the above assumptions we see that Q(XO) =R0N tunthernone

we see that

O{x)="0 (4.8)
is the equation for the points on C(a1) where C(a’) satis-
fien (2 .99 for a, and a, in the neighbourhood of X ot
s o gifl(xo) # 0 , which is the normal case, the solution of
(4.8) 1s an n-1 dimensional manifold going through Lo which
defines an n-1 dimensional manifold S on C(a1). In a neigh-

a
bourhood of XO,tO,C( 1) satisfies in this case (2.9) for g = g

(@)

orily ent Gl i . i 1 9 ; A
N is manifold S going through x_,t, Joagd Q(x,)

the situation is much more complicated. In this case the function

Ry e g% x, elther
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(a) have an extremum,
(b) have a saddlepoint,

(¢) =0 1in a neighbourhood of Xys OF

(d) be"pathological' in & neighbourhood of x_.

In (a) we shall by an extremum mean that there is a neighbour-~
hood of X, where Q(x) # 0 everywhere except 8t X = X In

]

this case there is a neighbourhood of xo’to on C » Wwhere

S o s, s (2.9) for o =g, oniyat x,t.:In (b) we
shall by a saddlepoint mean that there is a finite number of
manifolds, each of dimension at most n-1 and containing x_ ,
such that (4.8) is satisfied everywhere on these manifolds in a
neilghbourhood of Xy and furthermore that in each of the open
subregions (we assume that the number of such regions is finite)
which these submanifolds divide the neighbourhood of x into,
either Q=0 or Q # 0 everywhere. In this case C<a1 satis~
fies (2.9) for a = o only on a finite set of submanifolds of

(oey)
Al of dimension at most n-1 and going through x ,t_, and

in a finite (possibly empty) set of sectors on C i going

out from xo’to’ By a sector going out from XO’tO we here
mean a region bounded by a finite set of n-1 dimensional mani-
folds all containing Xt 0" 1 case '(c) C(a’) satisfies (2.9)
for g = a, in addition to « = a, everywhere in a neighbour-
hood of Xo’to' Case (d) is by definition all cases which are
not contained in (aj, (b) or (c¢). In this case we see that X
may for instance be an accumulation point for at least one
sequence of . points, all satisfying (4.8), and such that this
sequence of points does not belong to a finite number of connec-

ted manifolds where (4.8) is everywhere satisfied. A simple

example of the case (d) is given by the function
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exp (EB&E?T> sin 1 x e [-1,0) U (0,1]
Q(x) = { : (4.9)

X, = 0 1is here an accumulation point of the type described above.
We are not able to treat case (d) in full generality, and we have
not been able to find simple criteria on the coefficients in

(1.1) to avoid these cases when (1.1) does not have characteristics

of constant multiplicity.
X

We find the points where C(a1/ in a neighbourhood of Xo’to
satisfies (2.9) for a = Qs +ov 20y by comparing Qai 3
3 e 3,00 SR SWEEN Qaf in the same way as we did above with
Qa‘. Thus we may conclude that there is a neighbourhood of Xo’to
on C(af) where C(a’) is a multiple characteristic on a point

set which is a finite union of sets of the above types. If we

exclude the pathological possibilities from our discussion, we

(og)

can therefore summarize the above in the following way: If C

satisfies (2.9) at XTTROE Hony gNaTE 0800 A then there is a

(o, )

neighbourhcod of Xo’to on € which can be divided into a

finite number of subregions with the property that all interior
points are of the type we considered in section 2, when we were

able tc find the transport equations.
From the above discussion we see that locally we know the

transport equations for the propagation of discontinuities every-

(ay)

where on C , except possibly on a finite set of submanifolds

(ay)

anali of dimension at most n-t1. It should be clear that

those of these exceptional submanifolds which have the property
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o *)
that the multiplieity of C( 1) is the same ’  everywhere in

(a1)

e neighbourhood of the submanifold on C (except on the sub-

manifold itself), cannot affect the propagation of the disconti-

o
nuities on C( 1) because of the continuity properties the dis-

continuities necessarily must have, In particular the exceptio-
nal manifolds of dimension at most n-2 are all of this type.

In exactly the same way we see that those pathological cases
which involve a countable set of submanifolds of the above type,
such that this set of submanifolds has a finite number of submani-
folds as accumulation points, cannot affect the propagation of

the discontinuities.

t

We have thus seen that except in the "most" pathological

cases, the exceptional submanifolds which can affect the propa-

gation of the discontinuities, are those n-1 dimensional excep-

a
tional submanifolds which are such that C( 1) has a different

a
multiplicity on either side of the submanifolds. That C( 1)

has g8 different multiplicity on either side of an n-1 dimen-

7o
sional submanifold, means that there is an o such that C( i

satisfies (2.9) for this o on one side of the submanifold and

not on the other, We shall call this type of n-1 dimensional

(aq)

exceptional submanifolds on C multiplicitychange-manifolds,

and we shall now see that such manifolds really affect the pro-
pagation of discontinuities in general,

(@)

Consider now an isolated multiplicitycnange-manifold on C &

We shall restrict our study to the case where the change in multi-

%) Ve say that tne multiplicity of a characteristic manifold is
the same at two different poinGcs, st Ene clianae e ralstic ol roid

satisfies (2.9) for exactly the same indices ¢ at the two points,
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plicity.of C(aj) 18 exactly . obe, +ive. we shall suppose that
there is one and only one q such that C(a1) satisfies (2.9)
for thip w, ohione side.ef. the multiplicitychange-manifold and
not on the other. The general case is then an easy extension of
this special case, and will be left to the reader. It is natu-
ral to divide the multiplicitychange-manifold into three disjoint
sets, namely the sets where C(a1) 1) loses multiplicity,

2) gains multiplicity, 3) neither loses nor gains multiplicity.
We define these concepts in the following way: consider a point
on the multiplicitychange-manifold, and consider the bicharac-
teristic direction for increasing t associlated with the equ-
ation (2.9) for the exceptional @ at that point., If this bi-
characteristic direction is tangent to the multiplicitychange~
manifold, we say that C(a1) neither loses nor gains multiplici~
ty at that point. If the bicharacteristic direction is pointing
into the region of C(a1) where C(a1) satisfies (2.9) for the
exceptional a , we say that C(%1) gaine muitiplicity at tnat
Ppeint,  Binally, 417 #he bicharacteristic direction is pointing
out of the region of ¢ (1) NN g e B (2.9) for
the exceptional a , we say that C<a1) loges mitiplicity at
that point.

To be able to get a finite process in the following construc-
tion, we are also here forced to exclude some "pathological" cases.
Namely, we shall assume that locally each of the three types of
sets defined above on the multiplicitychange-manifold consists of

& finite number of connected sets. Then we may consider each of

the three types of pointsets separately, and afterwards glue the

results together.
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Let now E o) denote the characteristic manifold which is
going through the multiplicitychange-manifcld, and which satis-
fies (2.9) for the exceptional o . From the assumptions we have
made above, we see that E(a) is identical with C(a1) on one
side of the multiplicitychange-manifold, while E(a) on the
other side of the multiplicitychange-manifold satisfies (2.9)
only for the exceptional o (at least locally) if we assume that
C(a1) satisfies (2.9) for no more indices at the multiplicity-
change-manifold than in & neighbourhood of this manifold.

From the discussion in section 2 we seé that the characteris-

Gl ARt oL E(a)

) pEg)

18 & possible carrier of discontinuities, In
i Vo i % o loses multiplicity everywhere along the multi-
plicitychange-manifold, there will be a "branching” of the propa-
gation of the discontinuities there; that part of the disconti-
nuity which is associated with the cigenvectors raB b B Tl
exceptional o , will follow the characteristic manifold E(a) :
while the rest will continue to follow C(a7>, We know the tran-
sport equations everywhere on these manifolds except on the
multiplicitychange-manifold, but there the continuity properties
of the discontinuities solve the problem. On the other hand, if
C(a1> galns multiplicity everywhere along the multiplicitychange-
manifold, the opposite can happen., Namely, if both C<a1) and
E(a) carry discontinuities before they run together in the mul-
tiplicitychange-manifold, the discontinuities will propagate
along & single manifold (namely C(ai) and E(a) which are iden-
tical) on the other side of the multiplicitychange-manifold. Here

also the transport equations are known everywhere except on the

multiplicitychange~manifold, but there again the continuity soclves

the problem.
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Finally, we consider what happens at the points on the mul-
tiplicitychange-manifold where C(a7) neither loses nor gains
multiplicity. If these pointsets locally are contained in a
finite set of n-2 dimensional submanifolds of C(a1) Y Rl
continuity properties of the discontinuities solve the problem.
If on the other hand the multiplicitychange-manifold everywhere
is such that C(a1) neither loses nor gains multiplicity, then
the situation is entirely different. In fact, E(a) is then
not uniquely determined by C(a1) , but in view of the results
found in section 3 we know that there is no coupling between the

(a)

discontinuities carried by E on either side of the multipli-
citychange-manifold, and no "information" is carried over this
manifold on E(a).

Using the above local results and the continuilty properties
of the discontinuities, it will in principle be possible to glue
the results together, and find out how the discontinuities pro-
pagate up to the nearest caustic. In general caustics will exist
due to the focussing effects (blow up of ﬁi;zi) , 80 the dis-
continuous soclution will in general not exist globally as a
piece-wise smooth function. Exceptions to this are the weakly
coupled hyperbolic systems, since focussing phenomena do not oc-

cur for such systems, The focussing effect will be discussed in

a later work on stability fcr hyperbolic systems.
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5. SOME REMARKS.

In the previous sections we have assumed that 0%, raB, 1B

are smooth for £ # 0. As we mentioned in section 1, this assump-

tion will not be satisfied in general. On the one hand the func-
tions 0% may have branchpoints for vectors £ other than
¢ = 0, and on the other hand the eigenvectors r%P, 0B may be
discontinuous at poeints Xx,t,£ where the multiplicity of a charac-
teristic root changes, sSince the dimensionscﬁ‘fhe eigenSubgpaces
change there. The system of equations in ideal magnetohydrodynamics
is an example where such problems arise at the points on a charac-
E teristic surface where the magnetic field is either tangent or
. orthogorial to the surface.
| The functions % are sclutions of the algebraic equation
| (2.8) with smooth coefficients. Since we assume that the system of
| equations (1.1) is hyperbolic, the equation (2.8) belongs to
a speclal class of algebraic equations. This author does not know
whether there exist any theory for this class of equations with
regard to solvability by root extraction, but in any case it seems
likely that the smoothness-requirements etec. we have to impose on
the functions oY%, essentially will 1imit our theory to the cases
where it is possible to find the functions oY% by extraction of
roots. Since the coefficients in the equation (2.8) as well as
the roots % are all real, it seems likely that the expressions
o involve sguare-roots Ry

In view of the above, we limit ourselves to cases where the
only singularities of the functions 0% are branchpoints for
square-roots. Since the coefficients in (2.8) are smooth, we see

that at least two different 0%'s  become equal at each such branch-
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point. Thus a branchpoint for £ # 0 }will always involve a
change in multiplicity for the characteristics, hence such branch-
points cannot exist for hyperbolic systems with characteristics

of constant multiplicity.

The subset of Xx,t,&-space where elther laB, P are dis-
continuous or % have branchpoints, will in the following be
referred to as critical points (note that ¢ = 0 1is always
excluded). We shall for simplicity essume that the multiplicity
for every 0% is the same in every connected set of critical
points in x,t,f-space, and thus that laB, raB are continuous
on such sets. In general there may probably exist double criti-
cal points, 1.e. points in the set of critical points where the
mnltiplicity of P changes. The following discussion will
essentially also cover such cases, because the critical points
of different types are always separated on a characteristic sur-
face by multiplicitychange-manifolds.

The continuity properties of the discontinuities are easily
seen to imply that critical points cannot affect the propagation
of discontlnuities along a characteristic surface C , unless there
is a domain on C where every point is critical. By the same
arguments as those we used in the preceding section, we see that
this domain may be divided by multiplicitychange-manifolds into a
finite number of subdomains where the assumptions imposed on C on
page 10 are satisfied. We shall now study what happens in each of
these subdomains, the discussion of what happens at the multiplici-
tychange-manifelds will then be completely analoguous to the dis-
cussion in the preceding section and will therefore be left to the

reader. Thus we consider a critical point Xo’to on € and
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assume that the hypersurface C satisfies (2.8) for q = Oys o
e 0 in a neighbourhood of Xo’to PONE - 5 that nowhere in this

neighbourhood C satisfies (2.9) for any other choice of o . We
see that in the case we now are discussing, we must have r =z 2 .
It is easily checked that the arguments which in section 2 led to

the system of transport equations (2.17), also apply in the case

we are considering here, while the arguments which led from L)

to (2.21) in general do not apply.

In domains of critical points therefore, the system of tran-
sport equations (2.17) describe ihe propagation of discontinuities,
but this system will in general not Dbe weakly coupled any longer.
In fact, in [5] it is shown that the system of transport equations
is a strongly coupled hyperbolic system in special cases. At least

"when (1.1) is symmetric hyperbolic it is clear that the system of

transport equations is hyperbolic, thus the initialvalue problem

i gan be seolved for i%b,

; From the above considerations we can now conclude that apart
from the fact that the transport equations may become a strongly
coupled hyperbolic system, the critical points do not change the
picture we have given in the earlier sections of the propagation
of discontinuities, in any essential way. The qualitative proper-

ties for the propagation of discontinuities is described in sec-

tion 4, while the quantitative properties are given by the sys-
tem of transport equations (2.17) (which simplifies to (2.21) at
noncritical points). Obviously the construction of a global pic-
ture may be very tedious in concrete problems, we shall not go in-

to further details of this here.
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Finally, we would like to remark that the discussion in this
paper seems to be fairly easy to modify to mixed boundary-initia1~
value problems for the hyperbolic system (1.1), in the same way as
carried out in the cases treated in [3]. Furthermore higher order
hyperbolic systems and semilinear hyperbolic systems seem to be
fairly easy to study by the same methods which we have used in
this paper. We would also like to remark that the discussion in
section 3 makesit possible to generalize the WKB method to cover
certain hyperbolic systems with characteristics of varying multi-
plicity. To a certain extent this will be studied in a later work

on stability for hyperbolic systems.
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