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Abstract.

The propagation of discontinuities for Solutions of

linear hyperbolic systems of the first order is studied.

The transport equations for systems with characteristics

of nonuniform multipllcity are found in general. These

transport equations are studied in detail in the nonsingu

lar caseSj and it is shown how discontinuous initialvalue

problems can be solved.
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INTRODUCTION.

Discontinuous Solutions of hyperbolic partial differential

equations have been extensively studied in the literature. The

earller treatments dealt mainly with second order equations. In

[2] R.Courant and P.D.Lax extended the theory to first order

linear hyperbolic Systems with distinct characteristics. In [3]

R.M.Lewis extended the theory further to symraetric hyperbolic

systems with characteristics of constant multiplicity. D.Ludwig

and B.Granoff [5], and J.V.Ralston [6] have considered some pro

blems for hyperbolic systems with characteristics of nonuniform

multiplicity.

In this paper we shall try to resolve the problem in gene

ral lor hyperbolic systems of the first order with characteris

tics of nonuniform multiplicity. We are forced to restrict the

dass of problems somewhat, but we hope that the theory covers

most of the interesting cases.

The study of propagation of discontinuities is of course im

portant in itself since it gives us information about the Solut

ions. However., since the asymptotic behaviour of Solutions of

hyperbolic equations is closely related to the propagation of dis

continuities, a study of this is more important than one may rea

lize at first glance (for further details on this see Courant-

Hilbert [1] and D.Ludwig [4]). The author will consider some of

the problems in this connection elsewhere., especially we shall

study how the problem of stability is related to the propagation

of discontinuities.
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ASSUMPTIONS AND FOHMULATION OP THE PROBLEM.1 .

We shall study hyperbolic systems of the following form

(1.1)

separated from x mostly for practical reasons, but also because

this separation is needed in later applications. It is well

known that any linear hyperbolic system of the first.order can be

transformed to a system of the type (l.l) at least locally. Our

study will be local in x,t-space. We shall only. briefly indicate

how the local results can be glued together in hopefully wide

classes of problems.

As far as this author knows, a general theory of hyperbolic

equations and systems is still not well established. The meaning

of the notion hyperbolic above is therefore not clear. In this

vrork we shall by the notion hyperbolic raean that the assumptions

later in this sectlon are satisfied, and furthermore that the

Cauchy problem for (1.1 ) is well-posed in Tsuitable" metric spaces

We shall not give a precise definition of what we mean by a r, suit-

able" metric space, but it will suffice if for instance the solut

ion of (1.i) is in (the space of N-times continuously diffe

rentiable functions) when the Cauchy data is in C for some

N S No Symmetric hyperbolic systems, which we are particular-

n

Lu =u t + A± u x i +Bu53 0
1-1

where u = {u 1 , ... ,U K ) , while B, A 1 , i = 1j ... , n are

k X k matrices which may depend on the independent variables t

and x = [x 1 , ... ,x n j , The independent variable t (time) is
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ily interested and which are covered by a well establlshed

theory in the literature* are easily seen to satisfy all our

requlrements (see [1]).

The characteristic equation associated with (l.l) is

i  n
where I denotes the kx k unit matrix and } ... are

real numbers which are not all zero simultaneously. Let the

roots in the equation (1.2) be given by

(1.3)

We shall assume that the functions O a depend on the variables
1 n

} ... sufficiently smooth. The phrase M sufficiently

smooth’ 1 is chosen here and elsewhere in this paper to mean suffi

ciently smooth for our later arguments to be valid. The func

tions Q a are obviously homogeneous of degree one with respect

to the variables £ = 5 > ... |n |u Except in special cases

(weakly coupled hyperbolic Systems ), some or all of the functions
a

Q will have a branchpoint for E "0 . and possibly also for

other vectors £ . Since |= 0 is already excluded above from

the smoothness requirements etc. ; only branchpoints for £ 0

can cause trouble, If branchpoints exist for £ 0 , they have

to be treated separately; we shall give some comments on such

cases in section 5.

Let the elgenvectors associated with the eigenvalues (1.3)

be given by

n

det i -AI + Y i x A1! = 0 (1.2)
1=1

A = O a(x, t,! 1 , ... , £ n ) ,0,-1, ... .
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raH (x,t,£)

(1.4)

lap (x,t,g)

where rap denote the right- and lc' fJ the left-eigenvectors.

We shall assume that the eigenvectors (1.4) depend sufficiently

smooth on x, t,| . In general, thls smoothness requirement will

te only partially valid, tecause we have to allow discontinuities

in the set of eigenvectors r l , The discontinuities are

connected wlth changes in the multipllcity of a characteristic
r» 0 rt S

manlfold, and the points x,t,5 where r , 1 1 are discontin

uous have to te treated separs„tely, We shall in section 5 give

some comments on how the problem can te handled.

We may without loss of generality as sume that and 1®P

are normalized ty the relations

(1.5)

(1.6)

anywhere in this paper, tut will te needed in later applicat

ions. By definition we have the following identities

ot — '} ««« »"y
p= 1, ... qa

,a(3 ab c aa _Sb1 • r ~ o 6

aP ab _pbr »r «5

We assume furthermore that ra{3 and form complete sets.
7

i.e. that 2 q =k . The relations (1.6) will not be used
a=1

r n
|-n“ I + I1 aM-r Q P = 0

1=1 a=1 5 ..., 7 (1 , 7)
R r A (3 =1 , .. , ,qa

l aP-{-On I+ W 1 - 01=1 J
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We assiune that all Qa , raP , laP are real for any real | ,

and that

Qa jé Oa when aé a (1.8)

Xf we for every choice of x, t,5 have that

Qa Qa when a a (1.9)

then the hyperbolic system (1.1) is said to have characteristics

of constant multlplicity. If in addition 7 - k (or equivalently

qa = 1 for a= 1, .,. ,7) ,(1.1 ) is said to have distinct

characteristics and the system (1.1) is called totally hyper

bolic. In general (1,9) will not be satisfied even locally in

x,t , but the multiplicities of the characteristics will be de

pendent on £ at every point x,t. There seems to be little

known for such systems in the literature; they are, however, not

excluded from the discussion in this paper (see also [5] and [6]).

In this paper we want to study propagation of discontinuities

for Solutions of the hyperbolic system (1,1). Since classical

Solutions in the strict sense cannot have any discontinuities at

all, we have to define what we shall mean by a solution. We shall

work within the dass of so-called "weak Solutions”. To define

this we introduce the space S of all smooth k-dimensional vector

testfunetions tj(x,t) with compact support in the region under

consideration. We define the adjoint operator M to the operator

L in (1 .1 ) by

(1.10)

n

Mv = (A"3" v) i + B*v
i-1 x
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where * denotes transposing of the matrlx. A measurable furie

tion u is defined as being a weak solution of the equation (1.1)

if

/ u Mr) dxdt ~ 0 V q e S (1.11)

By partial integration in (1 .11 ) it is easily seen that a diffe

rentiable weak solution of (1.1) is a solution in the strict sanse.,

and that a solution in the strict sense is a weak solution.

The problem of propagation of discontlnuities in the whole

dass of weak Solutions is too involved to be studied in detail

(some results can be found in [6]). We shall therefore restrict

our study to weak Solutions which locally are piece-wise smooth.

Here, a piece-wise smooth funetion is defined as being a funetion

for which there exists a finite set of smooth hypersurfaces di~

viding the domain of definitien into a finite set of subdomains

in which the funetion is smooth,, and furthermore that the limit

of the funetion and its derivatives exist in every subdomain

when we move out to the boundaries. Thus we assume that the dis

continuities of the funetion and its derivatives are everywhere

finite, and that locally they are located on a finite set of

hypersurfaces.

We are now able to formulate the problem we are going to

study in the rest of the paper: Suppose that a solution of (1.1)

has a discontinuity at the point x ,t , what then are the equ

ations for the hypersurfaces in a neighbourhood of x,t whereo o

the solution is discontinuous? How are the magnitudes of the dis

continuitl.es related on these hypersurfaces?
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2, THE TRANSPORT EQUATTONS,

We shall in this section consider the special case where the

discontinuous solution we are considering, u , is smooth every

where in a nelghbourhood of x,t except on a smooth hypersur

face C given by the equatlon

(2.1)

where cp° is nonsingular at x Q ,t o . By our assuraptions, u and

its derivatives have finite jump discontlnuities across C , and

tne Jump discontlnuities are smooth functions defined on the mani

fold C in a nelghbourhood of x Q ,t (which by assumption lies
on C ) .

In a nelghbourhood of x 0^0 we introduce a regular coordi
nate transformation

(2.2)

which utillzes C as a coordinate surface. The equation for C
o

becomes y =0. In the new coordinates we have

(2.3)

Here we have introduced the matrices defined by

cp°(t,x) = 0

y J - æ J (t.x) ; j = 0,1, ,.. ,n

n

Lu = J uj+ Bu
J=o y

n

= <Pt 1+ Z A " '0 = 0,1, ... ,n (2.4)
v=1 x
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5)

6)

7)

Let D 1 and denote the regions on either side of C and
I II I tt

let u = u + u where u s 0 in and usoin D, .

By Gauss f theorem it easily follows that

(2

qp ... ,9° )- is a unitvector pointing out of the regionx x j

D 1 . Since Lu = 0 everywhere except on C , we are only left

wlth the following when we add the equations (2,5) and introduce

the notion [u] = - u'5'

(2

Since Q £ 0 everywhere and the components of q are arbitrary,
it follows that

(2.

Here [u] is slmply the jump of u across C , thus [u] 0

wherever u is discontinuous on C . From equation (2,7) we see

that in these points the matrix H° must be singular, i.e.

n

J U x Hr) dxdt = j TjLu 1 dxdt - J i)Av uI<p° vj-edS
D,UD2 D 1 C v=1 xV

n

J dxdt = J + f /rju11 !?® + V r)Avu'CI <p° ledS
d,ud2 c v=i *V

where Q = ø(x,t) is a scalarfunction such that

f®n + Y <p°v Av [u]|- dS = 0
C V-1 x j

H°[u] = 0 on C
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n

(2.8)

This is the characteristic partial differential equation for

the hyperbolic system (1 .1 ). By definition the hypersurface C

given by <p ~ 0 and• satisfying (9.8), is a characteristic mani

told for the operator L . Thus we can conclude that if u is

discontinuous across a hypersurface C , then C must be charac
teristic.

The funetion <p which determines the hypersurface C in

equation (2.1), need not satisfy the characteristic differential

equation (2,8) identically; we only know that cp° satisfies

(2.8) on C , i.e, for q>° =0. At every point x,t on this

characteristic manifold G , there is at least one a such that

(2.9)

On the other hand, if a hypersurface qp° = 0 satisfies (2.9) for

some choice of a at every point, then the hypersurface must be

a characteristic manifold. In this sense the family of equations

(2,9) is equivalent to the characteristic equation (2.8), we

therefore call (2.9), with a= 1, ... ,7 , the family of charac

teristic partial differential equations associated with (l.l).

In general a characteristic manifold may, at some or all

points, satisfy more than one of the equations in the family of

characteristic partial differential equations (2.9). Furthermore

uliere need not be a single Index a such that (2.9) is satisfied

det (tf>° I+ £ tp°v A v%) = 0
v=1 x 7

tp° +0° (x, tj (p0^,... j(p0 )= o
X x
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at every point on a characteristic rnanifold. However, if the

hyperbolic system (l.l) has characteristics of constant multi

plicityj then a characteristic rnanifold satisfies (2.9) for one

choice of a only, and this a is the same all over the rnanifold

We shall now study the special case where the hypersurface

C in a neighbourhood of x,t satisfies (2.9) for r different

choices of a , say ccy ... * and that nowhere in this

neighbourhood C satisfies (2.9) for any other choice of a

than ... ,«r J we shall later see that the general result

can be deduced from this special case. Again the function cp°

is only known to satisfy (2,9) for ... ,ar on the hyper

surface C given by (2.1). However, we may here without loss of

generality as sume that the function <p° in a neighbourhood of

x ,t satisfies (2.9) identically for at least one of the

indices ... ; ar . In general it will not be possible to get

(2,9) satisfied identically for more than one of the indices

... ,ct but cp° can be chosen such that (2.9) is satisfied

identically for any choice of one of these indices (compare with

Courant-Hilbert [1]).

If the hypersurface C satisfies (2.9) for only one choice

of a at the point x , t , then, by continuity, there exlsts 0.o o

neighbourhood of xQ h0 where C satisfies (2.9) for this choice

of a only. Thus this is a special case of the situation we are

cons ide ring, namely the ca.se where r — 1 j this is the only case

that arises for hyperbolic Systems with characteristics of constant

multiplicity. There seems to be little known for the cases r> 1

J:} literature, some results are obtained in [5] and [6],

krom (2 .f) we see that [u] is in the right nullspace of H°.

Since we assume that the equation for C satisfies (2.9) for
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10)

1 1 )

i Ol
1 d)

13)

... ,ar , and these only, [u] can be expanded in the

(2.

n

KJ [u .] -F B[u] - 0
yJ

(2.

For j 0 j u . is a tangential derivative to C, so that

[u .] - [u] .. Thus (2,11 ) may be written as
yJ yJ

(2.

au
We multiply (2,12) on the left by 1 ,v = h ... &

a v av p' o
p~ 1 ; ... 3q ‘ . Since by hypothesis 1 H ~0 , vie get

(2.

partial differential equations with respect to the kc unknovm

functions . (2.13) is a system of equations on the manifo.(2.13) is a system of equations on the manifold

C and [u] is only defined there. From this point of view

following way

ai

[u] - 2. I °p r
i-1 |3=1

where are scalarfunctions to be determined, and cp° are sub-
P x o

v ai p
stituted for i , v = 1, ... ,n , in the expressions for r

Slnce Lu - 0 on both sides of C , (2.3) gives on C

n

H°[u ] + > HJ [u] . + B[u] = 0
y y

V 1
) 1 v H“ [u] .+ 1 B[u] = 0L i *tt wy

r a .
In viewof (2.10) we see that (2.13) is a system of k = 2 q 1

c i=1
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it is meaningless to treat [u] as a function depending on y Q .

However, if we in (2.13) let [u] depend on y Q as a parameter,

it does not affect our results as long as we remember that (2.13)

has relevance to our problem only for y Q =0. Thus we shall

treat [u] as a function also dependent on y Q , because this
au o

will simplify our study. Since 1 v H = 0 on C by hypothesis,

we my add the following term to (2.13)

(2.14)

Thus the following system of equations will be equivalent to

(2.1J) on C

(2.13)

If we introduce x,t as independent variables instead of

y°, ... y n , (2,15) becomes

(2.16)

a ix
_ tT Or -11 H [u]

r 1 1r , a v U r ,) 1 H J [u] . + 1 B[U] = 0
i- 1 y Jj=o 01

a v
v= 1, ., . jT & \i =1, ... ,q

. ap.

1 + Zj 1 aJ E u J j+ 1 V B[u] = 0
j=1 x

a v
v= 1 j ... 2 t 8c [X “1, ... ,q
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17)

18)

19)

¥e substitute (2.10) into (2,16) and get

(2.

We shall call (2.17) the system of transport equations for the

hyperbolic system (l.l), it tells us how the discontinuities of

u propagate along C , The system of transport equations (2.17)

is a hyperbolic system of a very special type. To see this we

differentiate (1.7) with respect to $} x and get

(2/

Multiplicatlon on the left by l ab and using (1.5) and (1.7),
gives us

(2.

!-n particularj ;.f Q - which is the case either if a - a

or if we consider a multiple characteristic., (2.19) gives us

« t *£ t
* j=i i=i p=i x

1=1 ,6=1

a
v - h .... r & p- = 1, .. . ,q v

{ IS 1 + 4- r “ p + K 1 + = °

]_ r n P- _ 50° -6b ( ,_(t. dr a^
S5 W v ” ’
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(2.20)

The expresslons (2.20) can now be substituted for the coefficients

(2.21 )

V/e see that the system of transport equations (2,21 ) is only

coupled through the nondifferentiated terms, i.e. (2.21) is a

weakly coupled system, Hence the system of transport equations

is trivially seen to be a symmetric hyperbolic systera.; v/e shall

discuss it further in the next section.

In an analogous way we can derive the corresponding equations

for the discontinuities in the derivatives of u . From

we have for ~ 1 ,2...

fhw s r (2.22)

,ab A tx r a3 = &f. 5 aa

to (o|) . in (2.17), which gives us on CX

(V) , f /.) + f 1. 0

w > £, m° 3 V L l k J .X

«V
... jT & M- j ••• jQ.

n
V 1 -j

j-o

-f ) u ,  
Li \ J -yoJ=°

+ N v ' u



 v '\
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23)

2*0

u i )
Here the expression N v 'u involves derivatives of u of

order at most' Since Lu o on both sides of C

(2.

If all the derivatives of u of order less than are contin

uous across C , (2.23) shows that H° u =0. It some

(oc+1) 5 * derivative has a non-zero jump, then / 0

and hence H° must be singular. Thus we may assert that if u

or any of its derivatives has a jump discontinuity across C ,

then C is a characteristic manifold.

Then the jumps in all the derivatives of u of order or

less are known. By substituting ac. for 1 , we can

rewrite (2.23) in the form

(2.

Here involves derivatives of u of order at most

,soit is known. We nov/ expand [u^ oiC _] in terms of all

the right eigenvectors of H°

n r

0=1

-f “|b + ) yt, J” U

n

+ 7 (H J ) 1,+ jN^" 0 ul = 0<r l v jy L j

Suppose now that u o5 is known for s«o, 1 ...

n

H° ia + V H J ' u • + ° u = 0
L J Z_. L ° Jt/ y L J

1=1
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7 Q a

X r ap (2.23)

Substituting (2.25) into {2.2h) gives

7 q a
a * « ap

“p r

(2.26)

When we make the same assumptions on C as hefore, i.e. that

C satisfies (2.9) for ... ,and these only, then we see

that

(2.27)

In (2.2?) j can be chosen to be 1,...,r-1 or r j and cp° t

are substituted for the éH in the 0’s. In particular we have

that

(2.28)

3 b
Multiplication on the left in (2.26) by 1 givos

(2.29)

v* ] - I I
a=1 P=1

TT oH u
T XU

a=1 M

n, r -1 r- -1
V 1 i r r

~ ~L H rr ' L u .
o~ ’

to“ =fN- n“ , -. =1, ... .7 & P= 1, ..., q“

cop h 0 for a ~ i =

0 everywhere for all other a's & P's

n
*e a 1 /V -3-b 1 . n ab O \

°b= -all x H v + 1 p u ;
“b j=1 l }

a
a / , i = 1, ,. ., r & b = 1 q
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31)

To obtain the other coefficients in the expansion (2.25), we

multiply (2.25) on the left by l a * 6

known, The equations (2.30) are valid on the manifold C , and

u is only defined there. However, we may look at_ w

u as a function also dependent on , and apply the samewv- O

arguraents as we used in going from (2.15) to (2.16). Thus in

the independent variables x,t (2,30) becomes

at
1 U 4"

(2

£ l 3 ‘ fc +*(H°) ir }[u ylt
J = 1

= i a;fc (r Cs£ ' 0 ul (2.30)

1=1, ... , r & b= 1 , ... , q^ 1.

) 1
Here T v u involves only functions we have assumed to be

y .L L
0 = 1

+ l a;fc (B +*(H°) JFu J = l a ‘ 4 r T^'Vl VJLv°*d L J

If v/e substitute (2.25) into (2 51) and use the relations (2.20),

the system (2,51) can be written on the following form



"•) | - " ’T : ' '  
i..

 •; . . '' 'i‘



18

(2.32)

Here we have introduced the following functions

(2.53)

(2.30

When we have found the equation for C , the expressicns (2.33)

and (2.3*0 are knov-m from (2,29) and our assumptions.

The system of equations (2.32) constitutes the transport

eguations of higher order for the hyperbolic system (1.1).

We see that they only dlffer from the transport equations (2.21)

in the nondifferentiated terms.

4 a;-, L V • V V lb °b“" = eib
i, b>t L hoo Vt1 Jxt ‘ L- L- “f3 Pt>=1 * *?*> m=1 t6-1

i — 1 y »•* J r Zz "b — 1 J ** * J Q

= iai 6 (i,r*-p) +éela;fa {H°)r r“’" p

r* ~
ib 6 _ Cbc~ O

=r t u

7 g®

Z\ fiZjX dpN /..On WJX vaP\LLA rv p )' &t{H V°Pr iJ
ot=1 (3=1

v=1



f'4 i',!,. - ' r,.

' y*i

fr . :)

i V

•J-lrJcU'.'1 viCJ i '

 : . •: } itfSv-- • . ?,

/"vU.-JS w"j.-"''0'r'r-,S";;' yr::, ;; l .'

’'3 3 I.. *.? . r i-. /-j pr i*;, p,' -'f'

o.,: : :, :;': Sn ;:- .: • -o': -

Ci * \ ! i "" . .  \

 j jv;rtj >0£ oVi



19

3. PHOPEHTIES OF THE TRANSPORT EQ,NATIONS.

We shall in this section study more closely the transport

equatlons which we obtained in the previous section. We shall

rsstrict ourselves to study only the transport equations of

lowest order (2.21), but since the difference between these and

the higher order transport equations (2.32) is only in the non

differentiated terms, similar results can be obtained for the

higher order transport equations.

The transport equations (2.21) tell us how the discontinui

ties in u propagate along C . Even though the transport equ

ations (2.21) may be defined in the whole x,t-space, their only

relevance to our problem is on the hypersurface C . The hyper

surface C , given by the equation (2.1), v/as in the construction

assumed to satisfy (2.9) for a = ... ,a =a r and these

choices of a only. Each of the equations (2.9) is a first

order partial differential equation with respect to the scalar

function cp°, and can therefore be solved by the well-known

method of characteristics. For a given, the characteristic

equations associated with (2,9) are

(3-1)

yr 5n a

dx 1 "
(3.2)K- = 1,,..inds

This closed system of ordinary differential equations is called

the bicharacterlstic system of equations associated with the hyper-

dt _ 1 dx 1 BQ a ,
« ' ‘ vT

x 1
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bolic system (lj) ; and the Solutions of (3.1 & 3.2) are called

the bicharacteristic strips for (1.1). The t,x-coraponents of the

bicharacteristic strips are usually called the bicharacteristic

curves or simply the bicharacteristics for the hyperbolic system

There are 7 • different bicharacteristic systems associ

ated with (1.1) 5 namely one for each a = 1 5..., y, and thus there

are 7 different fanilies of bicharacteristics.

From (1.8) and the fact that Q a is homogeneous of degree 1

with respect to i } it is clear that for any pair a,a = b ...

.. 5 7, with a a } there is at least one p = 1, ... ,n such

that

 yrF 1 bcp-
(3.3)

This means that no two of the 7 families of bicharacteristics are

identical. However, in general it may happen that the n equations

(3 A)

are all satisfied simultaneously at certain points for

a a. At such points the directions of bicharacteristics from

two different families are the same, If the equations (3.4) are

satisfied at all points on a bicharacteristic strip of the family

with index a say, then the families of bicharacteristics with

indlces a and a raust have at least one bicharacteristic in

common. If the directions of the bicharacteristics from different

families are different at all points , i.e. if the n equations

SO 3 _ ,, .. „
n ~ ii M- ~ 1 t.• jn

a? 11 a^
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(3.4) for no polnts x,t,£ are simultaneously satisfied, we say

that the hyperbolic system (1.1) has bicharacteristics of con

stant multiDlicit

distinct bicharacteristics.

Xt is readily seen that a hyperbolic system with characteris

tics of constant multiplicity also has bicharacteristics of con

stant multiplicity. The opposite is, however., not true as is

easily seen for instance for weakly coiipled hyperbolic Systems.

Thus it is less réstrictive to consider the case with bicharacteris

tics of constant multiplicity than the case with characteristics

of constant multiplicity.

We shall now study the transport equations (2.21) in view of

the above considerations on bicharacteristics. Let us first con

sider the special case where on C we have

5Q K: do °° J
(3.5)

9( P*- åcpVi

for every i,J = and t\ = 1,...,n . The equations (3.5)

obviously contain no restrictions if r= 1 . Thus the special

case we are considering includes all cases where the hyperbolic

system (1.1) has characteristics of constant multiplicity. When

r > 1 * ue equations (3.5) means that the bicharacteristics of

the r different families with indices ciy..,a r , are identical
on the hypersurface C.

In the transport equations (2.21) we see that the functions

are difXerentiated along the bicharacteristics of the family

 ulULA Cl 'v* the above assumption (3*5).» all the functionsv
are in ) differentiated in the same direction, we may

If in addition 7 = k, (1,1) is said to have
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therefcre interpret the system of transport equations (2.21) as

ordinary differentlal equations along the hicharacteristics

(3.6)

We shall nov/ study the expressions on the right hand side in

( 5.6) a little closer. In general we have for a = h ...,7 and
r, .i a

Lr« - ,

(3.7)

We assurne that <p° satisfies (2.9) identically, by differentiation

with respect to we get

(3-8)

From (3-8) we see that (3.7) can be written

(3.9)

1=1 p=i

v= 1, ..., r & M- =U. - •) q**

f A 1 ”4? +
1-,

* l {r.,. * t 4
1 1=1 J

O A V 3n a m o 9fi a _ n
* Tt a<p°; a**

Lr« - *f A 1 i£L * Br‘*

V . V Vm°  L lol T.u i 1 !

n =1 TH i=l *’** 1 S< p“ ;
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10)

1 1 )

12)

If we differentiate (2.1 8) with respect to we get

(3

0

From (3.3)j (3-9) and (3.10) we get on C that

(3

Here a is fixed, and equal to one of the indices ct^ } ... , a

Thus we see that in general the right hand side of (3.6) depends

on the second derivatives of cp°. However, in (3.6) we only need

the second derivatives along the there they

must satisfy the following equations

(3.

. ig— r »f „ (, n i * f 5 i A

L J di t- di v j

i a^(Lr“ Lp ) = |fl- + aJOZ t-* J
J»1

j= i ax ° a <P*;
n n

, 1 V V o s c v rM

2Å /, **' S9 0 , 59°. 1 PJ= 1 T] = 1 T x c

..fV a 2 0 a o o a 2 <-/*

n=i M Ip, ' t ' hj

y f xL o , O 1
*£* s* ; *- v J
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In the speclal case we are considering, we have now obtained

a closed system of ordlnary differential equations which must be

satisfied by the discontinuity functions and the discontinuity

surface. In fact, if we denote cp°; by and by }

we see that the following closed system of equations must be satis

fied:

(3.13)

d O r—i S~~i f-xCt i, P p~i ,~ct i p 0 ->.
- - Z I 1 'lir- * Bra ‘

iti p=1 jti a*" J p
q«c; n A

li Å ay p

dt _ , d*1 _ S0a
Hs ~ 1 ’ cis

i *= 1, ,.  ,n
df 1 _ 5na

" ax1

d 4
3s~

n n 0 0
V V* »a e v *|X .S2 na

xti J 3* 1 åx°

y r s2 Qa *(x + sg na *n\
A dxJ 1 S^dx1 J'jH*

£ j =4 l j i*J = 1 , •• . j n

' y y s goa> ov
Å t,=i sr1 ai 71
„ a*

v = ... & p. =1 , .. , , q
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In (5.15) the Index a is fixed, and equal to one of the indices

a 1* *•* > a r * From the construction of the equations (3,13) and

the general theory of characteristics, wø know that the initial

valueproblem for (3*15) with relevant initialvalues, is equiva

lent to the initialvalueproblem for (2.9) and (2.21). We shall

therefore also call (3.13) the system cf transport equations. We

conclude that the discontinuities propagate along the bicharac

teristics when (3-5) is satisfied on G .

When (3«5) is not valid on C , the above conclusions will

no longer be true. The discontinuities will no longer propagate

along the blcharacteristics, but will spread out on C governed

by the transport equations (2.21 ). Since (2.21 ) is a syrnmetric

hyperbolic systera, there is a well established theory for exis

tence, uniqueness and other properties of Solutions, see for in

stance Courant-Hilbert [1], Since (2.21 ) is a weakly coupled

system, there is also a more direct approach available. In fact,

essentially the same method as that used in [1] for hyperbolic

Systems with two independent variables can be applied.

In our study which led to the system of transport equations

(2.21), we assumed that the .jumpdiscontinuity for u across 0

was a sraooth function on C , When u is a piece-wise sraooth

function, the Jumpdiscontinuities of u on the finite nuraber of

sraooth hypersurfaces will also be piece-wise sraooth functions on

these surfaces. It is therefore of interest to study how the dis

continuities of the jumpdiscontinuities of u propagate. Thus

we want to study how discontinuities in the Solutions of the sys

tem of transport equations (2.21) propagate on C . This problem

io of course a special case of the problem we started out with.
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we can therefore apply the results we have found so far. Since

the system of transport equations (2.21 ) is weakly coupled and

contains one independent variable less than the original problem

(because of the restriction to C), the problem we now want to

study is considerably simpler than the problem we started out

with. The assumptions in section 1 are trivially seen to be

satisfiedj and the functions corresponding to Q a and the eigen

vectors corresponding to r and l are easily found. In
1 n~ 1 n

fact, if we let y j ... ,y 3 y = t be the coordinates on

C (since the hyperplanes t = constant are spacelike, there is

no loss of generality to take y 11 = t as one of the independent

variables on C), the system (2.21 ) can be written on the following

form on C

(3.)

where the coefficients d V are functions of
i j M

1 n~ 1
y , •  >y . The functions corresponding to Q a are

(3-13)

and the eigenvectors corresponding to r and l a,/3 are simply

the unitvectors

n 1

(<>. + 1 -i .-t & - °
1=1 y 1=1 j=i

v ~ 1 r & M- = 1, .. . J q a *

0* v = Y i 1 a v .,v =i, ... .r
i=l
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(3.16)

In general some of the functions (3.15) may be identical; for

instance will all of them be identical when (3*5) is satisfied.

If this is the case, one would have to renumber the functions
A.V -¥~ V LL y yn

Q and the eigenvectors r = 1 in order to get the

assumption corresponding to (1.8) satisfied. Obviously.this

would complicate the notations, we shall therefore for simplicity

restrict our study to the case where the hyperbolic system (l.l)

has bicharacteristics of constant multiplicity, since such problems

cannot arise in that case. At the end of this section we shall

make a few comments on what the differences may be in the general

case.

Now, if we study the cases where the hyperbolic system (l.l)

has bicharacteristics of constant multiplicity, we know that all

the assumptions in section 1 are satisfied for the system of

equations (3.14), We can therefore apply the same procedure to

(3.1*0 as we did in section 2to (l.l) when we vranted to study

the propagation of disccntinuities. Again, we get that the dis

continuities propagate along the characteristic hypersurfaces.

If we pull any characteristic surface for (3.1-4) back to the

t,x~space, we get an n-1 dimensional submanifold of C which

is generated by a n-2 parameter family of bicharacteristic

curves. If we restrict ourselves to characteristic hypersurfaces

ior (3.14) which satisfy conditions analogous to those imposed on

C on page 10, the transport equations will bø of the same type

*VH _ -,*vji _f VI fi vr 1
r - 1 ~ \>r '%“*•/

V = 1, .. ., r & |1 = 1, .. .
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as (2.21) but now the number of independent variables are reduced

to n-1 essentially, The number of equations in this system of

transport equations will depend on the multlplicity of the charac

teristic hypersurface considered for (3.1*0. When n > 2 the

system (3.1A) has characteristics of nonuniform multlplicity since

it is weakly coupled, the number of equations in the system of

transport equations for (3.1*0 may therefore be difficult to tell

a priori.

However, if we apply the same procedure over and over again,

i.e, find the transport equations for the transport equations for

the transport equations etc. for (l.l), it is clear that sooner

or later (i.e. after at most n steps) we v/ill arrive at a stage

where these transport equations are of the type (2.21) with
*)

r ~ 1. As we saw in the beginnlng of this section, these tran

sport equations will therefore be equivalent to a system of ordi

nary differential equations of the form (3.13) with r = 1. As

a result of this we can say that when the hyperbolic system (l.l)

has bicharacteristics of constant raultiplicity, then the discon

tinuities of sufficiently high order (i.e, the discontinuities of

the discontinuities etc., sufficiently many times) will always

propagate along the bicharacteristics and be governed by (3.13)

with r = 1. In general we do not know a priori the lowest order

of the discontinuities that propagate along the bicharacteristics

*) At each step we have to restrict ourselves to characteristic

hypersurfaces which satisfy conditions analogous to those imposed

on C on page 10. This will normally require that we restrict

ourselves to a sufficiently small neighbourhood of x , t . To0 0 0
obtain the global behaviour of the discontinuity functions at each

step, we have to apply the construction described in section A.
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except in the case where the hyperbollc system (1.1) has charac

teristics of constant multiplicity, in this case the discontinui

ties of all orders propagate along the bicharacteristics. Pinally

we note that in general the lowest ord er of the discontinuities

that propagate along .the bicharacteristics depends on the normals

of the characteristic and subcharacteristic manifolds, and may

also vary from point to point in x,t-space.

In the general case where the hyperbolic system (1,1) does

not have bicharacteristics of constant multiplicity, the situ

ation may be much more complicated than above, Kowever, in the

non~pathological cases one can also here apply the technique which

we are going to describe in the next section, to glue the results

together. In short, we can describe the situation as follows:

The discontinuities of sufficiently high order will propagate

along the and locally the transport equations

will be of the form (3.13)* However., in general we will not have

r ~ 1 in but we will have that r may vary from point

to point on C .
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4, DISCONTINUOUS INITIALVALUE PROELEMS.

We shall now consider initialvalue problems for the hyper

bolic system (1.1). The initialvalues considered

(4.1 )

are assumed to be piece-wise smooth functions, Thus u Q is

assumed to be smooth everywhere except on a finite number of smooth

hypersurfaces; the jumpdiscontinuities of u q and the derivatives

of u are assumed to be piece-wise smooth functions on theseo

hypersurfaces,

Since we assume that the initialvalue problem is well-posed

when the initialvalues are in C N ° for some N Q ,it suffices to

study how the initialdiscontinuities of u and its derivatives

up to the order N q propagate. In factj if this is known the

discontinuous initialvalue problem (1.1 ) & (4.1) can be solved by

another initialvalue problem with initialvalues (for the de~

tails on this., see [3]), Furthermore, it suffices to consider

the case where u Q is smooth everywhere except on one n-1

dimensional smooth manifold T . In fact, if u q for instance

is discontinuous along two Crossing manifolds, the discontinuity

of u is smooth everywhere on these n-1 dimensional manifolds

except on one n-2 dimensional submanifold. Thus the initial

value problem for the discontinuity of the discontinuity function

of u q is of the above type in view of the considerations in the

preceding section. If this problem is solved first, the initial

value problem for the discontlnuities of u q and its derivatives

u] = U (x)
It^o
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can by the same constructlon as referred to above be transferred

to problems where the discontinuities of u q and its derivatives

are smooth on a n-1 dimensional manifold. This corresponds to

cases where u is smooth evervwhere except on one n-1 dimeno

sional manifold. - If several discontinuity manifolds have a

submanifold in common we would have to start the constructlon by

considerlng the discontinuity of sufficiently high order and then

successively solve the problems for the lower order discontinui

ties. Since the discontinuities of sufficiently high order always

propagate along the bicharacterlstics, the constructlon will con

sist of a finite number of steps.

We have thus reduced the problem to the problem of finding

out how the initial discontinuities along F of u and the deri

vatives of u propagate. In the following we shall restrict our

selves to the study of hov/ the discontinuities of u itself pro

pagate. The dlscussion of the propagation of the discontinuities

of the derivaties of u is completely analogous and is therefore

omitted (see [3] for the constructlon in the case of symmetric

hyperbolic Systems with characteristics of constant multiplicity).

In section 2 we found that discontinuities can only propagate

along the characteristics. Since the discontinuities are initiallv

j-ocated on F , we can therefore conclude that the discontinuities

must be located on the characteristics going through F , If the

hyperbolic system (1,1) has characteristics of constant multipli-

there are exactly y different characteristic manifolds

going through F , namely one for each of the characteristic par

oial differential equations (2,9). In the general case, however.
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2)

3)

*)

there may be a lot more characteristic manifold going through F

In fact, a characteristic manifold may in this case satisfy dif

ferert characteristic equations (2.9) in different regions. Glo

bally there may therefore be an infinite set of characteristic

manifolds going through F , In the following we shall study

what happens locally and briefly indicate the global aspects.

Let be the characteristic manifold satisfying (2,9)

for the Index a and going through F , a = h ... ,7 (some

of the characteristics C^aj may partially or completely be

equal), We let [ ] a , [ denote jumps across and F
cx 3

respectively. Since the eigenvectors r form a complete set,,

the jumps in the initial values of u across F have a unique

decomposition

7 qa

(r

In the same way we may set

7 qa

(r

The initialconditions are

o.

Multiplication by gives

[u0 ] r =
V V a£
L L °opr

a=1 j3-~ 1

[u] a IX 4 -16a-1

) J [u]° = [uo ] r on r
a~ 1
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> on F
U av ov

a~1

(4.5)

From the discussion in section 2we know that in every point on

p(a) where only satisfies one of the equations (2.9)j

o a =0 if a a. We may without loss of generality assume
ap

that on F this is true everywhere, since we shall see that we

are then led to a well defined construction of how the disconti

nuities propagate.

Nov; let x ,t Q he an arhitrary point on V . We want to

study how the discontinuities in the neighbourhood of x Q ,t o

propagate along one of the characteristic manifolds C lcw , say

then as we saw in section 2, the propagation cf the discontinui
(a 1 )

ties in a neighbourhood of x Q ,t r) on C' is governed by the

transport equations found in section 2. So in this case every

thing is nice, the discontinuities are propagated along the bi

characteristics and are described by the system of ordinary

differential equations (3-13) with r=l as we saw in section 3•

The initial conditions for the equations (3*13) are foand from

the initial conditions given above.

The case above is the !t normal u case in the sense that this

is the case most frequently met in applications. In general,
(a )

however, C 1 may satisfy (2,9) at x,t for one or several
(«n

a’s different from . Assume therefore that C satisfies

(gl x
near x . By definiticn C 1J satlsfies (2.9) for

(°1)
a = o 1 . If C satisfles (2.9) at x Q ,t 0 for 0=0, only,
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(2.9) at x ,tfor •By contlnulty there is then aO O1x > \
(a f )

neighbcurhood of x ,t where C does not satisfy (2.9) for

any other choice of a than a 1 * . . .,a .We rnay wlthout loss
i a i )

of generality assume that the equation for C near x Q ,t o

is given by

(4.6)

Conslder now the functicn

(4.7)

From the above assumptions we see that Q(x )" 0 furthermore

we see that

(4.8)

fles (2.9) for and a p in the neighbourhood of x^jt^.

If (x ) 0 , which is the normal case ; the solution of

(4.8) is an n-1 dimensional manifold going through x q , which

defines an n-1 dimensional manifold S on In a neigh

bourhood of x o ,t o ,C^ satisfies in this case (2,9) for a = a 9

only on this manifold S going through x Q ,t , If q(x q ) = 0

the situatlon is rauch more complicated. In this case the function

O(x) may at x= x eithero

<p(x, t) 2 \J/(x) - t = 0

n(x) d I f o '{x,ii{x), ... j\|» x „(x))

- n a *'(x, tj,, (x), ... (x))

Q(x) = 0

(a,) (a,)
is the equation for the points on C where C ' satis-
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(a) have an extremum,

(b) have a saddlepolnt.

(c) s 0 in a neighhourhood of x , oro

(d) be "pathologicai 1 in a neighhourhood of x .

In (a) we shall by an extremum mean that the re is a neighbour

hood of x o where O(x) 0 everywhere except at x» x . In
/ ) °

this case there is a neighhourhood of x 3 t on C; 1 j where
(«i) ° 0

C satisfies (2.9) for a- a 2 only at x,t . In (b) we

shall by a saddlepoint mean that there is a finite number of

manifolds*each of dimension at most n-1 and containing x o ,

such that (4.8) is satisfied everywhere on these manifolds in a

neighhourhood of x q , and furthermore that in each of the open

subregions (we assume that the number of such regions is finite)

which these subraanifolds divide the neighhourhood of x into >
fa )

either Q= 0 or Qp 0 everywhere. In this case C 1 satis

fies (2.9) for a = only on a finite set of submanifolds of
( a i)

of dimension at most n~1 and going through x,t , and,, o o

in a finite (possibly ernpty) set of sectors on C^ 1 ] going

out from x Qj t o> By a sector going out from x qJ t we here

mean a region bounded by a finite set of n-1 dimensional mani
fa \

folds all containing x 0 ,t Q . In case (c) C v satisfies (2.9)

for a ~«2 in addition to a = everywhere in a neighbour

hood of x,t . Case (d) is by definition all cases which are

not contained in (a), (b) or (c). In this case we see that x q

may for instance be an accumulation point for at least one

sequence of points, all satisfying (4.8)., and such that this

sequence of points does not belong to a finite number of connec

ted manifolds where (4.8) is everywhere satisfied. A simple

example of the case (d) is given by the function
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(4,9)

0

x « 0 is here an accumulation point of the type described above.o

We are not able to treat case (d) in full generality, and we have

not been able to find simple critena on the coefiiciønos in

(1.1) to avoid these cases when (1.1) does not have characteristics

. Thus we may conclude that there is a neighbourhood of x Q ,t o
( a f ) (a. ) . , .

on C where C is a multiple charactenstic on a point
( a f )

set which is a finite union of sets of the above types. If we

exclude the pathological possibilities from our discussion, we
)

can therefore suramarize the e.bove in the following way: If C

(a 1 )
neighbourhood of x ,t on C which can be divided into a° o o

finite number of subregions with the property that all interior

points are of the type we considered in section 2, when we were

able tc find the transport equations.

From the above discussion we see that locally we know the

transport equations for the propagation of discontinuities every
(cx )

where on C 1 5 except possibly on a finite set of submanifolds

of of dimension at most n~1. It should be clear that

those of these exceptional submanifolds which have the property

e *P (co£x=t) sin 'i X 6 [ ' 1,0) U ( °’ 1J
0(x)

x = 0

of constant multiplicity.
fa N

We find the points v/here C V 1J in a neighbourhood of x Q ,t o
a i

satisfies (2,9) for a= ay ... ,a r by comparmg Q

i = ... ,r with O ' in the same way as we did above with

satisfies (2.9) at x Q ,t o for a = a,, ... ,a r then there is a
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fa i) *)
that the multiplicity of C is the same everywhere in

a neighbourhood of the submanifold on C^a (except on the sub

manifold itself), cannot affect the propagation of the disconti
(a 1 )

nuities on C because of the continuity properties the dis

continuities necessarily must have. In particular the exceptio

nal manifolds of dimension at most n-2 are all of this type.

In exactly the same way we see that those pathological cases

which involve a countable set of submanifolds of the above type,

such that this set of submanifolds has a finite number of submani

folds as accumulation points, cannot affect the propagation of

the discontinuities,

We have thus seen that except in the n most" pathological

cases, the exceptional submanifolds which can affect the propa

gation of the discontinuities s are those n-1 dimensional excep
(a1 )tional submanifolds which are such that C 1 has a different

(a i )
multiplicity on either side of the submanifolds. That C

has a different multiplicity on either side of an n-1 dimen
(a * )

sional submanifolds means that there is an a such that C 1

satisfies (2.9) for this a on one side of the submanifold and

not on the other. We shall call this type of n-1 dimensional
(a 1

exceptional submanifolds on C ' multiplicitychange-manifolds,

and we shall now see that such manifolds really affect the pro

pagation of discontinuities in general.

We shall restrict our study to the case where the change in multi-

*,) We say that the multiplicity of a characteristic manifold is

uhe same at two different points, if the characteristic manifold

satisfies (2.9) for exactly the same indices a at the two points

(a 1 )
Consider now an isolated multiplicitychange-manifold on C
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( a i)
plicity of C is exactly one, i.e. we shall suppose that

there is one and only one a such that satisfies (2.9)

for this a on one side of the multiplicitychange-manif old and

not on the other. Tne general case is then an easy extension of

tnis special casø, and wlal he left to the reader. It is natu—

ral to divide the multiplicitychange-manif old into three disjoint

sets, namely the sets where i) loses multiplicity,

2) gains multiplicity, 3) neither loses nor gains multiplicity.

We define these concepts in the following way: consider a point

on the multiplicitychange-manifold, and consider the blcharac

teristic direction for increasing t associated with the equ

ation (2.9) for the exceptional a at that point. If this bi-

characteristic direction is tangent to the multiplicitychange

manif old, we say that neither loses nor gains multiplici

ty at that point. If the bicharacterlstic direction is pointing

into the region of where satisfies (2.9) for the

exceptional a * we say that gains multiplicity at that

point. Pinally, if the bicharacterlstic direction is pointing

out of the region of J where satisfies (2.9) for

the exceptional a , we say that loses multiplicity at
that point.

To be able to get a finite process in the following construc

tion, we are also here forced to exclude some n pathological" cases

Namely, we shall assume that locally each of the three types of

sets detined above on the multiplicitychange-manif old consists of

a finite numoer of connected sets. Then we may consider each of

wie three types oi pointsets separately, and afterwards glue the

results together.
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(a)
Let now E denote the characteristic manlfold which is

going through the multiplicitychange-manifold, and which satis

fies (2,9) for the exceptional a , From the assumptions we have

made above, we see that is identical with on one
(n)

side of the multiplicitychange-manifold, while E v ; on the

other side of the multiplicitychange-manifold satisfies (2.9)

only for the exceptional a (at least locally) if we assume that
(a 1 ] ,

C v satisfies (2.9) for no more indlces at the multiplicity

change-manifold than in a neighbourhood of this manlfold.

From the discussion in section 2 we see that the characteris
(a)

tic manlfold E v is a possible carrier of dlscontinuities. In
( a i )

factj if C• loses multiplicity everywhere along the multi

plicitychange-manifold. there will be a "branching” of the propa

gation of the dlscontinuities there; that part of the disconti

nuity which is associated with the eigenvectors ra '8 , for the

exceptional a , will follow the characteristic manlfold E v ; ,

while the rest will continue to follow We know the tran

sport equations everywhere on these manifolds except on the

multiplicitychange-manifold, but there the continuity properties

of the dlscontinuities solve the problem. On the other hand, if
(a 1 )

C gains multiplicity everywhere along the multiplicltychange
fCL '

manlfold, the opposite can happen, Namely, if both C x 1 ; and

carry dlscontinuities before they run together in the mul-

tiplicitychange-manlfold, the dlscontinuities will propagate

along a single manlfold (namely and E^a/ which are iden

tical) on the other side of the multiplicitychange-manifold. Here

a._u,o the transport equations are known everywhere except on the

multiplicitychange-manifold, but there again the continuity solves
the problem.
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Finally, we consider what happens at the points on the mul~
fa. )

tiplicitychange-manifold where C v ' neither loses nor gains

multiplicity. If these pointsets locally are contained In a
fet )

finite set of n~2 dimensional suhmanifolds of C v 1 , the

continuity properties of the discontinuities solve the problem.

If on the other hand the raultlplicitychange-manifold everywhere
fa i)

is such that C v ' neither loses nor gains multiplicity, then

the situation is entirely different. In fact, E' is then
fa i )

not uniquely determined by C' ' , but in view of the results

found in section 3 we know that there is no coupling between the
fa)

discontinuities carried by E v ' on eithør side of the multipli

citychange-mcinifold, and no M information” is carried over this

mani fold on E^a \

Using the above local results and the continuity properties

of the discontinuities, it will in principle be possible to glue

the results together, and find out how the discontinuities pro

pagate up to the nearest caustic. In general caustics will exist

due to the foeussing effects (blow up of cp°^ j ) , so the dis

contlnuous solutien will in general not exist globally as a

piece-wise smooth funetion. Exceptions to this are the weakly

coupled hyperbolic systems, since foeussing phenomena do not oc>

cur for such Systems. The foeussing effect will be discussed in

a later work on stability fcr hyperbolic Systems.



( r \

t ?• v-

. ;u y  \ o



4i

5. SOME REMARKS.

In the previous sections we have assumed that Qa, la^

are smooth for £ 0. As we mentioned in sectlon 1, this assump

tion will not be satisfied in general. On the one hand the func

tions Qa may have branchpoints for vectors £ other than

~ 0 , and on the other hand the eigenvectors rap , l may be

discontinuous at points x>t,£ where the multiplicity of a charac

teristic root changes, since the dimensions of the eigensubspaces

change there. The system of equations in ideal magnetohydrodynamics

is an example where such problems arise at the points on a charac

teristic surface where the magnetic field is eithsr tangent or

orthogorial to the surface.

The functions <rP are Solutions of the algebraic equation

(2.8) with smooth coefficients. Since we assume that the system of

equations (1.1) is hyperbolic, the equation (2,8) belongs to

a special dass of algebraic equations. This author does not know

whether there exist any theory for this dass of equations with

regard to solvability bjf root extraction, but in any case it seems

likely that the smoothness-requirernents etc. we have to impose on

the functions Oa , essentially will limit our theory to the cases

where it is possible to find the functions Qa by extraction of

roots. Since the coefficients in the equation (2.8) as well as

the roots Qa are all real* it seems likely that the expressions

Oa involve square-roots only.

In view of the above, we limit ourselves to cases where the

-dy singularities of the functions na are branchpoints for

square-roots. Since the coefficients in (2.8) are smooth, we see

that at least two different øa <p become equal at each such branch-
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point. Thus a branchpoint for i£ 0 will always involve a

change in multiplicity for the characteristics, hence such branch

points cannot exist for hyperbolic Systems with characteristics

of constant multiplicity.

The subset of x,t,£-space where either r are dis

continuous or Q a have branchpoints, will in the following be

referred to as critical points (note that i - 0 is always

excluded), We shall for simplicity assume that the multiplicity

for every Q a is the same in every connected set of critical

points in x, t,£-space, and thus that r aj3 are continuous

on such sets. In general there may probably exist double criti

cal points, i.e. points in the set of critical points where the

multiplicity of Q a changes. The following discussion will

essentially also cover such cases, because the critical points

of different types are always separated on a characteristic sur

face by multiplicitychange-manifolds.

The continuity properties of the discontinuities are easily

seen to imply that critical points cannot affect the propagation

of discontinuities along a characteristic surface C , unless there

is a domain on C where every point is critical. By the same

arguments as those we used in the preceding sectlon, we see that

this domain may be divided by raultiplicitychange-manifolds into a

finite number of subdomains where the assumptions imposed on C cn

page 10 are satisfied. We shall now study what happens in each of

these subdomains, the discussion of what happens at the multiplici

ty change-manifolds will then be corapletely analoguous to the dis

cussion in the preceding section and will therefore be left to the

reader. Thus we consider a critical point x,t on C andx o o
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f ct in a neighbourhood of x ,t , and that nowhere in thisX* o o

neighbourhood C satisfies (2.9) for any other choice of a . We

see that in the case we now are discussing, we must have r k 2 .

It is easily checked that the arguments which in section 2 led to

the system of transport equations (2.17), also apply in the case

we are considering here, while the arguments which led from (2.17)

to (2.21) in general do not apply.

In domains of critical points therefore, the system of tran

sport equations (2.17) describe the propagation of discontinuities,

but this system will in general not be weakly coupled any longer.

In fact, in [5] it is shown that the system of transport equations

is a strongly coupled hyperbolic system in special cases. At least

when (1,1) is symmetric hyperbolic it is clear that the system of

transport equations is hyperbolic, thus the initialvalue problem

can be solved for it.

From the above considerations we can now conclude that apart

from the fact that the transport equations may become a strongly

coupled hyperbolic system, the critical points do not change the

picture we have given in the earlier sections of the propagation

of discontinuities, in any essential way. The qualitative proper

ties for the propagation of discontinuities is described in sec

tion A, while the quantitative properties are given by the sys

tem of transport equations (2.17) (which simplifies to (2.21 ) at

noncritical points). Obviously the construction of a global pic

ture may be very tedious in concrete problems, we shall not go in

to further details of this here.

assume that the hypersurface C satisfies (2.9) for a =
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we would like to remark that the discussion in this

paper seems to be fairly easy to modify to mixed boundary-initial

value problems for the hyperbolic systera in the same way as

carried out in the cases treated in [3]. Purthermore higher order

hyperbolic systems and semilinear hyperbolic systems seera to be

fairly easy to study by the same methods which we have used in

this paper. We would also like to remark that the discussion in

section 3 makesit possible to generalize the WKB method to cover

certain hyperbolic systems with characteristics of varying raulti

plicity. To a certain extent this will be studied in a later work

on stability for hyperbolic systems.
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