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UNCONDITIONALLY STABLE METHODS
FOR HAMILTON-JACOBI EQUATIONS

KENNETH HVISTENDAHL KARLSEN AND NILS HENRIK RISEBRO

Abstract. We present new numerical methods for constructing approximate Solutions to the

Cauchy problem for Hamilton-Jacobi equatlons of the form ut + H(Dx u) = 0. The methods
are based on dimensional splitting and front tracking for solving the associated (non-strictly
hyperbolic) system of conservation laws pt + Dx H(p) = 0, where p = Dx u. In particular, our
methods depends heavily on a front tracking method for one-dimensional scalar conservation
laws with discontinuous coefficients. The proposed methods are unconditionally stable in the
sense that the time step is not limited by the space discretization and they can be viewed as

“large time step” Godunov type (or front tracking) methods. We present several numerical
examples illustrating the main features of the proposed methods. We also compare our methods
with several methods from the literature.

1. INTRODUCTION

In this paper we present unconditionally stable numerical methods for the Cauchy problem for
multi-dimensional Hamilton-Jacobi equations

(1)

In (1), u = u{x,t) is the scalar unknown function that is sought, uq uq{x) is a Lipschitz
continuous initial function, His a Lipschitz continuous Hamiltonian, and Dx denotes the gradient
with respect to x = {x\ ,..., Xd) defined by Dx u {uX1 ,..., uXd ). Hamilton-Jacobi equations
arise in a variety of applications, ranging from image processing, via mathematical finance, to the
description of evolving interfaces (front propagation problems).

It is well known that Solutions of (1) generically develop discontinuous derivatives in finite
time even with a smooth initial condition. Moreover, generalized Solutions (i.e., locally Lipschitz
continuous functions satisfying the equation almost everywhere) are not uniquely determined by
their initial data and an additional selection principle a so-called entropy condition is needed
to single out physically relevant generalized solution. The most commonly used entropy condition
is the vanishing viscosity condition which requires that the (correct) solution of (1) should be the
vanishing viscosity limit of smooth Solutions of corresponding viscous problems.

The vanishing viscosity entropy condition gives raise to the notion of viscosity Solutions intro
duced by Crandall and Lions [7]. In particular, these authors established the existence, uniqueness
and stability of a viscosity solution of (1). Since then the theory of viscosity Solutions has been
intensively studied and even extended to large dass of fully nonlinear second order partial differen
tial equations. We refer to Crandall, Ishii, and Lions [6] for an up-to-date overview of the viscosity
solution theory. In passing, we mention that Kruzkov has developed an alternative (equivalent)
theory for Hamilton-Jacobi equations with a convex Hamiltonian, see, e.g., [2B].

It is known that the Hamilton-Jacobi equations are closely related to (scalar) conservation laws

(2)
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iut + H{Dx u ) —O, in Ed x{t > o},

[u = uq, on Ed x {t o}.

\vt + E5Li fi{v) Xi =O, in Rd x{t > o},

|n(x,o) = vq(x) on Rd x {t = o}.
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Here v = v(x, t ) is the scalar unknown, v 0 = vo {x) is a bounded initial function, and are
Lipschitz continuous flux functions. In contrast to the Hamilton-Jacobi equations, which possess at
least continuous Solutions, Solutions of (2) develop discontinuities (shock waves) in finite tirne and
therefore one has to consider Solutions of (2) in the sense of distributions. However, distributional
Solutions are not uniquely determined by their initial data and one needs also here the vanishing
viscosity entropy condition to pick out the correct solution. In the context of scalar conservation
laws (2), the vanishing viscosity condition gives raise to the notion of entropy Solutions in the sense
of Kruzkov. Kruzkov [3o] proved that the well-posedness of (2) is ensured within the framework
of entropy Solutions.

In the one-dimensional case (d = 1), it is well known that the existence of viscosity Solutions
of (15) is equivalent to the existence of entropy Solutions of (16), see [2B, 34, 5, 20, 22], More
precisely, if u u{x , t ) is the unique viscosity solution of (1), then v = Dx u is the unique entropy
solution of (2). Conversely, if v v{x,t) is the unique entropy solution of (2), then u defined via
u{x,t ) = J_ co p{£,,t) is the unique viscosity solution (1). In the multi-dimensional case (d > 1),
this one-to-one correspondence no longer exists. Instead the gradient p {pi,... ,pd ) = Dx u
satisfies (at least formally) a d x d system of conservation laws [2B, 34, 20]

(3)

If p is known, one may recover u from p by integrating the ordinary differential equation

(4) ut + H{pu    ,Pd) = 0.

One should notice that (3) is non-strictly hyperbolic in the sense that the Jacobian does not
possess a complete set of eigenvectors. Nevertheless, in [2B, 34, 20] it is proved that the vanishing
viscosity limit Solutions of (1) and (3) (when such exist of both problems!) are equivalent. Roughly
speaking, one may therefore in the multi-dimensional case also think of viscosity Solutions of (1)
as primitives of (entropy) Solutions of (3).

Equipped with this view, it becomes natural to exploit some of the numerical concepts devel
oped for hyperbolic conservation laws when developing numerical methods for Hamilton-Jacobi
equations. Indeed, many well known shock-capturing methods for conservation laws have been
extended to Hamilton-Jacobi equations, see [B, 35] for finite difference schemes of upwind type
(see also [29]); [l, 27] for finite volume schemes; [3B, 39, 19] for (W)ENO schemes; [33, 31] for
Central schemes; [2, 17] for finite element methods; and [2o] for relaxation schemes.

In contrast to shock-capturing schemes just cited, we will in this paper be concerned with
extending to Hamilton-Jacobi equations (1) a so-called front tracking method for conservation
laws. The front tracking method was introduced by Dafermos [9] as a (mathematical) tool for
constructing entropy Solutions to one-dimensional scalar conservation laws. Holden, Holden, and
Høegh-Krohn [l3, 14] later proved that Dafermos’ construction procedure was well-defined and
developed it into an L l linearly(!) convergent numerical method. Front tracking was later extended
to systems of equations by Bressan [3] and Risebro [4l], who used the method to give an alternative
proof of GlimnTs famous existence result for hyperbolic systems. Very recently a modification of
the front tracking method was used by Bressan, Liu, and Yang [4] to prove stability and uniqueness
of weak Solutions of strictly hyperbolic systems of conservation laws. The front tracking method
was used by Risebro and Tveito [42, 43] to numerically solve the Euler equations of gas dynamics
and a non-strictly hyperbolic system modeling poiymer flow.

Holden and Risebro [l6] extended the scalar front tracking method to multi-dimensional scalar
conservation laws by means of dimensional splitting. These authors also proved that the method
converges to the unique entropy solution. of the governing problem. An L 1 error estimate of order
1/2 was proved in [2l]. Although the convergence rate drops from 1 in the one-dimensional case
to 1/2 in the multi-dimensional case, it should be noted that no CFL condition is associated with
the multi-dimensional numerical method, which implies that the method is fast compared with
conventional difference methods. Computations using CFL numbers as high as 10 20 (with

no longer exists. insteaa tn<
: d system of conservation lav,

[Pi)t + H{pi,... ,pd ) Xl = 0
<

K {pd )t + H(pdt ...,pd )x d = 0
l from v by integrating the or
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satisfactory results) have been reported, see Lie et al. [32]. Computational results for multi
dimensional hyperbolic Systems can be found in Holden et al. [l5, 12] and Haugse et al. [ll],

The purpose of this paper is to device front tracking methods for Hamilton-Jacobi equations.
In the one-dimensional case (see [22]), we simply rely on the equivalence between (1) and (2)
and define a numerical method for (1) by “integrating” the front tracking method [l3, 14], The
resulting numerical method for (1) is well-defined and L°° linearly convergent towards the unique
viscosity solution of the governing problem. The linear convergence rate follows from the results
in [l3, 14] or [36], see also [22],

The multi-dimensional case is much more difficult and is the main focus of this paper. The
basis for our numerical methods is the (formal) relation between (1) and the non-strictly hyperbolic
system (3). The methods that we present can all be written as explicit marching schemes of the
type

where J = {ji,-- - ,jd ) 6 TL d is a multi-index and H; is the numerical Hamiltonian that has to be
determined. Typically, 74j is a convex combination of one-dimensional numerical Hamiltonians
0/1 njdHj, . . . , tij.

To construct the numerical Hamiltonians 74j,...,74j, we first apply a sort of dimensional
splitting to reduce the d x d system of conservation laws (3) to a sequence of (decoupled) one
dimensional scalar conservation laws of the form

where pj Pj{x ), j i, are fixed, possibly discontinuous coefficients. These equations can all be
viewed as one-dimensional scalar conservation laws of the type

where / is some flux function and a = a{x) is a given, possibly discontinuous coefficient. The fact
that a(x) can be discontinuous makes analysis of numerical methods for such conservation laws
rather difficult. Front tracking for conservation laws with a flux function that depends discon
tinuously on the space variable is analyzed in Gimse and Risebro [lo], Klingenberg and Risebro
[25, 26], and Klausen and Risebro [24]. Recently some difference schemhs for such conservation
laws were proved to be convergent by Towers [4s]. Roughly speaking, we shall in this paper build
our numerical Hamiltonians 74 j,..., 74 j (to be used in (5)) by applying the front tracking method
to the scalar conservation laws in (6).

The rest of this paper is organized as follows: In the next section, we describe the front tracking
algorithm for one-dimensional scalar conservation laws with discontinuous coefficients. Section 3
first describes a front tracking method for Hamilton-Jacobi equations in one dimension, then we
detail the various numerical methods for multi-dimensional Hamilton-Jacobi equations which can
be build from the front tracking method. These schemes are then tested on several problems in
section 4. Finally, we draw some conclusions in Section 5.

2. Front tracking in one dimension

In this section we describe the front tracking algorithm for one-dimensional conservation laws
in some detail. Therefore we consider the one-dimensional scalar conservation law

Here the unknown v = v(x,t) is a scalar and the “coefficient” a(x) is assumed to be a bounded,
piecewise differentiable function, but not necessarily continuous. We shall always assume that f
is a Lipschitz continuous function.

Front tracking is a method to corapute approximate weak Solutions to (7). Let first å be a
parameter indicating the accuracy of the approximation, and let Uq and as be piecewise constant
approximations to n 0 and a respectively such that

Uq —> vq and a 6 —> a in Lloc as 6-4 0.

(5) u-}+1 AtHj,

(6) {pi)t +H{p1 ,...,pi ,...,pd ) Xi = 0, i = 1,...,d,

vt + f{a,v) x =O, x GE, t> 0,

(7) vt + f{a{x),v) x =O, v(x,o) = v0 (x).
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The Riemann problem for (7) is the initial valne problem where vq and a take the form

(o\ f X } vh for x< 0, fa;, for x< 0,
(°) vo {x) = < a (x) = < ~

[w, for x> 0, f ar , for x> 0,

Hence, v50 and a 5 defines a series of Riemann problems located at their discontinuities. If df/dv
is bounded, then (7) has finite speed of propagation, and the Solutions of neighboring Riemann
problems will not internet for small t. Therefore, if we can compute the entropy Solutions to
the initial Riemann problems, and thereby the solution of (7) if v 0 = v$ for sufficiently small t.
However, being able to compute the solution of Riemann problems does not help us to compute
the solution past the time where waves from different Riemann problems internet. Generally, the
solution of the Riemann problem (8) is a funetion of x/t, and is not always piecewise constant.

Front tracking is a strategy to remedy this. We choose a piecewise constant (in x/t ) approxi
mation vå {x,t) to the solution of the Riemann problem such that

If we approximate all the initial Riemann problems defined by Uq and a 6 in this manner, the
resulting funetion will be piecewise constant in x, with discontinuities emanating in fans from each
initial discontinuity. Collisions between these discontinuities will define new Riemann problems
(since v 6 is piecewise constant). We can approximately solve these Riemann problems in the
same way (giving new discontinuities that move in straight lines) and thereby continuing the
approximation beyond the interaction time. We call the funetion defined in this way vs and the
discontinuities in v 6 fronts. The approximation process we call front tracking.

Note that it is not clear whether we are able to continue the front tracking approximation up
to any prescribed time t (this depends on how we construct the approximate Riemann solution).
Moreover, we must be able to construct an approximate solution of any Riemann problem arising
from collisions. For the equations considered in this paper, front tracking is well-defined and
converges to the entropy solution of the conservation law.

2.1. Convex f. If f {a, v) is uniformly convex in u and monotone in a, front tracking is well
defined. More precisely, from [24] we have the following theorem;

Theorem 2.1. Assume that a is in L 1 fl BV and is piecewise Cl with a finite number of discon
tinuities. Assume also that vq{x) is such that f (a, no) is of bounded variation. Then there exists
a unique weak solution uto (7) such that v£ —> uin L l , where v £ solves the “regularized” problem

(9)

where a£ a*u£ and coe being the usual mollifying kernel with radius e. Furthermore, u satisfies
the wave entropy condition

(10)

in each interval where a 1 exists. The constant K depends on f, ||a|| , and vq, but not on a!.
Furthermore if vå denotes the front tracking approximation to v, then

Also, there are only a finite number of collisions between fronts in vå for all t G [O, co)

The proof of this theorem can be found in [24], Here we detail the approximate solution of the
Riemann problem. The assumptions on / imply that for each a there is a unique vt such that

v s {-,t ) -> v(-,t) in L 1 as 6—> 0.

i vt+f{ae ,vE ) x = 0, in Ix{t > o},

= vq * uj£ , on E x {t = o},

sign {fw)dx ifv (a,v)) >K Q + \a! \^

lim v 5 = v in L]nr .å-> o 00

fv (a, Vt) = 0.

For simplicity we set vt 0. Let z{v,a) and b{a) be defined as

* = z ia , v) = sign (v - vT ) (/(a, v) - f (a, vT ))
b{a) = f (a, vT ).
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FIGURE 1. The solution of the Riemann problem

Note that since fa 0, the mapping b{a) is one-to-one. Hence, the mapping

is injective and regular everywhere except for 2 = 0. Thus the Riemann problem is determined by
two states wi and wr .

In the following we use the notation // for f{ai,vi ), and similarly for other functions of the
left and right states. We say that two states wi and wr are connected by an a-wave if sign (2/) =
sign (zr ) and fi = fr , similarly we say that they are connected by a 2 wave if a/ = ar . The solution
of the Riemann problem in the (2,6) plane is depicted in Figure 1. To lind a particular solution,
pick a right State vr and follow the arrows from vi to vr . This traces out a series of waves, e.g.,
zaz, and the solution is then a found by connecting the vi to the State to the right of the first z
wave and so on. This diagram is entirely similar to the corresponding diagrams in [26] or [44], The
actual waves occurring in a z wave is found by solving the scalar Riemann problem with constant
a (either ai or a r ) and vi and vr given by the endpoints of the curve. If the solution is determined
by a zaz sequence, the first z wave will' have non-positive speed, a waves will always have zero
speed (they are discontinuities in a {x)) and the second z wave will have nonnegative speed. Note
in particular that in the (2,6) plane, all waves trace curves which are either horizontal lines (z
waves) or straight lines at an angle of 45° slope (a waves). Hence if we fix a grid (z,6) = (iå,jå )
(for i,j G Z and some small number 5 > 0) in the (z,6) plane and if the initial states wi and wr
are points on the grid, then all intermediate states will also be points on the grid. Furtherraore,
if we interpolate f {a, v) linearly between grid points, the solution of the scalar Riemann problems
determined by the z waves will consist of piecewise constant functions in x/t, see, e.g., [l4]. Let
this interpolation of /be denoted by f s . Then the above construction yields an entropy weak
solution to the initial value problem

(12)

for any integers i and j. This solution will be piecewise constant in x/t where w [v6 {x, t), a{x))
will be on the grid for all x and t.

We can also construct the approximation of initial function Vq and aå such that

w {våo {x),a6 (x))

is on the grid in the (z, b) plane. For a fixed (5, we can then solve the initial value problem

exactly using front tracking, see, e.g., [26]. Furthermore, for each S, there will only be a finite
number of collisions between fronts in vs .

(a, v) (->• w = (6, z)

«f + /*(o(*)y) =o. t.s (i,o) = | ,"”* (i4’ 6(o' ) )’ x - 0 ’
* J Ky 1 lx v ' {w-Hjå.bM), x>o,

(13) v 6t +f6 [aå ,vå ) x =O, i/(z,0) = v%{x)



-
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Figure 2. An example of front tracking.

In Figure 2 we show the fronts and the initial and final State for the initial valne problem (13)
with

(14)

and periodic boundary data. In this example we used S = 0.25. Figure 2 shows Ug and a in the
lower left corner, and v6 {x, 1) in the upper left corner. To the right we see the fronts in the (x,t)
plane. The z waves are shown as solid lines and the a waves as broken lines.

2.2. Other fiux functions. Front tracking has been extended to other flux functions. In [26] it
was shown to be well defined and convergent for Lipschitz continuous functions f {a, v) satisfying
the requirement that there are values a, /3 and 7 such that

for all a. Furthermore, fa <O, fvv >0 in (a,/?) and fa >O, fvv <0 in (/3,7). The of
such functions is f (a, v) = —asin(u).

Another extension that we shall use later is to periodic /. Let g be a bounded Lipschitz
continuous function of one real variable, and set f {a, v) = g{a + v). For such / front tracking for
(13) is well-defined, see [23].

3. Numerical algorithms

3.1. One-dimensionai algorithm. In this section, we recast the front tracking method from
the previous section as a method for solving one-dimensional Hamilton-Jacobi equations with a
discontinuous coefficient. This method will be used as an important building block in the multi
dimensional algorithm presented in the next section.

/(a, v) = y/l +a2 + v 2, vq{x) sin(27ra:), a{x) =tt(l cos(2ttx)) ,

f {a, a) = f (a, (3) = f {a, 7) = 0,
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FIGURE 3. Front tracking for Hamilton-Jacobi equations.

The relevant initial valne problem reads

(15)

where H{a,p) is assumed to be differentiable.
Setting p= ux and formally differentiating the above problem, we find that p satisfies the scalar

conservation law

(16)

When a is Lipschitz continuous, we recall that the viscosity solution of (15) is equivalent to the
entropy solution of (16). However, when a(-) is discontinuous, the classical viscosity and entropy
solution theories do not apply. Instead, we will rely the solution theory developed in [26, 25, 24] for
scalar conservation laws with discontinuous coefficients. The relevant results from this theory are
summed up in Theorem 2.1. In particular, we know that the problem (16) has a unique solution

the so-called entropy solution that is the limit of the corresponding regularized Solutions.
Furthermore by a recent results of Ostrov [4o], if p ha H{a,p) is convex, we can define “viscosity
Solutions” of (15) even when a has a finite number of discontinuities but elsewhere Cl . These are
defined as the (unique!) limit of viscosity Solutions of the “smoothed” equations

Let på be the front tracking approxiraation of (16). This algorithm is viable also as an algorithm
for (15) almost without alterations. To define front tracking for (15), we need to keep track of
the value of the approximate solution u 6 along each front in p 6. Since ps is piecewise constant,
us will be piecewise linear between fronts. All fronts in ps will move with constant speed between
collision points, so the position of a front is given by

where (xO ,A)) is the starting point of the front. Let {pi,ai) and (pr ,ar ) denote the left and right
states of the front. Then

Figure 3 shows the front tracking approximation to the “Hamilton-Jacobi version” of (14), with
H{a,p) = f{a,p) and

To the left we see the initial approximation, in the middle u s {x, 0.5), and to the right uå (x, 1).

ut +H{a,ux )= 0, u{x, 0) = uq{x)

Pt + H{a,p) x =O, p{x,o) = po{x) := uox {x)

ue + H{ae ,u£x ) = 0, a£ = a*u£ .

x{t) =xo + s{t - to ),

us {x{t),t) =u6 {xo ,to ) +{t - to) (spi - H {ai,pi))
(17)

=Uå (xo ,to) +(t - to) ( spr - H (ar ,Pr )) ,

because of the Rankine-Hugoniot condition

s{pi - Pr) = H (ai,pi ) - H ( ar ,pr ).

7r
uq{x) = (1 cos(2ttx)) .
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3.2. A Godunov type formulation. The method just described is a good method for the one
dimensional problem (15). We now present a formulation which makes it easy to use as a building
block in the multi-dimensional algorithms described in the next section. Namely, we would like to
to rewrite the method as an explicit marching scheme of the form

for some numerical Hamiltonian H and time step At > 0.
Although the front tracking approximation did not use any predefined time step Af, we can

restart the front tracking algorithm at tn = nAt, n 1,2,3,... To this end, let Ax be given and
set

aAx {x) =aj and pAx {x) =p" for x G [xj_ l/2 ,xj+l/2 ),

where x 0 = jAx. Let 6be some small parameter and define a grid in the (z, b ) plane by combining
a regular grid of size 6 with the grid determined by the points w{p®, aj). This grid is the one
we use to interpolate H, giving a function we label H 5. For tn <t < tn+i, let un be the front
tracking solution of

nfn +H6 {aAx , u x ) =O, n n (x, nAt) =un (xl/ 2) + / p^x {a) da
J x 1/2

(19)

Finally set

We start this process by setting u°{x) = uq{x). Note that u n (x, tn+ l) is a piecewise linear function
in x, with breakpoints located at {xj+1 / 2 }- This method can also be recast in a simpler notation
by noting that

The integral term here defines our numerical Hamiltonian 'H. The integral does not have to be
computed explicitly, as this is already done in the front tracking process. By (17), we directly
read off the value of from the front located at xJ+l /2 - Since this is a point of discontinuity
for aAx there will be a front present at this location. If by chance a Ax is continuous here, we can
easily add an extra front in the front tracking process.

Remaxk. Although we have (re)formulated the front tracking method as an explicit marching
scheme (18) and thereby introduced a time step into the method, one should note that there is no
CFL condition associated with (18), i.e., large time steps are allowed.

3.3. Multi-dimensional algorithms. Now we use the Godunov-type method (18) to formulate
“large time step” methods for the multidimensional problem (1). For ease of presentation, we shall
restrict ourselves to two space dimensions, but the generalization to three or more dimensions is
obvious. Therefore we study problems of the form

(20)

where the Hamiltonian H is of the types discussed in the previous sections. We can write (20) as
a 2 x 2 system conservation laws formally obtained by differentiating (20):

(18) u{-,{n + l)At) = u{-,nAt) At'H{a,u{-,nAt)), n = 0,1,2,

p" = (wn (^+i/2 ) - un {xj. l/2 ))
I r x : + l/2

a ?- =—— / aix) dx,
Az Jr , v ’Jx3- 1/2

p]+1 - {un {xj+ i/2,tn+l -) ~Un (xj _ l/2 ,tn+l -))

tn + 1

Uj+ l/2 = Uj+ l/2 ~J H { C‘'j+l/2i u {xj+ dt.
tn

iut + H ( ux ,uy ) —O, in R 2 x{t > o},

[u uq, on M 2 x {t = o},

Pt + H{p,q)x -0,

qt +H{p,q) y = 0,
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One should notice (20) is weakly hyperbolic in the sense that there is no complete set of eigenvec
tors. As already mentioned, in [34, 20] it is shown that the vanishing viscosity limit solution of
(20) is equivalent to the vanishing viscosity limit solution of (21).

In order to define our scheme, we let S > 0 be some small number. All our computed quan
tities will depend on this number, but for simplicity our notation does not always indicate this
dependency. We use a computational grid Xj = jAx, yk = kAy, and tn = nAt, for small numbers
Ax, Ay, At and integers j, kGZ, n 0,..., N, where NAt =T. To integrate (21) numerically,
we can use dimensional splitting or a direct approach.

3.3.1. Dimensional splitting. Dimensional splitting for (20) is based on the sequential solution of
the two conservation laws in (21) for a time step At, using the result for one equation as coefficients
in the other. Concretely, this gives the following scheme: First set

(24)

For t in the interval [t n ,tn+ l) and for each fc, we let UJ}(t) be the front tracking solution to

(26)

where the functions p£ and q™ are defined as

Sirnilarly to (19) and (17), this gives us an update based on a numerical Hamiltonian , 2 k
(which we never have to compute)

(27)

Then we set

(28)

This hnishes the hrst part of the splitting step. As Un was the solution of the first equation in
(21), we let Vn denote the solution of the second. Precisely, for tin the interval [tn ,tn+ l) and for
each j, dehne VJl as the front tracking solution of

(29)

where

Sirnilarly to (27), we now can dehne VJI^ 1 by a numerical Hamiltonian 'kCj'k+l /2 as follows

where (p,q) = {ux ,uy ) and

{Pi q) ( £} Vi 0) >

(22) + l/2,k ~ U 0 [xj+l/2 iVk) 1

(23) + l/2 —UO ixjj Vk+l/l) >

( 2d ) Qj,k -£y [vj°,k+ l/2 Vo,k- 1/2) •

X

{K),+H6 ((UZ) I ,qnk ) =O, Ul‘(x,t = ir‘{x1/2 )+ j pl(a)da,
*l/2

ÆW=&l c r .
pS(*)=&f fo- 6 h-/2 .%+ ./2 >

/7n+1 TJn /\+T-/ p ’ n
U j+l/2,k Uj+l/2,k L* lrLj+l/2,k'

vn+l - (Un+l ~ Un+l
l ]J; /±x \u j+i/2,k u j-i/2,k) •

V

(vp) t +Hå (p»+1 , (vp) v) =O, V," (t„) =vp (y l/2 ) + j </» da,
3/1/2

Pj+I (y)=Ph\ , c r \
„ , „ t for v e [y*-l/2.1/4+l/2>

«"(!/) = J

(30) =V£k+l/ 2-Atn%+l/ 2.
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To start the next time step, we define

(31)

This process is then continued for n = 0,1,2 , N - 1, where T - NAt. Now we have two

approximations to the solution of (20), namely n+ i/2,A- and Vpk+i/2- Note that these are defined
on spatial grids which are staggered with respect to each other. We can define the final approxi
mation by linear interpoiation between these two grids to the grid defined by the points {xo ,yk ).
This corresponds to using the update formula

(32)

This update formula does not have to be used, we can merely interpolate at the end of the splitting
process where n + 1 N.

A variant of this method is to update un+l before setting pn+l and qn+l to be used in the next
time step. These are then defined by

(33)

wrhere k is the interpolated value of the piecewise linear function defined by (32) at the

point {{j + l/2)Ax,kAy). Similarly for wJ^ l//2 - We call this method dimensional splitting with
restarting.

3.3.2. A direct method. Rather than solve the p equation and the q equation sequentially, we can
solve both for pk and qj using the values from the previous time step as coefficients. This we call
a direct method. The initial values are defined as before, (24), (25). For t E [tn ,tn+ l), we define
UJ} and VJ1 to be the front tracking Solutions of

X

(K)t + H 6 ({UZ)x ,q];)= 0. OMn) = f/JA + rfW(34)
x l/2

We can use either Un or Vn as an approximation to u, or use the interpoiation defined by (32).
We can define pn+l and qn+l by (33). This method is then called a direct method with restarting.

Remark. The reader should be cautioned that, in order to keep the presentation simple, our
notation is somewhat misleading. The functions denoted uHSv in, e.g., (35) and (34) are not the
same function! But rather two different piecewise linear approximations of H. Remember that
when doing front tracking for, e.g., (35) we use a piecewise linear (in q) and piecewise constant (in
x) approximation to H{p{x),q). This approximation depends on å , so that the distance between
the interpoiation points tends to zero as 6 —> 0, as well as on the initial values q(x,o) and the
coefficients p(x). Since only 6 is the same for (35) and (34), H 6 in (35) and (34) are not the same,
nor are they the same for different j and k. The same also applies to the dimensional splitting
equations (26) and (29).

Note that none of the methods we present are monotone. This makes a convergence analy
sis complicated, and we have not been able to prove that the methods produce a sequence of
approximate Solutions that converges to the unique viscosity solution. However, the numerical
experiments indicate that the approximations all converge to the viscosity solution.

n+i _ J_ /yn+l _ yn+l
qj’ k Ay \ J,k+l/2 Vj,k-l/2)  

i/ n+l i/ n - fvp 'n , n_/P,n , n/q,n ,njq,n \
U3,k ~ UJ,k 4 + Hj+l/2,k + Hj,k- 1/2 + Hj,k+ l/2 J

_1 / r jn-\-l , r7n+l _l T/ n+! i T/n+l
“ 4 0+ 1/2, - + Uj-l/2,k + i,A+l/2 + Vj,k-l/2j  

n+l _J_ (un+ 1 _ n+l \
Ai W+l/2- fc i-1/2 ,k) ’

an+l - (un+l - un+l 'i
~ /\ y \ Uj,k+ l/2 Uj,k-l/2j >

y

(35) [Vr) t +Hs {pl,(Vp) y )= 0, VJ‘{y ,tn ) = V>P1/2 + j q^-\<r)da.
2/1/2
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4. Numerical EXAMPLES

To test the above methods, we have compared them with several other methods; the Lax-
Friedrichs method, the Engquist-Osher scheme, and the relaxation method by Jin and Xin [2o],
more precisely with the method called 111 in [2o], This method is based on replacing (20) by the
following system

where £ is a (very) small parameter. For the impleraentation of scheme 111, we have followed the
recipe in [2o]. The Lax-Friedrichs scheme we used is given by

Details on the implementation of front tracking for one-dimensional Hamilton-Jacobi equations
can be found in [22], and for details of implementation of front tracking and dimensional splitting,
see [42], [l6], [ls]. In the numerical examples we use all our methods: (32) and (27)-(30) as well
as the method with restarting (33) and (34)-(35). Furthermore, when applicable, we used Strang
splitting, i.e., we start and finish with (27) using a time step At/2.

In our first two examples we use the convex Hamiltonian

(39) H{p, q) = V 1 +P2 + 9 2 -

Example 1. Our first example is taken.from [2o]. The initial data is given by

(40)

for x and y in the unit square o<x<l,o<y<l, and we use periodic boundary data. The
exact solution is unknown, and as a reference solution we used an approximation computed by
scheme 111 with Ai = Ay = 1/511. We calculated 1 the approximate Solutions until t = 0.6, at
this time the surface has moved down and a sharp peak has formed. In Figure 4 we show Solutions
computed on a 50 x 50 grid by scheme 111 and by dimensional splitting using CFL=S.

When doing dimensional splitting, both the quality of the solution as well as the CPU time
depends on the parameter 6. In order to avoid too many parameters, we set 6 yTnin (Ar, Ay).

In Table 1 we show the supremum errors and the CPU time (in seconds) for dimensional splitting
as well as for scheme 111, the Engquist-Osher scheme and the Lax-Friedrichs scheme on several grid
sizes (indicated by N in the table).The most salient feature of this table is that the error and the
CPU time for dimensional splitting seem to be independent of the CFL number. All schemes seem
to have a numerical convergence rate of about 1/2, and a dependence “CPU time ~ error -5 / 2 ”.
The Lax-Friedrichs scheme was very fast, but produced much larger errors than the other schemes.

: All computations were done on a Power Macintosh G3, 267MHz, and the CPU times reported include only the

computations, not the time used for initializations and memory allocations. All algorithms were coded in the “C”
programming language.

Pt+Wx = 0,

qt+Wy = 0,

( 36 ) + a(Pi + 9y) = --(w-%9)),

ut + w = 0,

w{x : o) = H (po ,qo ) ,

(37) ts> = - t + k"+li , + + <t+l ) - A«f

Finally the Engquist-Osher scheme reads

P‘ =X?fe - “”-u) ’ P 2 = (“j+l,t - x"i) .

(38) 91 Ay(Uj ' k 92 Ay ( ulk+ i u] k ) ,

(P 2 92 \H (pi.9i) + J min {p,qi) ,oj dp + j min (pi,g) dq )Pi 9l /

u— - (cos(2ttx) -1) (cos(27ry) —l)+ 1,
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Scheme lll,time; 9.53 seo

FIGURE 4. Example 1. Scheme 111 (left) and dimensional splitting (right)

TåBLE 1. Supremum errors and CPU time for Example 1

Figure 5 shows the supremum errors for the various methods as a function of the grid size. We see
that on a given grid, the front tracking/dimensional splitting approach compares favorably with
the three other schemes, and we again stress that the error is not very sensitive to the choice of
the CFL number.

log( N)

FIGURE 5. A log-log plot of the supremum errors versus the grid size for Example 1.

Dimsplit, CFL=s,time: 2.23 s©c

Dimensional splitting-Front tracking Scheme III Lax-Friedrichs Engquist-Osher
CFL=5 CFL=10 CFL=15

N /°°-error time /°°-error time i°°-error time /°°-error time /°°-error time Z°°-error time

16 0.0074 0.2 0.0217 0.1 0.1532 0.1 0.0210 0.6 0.0773 0.2 0.0142 0.2

32 0.0023 0.9 0.0047 0.6 0.0079 0.5 0.0203 2.8 0.0357 0.7 0.0087 0.4

64 0.0013 5.6 0.0047 4.9 0.0028 4.5 0.0061 19.0 0.0126 1.9 0.0051 1.9

128 0.0012 51.3 0.0009 50,5 0.0010 48.5 0.0035 143.6 0.0114 5.2 0.0031 13.3
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FIGURE 6. Example 2. Dimensional splitting on a 32 x 32 grid with CFL=2
Left: uo {x,y). Right: u{x,y, 1).

Figure 7. Dimensional splitting on a 64 x 64 with CFL=2S. Left: p{x,y, 1).
Right: q{x,y, 1).

Example 2. The errors produced by dimensional splitting seem to be quite insensitive to the
choice of At. Our next example investigates this feature closer. We use the same Hamiltonian as
before (see (39)), but the initial function is now given by

(41)

and we use periodic boundary data on [-I,l] x [—l,l], Figure 6 shows the initial data and
the approximate solution at i 1 produced by dimensional splitting on a 32 x 32 grid with CFL
number 2. Figure 7 shows contour plots of p and q produced by the dimensional splitting algorithm
on a 64 x 64 grid with CFL number 25. Notice that these are very oscillatory in the vicinity of the
shocks. Fortunately, these oscillations are not as prominent in u. To check the errors produced by
dimensional splitting, we used a reference solution computed by the Engquist-Osher scheme on a
512 x 512 grid. Table 2 shows the Z°° errors made by dimensional splitting on various grids with
CFL numbers 2, 5, and 25. This table also shows errors produced by dimensional splitting with
restarting, see (33).

We remark that the errors produced by dimensional splitting in this example were of roughly the
same order as those produced by the Lax-Friedrichs scheme and larger than those produced by

p 64x64, CFL-25, t= 1 q 64x64, CFL=2S, t= 1

fr —0.4, r < 0.4, r—r
uo {x,y)=l r=y/x2 + 0.4y2 ,

I 0.4 -r, r > 0.4,
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Table 2. Supremum errors for different CFL numbers for the initial valne prob
lem (41).

FiGURE 8. Dimensional splitting on a 40 x 40 grid at t = 1 for Example 3. Left
CFL=S. Right: CFL=2, hva med ref losning....

the Engquist-Osher scheme. We see however, that the error is not very sensitive to the choice of
CFL number. With CFL number 25, dimensional splitting still produces acceptable results. If
we were interested in the derivatives, we would perhaps not find the accuracy in p and q quite
satisfactory for this large CFL number, see Figure 7. We also remark that restarting seems to do
little to improve the accuracy.

Exarnple 3. To test dimensional splitting on a nonconvex case, we chose an example taken from
Osher and Shu [39]. The relevant Hamiltonian reads

(42)

The initial function is given by

(43)

We compute approximations in the square [—l,l] x [-I,l] and impose no boundary conditions,
i.e., fronts are allowed to pass the boundary undisturbed. This example was tested on the Lax-
Eriedrichs scheme and a number of ENO type schemes in [39].

To test out one of the methods described in the present paper, we used the direct method
with restarting as described in Section 3.3.2. For this example, perhaps due to the nonconvex
Hamiltonian, we found that the errors were more sensitive to the choice CFL number, see Figure 8
for an illustration of this. Here we show the computed Solutions on a 40 x 40 grid using CFL=S
and CFL=2. We clearly see the erroneous oscillations in the vicinity of the shocks for the solution
with CFL=S.

Dimsplit, restart, 40x40 grid, CFL=S Dimsplit, restart, 40x40 grid, CFL=2

H{p,q) = sin (p + q).

uo {x,y) = 7r(|y| - )x|)

100 x /°° error
N CFL=2 CFL=5 CFL=25

restart restart restart
16 7.72 9.82 5.25 5.21 5.67 5.67
32 4.56 6.60 3.22 3.56 6.22 6.22
64 4.65 3.97 3.98 2.28 4.45 4.36

128 2.88 2.25 2.38 1.23 3.49 4.57



i  



UNCONDITIONALLY STABLE METHODS 15

5. CONCLUSIONS

We have devised and implemented a faraily of numerical methods for solving the initial valne
problem the Hamilton-Jacobi equation

The methods are all based on solving the d conservation laws (with discontinuous coefficients)

by a front tracking method. This can be done sequentially, in which case we label the method
dimensional splitting, or “in parallel”, i.e., using the same coefficients for all equations. The
pertinent feature of our methods is that there is no intrinsic CFL condition associated with the
time step, so we can choose our time step independently of other parameters.

We found that these method all produce results comparable to standard methods. We have
not been able to show theoretical convergence of these type of method, except in the (trivial)
one-dimensional case (see [22]), but our examples indicate that the methods all converge to the
viscosity Solutions. Moreover, the errors were found to be largely independent of the CFL number,
something also found for dimensional splitting for scalar conservation laws, see [32].

The numerical methods developed herein can be easily extended to yield large time step methods
for Hamilton-Jacobi equations with a zeroth order term

by solving sequentially the equations

sequentially, using the methods presented here for the first equation. In Jakobsen, Karisen, and
Risebro [lB], it was shown that temporal error associated with the above “source term” splitting
is linear in the splitting (time) step, and as such the splitting can be used in conjunction with the
methods proposed herein without loss of accuracy.
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