Department of PURE MATHEMATICS

> No 59-25-04-91

DIVIDED DIFFERENCES AND IDEALS GENERATED BY
SYMMETRIC POLYNOMIALS
by
A. Lascoux \& P. Pragacz

UNIVERSITY OF BERGEN

Bergen, Norway

University of Bergen
Department of Mathematics
Allégaten 55
5007 BERGEN
Norway

DIVIDED DIFFERENCES AND
IDEALS GENERATED BY
SYMMETRIC POLYNOMIALS
by
A. Lascoux \& P. Pragacz

DIVIDED DIFFERENCES

AND IDEALS GENERATED BY SYMMETRIC POLYNOMIALS

A.Lascoux \& P.Pragacz ${ }^{\perp}$

INTRODUCTION

This note arose from a comparison of $[F]$ and [P1]. In [F], the author proved the following result. Let $\mathcal{F} \subset \mathbb{Z}[A, B]$ be the ideal in the ring of polynomials in the variables $A=\left(a_{1}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$, which consists of all polynomials $F(A, B)$ such that for all ring homomorphisms $f: \mathbb{Z}[A, B] \longrightarrow K($ a field) the following holds :

$$
\left\{f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right\}=\left\{f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right\} \quad \text { implies } f(F(A, B))=0 .
$$

Then \mathcal{F} is generated by

$$
\sum\left(a_{i_{1}} \ldots a_{i_{k}}-b_{i_{1}} \ldots b_{i_{k}}\right)
$$

where the sum is over all sequences $1 \leq i_{1}<\ldots<i_{k} \leq n, k=1, \ldots, n$; in other words \mathcal{F} is generated by differences of elementary symmetric polynomials in A and B. In the present note we generalize this result by describing the following more general ideals. Let $A=\left(a_{1}, \ldots, a_{n}\right)$, $B=\left(b_{1}, \ldots, b_{m}\right)$ be two sequences of independent variables. Fix $r \geq 0$ and let $\mathcal{F}_{r} \subseteq \mathbb{Z}[A, B]$ be the ideal of all polynomials $F(A, B)$ such that for every ring homomorphism $f: \mathbb{Z}[A, B] \longrightarrow K$ (a field) : card $\left(\left\{f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right\} \cap\left\{f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right\}\right) \geq r+1$ implies $f(F(A, B))=0$.
$\perp_{\text {supported }}$ in part by the N.A.V.F. during the stay at the University in Bergen (Norway).

We give an explicit description of the ideal \mathcal{F}_{I}, with the help of Schur S-polynomials, in Theorem 2.2. Note that if we replace $\mathbb{Z}[A, B]$ by the ring of polynomials symmetric in A and B, then the analogous ideal was described in [P1]. The key trick used in this note is a reduction of a description of \mathcal{F}_{r} to the latter case with the help of a scalar product on $\mathbb{Z}[A]$ which was defined in [L-S 1] using divided differences. This method allows us to obtain a certain criterion when an G-invariant ideal is actually generated by G-invariants, G being a product of symmetric groups.

1. DIVIDED DIFFERENCES AND A SCALAR PRODUCT ON A POLYNOMIAL RING.

Let $A=\left(a_{1}, \ldots, a_{n}\right)$ be a sequence of independent variables. We will use actions of different operators on the polynomial ring $\mathbb{Z}[A]$. Preserving the convention used in $[I-S 1,2]$ we assume that these operators act from the right hand side.

Firstly, elements of the symmetric group G_{n} act on $\mathbb{Z}[A]$ by permuting the variables; if $\mu \in G_{n}, F \in \mathbb{Z}[A]$ then the formula $F \mu\left(a_{1}, \ldots, a_{n}\right)=$ $=F\left(a_{\mu(1)}, \ldots, a_{\mu(n)}\right)$ defines a structure of a (right) G_{n}-module on $\mathbb{Z}[A]$.

Secondly we have operators $\partial_{i}=\partial_{i}^{A}: \mathbb{Z}[A] \longrightarrow \mathbb{Z}[A], i=1, \ldots, n-1$ defined by

$$
F \partial_{i}=\frac{F-F \tau_{i}}{a_{i}-a_{i+1}}
$$

where $\tau_{i}=(1, \ldots, i-1, i+1, i, i+2, \ldots, n), i=1, \ldots, n-1$, denotes the $i-t h$ simple transposition. It turns out (see [B-G-G],[D]) that for a given permutation μ we can define an operator $\partial_{\mu}=\partial_{\mu}^{A}$ as $\partial_{i_{1}}{ }^{\circ} \ldots \partial_{i_{k}}$ independently of the reduced decomposition $\mu=\tau_{i_{1}} \circ \ldots \circ \tau_{i_{k}}$.

Denote by ω the (longest) permutation $(n, n-1, \ldots, 1)$. It is easy to check that:
(1.1)

$$
\begin{aligned}
& \text { For every } i=1, \ldots, n-1, \quad \omega \partial_{i} \omega=-\partial_{n-i} ; \text { which implies that } \\
& \partial_{\omega \mu \omega}=(\operatorname{sgn} \mu) \omega \partial_{\mu} \omega \text { for } \mu \in G_{n} .
\end{aligned}
$$

$\mathbb{Z}[A]$ is a free rank n ! - module over the ring φ ym (A) of symmetric polynomials in A. The following form:

$$
<,>: \mathbb{Z}[\mathrm{A}] \times \mathbb{Z}[\mathrm{A}] \longrightarrow \varphi_{y m}(\mathrm{~A})
$$

is useful in a description of the module structure. For $F, G \in \mathbb{Z}[\mathbb{A}]$ we define following [I-S 1],[I-S 2], $\langle F, G\rangle=(F \cdot G) \partial_{\omega}$. This gives us a bilinear form over φ ym(A) which has the property

$$
\begin{align*}
& \text { For every } i=1, \ldots, n-1 ; F, G \in \mathbb{Z}[A]\left\langle F \partial_{i}, G\right\rangle=\left\langle F, G \partial_{i}\right\rangle \text {. This } \tag{1.2}\\
& \text { implies that for every } \mu \in G_{n^{\prime}}\left\langle F \partial_{\mu^{\prime}} G\right\rangle=\left\langle F, G \partial_{\mu^{-1}}\right\rangle .
\end{align*}
$$

Convention. Given a sequence $I=\left(i_{1}, \ldots, i_{n}\right)$ of nonnegative integers we write a^{I} for $a_{1}^{i_{1}} \ldots a_{n}^{i_{n}}$. Moreover for two such sequences I, J, we write ICJ iff $i_{1} \leq j_{1}, \ldots, i_{n} \leq j_{n}$ and $I+J$ (resp. I-J) for the sequence $\left(i_{1}+j_{1}, \ldots, i_{n}+j_{n}\right) \quad\left(\right.$ resp. $\quad\left(i_{1}-j_{1}, \ldots, i_{n}-j_{n}\right)$). The sequence ($n-1, n-2, \ldots$ $\ldots, 1,0$) will be denoted by E_{n}.

The monomials $\left\{a^{I}\right\}$ where $I \subset E_{n-1}$ form a basis of $\mathbb{Z}[A]$ over $\varphi y m(A)$. Another such a basis is given by Schubert polynomials indexed by permutations in $G_{n}=A u t(A)$. Recall that for a given permutation $\mu \in G_{n}$ one defines, following [L-S 1], the Schubert polynomial $X_{\mu}=X_{\mu}(A)$, by

$$
x_{\mu}=a^{E} \partial_{\omega \mu}
$$

where, here and in the sequel, $E=E_{n}$. The action of the $\partial_{v}{ }^{\prime} s$ on Schubert polynomials is described by

$$
x_{\mu} \partial_{\nu}= \begin{cases}x_{\mu \nu} & \text { if } \ell(\mu \nu)=\ell(\mu)-\ell(\nu) \tag{1.3}\\ 0 & \text { otherwise }\end{cases}
$$

The scalar product $<,>$ is nondegenerate. The following proposition describes, for instance, the dual bases of the bases mentioned above.

Denote by $\Lambda_{r}(A)$ the r-th elementary symmetric polynomial in A.

We have

Proposition 1.4
(i) Let $e_{I}=a^{I}, I \subset E_{n-1}$ and $f_{J}=(-1)^{|K|} \Pi_{k_{p}}\left(A \backslash A_{p}\right)$, where for $J \subset E_{n-1}$ we put $K=E_{n-1}-J$ and the product is over $p=1, \ldots, n-1$. Then

$$
\left\langle e_{I}, f_{J}\right\rangle=\delta_{I, J}
$$

(ii) Let $e_{\mu}=X_{\mu}(A), \mu \in G_{n}$ and $f_{\nu}=X_{\nu \omega}(-A) \omega, v \in G_{n}$. Then

$$
<e_{\mu}, f_{v}>=\delta_{\mu, v}
$$

(i) stems from [I-S1] and (ii) stems from [L-S2]. We give here a sketch of the proof of (ii). We will show that

$$
<\mathrm{X}_{\mu} \omega, \mathrm{X}_{\nu \omega}>=(\operatorname{sgn} \mu) \delta_{\mu, v}
$$

for every $\quad \mu, v \in G_{n}$. We have $\left(E=E_{n}\right)$

$$
<X_{\mu} \omega, X_{\nu \omega}>=<X_{\mu} \omega, a^{E} \partial_{\omega \nu \omega}>
$$

$$
=<\left(X_{\mu}^{\omega} \omega \partial_{\omega \nu^{-1} \omega}, a^{E}\right\rangle \quad \text { (by 1.2) }
$$

$$
=(\operatorname{sgn} v)<\left(X_{\mu} \partial_{v^{-1}}\right) \omega, a^{E}>\quad \text { (by 1.1) }
$$

$$
= \begin{cases}(\operatorname{sgn} v)<(\mathrm{X} \\ \left.\mu \nu^{-1}\right) \omega, a^{E}> & \text { if } \ell(\mu)-\ell\left(v^{-1}\right)=\ell\left(\mu \nu^{-1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Write $X_{\mu \nu}^{-1}=\sum \alpha_{I} a^{I} \quad\left(\alpha_{I} \in \mathbb{Z}\right)$, the sum over $I \subset E$. Then $\left(X{ }_{\mu \nu}^{-1}\right) \omega \cdot a^{E}=\sum \beta_{J} a^{J} \quad\left(\beta_{J} \in \mathbb{Z}\right)$, the sum over J where $J=I \omega+E \subset$ c ($n-1, \ldots, n-1$) (n-times) . Finally, invoking that $a^{J} \partial_{\omega}=0$, unless all the components of J are distinct, one sees that the only possibility for a nonzero scalar product is $\mu=v$. In this case, by the above calculations, $<X_{\mu} \omega, X_{\mu w}>=(\operatorname{sgn} \mu)<1, a^{E}>=\operatorname{sgn} \mu . \quad$.
2. SOME IDEALS IN THE POLYNOMIAL RING GENERALIZING RESULTANT.

Let $A=\left(a_{1}, \ldots, a_{n}\right), B=\left(b_{1}, \ldots, b_{m}\right)$ be two sequences independent variables. By $\mathscr{C} \boldsymbol{y} m(\mathrm{~A})$ we denote the ring of symmetric polynomials in A. Moreover we write $\varphi_{y m}(A, B)=\varphi_{y m}(A) \otimes \varphi_{y m}(B)$. For the purposes of this note we need the following families of polynomials.

Schur S-polynomials
Define $S_{i}(A-B) \in \operatorname{Sym}_{y}(A, B)$ by

$$
\prod_{i=1}^{n}\left(1-t a_{i}\right)^{-1} \prod_{j=1}^{m}\left(1-t b_{j}\right)=\sum_{k=0}^{\infty} S_{i}(A-B) t^{i},
$$

and if $I=\left(i_{1}, \ldots, i_{k}\right)$ is a partition (i.e., $i_{1} \geq \ldots \geq_{i_{k}} \geq 0$), we put

$$
S_{I}(A-B) \quad:=\operatorname{Det}\left[S_{i_{p}-p+q}(A-B)\right] \quad 1 \leq p, q \leq k
$$

Schur Q-polynomials
Define $Q_{i}(A) \in \mathscr{Y} / \mathrm{m}(\mathrm{A})$ by

$$
\prod_{i=1}^{n}\left(1+a_{i} t\right)\left(1-a_{i} t\right)^{-1}=\sum_{i=1}^{\infty} Q_{i}(A) t^{i}
$$

Then for nonnegative integers i, j we put

$$
Q_{i, j}(A)=Q_{i}(A) Q_{j}(A)+2 \sum_{p=1}^{j}(-1)^{p} Q_{i+p}(A) Q_{j-p}(A)
$$

It is easy to see that for $i>0, Q_{(i, 0)}(A)=Q_{i}(A)$ and for $i+j>0$, $Q_{i, j}(A)=-Q_{j, i}(A)$.

Finally, if $I=\left(i_{1}, \ldots, i_{k}\right)$ is a partition and k is even, we put

$$
Q_{I}(A) \quad:=\text { Pfaffian }\left[Q_{i_{s^{\prime}} t}(A)\right] \quad 1 \leq s, t \leq k
$$

and for k-odd, $Q_{I}(A):=Q_{\left(i_{1}, \ldots, i_{k}, 0\right)}(A)$. Since $\left.Q_{i}(A)=2 \sum_{p} S_{(p, 1}{ }^{i-p}\right)$
(A), we infer that for every partition $I, Q_{I}(A)=2^{\ell(I)} P_{I}(A)$ for some $P_{I}(A)$ $\in \mathbb{Z}[A]$ uniquely defined by this equation $(\ell(I)$ is the number of nonzero parts of I).

Let \square_{r} denote the partition (m-r,...,m-r) ($\left.n-r\right)$-times).
Let $g_{r} \subset \varphi_{y m(A, B)}$ be the ideal generated by $S_{D_{r}+I}(A-B)$ where $I \subset(r, \ldots, r)((n-r)-t i m e s)$.

Let $g_{r}^{\prime} \subset \varphi_{y m}(A)$ be the ideal generated by $P_{E_{n-r}}(A)$ where $I \subset(r, \ldots, r)((n-r)-t i m e s)$, and finally, let $g_{r} \subset \mathscr{S}_{y m}(A)$ be the ideal generated by $P_{E_{n-r-1}}(A)$ where $I \subset(r, \ldots, r)((n-r)$-times), r-even.

Let $\mathcal{J}_{r} \subset$ $\operatorname{Cym}(\mathrm{A}, \mathrm{B})$ be the ideal of all polynomials $T(A, B) \in \operatorname{Sym}(A, B)$ such that for every ring homomorphism $f: \varphi_{y m}(A, B) \longrightarrow K(a f i e l d)$, if $\operatorname{card}\left(\left\{f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right\} \cap\left\{f\left(b_{1}\right), \ldots, f\left(b_{m}\right)\right\}\right) \geq r+1$, then $f(T(A, B))=0$.
 all polynomials $T(A)$ such that for every ring homomorphism $f: \varphi y m(A) \longrightarrow K$ (a field of characteristic $\neq 2$), if

$$
\operatorname{card}\left(\left\{f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right\} \cap\left\{f\left(-a_{1}\right), \ldots, f\left(-a_{n}\right)\right\}\right) \geq r+1,
$$

(resp. card $\left.\left(\left\{f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right\} \cap\left\{f\left(-a_{1}\right), \ldots, f\left(-a_{n}\right)\right\} \cap K^{*}\right) \geq r+1\right)$, then $f(T(A))=0$.

The following result stems from [P1] and [P2, Theorem 5.3].
Theorem 2.1
(i) In $\operatorname{\varphi ym}(A, B), \mathcal{T}_{r}=\mathcal{I}_{r}$.
(ii) In $\operatorname{limm}(\mathrm{A}), \operatorname{Jig}_{\mathrm{r}}^{\prime}=g_{\mathrm{r}}^{\prime}$.

Define now the ideals $\mathcal{F}_{\mathrm{r}} \subset \mathbb{Z}[\mathrm{A}, \mathrm{B}], \mathcal{F}_{\mathrm{r}}^{\prime} \subset \mathbb{Z}[\mathbb{A}]$ and $\mathcal{F}_{\mathrm{r}} \subset \mathbb{Z}[\mathrm{A}]$ (r-even) by replacing in the above definitions $\operatorname{lym}(A, B)$ by $\mathbb{Z}[A, B]$ and $\varphi_{y m(A)}$ by $\mathbb{Z}[A]$ respectively.

We now state the main result of this note.
Theorem 2.2

(i)	In $\mathbb{Z}[A, B], \mathscr{F}_{r}=\mathcal{G}_{r} \mathbb{Z}[A, B]$.
(ii)	In $\mathbb{Z}[A], \mathcal{F}_{r}^{\prime}=\mathcal{G}_{r}^{\prime} \mathbb{Z}[A]$.
(iii)	In $\mathbb{Z}[A]$, for even $r, \mathcal{F}_{r}=\mathcal{G}_{r}^{\mathbb{Z}} \mathbb{Z}[A]$.

We will prove (i), for instance. Let $\left\{e_{\alpha}\right\}_{\alpha \in \Lambda}$ be a basis of $\mathbb{Z}[A]$ over $\mathscr{H} y(A)$ and let $\left\{f_{\alpha}\right\} \alpha \in \Lambda$ be its dual basis. Then for any $F=F(A)$ in $\mathbb{Z}[A]$ we have

$$
F=\sum<f_{\alpha}, F>\cdot e_{\alpha}=\sum\left(F \cdot f_{\alpha}\right) \partial_{\omega} \cdot e_{\alpha}
$$

 Sym(B) (card $\Lambda^{\prime}=m!$), we have for $F=F(A, B) \in \mathbb{Z}[A, B]$

$$
\begin{equation*}
F=\sum\left(F \cdot f_{\alpha}\right) \partial_{\omega} \cdot\left(F \cdot f_{\beta}^{\prime}\right) \partial_{\omega^{\prime}} \cdot e_{\alpha} \cdot e_{\beta}^{\prime} \tag{*}
\end{equation*}
$$

where the sum over $\alpha \in \Lambda, \beta \in \Lambda^{\prime}$, and ω^{\prime} is the longest permutation in $G_{m}=$ $=$ Aut (B). Now, if $F \in \mathcal{F}_{r}$ then both $F \cdot f_{\alpha}$ and $F \cdot f_{\beta}$, belong to F_{r}. Moreover for every $G \in \mathbb{Z}[A, B]$, if $G \in \mathcal{F}_{r}$ then $G \partial_{i}^{A} \in \mathcal{G}_{r}, i=1, \ldots, n-1$ and $G \partial_{j}^{B} \in \mathcal{G}_{r}, j=1, \ldots, m-1 . \operatorname{Finally}(*)$ shows that for $F \in \mathcal{F}_{r}$

$$
F=\sum d_{\alpha, \beta} \cdot e_{\alpha} \cdot e_{\beta}
$$

where $d_{\alpha, \beta} \in \mathcal{G}_{r}$. This gives the assertion.

Remark 2.3 If $m=n \quad r=n-1$, then Theorem $2.2(i)$ gives the main result of [F]. Indeed, it is proved in [P2, Proposition 5.8] that \mathcal{G}_{n-1} is generated by $\Lambda_{k}(A-B)=\sum_{p=0}^{k}(-1)^{k-p} \Lambda_{p}(A) \quad S_{k-p}(B) \quad k=1, \ldots, n \quad$. Then the relation $\Lambda_{k}(A)=\sum_{p=0}^{k} \Lambda_{p}(A-B) \quad \Lambda_{k-p}(B)$ implies that g_{n-1} is generated by the differences of the elementary symmetric polynomials in A and B.

Corollary 2.4 Let $e_{1}, \ldots, e_{n!}$ be a $\varphi y m(A)$-basis of $\mathbb{Z}[A]$, and let $f_{1}, \ldots, f_{m!}$ be a $\mathscr{y} m(B)$-basis of $\mathbb{Z}[B]$. (For example, one can take $\left\{e_{i}\right\}=$ $=\left\{a^{I} ; I \subset E_{n-1}\right\}$ or $\left.\left\{e_{i}\right\}=\left\{X_{\mu}(A) ; \mu \in G_{n}\right\}.\right)$ Then a \mathbb{Z}-basis of the d-th component of \mathcal{F}_{r} is given by

$$
S_{I_{k}}(A-B) S_{J_{k}}(B) e_{p} f_{q}
$$

where, for some $k=0,1, \ldots, r, I_{k}$ contains $(m-k)^{n-k}$ but does not contain $(m-k+1)^{n-k+1}$ and $\ell\left(J_{k}\right) \leq k ; p=1, \ldots, n!, q=1, \ldots, m!;\left|I_{k}\right|+\left|J_{k}\right|+\operatorname{deg} e_{p}$ $+\operatorname{deg} f_{q}=d$. This follows from Theorem 2.2 by invoking a description of a \mathbb{Z}-basis of \mathcal{G}_{r} given in [P2, Proposition 5.9] (see also the references there).
3. WHEN AN INVARIANT IDEAL IS GENERATED BY SYMMETRIC POLYNOMIALS ?

The argument used in the proof of Theorem 2.2 can be summarized in the following way. Let $A^{(1)}, \ldots, A^{(k)}$ be sequences of independent variables, $A^{(i)}=\left(a_{1}^{(i)}, \ldots, a_{n_{i}}^{(i)}\right)$. Then the product of symmetric groups $G=G_{n_{1}} x \ldots x G_{n_{k}}$ acts on $\mathbb{Z}\left[A^{(1)}, \ldots, A^{(k)}\right]=\mathbb{Z}\left[A^{(\cdot)}\right]$ by permuting the variables. Let $I \subset \mathbb{Z}\left[A^{(\cdot)}\right]$ be an ideal and let φ ym $\left(A^{(\cdot)}\right)$ denote the ring $\varphi y m\left(A^{(1)}\right) \otimes \ldots \otimes \operatorname{\varphi ym}\left(A^{(k)}\right)$ of polynomials symmetric in $A^{(1)} \ldots, A^{(k)}$ separately.

Proposition 3.1 Let $I C \mathbb{Z}\left[\mathbb{A}^{(\cdot)}\right]$ be an ideal satisfying:

1) I is G-invariant.
2) For some set of generators F_{1}, \ldots, F_{t} of $I, F_{p} \partial_{j}^{A^{(i)}}$ belongs to I for $i=1, \ldots, k ; j=1, \ldots, n_{i}-1 ; p=1, \ldots, t$.
Then $I=J \mathbb{Z}\left[A^{(\cdot)}\right]$, where $J=I \cap$ Sym $\left(A^{(\cdot)}\right)$, i.e. I is generated by G-invariants.

By arguing as in the proof of Theorem 2.2 we see that if for every $F \in I, F \partial_{j}^{(i)} \in I, i=1, \ldots, k, j=1, \ldots, n_{i}-1$, then our assertion is true. For every $G \in \mathbb{Z}\left[A^{(\cdot)}\right]$ we have

$$
\left(G \cdot F_{p}\right) \partial_{j}^{A^{(i)}}=G \cdot\left(F_{p} \partial_{j}^{A^{(i)}}\right)+\left(G \partial_{j}^{A^{(i)}}\right) \cdot\left(F_{p} \tau_{j}^{(i)}\right)
$$

where $\tau_{j}^{(i)}$ denotes the simple transposition which exchanges $a_{j}^{(i)}$ and $a_{j+1}^{(i)}$. The first summand belongs to I by 2), the second - by 1). Since
every element from I is a $\mathbb{Z}\left[A^{(\cdot)}\right]$-combination of the $F_{p}{ }^{\prime} s$, the desired claim now follows.

Sometimes, it is more convenient to rewrite the above fact as follows. Assume that a subscheme $v \subset \operatorname{Spec} \mathbb{Z}\left[A^{(\cdot)}\right]$ is given. For every field K, denote by $\sigma_{j}^{(i)}: K^{n_{1}} x \ldots x^{n^{k}} \longrightarrow K^{n_{1}} x \ldots x^{n}{ }^{n}, \quad i=1, \ldots$ $\ldots, k ; j=1, \ldots, n_{i}-1$, the map which exchanges the $j-t h$ with the ($j+1$)-th component in the $i-t h$ factor of the above product. Let $I C$ $\mathbb{Z}\left[A^{(\cdot)}\right]$ be the ideal of all polynomials which vanish on $V_{K}(:=V$ after a specialization in the field K) for every such a specialization in some field.

Proposition 3.2 Assume that for every field K, V_{K} has the following properties:

1) If $a \in V_{K}$ then $\sigma_{j}^{(i)}(a) \in V_{K}$ for every $i=1, \ldots, k ; j=1, \ldots, n_{i}-1$.
2) $v_{k} \notin \operatorname{zeros}\left(a_{j}^{(i)}-a_{j+1}^{(i)}\right) \subset k^{n_{1}} x \ldots x k^{n_{k}}$ for every $i=1, \ldots, k$; $j=1, \ldots, n_{i}-1$.

Then $I=J \mathbb{Z}\left[A^{(\cdot)}\right]$, where $J=I \cap \operatorname{\varphi ym}\left(A^{(\cdot)}\right)$.
Indeed, the above assumptions guarantee that for $F \in I$ and $G \in \mathbb{Z}\left[A^{(\cdot)}\right]$, $(F \cdot G) \partial_{j}^{A^{(i)}}$ belongs to $I, i=1, \ldots, k ; j=1, \ldots, n_{i}-1$; and the assertion follows. -

For example, the situation considered in Theorem 2.2(i) was:
$k=2, A=A^{(1)}, B=A^{(2)}, n=n_{1}, m=n_{2}, V=U V_{I, J}$ the sum over all pairs of sequences $I=\left(1 \leq i_{1}<\ldots<i_{r+1} \leq n\right), J=\left(1 \leq j_{1}<\ldots<j_{r+1} \leq m\right)$ and $V_{I, J}=$ $=\operatorname{zeros}\left(a_{i_{1}}-b_{j_{1}}, \ldots, a_{i_{r+1}}-b_{j_{r+1}}\right)$.

REFERENCES

[B-G-G] I.N.Bernstein, I.M.Gelfand, S.I.Gelfand, Schubert cells and cohomology of the spaces G / P, Russian Math.Surv.28, 1-26 (1973).
[D] M.Demazure, Désingularisation des variétés de Schubert géneralisées, Ann.scient. Éc. Norm. Sup. t.7, 53-88 (1974).
[F] K.G.Fischer, Symmetric polynomials and Hall's theorem, Discrete Math. 69,225-234 (1988).
[L-S1] A.Lascoux, M.P.Schützenberger, Polynômes de Schubert, C.R.Acad. Sc. Paris, t. 294 Serie I, 447-450 (1982).
[I-S2] A.Lascoux, M.P.Schützenberger, Schubert \& Grothendieck polynomials, notes of the talk given by the first author at Moscow University (November 1987).
[P1] P.Pragacz, A note on Elimination theory, Indagationes Math. 49 (2) 215-221 (1987).
[P2] P.Pragacz, Algebro-geometric applications of Schur S- and Q- polynomials, Séminaire d'Algèbre Dubreil-Malliavin 1989-1990, to appear.
L.I.T.P., U.E.R. Maths Paris 7

2 Place Jussieu,
75251 PARIS Ced 05,FRANCE

Inst.Math., Polish Acad.Sci., Chopina 12,

87-100 TORUN, POLAND
and

Dept.Math., University of Bergen,

Allégt. 55, 5007 BERGEN, NORWAY

