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DIVIDED DIFFERENCES

AND IDEALS GENERATED BY SYMMETRIC POLYNOMIALS

A.Lascoux & P.Pragacz

INTRODUCTION

This note arose from a comparison of [F] and [Pl]. In [F], the au

thor proved the following result. Let V c Z[A,B] be the ideal in the

ring of polynomials in the variables A= (a^ ...,3^ and B- (b^ ..  bj ,

which consists of all polynomials F(A,B) such that for all ring homo

morphisms f : Z[A,B] —* K ( a field ) the following holds :

l < ai ••••i - bi •••bi ) -1 k 1 k

where the sum is over all sequences lsi^. . .<i fcSn , k-1, ...,n ;in

other words y is generated by differences of elementary symmetric

polynomials in A and B. In the present note we generalize this result

by describing the following more general ideals. Let A= (a^ . . . , aj ,

B-<b,...,b) be two sequences of independent variables.

Fix l r*o and let Q Z[A,B] be the ideal of all polynomials F(A,B)

such that for every ring homomorphism f: Z[A,B] >K (a field ) :

card (|f(ai),...,f(aB)) n {f^) f (\) ) ) ' r+l implies f(F<A,B))«0

ISupporfd1 Supporfd in part by th« N.A.V.F. during th« stay at the Oniv^r.ity in
Bergen (Norway) .

{f<ai ),...,f(an)} - {fCb^.-.rfCbJ) implies f(F(A,B)) «0.

Then is generated by
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Wc give an explicit description of the ideal eF , with the help of

Schur S-polynomials, in Theorem 2.2. Note that if wc replace Z[A,B] by

the ring of polynomials symmetric in A and B, then the analogous ideal

was described in [Pl] . The key trick used in this note is a reduction of

a description of to the latter case with the help of a scalar product

on Z[A] which was defined in [L-S 1] using divided differences.This method

allows us to obtain a certain criterion when an G-invariant ideal is

actually generated by G-invariants, G being a product of symmetric groups.

1. DIVIDED DIFFERENCES AND A SCALAR PRODUCT ON A POLYNOMIAL RING.

Let A=(a , ...,a ) be a sequence of independent variables. Wc willi n
use actions of different operators on the polynomial ring Z[A] . Prese

rving the convention used in [L-S 1,2] wc assume that these operators

act from the right hand side.

Firstly, elements of the symmetric group 6 act on Z[A] by pern

muting the variables; if /i€ 6, FeZ[A] then the formula Fju(a  . . ,a ) -n In
=F (a  ..,a ) defines a structure of a (right) 6 -module on Z[A].

fined by

F - Fx
if a r

i a - a
i i+i

simple transposition. It turns out (see [B-G-G] , [D] ) that for a given

permutation \x wc can define an operator d=d as 3 o ... ofl in-

Denote by U) the (longest) permutation (n,n-1, . . .,1) . It is easy

to check that :

For every i—1,...,n-l, u9u = - 9 ; which implies that

d - (sgn ji) u)d w for /i€o .

(1.1)

tø/itø w il n

fr
Secondly wc have operatora d=s :Z[A] > Z[A] , i»l, ... f n-l de

where x = (1, . . . , i-l,±+l,±, i+2, — ,n) , i«1, . . . ,n-l f denotes the i-th

dependently of the reduced decomposition [i = x © ... ° t
l k
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Z[A] is a free rank n! module over the ring yym(&) of symmetric

polynomials in A. The following form:

is useful in a description of the module structure. For F,G € Z[A] wc

(1.2)

i i
write a for a ... a . Moreover for two such sequences I,J , wc1 n

write ICJ iff i  ..,i and I+J (resp. I-J) for the sequence11 n n

(i +j  ..,i+j ) (resp. (i-j  ..,i-j ) ). The sequence (n-l,n-2, ..11 n n 11 n n

. ..,1,0) will be denoted by En

The monomials {a } where I c E form a basis of Z[A] over .yym(A)n-l
Another such a basis is given by Schubert polynomials indexed by permuta

tions in 6 = Aut (A) . Recall that for a given permutation u€ 6 onen n
defines, following [L-S I], the Schubert polynomial X — X (A) , by

E
X - a a

V Wfi

where, here and in the sequel, E-E

polynomials is described by

The action of the d ' s on Schubertvn

X

O

if I (yLv) - Kv)-i(v)

(1.3) X 5

otherwise

The scalar product < , > is nondegenerate . The following proposi

tion describes, for instance, the dual bases of the bases mentioned above.

Denote by A (A) the r-th elementary symmetric polynomial in A.

< , > : Z[A] x 2 [A] > y^m(A)

define following [L-S I],[L-S 2], <F,G> = (F-G) 5 . This gives us a0)

bilinear form over y</m(A) which has the property

For every i*=1,...,n-l ; F,G € Z[A] <Fd ,G> - <F,G3 >. This

implies that for every fi€G , <Fd ,G> = <F,GS >n 11 —1

Convention. Given a sequence I— (i  ..,!) of nonnegative integers wc1 n
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Wc have

Proposition 1.4
I v I

(i) Let e =a1 , Ic E and f - (-1) TT A (A\A ), where forI n-l J k p
P

Jc E wc put K=E -J and the product is over p«=l, . .  n -l. Thenn-l n-l

(i) stems from [L-Sl] and (ii) stems from [L-S2] . Wc give here a

sketch of the proof of (ii) . Wc will show that

(by 1.2)

(by 1.1)

if l(n) -I (v' 1 ) - 1 )
(by 1.3)

otherwise

j
c (n-l f . . .,n-l) (n-times) . Finally, invoking that a a - 0 , unless

all the components of J are distinct, one sees that the only possibility

for a nonzero scalar product is fi-v . In this case, by the above calcu-

<e , f > - 6i J i,J

(ii) Let e = X (A) , n€ 6 and f - X (-A)w , v€ 6 . Then
H fl n V VCt) n

<e , f >- 5
\i v li, v

<X w, X > - (sgn fi) 8

for every fl, v € 6 . Wc have (E=E )n n

<X w, X > - <X w, a d >

- <(X u>) d ,a >u -i

- (sgn v) <(X d )w,aE>

E
(sgn v) <(X )w,a >

0

Write X « ][] a a (a €Z) , the sum over Ic E . Then
liv' 1

(X )waE -T /3 aJ (3 €Z) , the sum over J where J - loy+E c-l j J

lations, <X w, X > - (sgn fi)<l,a > - sgn ji. n
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2. SOME IDEALS IN THE POLYNOMIAL RING GENERALIZING RESULTANT.

Let A = (a  .  a ) , B = (b  ..,b ) be two sequences independentIn 1 in

variables. By VymiK) wc denote the ring of symmetric polynomials in A.

Moreover wc write ifqm,(K, B) - !fym(A) ® y</m.(B) . For the purposes of this

note wc need the following families of polynomials.

Schur S-polynomials

Define S (A-B) € ffym(A,B) by

Si (A-B) 1 * p,q k

Schur Q-polynomials

Define Q (A) € !fym(A) by

Then for nonnegative integers i, j wc put

Finally, if I « (i  ..,i ) is a partition and kis even, wc put

and for k-odd, Q (A) :=Q ± (A) . Since Qi (A)= 2J] S (A),

£(l)
wc infer that for every partition I, Q^. (A) - 2 P j (A) for some P j (A)

€ Z[A] uniquely defined by this equation ( £(I) is the number of nonzero

parts of I ) .

n m co

Jf (1-ta^" 1 JJ (1-tb ) = £s± (A-B) t ,
i-1 j-1 k-0

and if I - (i  ..,i ) is a partition (i.e., i £ ... ) , wc put1 k 1 k

Det fS 4 (A-B)

n -1 °° i
yj (l+a t) (l-a t) - £ Q (A) t
i-l i-l

Qi j (A)  Qi (A) Qj (A) + 2 ( "1)PQ i+P (A) Qj-P (A>
p-1

It is easy to see that for i> 0 , Q (A) -Qi (A) and for i+j>o ,

Q (A) := Pfaffian \Q^ (A) 1 4 ø,t * k
•- s' t -•
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Let d denote the partition (m-r, . . . ,m-r) ( (n-r) -times) .r

Let 9 c y^m(A,B) be the ideal generated by S^ +I <A"B ) wherer r

I c (r,..., r) ( (n-r) -times) .

Let 9' c !fum(&) be the ideal generated by P (A) wherer E Tin-r

I c (r,...,r) ((n-r) -times), and finally, let c ffym(A) be the ideal

generated by P (A) where I C (r,..., r) ( (n-r) -times) , r-evenE +1n-r-1

Let 3" c !fym{A,B) be the ideal of all polynomials T(A,B)€ y</m(A,B)

such that for every ring homomorphism f :^fijm(h,B) > K (a field) , if

card({f (a ),..., f (a ) } n {f (b ),... ,f (b )}) * r+l , then f <T(A,B))=0 .1 n 1 ro

Similarly, let J' c ifym(k) (resp. J n c ffym(A) r-even) be the ideal of

all polynomials T (A) such that for every ring homomorphism f:^^m(A) > K

(a field of characteristic * 2) , if

card ({f (a ),..., f(a )} n {f (-a ),..., f (-a )})* r+l ,In i «

The following result stems from [Pl] and [P2, Theorem 5.3].

Theorem 2.1

(iii) In if(/m(A) , for even r , 3"^ -

Define now the ideals £ c Z[A,B] , c Z[A] and c Z[A]

(r-even) by replacing in the above definitions y^m(A,B) by Z[A, B]

and y</m(A) by Z[A] respectively.

Wc now state the main result of this note.

Theorem 2.2

(i) In Z[A,B] , - ?rZ[A,B]

(ii) In Z[A] , 3^ -

(iii) In Z[A] , for even r , f£ n Z[A]r

( resp. card ({f(a ),..., f(a )} n {f <-a ), . .  f (-a )} nK ) 2: r+l ),In in

then f(T(A)) =0 .

(i) In y<//7l(A,B) , ff - £

(ii) in <fym(A) , 9^ = .
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Wc will prove (i), for instance. Let {e^^ be a basis of Z[A]

over %(A) and let <fa > a€A be it s dual basis. Then for any F-F (A)

in Z[A] wc have

!fym{B) ( card A'-m! ), wc have for F-F(A,B) € Z[A,B]

F(*)

where the sum over eteA, /3€A' , and W is the longest permutation in 6^

-Aut(B), Now, if F € $r then both T-f^ and F-f^' belong to 9^

Moreover for every G€Z[A,B], if 6€^ then Ga^ €fg , i-1, .. - ,n-l

and G9B €? f j-1, . . . ,m-l. Finally (*) shows that for F€^r
j r

where d € 9 . This gives the assertion. D
a, 3 r

Remark 2.3 If m=n r-n-1 , then Theorem 2.2 (i) gives the main result of

[F]. Indeed, it is proved in [P2, Proposition 5.8] that xis

relation A (A)- I A (A-B) A (B) implies that is generated byk p K"P
p-0

the differences of the elementary symmetric polynomials in A and B.

Corollary 2.4 Let e  ..,e be a y^m(A)-basis of Z[A], and let

f  ..,f be a yym(B)-basis of Z[B] . (For example, one can take {e^1 m!

{a 1 ; Ic E } or {e } - {X (A) ; .) Then a Z-basis of the d-th

component of J is given by

S (A-B) Sj (B) ep fq

F - I <ta ,F>-ea - E <F-yV caea

Denotingby <ca'ea'> a€A, , <V } a€A' a similar pair of bases of Z[B]over

I c-v 8»  |F 'V"/ e«  V '

F = V d -e -e ' ,
u a,p a 3

generated by A (A-B)- £ (-l) k"PAp (A) S^B) k-1 n . Then the
p-0

k
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n— le
where, for some k«=0,1,...,r , I contains (m-k) but does not contain

+ deg f -d. This follows from Theorem 2.2 by invoking a description of

a Z-basis of $ given in [P2, Proposition 5.9] (see also the references

there) .

3. WHEN AN INVARIANT IDEAL IS GENERATED BY SYMMETRIC POLYNOMIALS ?

The argument used in the proof of Theorem 2.2 can be summarized

in the following way. Let A  ..,A be sequences of independent

variables, A ( } - (a  ..,a ). Then the produet of symmetric groups1 n

G= 6 x ... x 6 acts on Z[A (1) , . .  A (k) ]«=Z[A ( } ] by permuting then n

variables. Let le Z[A() ] be an ideal and let VymiA. ) denote the ring

y</m(A ) ® ... ® #fym(A ) of polynomials symmetric in A , ...,A

separately.

Proposition 3.1 Let le Z[A ] be an ideal satisfying:

1) I is G-invariant.

A (i>
2) For some set of generators F  ..,F of I, F d belongs to Iit p it p j

Then I- J Z[A () ],. where J- I n iPymiK ), i.e. lis generated by

G-invariants .

By arguing as in the proof of Theorem 2.2 wc see that if for every

where x ( * denotes the simple transposition which exchanges a and

a . The first summand belongs to Iby 2), the second -by 1) .Since

(m-k+l) n"k+l and £(J ) s k ; p-l f ...,n! , q=1,...,m! ; |l | + |J I + deg eK K K p

for i-1,...,k ; j-1,...,n-l; p-1,...,t

A (i)
F€l, F 5 € I, i=1,...,k, j—l, ...,n-l, then our assertxon is true. For

every G € Z[A ] wc have

A (i> A (i) A (i> (i)
(G-F ) a -6- (f a )+(g a )• (f t* ') .pjpj i p J
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every element from I is a Z[A ] -combination of the F 's, the des-P

ired claim now follows . n

Sometimes, it is more convenient to rewrite the above fact as fol

lows. Assume that a subscheme V c Spee Z[A ] is given. For every

...,k ; j=1,...,n -1 , the map which exchanges the j-th with the

(j+l)-th component in the i-th factor of the above produet . Let I c

Z[A ] be the ideal of all polynomials which vanish on V ( := V afterK

a specialization in the field K ) for every such a specialization in

some field.

Indeed, the above assumptions guarantee that for F€l and G€Z[A ],

follows .  

For example, the situation considered in Theorem 2.2 (i) was:

k-=2, A=A (1) , B«A (2) , n*n , m=n , V - U V the sum over all pai12 I, JU V the sum over all pairs ofi,J

n n n n
field K, denote by <r {±) :K 1 x ... x K > K x ... xX , i-1, . . .

Proposition 3.2 Assume that for every field K, V has the following—— ' — ' '— -'—- K
propert ies:

1) If a€ V then <r (i) (a) € V for every i=1,...,k ; j=l, ... ,n -1.
K j K i

n n

2) V <fi Zeros ( a^- a )c K x ... x K for every i-1, ,k ;K j j+l

Then I - J Z[A (#) ] , where J = I n (>) )

(F'G) d belongs to I, i=1,...,k ; j«1, . . . ,n -1 ; and the assertion

sequences I = (lsi <. . .<i ,<n) , J - (l^j <. . .<j ,:Sm) and V1 r+l 1 r+l I, J

- Zeros ( a - b  ..,a - b. )
1 3 1 r+l D r+l



10

REFERENCES

[ B-G_G] i.N.Bernstein, i.M.Gelfand, S.l.Gelfand, Schubert cells and co

homology of the spaces G/P, Russian Math.Surv.2B, 1-26 (1973) .

[D] M.Demazure, Désingularisation des variétés de Schubert géneralisées,

Ann. scient. Éc. Norm. Sup. t.7, 53-88 (1974).

[F] K.G.Fischer, Symmetric polynomials and Hall's theorem, Discrete

Math. 69,225-234 (1988).

[L-Sl] A.Lascoux, M.P .Schiitzenberger, Polynomes de Schubert, C.R.Acad

Se. Paris, t.294 Serie I, 447-450 (1982).

[L-S2] A.Lascoux, M.P .Schiitzenberger,

mials, notes of the talk given by

rsity (November 1987) .

Schubert & Grothendieck polyno

the first author at Moscow Unive-

[Pl] P.Pragacz, A note on Elimination

215-221 (1987) .

theory, Indagationes Math. 49 (2)

[P2] P.Pragacz, Algebro-geometric applications of Schur S- and Q- poly

nomials, Séminaire d'Algébre Dubreil-Malliavin 1989-1990, to appear.

L.1.T.P., U.E.R. Maths Paris 7

2 Place Jussieu,

Inst.Math., Polish Acad.Sci.,

Chopina 12,

75251 PARIS Ced 05,FRANCE 87-100 TORUN, POLAND

and

Dept. Math., University of Bergen,

Allégt. 55, 5007 BERGEN,NORWAY





Depotbiblioteket

78sd 20 209



1


