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Trapping of dilute ion components in wells and double wells in

higher equatorial magnetic regions: A kinetic theory including
collisions, varying background and additional fields

by

Alf H. Øien

Abstract:

The component of the ambipolar field along the magnetic field B, though weak, may, acting together with

the gravitational field, give rise to along-B "ambipolar wells" where light ions (test particles) in the

ionosphere in equatorial regions are trapped. We also take into account magnetic field wells, especially in

cases when the along- and transverse-B velocities of test particles obey Iv„ l«l v ± l. For heavy ions, or, for

light ions high up, when the ambipolar trap ceases to function, the along-B ambipolar- and gravitational

field effects may combine with the magnetic field trap to form a double well for the along-B movement of

test particles. The magnetic field trap and its contribution to the double well may be nearly stationary for

particles obeying lv„ l«i v± i even when collisional effects between the test particles and the background

plasma are incorporated. lons trapped in wells like this, may "feel" a varying background, for instance

because of Earth rotation, that may be incorporated as time-variation of parameters in the along-B motion.

An along-B kinetic equation for groups of test particles is solved both for the case of simple wells and for

double wells, including time-varying collisional coefficients and additional fields, and in some cases analytic

Solutions are obtained. Peculiar along-B distribution functions may arise due to the time-dependency of

coefficients and to various combinations of collision- and field parameter values. In particular "breathing"

distributions that altemate between wide and narrow forms in phase-space may arise, and also distributions

where strange attractors may play some role.
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1 Introduction
In general, ionized particles in magnetic fields respond quite differently to forces and force

components along and transverse to the magnetic field. In particular, particles are very

sensitive to along-B forcing.

In this paper we model ionized test particle evolution including collisions in some parallel-B

wells and double wells set up by gravitational-, electric- and magnetic fields, that may be

found in higher, mainly equatorial (magnetic) regions.

One particular well at ionospheric equatorial heights may arise due to the parallel-B

component of the vertical force on test particles due to a combination of gravity and

ambipolar electric field from the background electrons and ions. We consider the

background to constitute a stationary and static "fluid" to lowest order. Another well is the

more familiar magnetic field well where in order to approximate it by a harmonic well, we

assume test particles are highly anisotropic, i.e. IvH l«l v± I, for parallel and transverse-B

velocities. Also evolution of test particles in wells that are combinations of these wells are

considered. Under certain conditions combinations of gravity and electric and magnetic

forces may give rise to double wells. In the evolution studies only collisions between test

particles and background ions and electrons are taken account of, i.e. test particles-neutral

particles collisions are neglected since the modellings are for processes rather high up, say

at about 500 km and above,

The evolution is found by solving a kinetic equation for groups of test particles, a dilute

component of ions. In the "test particle kinetic equation" the above mentioned collisions will

be described by a certain, rather simple, Fokker-Planck term which is in accordance with a

Brownian particle picture of movement. The term contains frictional and diffusional effects

caused by the background plasma. In some examples also effects of additional fields shall

be considered. These fields may arise from the background plasma, but then as a

perturbation of an overall static and stationary State. It should be noted that particles in a

double well, including frictional effects and an oscillating field, under certain conditions may

show chaotic behaviour and have strange attractors. Transverse-B effects in the kinetic

equation are averaged out and the study is largely along the magnetic field. However,

transverse-B effects have been incorporated using slowly time varying coefficients in the

along-B study. This variation may reflect a varying background as test particles in the

along-B evolution drift equatorially, say, or rotate with Earth. Test particles are considered to

arise from a source that is "lit on" at time t- o+.0 + . The along-B kinetic equation including a

source term is solved as an initial value problem, and in the cases of harmonic wells and



3

time varying coefficients, an analytic solution for the test particle distribution function has

been found. In some other cases that include cases where particles respond to a double-well,

numeric Solutions are given.

The paper is outlined as follows; In section 2 wells are modelled in equatorial regions using

a dipole magnetic field and an immobile (macroscopic) background (to lowest order) on

which test particles (assumed more mobile) evolve. Conditions for trapping and detrapping

in collisionless cases are discussed for single test particles. Single particle movements are

important when we later solve the collisional kinetic equation (a partial differential equation)

where particle movements are characteristics in that equation. In section 3 where the kinetic

equation for the test particles is set up the collision term in particular is discussed. In section

4 Solutions of the kinetic equation in collisionless cases are found, for the harmonic well

case and for the double well case, and figures are given for the evolution of the distribution

function when particles arise instantaneously at time t = o+.0 + . In section san explicit analytic

solution of the collisional kinetic equation is found when we use a harmonic well and

include time-varying coefficients to mimic effects of a changing background. Effects of a

time-oscillating force field have also been included in the analytic solution. Solutions are

shown graphically for two cases that also illustrate some peculiar effects of time-varying

collision coefficients, as "breathing" of distribution functions. In this section we also give

examples of distribution function evolutions when a double well, an oscillating field and

collisions (partly) are included. Parameter choices used in these illustrations are such that

strange attractors seem to play a role. Section 6 is a short summary and conclusion.

2 Examples of trapping of test particles in special well- and
double well- potentials

2.1 Åmbipolar collisionless trapped test particles in higher equatorial regions

2.1.1 Background plasma and ambioolar electric field

The background plasma that test particles evolve on and respond to, consists of electrons

and several components of single ionized ion-species. Effects of neutral particles on test

particles, in particular collisional effects, are neglected since neutral particle density is quite

low at the heights considered. In ionospheric regions that may be relevant for the modelling

background ions may still be Oxygen, while higher up lighter ion species dominate, as

Hydrogen, and make up the ion component of the background. For the derivation that

follows it is assumed the background plasma is in a stationary and static equilibrium. Then

balance of forces prevails: in usual notations, when ion and electron temperatures are equal
and uniform (T 0), we assume
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dti MG
0 = -kT0 - + nteE - nl mi —r—r

dr r
(1)

for each ion species (subscriptand for electrons (subscript"e "),

(2)

since gravity on electrons may be neglected bere. Quasineutrality is also assumed;

(3)

Then from Eqs.(l)-(3) we have

(4)

where m+ is a (general height dependent) weighted ion mass, [l]:

(5)m
'+ n 'e

The ambipolar electric force from the same equations then becomes

(6)

and is seen to point radially outwards.

2.1.2 Parallel-B ambipolar- and gravity forces on test ions in higher ionospheric

regions. and collisionless trapping

On the above plasma background a test ion of mass m and charge q (assumed positive) is

subject to a resultant electric and gravitational force given by

(7)

Apart from the dependence on density through rn+ this force is independent of the

background density. The condition for the force to point outwards is

For instance, if the background plasma consists only of o+-ions0 + -ions and electrons, single

ionized test ions of atomic number less than 8 will all experience an upward force due to the

combined ambipolar electric force and gravity. In this case the magnitude of the force field

pointing outwards is approximately 0.4 (TV7m. Generally this force has a component along

the magnetic field: This is in contrast to electric force fields from other sources, as wind

0 = -kT„ - n.eE0

> n, —n .
L*ii 1 e

1 dne _ m+ MG
ne dr 2kT0 r 3

z, mA

_ m. MG
eE = —-——r

2 r 3

f qm MGF = - m —r- r .
2e ) r

qm+m< . (o)
le
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generated electric fields: Though generally much stronger than the ambipolar field, the field

component along B from these sources is zero or practically zero, due to either their origin

("convection"-fields) or the very high conductivity along the magnetic field. The weak

ambipolar electric field, important for instance in polar wind studies, [2-4], may therefore

also be of relevance in a study of the parallel-B dynamics of test particles in equatorial

regions of the ionosphere.

Higher up, where the background is composed mainly of protons and electrons, He-test

ions, say, will experience a downward pointing force since then m > qm+ / 2e. (This is

further studied later).

The dipole magnetic field of Earth can be given as in [s],

(9)

and the field lines by

using radius- and magnetic latitude-coordinates (r, A). ME is the Earth dipole moment, and

r 0 the Crossing of field lines at the magnetic equator. From Eq.(9) the magnitude of B

follows,

(11)

One then readily calculates the component of the force Eq.(7) on a test ion along the

magnetic field line that crosses the magnetic equator at radius ro= LRE , where L and RE are
respectively the (magnetic) L-shell value and Earth radius,

(12)

Here g=MG / R 2E . Fig.l sketches a dipole magnetic field line, a vertical for the radially, say

outward pointing sum of electrical- and gravitational forces on sufficiently light test ions,

and its direction along the magnetic field line. This parallel-B force changes sign passing

the (magnetic) equator, A=o, in such a way that if qrn+ / (2e) —m > 0 then the force gives

rise to oscillatory motion of test ions along the magnetic field. Furthermore, the parallel

force is varying with height for at least two reasons: First due to the variation of L, an effect

which in each of our calculations for relatively local equatorial height regions will be

considered small. Second due to the variations of m+ with height: When the fraction of

heavy ion components decreases with increasing height, m+ will also decrease, and this
effect may be non-negligible.

B(r,A)~ , (-2sinAe +cosAe,)4n r 3 ' A

r = ro cos 2 A (10)

fi = ik"jL(l + 3sin 2 A)1/2 .4n r

x?E 2sin A f qm. g- —p— = m —————.
Vl + 3sin 2 A V jLcos4 A
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In our analytic calculations for equatorial regions A will be assumed to be relatively small,

so that an approximation for A then is

(13)

where z is measured (positive or negative) along field lines from the equator. We note that

the general formula for the relation between A and z is

(14)

Assuming small height variations, one obtains the approximation

F„ e =
LRe yle JL2

(15)

where now the dominant variation is due to variation in z . This force gives rise to harmonic

oscillations with frequency

(16)

The overestimated increase of the approximate force for relatively large z may to some

extent be considered as a compensation for a neglect of an increase of m+ for large z, since

large z corresponds to lower height.

For an o+-electron0 +-electron background with 1.2 and z running from 3000km to 0 a test-helium

ion (single ionized) has an approximate variation of O.5eV of its kinetic energy due to the

force Eq.(ls). This variation is well above the background temperature normally found here

[l]. A test proton will on the same background acquire nearly double of this energy running
that distance.

2.2 Collisionless trapped particles characterized by IvH 1«I v± lin equatorial

magnetic mirror regions

The guiding centre motion of charged particles along the magnetic field is given from drift
theory by

(17)

A =
LRe

z = Rel\o cos X V 1 + 3sin 2 XdX'.

~ r ,E I2g qm ACO = (Or, = 7 i
0 ]j ReL3 [ 2em J

m^Vll -pB =
mdt " W 9r"’
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if other fields or interactions are neglected. Here /d is the (assumed adiabatic invariant)

magnetic moment mv] / 28. A straight forward calculation assuming a dipole magnetic

field Eq.(9) gives the force FB ,

(18)

Particles characterised by IvM I«1 v± I are easily trapped, [6]. Excursions of these particles

away from the magnetic equator (A=o) along the magnetic field may be considered small,

and the above equation of motion may then be approximated by

(Tz 9 mv 2 . 9 mv2
m—r = —Å = —z

dt2 2 ReL 2 ( ReL) 2
(19)

where also v has been substituted for v± sincel vN l«l v± I. Solutions are harmonic with

frequency

(20)

Observe that this frequency depends on particle velocity, mainly the transverse velocity
component.

2.3 Collisionless trapped particles characterised by Iv„ l«l v± I in combined
gravity-, ambipolar- and magnetic mirror fields

From Eqs.(l2) and (18) one obtains the combined force on strongly gyrating particles
along a B-field line,

(21)

In "ionospheric" environments where ~m> 0 F*'B changes sign only through A=o

and in such a way as to give rise to oscillations. For cases when IvM l«l v± I small

oscillations are harmonic with frequency

(22)

B _ /i 0 Me 3sinA(3 + ssin 2 X)
" r 4 (l + 3sin 2 A)

co = 0)q = 3v / (-4ILRE ).

z?e,b -pE . sin A
" “11 11 ~(1 + 3sin 2 A) 1/2 (l - sin 2 A) 2

Jg B{ReL, 0) 3(3 + ssin 2 X)

i )Is Re L (1 - sin 2 A) 2 (l + 3sin 2 A)1/2

qyn
Case (i): -m> 0 ("lonospheric regions") when 1v„ l«l v± l« v for test particles

<B = V«)2 +K)2 -
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Case (ii): 1- -m < O("outer-dipole regions") when IvH l«l v± 1= v for test particles
le

If the background consists mainly of light ions (protons), then for He-test ions, say,

qm + / (le) -m< 0. Again assuming IvN I«1 v± Iwe have for small A, X~z! ( REL), that

(23)

and the condition for harmonic oscillations around A=o in this case is

which is fulfilled down to quite low v± -velocity He-particles with energy of order leV. The

frequency of oscillations becomes

(25)

which also depends on (mainly) transverse particle velocity.

2.4 Detrapping of collisionless particles characterised by IvN l«l v lin

combined gravity-, electric and magnetic mirror fields and trapping in a

double well potential

When still q?n+ / (le) - m <O, as in case (ii) above, and we consider particles with velocities

obeying Ivn l«l v± I, an unstable equilibrium at the equator A=o may occur if the inequality

Eq.(24) is tumed around:

The fulfilment of this inequality for Earth conditions and relatively light particles requires

transverse energies not higher than approximately leV. However, heavier ionized test

particles stemming from a release may be warmer. Also, for more massive and larger

planets, or even stars, of radius , håving a dipole-like magnetic field in some regions, the

right hand side of the inequality Eq.(26) may increase by nearly two orders of magnitude

and the left hand side decrease correspondingly, and hence the inequality may be fulfilled

for a wide spectre of particle populations of relatively high transverse velocity. Anyway,

when fulfilled a detrapping at A=o takes place. However, new stable equilibria will arise

symmetrically on both sides (north- south) of the equator. These equilibria occur where the

" LReL 2e L 2 2 ReL_

(24)
2 Re le L

o,*/ = fA-2(1-^.
V 2(RELf 2me L 3 RE

9^1 <2(m_^)l. (26)
2 Re 2e L
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forces FB from Eq.(18) and FB from Eq.(l2) along the same B-field line balance, apart

from the (unstable) balance at A=o, say for A Xx given from

(27)

For -n/l<X<n/l only two Solutions of A exist. Along the magnetic field the test

particles we consider then may move in a double-well potential. Using the z-coordinate

along the magnetic field given from Eq.(l3) instead of A and assuming A rather small, the

(28)

giving the two stable points in the double well as

(29)

A phase-plane plot of some solution curves of particle motion for variables and parameter

choices such that Eq.(2B) reads FE’ B /m = z(l - z 2) is shown in Fig.2. For low velocity and

close to each of the stable points particles oscillate harmonically with frequency

(30)

3 A kinetic equation for trapped charged particles

3.1 Model kinetic equation including collisions for parallel-B evolution

incorporating transverse-B drifting effects

We shall develop analytic Solutions of a kinetic equation for a dilute component of ions that

are trapped in parallel-B force fields like the ones described above. The dilute component

of particles will be considered to stem from a source that in some of the modellings will be

consistent with the assumption Iv„ l«l v± I also discussed above. Collisional effects

between these particles and the relatively dense background particles will be taken into

account using the special Fokker-Planck term in [7], see also [4], that may be generalised to

the case of velocity anisotropy parallel and transverse to the magnetic field:

2(m qmE I {2e))REg _ 3 + ssin’A,

3/jB(ReL,O)L "(1 - sin 2 A, ) 2 (1 + 3sin 2 A, ),/2 '

resultant force FE ' B may be approximated by

rr/ m =—\X(m - sK) - + ll (_z_YT
ReL mL le mREL 2 l RFL jV b v v E J ))

z = ±ReL - SE±.) / (mZ,2 ) - j ( 39^B(figL,O)^
\ 2e mREL mREL

< " = Jl[2g(m - S!n±.), {nd} ) _ 2EMsk / (RL) .\ 2e m/?£L
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Q 3 3 2 R 3 d 2
- A-t“(vz/) + + Æi^— (y±f) + q±yrf •[dtJ F_ P 3v, 3v ov± dv±

(31)

Here fy and 1 are momentum transfer collision frequencies and qn and q± collisional

energy transfer coefficients between the dilute component and the background. We have

qn /fy = kT011 / m and qL ! p± = kT01 /m , where TOII and TOl , the parallel-B and transverse-

B temperatures of the background, generally may be different. The term models a Brownian

movement of test particles along and transverse to the magnetic field. One should observe

that the rather simple collision term is linear and that it separates parallel-B and transverse-B

processes, see the velocity moment equations below. In spite of this it has many of the

characteristics of more detailed collision terms, and an advantage using this term is that

analytic derivation of general Solutions of the kinetic equation then is possible in some
cases.

For the ionospheric example with the harmonic parallel-B ambipolar- and gravitational field

component Eq.(ls), the inclusion of collisions will not destroy an ambipolar trapping since

the background temperature usually is quite low and will not excite test particles to reach

atmospheric heights along magnetic field lines. For magnetic mirror regions in the "outer

dipole region" the corresponding background temperature is considered to be higher, and

what is more, the parallel-B trapping magnetic force in this case is proportional to the test

particle’s v 2 through the magnetic moment, and therefore in general will change when v±

changes due to collisions. However, for some time the force field may be considered

constant. To see this we may argument loosely as follows: In two-ions Coulomb

interactions involving at least one quite high energy particle (in our modelling this could be

a test ion or a background particle) the relative momentum and energy transfers in general

are low; The velocity changes of test particles during such collisions, Av = Av1 + Av N ,

typically have contribution of the same order of magnitude both in the perpendicular- and

parabel- magnetic field velocity directions, i.e. I Av1 I=l Av,,!. In the modelling presented

here the test particles (initially) obey Ivu l«l v± 1. The parallel magnetic force on a test

particle then changes as I AF„ I=l v±Av± I=l I during a collision and from Eq.(l9) the

change gives rise to an overall parallel velocity change in one oscillation period of

orderl vn II Av n I/I \ ± I, hence much smaller than the change due to one collision, Av,,.

Therefore we may neglect the magnetic force change effect and conclude that particles that

were initially trapped in a mirror magnetic field obey ing Ivn I«1 vx I, evolving on and

colliding with an often relatively hot background, will continue for some time to move as if

practically the mirror force field is constant. The same conclusion may be obtained for
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magnetic mirrors in ionospheric regions for test particles obeying Ivn l«l v± lif v± is large

enough. For double wells v± can not be too large, cf. Eq.(26) and discussion there.

Furthermore, when v± is large enough for test particles or the background is relatively

warm, IvM l«l v± I may be expected to be valid for some time in spite of collisions and thus

prevent particles from reaching atmospheric heights over a certain time span.

It will next be assumed the distribution function for the dilute component is almost

symmetric in velocity transverse to the magnetic field, i.e. /(v) ~ /(v , vj). An argument for

doing this assumption is the short-period gyrations of particles in the magnetic field, say of

order 1CT3 s for protons and B~ 1 gauss (much smaller than other time scales considered,

see below) and the slow transverse-B drifts. We note once more that the collision term

Eq.(3l) separates parallel-B and transverse-B kinetic evolution, see also the moment

equations below. Hence we may average out to "lowest order" transverse effects, and the

kinetic equation may be simplified to an equation for only parallel-B variations. This

simplification is expected to be better all the more particles gyrate in the magnetic field.

Thus also global transverse-B effects are left out for a moment. Further below, however,

transverse effects will be incorporated again to some extent. Hence, neglecting transverse-B

position and velocity variations, we consider the distribution function /(z, vz , t ) (of guiding

centres) for the dilute component along the magnetic field (z-direction) to be given from the

equation

Subscript "H"for p and q has been left out. Fn may for instance be equal p]E from Eq.(ls)

for the ionospheric case, or from Eq.(18), averaged over transverse velocities for the

case of magnetically trapped particles obeying! v„ l«l v± I, or £ s from Eq.(2B) for the

double-well potential case. For the two last cases the transverse averaging will introduce in

F„ a transverse-B temperature dependency. In accordance with the discussion above this

temperature may be considered almost constant. The collision parameters P and q are

considered not to vary with z. However, we "bake" effects from equatiorial movements, say,

and planet rotation left out above into the equation again by allowing for a time variation of

the coefficients p and q reflecting variations of the background.

In Eq.(32) S(z,v2 ,f)is a source term. This term may in particular take simple forms as

(33)

f+v< I + fJr P{t)hv>f)++s (32>

S = Mx{t)g{vz )h{z)
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where M is a constant. Here T(r)may take different forms, as the unit step function

fl, r>o . _
form U(t) = < , or, for an instantaneous source at t = 0 , o(t - 0 ). The functions g

[O, t < 0

and h may also in particular take delta-function forms: A concentrated point source in

phase-space (z,vz) that is instantaneous and of amount M= 1, i.e. when S has a form

gives rise to fundamental Solutions f§ which are of particular interest, both physically and

mathematically.

It is clear that inhomogeneities for the ion distribution function are due to both the source

induced inhomogeneities and the inhomogeneity due to the forcing term.

We list some macroscopic equations for the parallel-B evolution. We may derive these from

the "full" kinetic equation, i.e. before the transverse-B averaging above has been done, or

from the transverse averaged Eq.(32). The collision term causes no coupling of parallel and

transverse equations if no couplings have been incorporated in the collision parameters.

Starting from Eq.(32), defining (ø(v,)) = j </>(vz )fdvz / n where in particular n= j fdvz is

the density and U. - | vzfdvz / n is the mean flow, we get the chain of equations

(35)-(37)

The subscripts on the source term contributions indicate the velocity moment performed. An

alternative to this chain of equations we obtain defining the temperature Tz by

n kT. - j m{v. -U. ) 2fdv, , and we then have instead

(38)-(40)

Ss {z,vz ,t;z! ,vz ' ,s) = S(z -z' )S(v - vz * )s(t -s) (34)

r + å(^)=s<"
d d
—nmUz + (nmv]) -nFn = -nmpUz +S{ )ot az

jt {nmv] /2) + —{nmvl / 2)- nF,Uz = -p{nmv:) + qmn + S(mv,,2)

9 9 , ~, „
—n + inUz ) =Sm

nm[-Uz +U! —UI j +—n/cT, ~ HF" = ~nm^Ul +S<"”')

nK fd „ TT d _ dUy dq7 Qfrr ~. , c
Tla7 r' + J + "^IT + 17 = ' 1 0} /2)



13

where

is the heat transport and T 0 =Tm is the background temperature. We observe that no

transverse-B effects are picked up by the collision term in the averaging process. A more

detailed collision term, say a Landau-Fokker-Planck term [B], generally would couple

parabel- and transverse-B evolutions. However, using such a term, general analytic Solutions

of the kinetic equation can hardly be obtained.

3.2 Some estimates of parameter values in the collisional case.

We first give orders of magnitudes of collision related parameters in the kinetic equation for

He+- particles evolving on a low-temperature electron-0+ background as in equatorial

ionospheric regions. These (rather rough) estimates are based on more detailed collision

terms than used in the present modelling. The thermal velocity for HeMons, the He+-0+

collision time (angle of order k/2 deflection time) and the associated effective mean free path

for He+-ions are (approximately), when isotropy in velocity space is assumed:

rHe is the He+ ion temperature, measured in eV, n 0 is the background ion density (in 1/cm3 ),

and A is the Coulomb-logarithm. If the He- ions are considered to have the same (low)

temperature T 0 as the background particles, and we set this to 0.15 eV, and at the same time

set the background density to 104 /cm3 , then, with Aof order 10, we have

VtMe * 10 5 cm /s , r 0 *lO s , AHe = 106 cm. (43)

We next compare the collision frequency 1/ t 0 with

(44)

2
For He+-ions on a dominant o+-ion0 +-ion background æ* reduces to co* = ——g, which for

V rel

Earth (and gives co* ~1.7 10 3/ s. This is rather small, as compared to the collision

frequency l/r0 above. However, for H+-ions on the same background co* would increase by

a factor V 7 . There is also an increase for multiple ionized test particles. For more dilute

qz (z, t) = j -m(vz -Uz ) 3 f{z, vz , t)dvz (41)

1 T 3/2 1 Y 2
'W = rl06 Ccm/s, T 0 = 10 7 -f—s , A„e =-10' 3 (42)

2 An0 2 A/?0

I2gf qm J B 3v
coQ = r 1 and con =—= .

\REL\2em J 4ILRE
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backgrounds rather high up, say of densitiesl03-102 /cm3 , or because of less effective

collisions for some reason, for instance if test particles are highly anisotropic with

IvM l«i v± I such that, say T± » 0.15 eV , the collision frequency could be drastically

reduced and be comparable with, or even less than, co^ . The conclusion is that considering

various orderings between and l/r0 , from oscillation dominated t 0) to

collision dominated {Coq< 1/t0) may be of more than academic interest in ambipolar trapping

of test particles in higher equatorial ionospheric regions. co* , on the other hand, is of

orderlO-3 / s for a thermal He-ion where THel again is measured in eV. As THel

increases co* also increases while the collision frequency decreases. Hence it may be highly

relevant to consider a wide spectre of relative magnitudes between these frequencies. This

may also be said for the combined magnetic mirror and ambipolar field wells discussed

above.

4 Solution of the test particle kinetic equation in the
collisionless case

4.1 Harmonic well potential

We here solve Eq.(32) for a harmonic well force field, neglecting collisional effects and

assuming an instantaneous source at time / = o+,0 + , i.e. we solve

co is assumed constant. It may in particular be given from Eqs.(l6), (20), (22) or (25). We

shall use the initial condition

New variables instead of (z,v,) are introduced by solving the set of characteristic equations

(47)

Writing the solution of Eq.(47) as

(48)

‘L + vjL- C0 > zåL = Mg{vl )h{z)s(t~V). (45)
ot dz ovz

f(z,vz , 0) =O. (46)

dv7 2—z- = -C0 z
dt

dz _
~dt~ Vz

z cx cos cot +c2 sin cot

v, = -coc] sin cot + coc2 cos cot
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the new variables (c,£) are obtained by solving for c x and c 2, hence

(49)

f in these new variables, F(c, f, t) , then obeys the equation

(51)

and for/,

(52)

Fig.3 shows f(z,vz ,t) for various times when M- 1 and we let

g(yz )h{z) = exp(-vz 2 -(z - l) 2 ) /ti and co = 1 using a relevant set of scales for the

dimensionless z, v, and t. The distribution function is seen to move without distortion

periodically in the phase-plane.

4.2 Double well potential

We consider now the equation

(53)

where Fn may be given approximately from Eq.(2B),

f ( V
= a -a (3 + 13/2* —4— )

Rel[ [relj
(54)

and where

(55)

both are considered constant and fulfilling 3oc2 <ax (cf. also the transverse averaging
discussed above). The characteristic equations

v 7 .
c = zcoscot —-smfttf

co

r . v 7
Q = zsmcot + —coscot

co

dF
= Mg(-coc sin cot + æC, coscot)h{ccoscot + f sin æt)s{t - 0 + ) (50)ot

which may be readily integrated to give

F = Mg(co£)h(c)

f(z,vz ,t) = Mg(vz coscot + (ozsincot)h(z cos cot sin cot)
co

% + vz \ + ~T" = Mg(v )h(z)S(t - 0+ )ot dz m ovz

lg qm.

I{h)B(ReL,o)
mREL
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, ( ( y adV 7 7
= a.-«,(3 + 13/2- )

dt rel[ ] [rel)) (56)
dz _

dt~ Vz

now are non-linear, and we express formally the Solutions using a streaming operator S_t ,

[9] ,which transforms phase-space coordinates backward in time according to the equations
of motion:

where (z,v_) are corresponding coordinates at t=o. The solution of Eq.(53) may then be

formally expressed as

Fig.4 shows the solution at various times when g{vz )h{z) = exp(-v2 - z 2) / n and M= 1

using again a relevant set of scales for the dimensionless z, vz and t. We consider in

particular a] =l9/13 and oc2 =2/13 thereby placing the well-centres at z=± 1.

5 Solution of test particle kinetic equation when collisions
are included

5. 1 Harmonic well potential and shifting background

In the case of a harmonic well force field we put Eq.(32) on the form

(59)

assumed valid for t> 0, -oo < z -co< vz <oo on relevant scales, with source given in

this domain. We have allowed for time variations (assumed known) of the parameters [5

and q. The variation of j 5 is assumed slow (£«1). These variations may reflect effects of

shifting background as day-night effects. We assume also here that to is constant; to from

both Eq.(l6) and Eq.(2o) are rather constant. Again we set /(z,vT , 0) = 0.

Along the same lines as above, new variables (c,Q instead of (z,vz ) are first introduced by

solving the set of characteristic equations, which now are

z(-t) = S z
, A c (57)Vz(-0 =

f(z,vz ,t ) = MS_ t g(vz )h{z ) = Mg{S_t vz )h{S_ tz). (58)

—+ v. - {co 2z + /3(a)v ) = P(et)f + + 5
dt dz K ’ dvz dvt
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dv , 9
f = -(® z + /J(a)v2 )Jr

(60)
dz _
dt ~ Vz

or,

(61)

Vz dt

Eq.(6l) may be solved by standard perturbation techniques, [lo], and we obtain to lowest

order in e,

(62)

where /;., i=l,2, are slowly time-varying roots of the characteristic equation

(63)
and

(64)

0, and 02 are solution of

(65)

i.e.,

(66)

We solve Eq.(62) for c x and c 2 and take these expressions as the definition of the new
variables, hence:

+ p{et)— + co 2z = 0dt dt
dz

z = c2\{et)e6' - cx B0 (et)e d 2

vz = c 2rx (et)\)i£t)e°x - cx r2 {£t)BQ {£t)e 62

r 2 + P(et)r + C0 2 =0

]
s0 (a) = exp(-| r 2 )

{r 2(& + fi(&

dex , ,

dd2
= r2 (£o

9x {t,£t) = f rl (es)dsJO

d2 (t,et) = [ r2 (es)dsJo
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v, - rx z

(67)

The inverse transformation retums the original variables;

(68)

For the case that both roots rx and r 2 are real, all quantities above are real, in particular the

variables c and f. For the case that the roots are complex conjugates, one observes that

(69)

and new variables c'and f' defined by

which also are real, could be used instead. However, we first solve the Eq.(59) for the real

root case, and comment later on the slight modifications that must be adopted to extend the

solution to cover the complex conjugate root case.

5.1.1 Real root case

Using the variables c and £ the distribution function f(z,vz ,t ) transforms to F{c, f, t) which

to lowest order in e obeys the equation

+S(c,£,t) (71)

with transformed source term S'. Introducing

(72)

+S"(c,?,f) (73)

where the source term S' is

(74)

5(/2 0i ~ ri)

r _ v- ~

A/'Oi -r2 )

z = fy^e6' ~ cB0ed 2

vz = ri^e9' ~ r2cBoe 02

B 0 =A) . &2 =

c' - f c
r, y (70)f =i(c + 0

dF f 1 232F „ 1 d 2 F 1 2 92f"|
dt P ’ dc1 \B/'

- f P(£T)dT
W- Fe 0

we have the equation for W,

aw f i 2 d 2 w i d 2 w i 2 a 2 w"

dr C> \ ~r2 ) dc2 A0 B()e ,’ l * ei (r, - r 2) z dcd( A^e 6'(r, - r 2) d£ 2 ,

S"(c,?,<) = S'(c,?,f)e'^‘erWt
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Eq.(73) may be solved by Fourier transformation. Denoting the transformed of W by

(75)

(77)

W(c,£,t) is then given by inverse Fourier transformation

(79)

and from Eqs.(72) and (67) eventually F(c,£,t) and f(z,vz ,t) are obtained.

However, we may build up the solution from fundamental Solutions, and therefore we now

seek an explicit form of fs .

5.1.1.1 Fundamental Solutions due to instantaneous point sources.

We here derive the fundamental solution for the case with an instantaneous point source at

(z1 , vz ') at time sof amount M- 1

(80)

(81)

Wkih (0 = —df dcW(c,C,t)e ik' ce,

the transformed equation becomes
-0,-fl 2 -20,

+9( f) TT" s' /;|2+2TT7 77^2+y27 =5t,» ! W (76)* V Bo('i-'i)

where

S",lt! (0 =

Eq.(76) may be readily integrated,

rt rt ( P~le^x)n(^
"U (0 =J * )exp(-J, dr fy fc, 2 +Jo (er)(/j(eT)-r2 (er))

2 T) , 2 V
4(eT)B0 (eT)(j;(eT)-r2 (eT)) 2 1 2 \2 (er){rt (er)-r2 (er)) 2 2 J

W(C,f,O =— rdk, rdk2 wtt {t)e-*'c2k 1 2

Ss (z,vz ,t) = B{z -z' )S(vz - vz ' )s(t -s)

which in the new variables transforms into

S B {c£,t) = <s(£4o(eOe0,(r) - cBo {£t)e9l(n -i )S(rl {£t)^A0 (et)eGl{t) - r2 (et)cB0 (et)eGA,) - vz ' )s{t- s)

or, after some rewritings, to

(C’ °=l r, (a) -r2 (a) 11 A, (es)B0 (es)ee' <W>\ 6{c + c + )s(‘~ s) (82 >
where
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1 r] (£s)z! -v.' 1 r2 {es)z' -v 'c (83)
BQ {es)e 6l{s) rx {£s) - r2 {es) \{£s)e e' (s] rx {£s) - r2 (es)

to be substituted for S into the expression for Wk k , Eq.(7B). Inverse Fourier

transformation then returns Ws (c,£,t), and from Eq.(72) we have F§ and eventually f§

(85)

The /c-integrations can both be performed, and we get,

f P(£T)ilr .
, 1 e Jj 1 1 dZ2 + aC2 - IbCZ

Js {z.vz ,t,z ,vz ,s - 471 |ri _r2 11 Ao (&y) JBo (£^)e 01 ( * )+o2(i) I sjad-b2 4(ad-b2 )

Observe that (since roots rx and r, were assumed real) all of a{t), b{t) and d{t) are positive,
and that ad-b2 >O.

5.1.1.2 Solution due to a general source.

A solution that obeys f(z,vz ,t =0) = 0 and is due to a source S(z,vz ,f)for

t > 0,-° o < z < oo,—oo < v. < oo may be written as

. r =

The transformed of the source term Eq.(B2) then is

-jo P(Er}dr

sSM,(r) - 27C1 r, (es)- r2 (es) 11 I £ £ (84)

jV(£T)dT
fs (z.v.,t;z',v's) = I—— 7— — Pæ rdLe"*l(c+cV*’ (?+r) exp(-

5 “ ‘ (2rc)'l rl (£y)-r2 (£s)l I Ao (£s)5o (£y)e ,( ’ 2( } I-'— •'— ' P

1 re^mk » , 2 e-e' W~ e' W<l(T) /; + e^- wg(T) A
(fi(£T)-r2 (er))2 [ B0 2 (et) 1 \(er)B0 (er) 12 V(£T ) 2 /
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f{z, vz , t) = £ di dvz 'fs (z, vz xz',vz ', s)S{i ,vz ',s) (89)

where fs is given from Eq.(B6). This may for instance be seen by direct substitution using

that (in the limit st )

(90)

5.1.2 Case of complex coniugate roots

In contrast to the case p{et) 2 - 4co 1 >O, when both roots rx and r 2 are real (and negative),

(91)

and damping is characteristic, the case p{etf - 4co 2 < 0 gives rise to complex conjugate
roots,

(92)

and also oscillation becomes characteristic. In this case the solution procedure as in the real

root case may be repeated using instead the variables (c',f'') from Eq.(7o). The results are

similar to the above real-root forms. However, these forms, and fs in particular, may be

obtained from Eq.(B6), observing the following: Because of Eq.(92)

from Eq.(88). Furthermore then

(94)
b=b

and hence ad-b 2 is real (but turns negative).Then f§ from Eq.(B6) tums into

(95)
where 1.l now denotes absolute value.

5.2 Harmonic well potential, shifting background and oscillating field

We here shortly note the changes to be made in the Solutions Eqs.(B6) and (95) when we

also include an oscillating field in the modelling and thereby mimic some additional effects

on the test particle modelling above. More specifically, we solve

fs (z,vz ,f,z! ,vz ,t) = s{z -z )5{vz -vz ).

r,(et) = -/?(«) + VAg02 - = jg)-^(g); -4r
2 2

n (et) = -/?(«) W 4»)2 (£t) = -P(.a)-^4w2 -P(a)2
2 2

C=-Z (93)

d a

f f){ET)dr

f (-.v r 7' V s) = -L_£_ ! 1 , 2Re(dZ2 ) +2hl C 2 I

4 4jil 2 (£?)ll/l0 (e!)e'’l< ' ) I 2 (nj-J1 ) eXP' Mad-b1 ) }
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df df ( 2 Fo cosco0 t Q \df d 2
- + vz --[m-z + - +p{a)vz ]~ = P{et)f + q(t)~f +S.

We assume that both F 0 and mo are real constants. As before the solution of the

characteristic equations

(96)

(97)

gives a set of new variables which we denote by (c",£") to replace (c, f) from Eq.(67). We

get,

and for (z,vz ),

(99)

dz (0
Here v (r) = —-—, and {zJt),v (t))is a particular solution of the characteristic equationsdt

Eq.(97), which now are inhomogeneous in contrast to the homogeneous characteristic

equations Eq.(6o). To lowest order,

(100)

The procedure to solve the kinetic equation is the same as in the forgoing section, and it

readily can be shown that the Solutions of the kinetic equation, Eq.(96), both in the real root

and the complex conjugate root-case discussed earlier, assuming an instantaneous point

source, Eq.(BO), still are of the forms Eq.(B6) and Eq.(95). The only changes to be made are

that C and Z from Eq.(88) transform to

c vz~ vP (t)-rl iet){z-zp (t)) v,'-v^-r^esXz!-zp {s))
BQ {et)e6l{, \rx {et) - r2 {et)) BQ {es)e6l{s \rx {es) - r2 {es))

z vz -vp it)-r2 {et){z-zp {t)) vf-vp {s)-r2 {es){t-zp {s))'
\{et)e d' {t\rx {et) - r2 {et)) - r2 {es ))

dv 2 0f x Fn coscon t x
—L = -(arz + P(et)v7 +-2 M
cfr ‘ m

dz _
dt

c„_ vz- vp(o- ri(z-Zp(t))
Boeo2 (r, -r0 )

" , (98)
vz- vp(o-^(^-^(r ))

V'(rr r2)

z = ?'V0 ' -c"B0eei+zp (t)

VZ = 'i?"'V<>1 - r2 c"B0efl; +vp (t)

F 1
zp (t) = —2- -I—— ((<u 2 - wo: )cos co0 t + P(a)co0 sin wot)

>n (oj 2 -co20 ) + p (et)col

vp (r) = -s- f° r((®: -®o )sin ®of - /?(a)®o cos ®or)
m (<u 2 -cu02 ) + fS (ei)col
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All of rv r 2, Aq, Bq , 0,, and 02 are as above.

Figs.s and 6 illustrate some fundamental Solutions at various times for two cases. In both

cases the time-variations of parameters may reflect variation in the background. We note

that variables are dimensionless using scales that are relevant in particular cases, the

intention being both to simplify and to stress more on the relative orderings of effects that

come into play. Fig.s includes collisional friction and diffusion that slowly decay in time,

plus the effect of a time-oscillating field. The effects of decreasing the friction alone from

the start, or increasing the background temperature alone from the start, are shown at time

t-20. One may observe that due to the decaying collision effect the distribution soon

follows an almost collisionless evolution. In Fig.6 we illustrate an evolution where the

friction is held rather large and constant ( = 1) while the background temperature varies

periodically: q(t) varies stepwise between 0.25 and 0.05 with a period equal to 10. Hence the

distribution function eventually shows a "breathing" behaviour between a wide (warm)

State and a peaked (cold) State that may go on for some time. The same rather weak time

oscillating field is included, but due to the higher friction the centre of the distribution nearly

settles around (0,0) in phase-space.

5.3 Double well potential and oscillating field- strange attractors

(102)

which includes the double well force, Eq.(2B) or (54), the momentum collisional transfer

term, and, instead of the collisional velocity diffusion term, a time-oscillating forcing term,

besides a source term. We do not take into account space dependency in the additional

forcing. The neglect of the collisional velocity diffusion term may for instance be due to a

very low parallel-B background temperature TOII (q / = kT011 /m ~ 0), for instance in a

transition-stage from a collisional State to a collisionless State where the diffusion effect first

dies away. Hence friction and cool-down of test particles may be the main collisional effects

left, at least for part of the evolution, see below. Adding a parallel-B oscillating forcing term

will excite test particles and in some way counter-balance the energy dissipation. However,

energy from a pure time-oscillating field goes into ordered motion as far as Eqs.(3B)-(40)

give an adequate description.

We consider in this section the equation

p i: ivJ) +F° c°T°t} wz+M^ - o+)

The equation is east into the form

—+ vz +(—  -2-CoS(a)n° - =PW + - 0 + ) (103)
ot dz \ m m J dvz
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- [ P(s)ds: JO - [ fi(s)ds
and letting W = e Jo

The corresponding characteristic equations now are

(105)

where z(—t), v (-f) are the unique position and velocity at time -t according to Eqs.(los),

given that they are z, vz at time t=o.

Depending on the actual condition, there are several, if not infmite, choices of parameter

values that may be (more or less) relevant to use in solution-studies. These choices may

include cases that lead to Solutions of Eq.(105) that have strange attractors. In the

illustrations that follow we have made such a particular choice of parameters. Note, however,

that in our solution procedure leading to Eq.(106), a backward-in-time transformation is
used.

Fig.7 shows Solutions without an oscillating forcing term ( F 0 =0) for various times using

the same parameter values for cq and a 2 and the g- and h- functions as in Fig.4, i.e.

a, =l9 /13 and a 2 = 2 /13 and g{yz )h{z) = exp(-vz 2 - z 1) /n, M=l, plus the constant

friction fi(t) = 0.25. Variables are dimensionless using relevant scales. As compared to

Fig.4 one observes the peaked distribution that develops reflecting the contraction of phase

space volume of particles and conservation of particle number. In Figs.B-9 we have added

forcing, using F 0 /m- 0.4 and co0 = 1, leaving other parameters as on the forgoing figure:

In Fig.B we have used g(vz )h(z) = exp(-v 2 - z 2) / K and in Fig.9

g(v.)h(z) = exp(-v: -(z +1) 2 ) /n , i.e. we have successively placed the centre of the

source at z=o and z=-l, i.e. at two of the equilibrium positions of the well. The choices for

the well-parameters, the strength of the oscillating forcing term and its frequency and the

friction term now coincide with known choices from particle dynamic theory that lead to

Solutions with strange attractors as time goes on, [ll], [l2]. In our development solving a

particular kinetic equation, pattems that look like cross sections of strange attractors in short

Multiplying by e 0 and letting W=e Jo fwe have for W the equation

+v, - FoCOS(a>° r) - P(t)v’] = Mg{yz )h(z)S(t - 0*). (104)
dt dz \ m m J dvz

dz _
~dt~ Vz

dv,_F,f B Fo cos(co0t)
dt m m

We may write the solution of/formally as

fiz,vz ,t) = Me^° P{S)dSg(vz i-t))h{z(-t)). (106)
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time seem to develop as support for the distribution function in phase-space. In Fig.B some

blow-ups at t-Btt show fractal similarities.

Though Solutions in general are parameter dependent, the examples given may indicate that

the combined effects incorporated in Eq.(102) may in some cases lead to peculiar particle

distribution functions. However, as a mle the neglect of the velocity diffusion term is an

approximation that ceases to be valid as spikes and strong velocity gradients develop, and

some sort of balance may be expected when the effect is included. In this balance the spikes

that have got time to develop may for some time "live" further on individually in phase space

(with similar local velocity spreads), since the modelling kinetic equation is linear and hence

has no non-linear couplings incorporated. In Fig. 10 we have let the friction coefficient be

time-dependent and decaying as p(t) = 0.25e~° 2t , and we show Solutions for t=2n and t=Bn

when other parameters and the choice of initial distribution are as in Fig.B. Spikes develop

that to some extent "freeze", since the distribution function soon goes into a nearly
collisionless evolution.

6 Summary and conclusion

Various evolutions of dilute ion populations, evolving on plasma backgrounds in wells and

double wells, have been investigated from a kinetic point of view. Derivations and

applications have been in connection to along-B wells and double wells that may exist

around Earth, mainly in equatorial regions. These wells are of electric (ambipolar)-gravity

and magnetic origin, and they were studied alone and in combination. Collisions between

the ion populations and the background plasma have been taken account of using a

simplified collision term that to some extent made it possible to derive analytic Solutions of

the ion kinetic equation, even when time dependencies were included in the collision

parameters. The kinetic equations solved were one-dimensional (along-B ), but time

dependencies included in collision parameters may mimic effects of a changing background

due to say equatorial motion. Some examples of evolutions have been given graphically and

shows that peculiar behaviours may arise when proper conditions are met, as "breathing" of

the distribution function as time goes on, and, when an additional oscillating force field is

included, steps towards development of strange attractor support of distribution functions

in a rather short time. The results obtained may have relevance to other plasmas where

similar or analogous wells and double wells may exist.
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Fig. 1: Ambipolar field direction along dipole magnetic field. Cross section of magnetic
equator plane showing magnetic field line, vertical at A-magnetic latitude and line along

magnetic field.

Fig.2: Phase plane curves of double well, wells at z-± 1, cc, = 19/13,

a 2 = 2 /13, cf. Eqs.(29) and (56) and text.



Fig.3; Distribution function of light ions at t—o. 2,4 and 2tt for harmonic vvell (c&= 1) in

collisionless case. Initial (t = 0~) bell shaped distribution around (z,v,)=( 1,0),

M= 1, cf. Eq.(52) and text.



around (z.v.M0.0), M=\, a, = 19/13, a, = 2 / 13, cf. Eq.(sB) and text.

Fig.4. Distribution function of light ions at t—2.6,12, for double well in collisionless

case. Wells at z-± 1. Initial {t = 0 + ) bell shaped distribution
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Fig.7: Distribution fimction of light ions at r=2,6,12, for double well including
collisional friction ([5 = 0.25). Wells at z=± 1, a ] =l9 /13, oc2 = 2 /13.

Initial (r = 0 + ) bell shaped distribution around (z,vz )=(0,0), M- 1, cf. text
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Fig. 10: Decaying friction coefficient, p{t) = 2t , other parameter values, and initial

(/ = 0 + ) distribution function as on Fig.B. Distribution function at t=27t,B7L
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