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DIVIDED DIFFERENCES
AND IDEALS GENERATED BY SYMMETRIC POLYNOMIALS

A.Lascoux & P.Pragacz‘L

INTRODUCTION

This note arose from a comparison of [F] and [P1l]. In [F], the au-
thor proved the following result. Let 4 ¢ Z[A,B] be the ideal in the
ring of polynomials in the variables A=(a1,...,an) and B=(b1,...,bn),
which consists of all polynomials F (A, B) such that for all ring homo-

morphisms f: Z(A,B] — K ( a field ) the following holds :
{f(al),...,f(an)) = (f(bl),...,f(bn)) implies f(F(A,B)) = 0.
Then ¥ is generated by

L (a -..a, —b ... ),
5l k it k

where the sum is over all sequences 15i1<...<ik5n o= N A
other words ¥ is generated by differences of elementary symmetric
polynomials in A and B. In the present note we generalize this result
by describing the following more general ideals. Let A=(a1,...,an) q
B=(b1""'bm) be two sequences of independent variables.

Fix rz0 and let ?r € Z[A,B] be the ideal of all polynomials F (A,B)
such that for every ring homomorphism £: Z[A,B] — K (a field )

card ((f(al),...,f(an)} N {f(bl),...,f(bn))) > r+1 implies £ (F(A,B))=0.

dL
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We give an explicit description of the ideal ?r , with the help of
Schur S-polynomials, in Theorem 2.2. Note that if we replace Z[A,B] by
the ring of polynomials symmetric in A and B, then the analogous ideal
was described in [P1l]. The key trick used in this note is a reduction of
a description of ?r to the latter case with the help of a scalar product
on Z[A] which was defined in [L-S 1] using divided differences.This method
allows us to obtain a certain criterion when an G-invariant ideal is

actually generated by G-invariants, G being a product of symmetric groups.

1. DIVIDED DIFFERENCES AND A SCALAR PRODUCT ON A POLYNOMIAL RING.

Let A=(a1,...,a ) be a sequence of independent variables. We will

n
use actions of different operators on the polynomial ring Z[A]. Prese-
rving the convention used in [L-S 1,2] we assume that these operators

act from the right hand side.

Firstly, elements of the symmetric group Gn act on Z[A] by per-
muting the variables; if ueGn,FEZ[A] then the formula Fu(al,...,a ) =
n

= F(a e ) defines a structure of a (right) Gn—module on Z[A].

a
M (n)

Secondly we have operators 6i=6? :Z[A] — Z[A] , i=1,...,n-1 de-

fined by
F = FtT
F o8 = e,
i a- a
i i+l
where Ti = (1,...,i-1,i+1,i,i+2,...,n) , i=1,...,n-1, denotes the i-th
simple transposition. It turns out (see [B-G-G],[D]) that for a given
A
permutation § we can define an operator 4 =0 as ai O Soa O ai in-
koM 1 k
dependently of the reduced decomposition u = ti G Goo © Ti 5
1 k
Denote by w the (longest) permutation (n,n-1,...,1) . It is easy
to check that:
(1.1) For every i=1l,...,n-1, waiw = - 6n . ; which implies that

W = (sgn ) wauw for ueGn.



Z[A] is a free rank n! - module over the ring fym(A) of symmetric

polynomials in A. The following form:
<, > : Z[A] x Z[A] —> ¥ym(A)

is useful in a description of the module structure. For F,G € Z[A] we
define following [L-S 1], [L-S 2], <F,G> = (F'G) aw . This gives us a

bilinear form over Yfym(A) which has the property

(1.2) For every i=l,...,n-1 ; F,G € Z[A] <F61,G> = <F,G81>. This
implies that for every ueG , <F6“,G> = <F,Gd 1>.
n -
M
Convention. Given a sequence I=(i1,...,i ) of nonnegative integers we
Dttt n
I i1 -
n
write a for a1 Al . Moreover for two such sequences I,J , we
n

write IcJ 4iff i_=j

= .,insjn and I+J (resp. I-J) for the sequence

r .-

(11+31,...,1n+jn) (resp. (11—31,...,1n—3n) ). The segquence (N=NST =25
...+,1,0) will be denoted by E .
n

I
The monomials {a } where I C E v form a basis of Z[A] over fym(a).
ne
Another such a basis is given by Schubert polynomials indexed by permuta-
tions in G = Aut(a). Recall that for a given permutation u € Gn one

n

defines, following [L-S 1], the Schubert polynomial X# = X“(A) , by

X = aE ORI
M Wl
where, here and in the sequel, E=En. The action of the av’s on Schubert
polynomials is described by
X“V if L(uv) = L) -t
(I523)) X 0d =
1]

(¢] otherwise

The scalar product < , > is nondegenerate. The following proposi-
tion describes, for instance, the dual bases of the bases mentioned above.

Denote by Ar(A) the r-th elementary symmetric polynomial in A.



We have

Proposition 1.4

. I Ix|
(1) Let eI =a , I C En_1 and fJ (-1) n Ak (A\Ap), where for
P

J C E 1 we put K=E 1-J and the product is over p=1l,...,n-1l. Then

- n-

<e ,£> =28
' I,J

(ii) Let e =X (A), p€ 6 and £ =X (-A)w , v € O . Then
V3 [V n v vw n

<e ,f > =26

T v

(i) stems from [L-S1] and (ii) stems from [L-S2]. We give here a
sketch of the proof of (ii). We will show that

<X“w,wi> = (sgn u) SHIV

for every M,V € G . We have (E=En)
n

E
<X w,X > = <X w,a d >
M VW M w

vw
E
= <xwa _ ,a> (by 1.2)
wy w
= (sgnv) <(X 3 wa> (by 1.1)
TR

(sgn v) <(X _)wa> if Lw-Lw ™ = e
= MY (by 1.3)

0 otherwise .

I

Write X _ = Y « a  (« € Z) , the sum over I C E . Then

pv
J
(X 1)w-aE =3 BJ a (BJ € Z) , the sum over J where J = Iw+E C
pv
J

< (n-1,...,n-1) (n-times) . Finally, invoking that a aw = 0 , unless
all the components of J are distinct, one sees that the only possibility

for a nonzero scalar product is p=v . In this case, by the above calcu-

E
lations, <qu,xuw> = (sgn p)<l,a > = sgn U. o



2. SOME IDEALS IN THE POLYNOMIAL RING GENERALIZING RESULTANT.

Let A = (al,...,an) r B = (bl,...,bm) be two sequences independent
variables. By Jfym(A) we denote the ring of symmetric polynomials in A.
Moreover we write Sym(a,B) = fym(aA) ® $ym(B). For the purposes of this

note we need the following families of polynomials.

Schur S-polynomials

Define Si(A—B) € ¥Yym(a,B) by

n 1 m 0 i
M (1-ta) .n (1—tbj) = 3 S, (Aa-B) t,
i=1 =1 k=0
and if I = (il,...,ik) is a partition (i.e., ilz e . ZikZO ) , we put
= o= - =< =
S_(A-B) := Det [ s, _p+q(A B) ] 1 =<p,qg=k
P

Schur Q-polynomials

Define Qi(A) € ¥ym(a) by

n o]
Ma+at) a-at)™ = Lo@ t
i=1 i=1

Then for nonnegative integers i, j we put

j
A) = A R A —iy A a
Qi,j( ) Qi( ) Qj( ) Z ({=aly Qi+p( ) Qj-p( )

p=1
It is easy to see that for i > 0 , Q(io)(A) = Qi(A) and for i+3j>0 ,
Qi,j(A) = -Qj’i(A)
Finally, if I = (il,...,ik) is a partition and k is even, we put
QI(A) := Pfaffian [ Q. s (A) ] IS <Nsg it =<l
st
- .= A). Si A)= 2 S
and for k-odd, Q (B):=Q .,  (A). Since Q (A) L yop (B
1 k P (p,1 )
. o £(1)
we infer that for every partition I, QI(A) = 2 PI(A) for some PI(A)

€ Z[A] uniquely defined by this equation ( £(I) is the number of nonzero

parts of I ).



Let O denote the partition (m-r,...,m-r) ((n-r)-times).
i<

Let ¥ < ¥ym(A,B) be the ideal generated by SE1 e (A-B) where
T
r

Ic (r,...,r) ((n-r)-times).

Let 3’ c $ym(a) be the ideal generated by P +I(A) where
r
N=r

Ic (t,...,r) ((n-r)-times), and finally, let 9: c ¥ym(A) be the ideal

generated by PE +I(A) where I ¢ (r,...,r) ((n-r)-times), r—-even.
n-r-1

Let ﬂrc fym(A,B) be the ideal of all polynomials T(A,B)e fym(a,B)
such that for every ring homomorphism f:quiA,B) ——> K (a field) , if
card({f(al),...,f(an)} N {f(bl),...,f(bm)}) = r+1 , then £(T(A,B))=0
Similarly, let 7; c fym(a) (resp. g; < $ym(n) r-even) be the ideal of
all polynomials T(A) such that for every ring homomorphism f£:¥ym(A)—> K
(a field of characteristic # 2), if

card ({f(a ),...,f(a)} n {f(-a),...,£(-a )} =z r+l ,
1 n 1 n

v

( resp. card ({f(a)),...,f(a )} n {f(-a ), f(=2a )} N K*) r+l ),
2k n 8 n

then £(T(Aa)) =0
The following result stems from [P1] and [P2, Theorem 5.3].

Theorem 2.1
(1) In ¥ym(a,B) , 5’7r = 3:

((iet)) In Yym(a) , f’T; = .?’r

(iii) In ¥ym(a) , for even r , ﬂ: = 5:

Define now the ideals ?r c Z[A,B] , ?; c Z[A] and ?; c ZI[A]
(r-even) by replacing in the above definitions Yym(A,B) by Z[A,B]

and $ym(a) by Z[A] respectively.

We now state the main result of this note.

Theorem 2.2
(i) In Z[A,B] , ?r = ?rZ[A,B]
((stal)) In Z[a] , ¥’ = $'Z[A]

r is

(iii) In Z[A] , for even r , ?: = 9:Z[A]



We will prove (i), for instance. Let {ea}aeA be a basis of Z[A]

over fym(a) and let {fa}aEA be its dual basis. Then for any F=F(a)

in Z[A] we have

F = <f F>- = . . .
Y. o’ > e, Y (F fa)aw e,

Denoting by {ea'} T CE) a similar pair of bases of Z[B] over

ael’ o e’
fym (B) ( card A’=m! ), we have for F=F(A,B) € Z[A,B]
(*) F = Z (B8, * (E £, e " eg’

where the sum over a€fh, BeA’, and w’ is the longest permutation in © =
m

=Aut (B) . Now, if F € ?r then both F-foc and F'fB’ belong to ¥ .
ie

. A .
Moreover for every GeZ[A,B], if Ge?r then Gai € 9: , i=1,...,n-1

and Gaj € 3r , j=1,...,m-1. Finally (*) shows that for Fe¥
e

F =) da,B.ea.eB .

where d € ¥ . This gives the assertion. o
r

o8

Remark 2.3 If m=n r=n-1 , then Theorem 2.2(i) gives the main result of

[F]1. Indeed, it is proved in [P2, Proposition 5.8] that F: " is
—
k
k-
generated by A (A-B)= T (-1) PA (a) s, (B) k=1,...,n . Then the
p=0 P P
k
relation Ak(A)= Y A (a-B) Akp(B) implies that ¥ 3 is generated by
P - n-
p=0

the differences of the elementary symmetric polynomials in A and B.

Corollary 2.4 Let el,...,en' be a ¥ym(a)-basis of Z[A], and let
f1""’f1 be a fqmiB)—basis of Z[B]. (For example, one can take {ei}=
m
—a'; IcE )} or f{e} = {X (A) ; peb }.) Then a Z-basis of the d-th
n-1 38 M n

component of ?r is given by

S (aA-B) S_(B) e f£
Ik Jk P g



-k

where, for some k=0,1,...,r , Ik contains (m—k)n but does not contain
n-k+1

(m-k+1) and E(Jk)s k ; p=1,...,n! , g=1,...,m! ; IIkI + IJkI + deg ep

+ deg £ = d. This follows from Theorem 2.2 by invoking a description of
q

a Z-basis of 5r given in [P2, Proposition 5.9] (see also the references

there) .

3. WHEN AN INVARIANT IDEAL IS GENERATED BY SYMMETRIC POLYNOMIALS ?

The argument used in the proof of Theorem 2.2 can be summarized

(1) (k)

in the following way. Let A ,...,A be sequences of independent
- (1) (1) (1) :
variables, A = (al,...,an ). Then the product of symmetric groups
t (1) (k) ()
G=6 x ... x 6 acts on Z[A ,...,A ]=Z[A '] by permuting the
n n

1 k
variables. Let IC Z[A()] be an ideal and let quiA()) denote the ring

k ak k
anHA(n) ® ... ® qu&A()) of polynomials symmetric in A(),...,A()
separately.

Proposition 3.1 Let 1Ic Z[A(')] be an ideal satisfying:

1) I is G-invariant.
(1)

A
2) For some set of generators Fl,...,l:"t of I , Fp aj belongs to I

for =il ki j=1,...,ni—1; p=l,...,t.

)

)], where J =1 N fqm&A('), i.e. I is generated by

Then I = J z[a"

G-invariants.

By arguing as in the proof of Theorem 2.2 we see that if for every

(1)

A . ; . .
FeI, F aj e I, i=1,...,k, j=1,...,ni—1, then our assertion is true. For

every G € Z[A(.)] we have

A(i) A(i) A(i) (1)
(GF) @ = G- (F 4 ) + (G 8 )*(F T, ).
P B P 3] 3 P 3]
where T;i) denotes the simple transposition which exchanges a;i) and
a(“. The first summand belongs to I by 2), the second - by 1) .Since

j+1



every element from I is a Z[A(')]—combination of the F ’s, the des-
P

ired claim now follows. o

Sometimes, it is more convenient to rewrite the above fact as fol-
lows. Assume that a subscheme V C Spec Z[A( )] is given. For every
n n n n

i 1 k ik k .
field K, denote by 0?” : K X .. x K —K x ... xK , i=1,...
3

o oopid 8 j=1,...,ni-1 , the map which exchanges the Jj-th with the
(j+1)-th component in the i-th factor of the above product. Let I C
()

Z[A" '] be the ideal of all polynomials which vanish on VK ( := V after

a specialization in the field K ) for every such a specialization in

some field.

Proposition 3.2 Assume that for every field K, VK has the following

properties:

1) If a € VK then o;i)(a) € VK for every i=1,...,k ; j=1,...,ni—1.
5 (1) "1 "k .

2) VK ¢ Zeros ( a; - aj+l ) € K X ... x K for every i=1l,...,k ;

j=1,...,ni—1.

Then I =J Z[A(q] , where J =1 n fqm(A(q).

Indeed, the above assumptions guarantee that for FeI and GeZ[A(w],
A(i)
(F-G) Bj beliongsh t oL A1 =17 00 ki j=1,...,ni-1 ; and the assertion
follows. ]

For example, the situation considered in Theorem 2.2 (i) was:

1 2 .
x=2, a=a‘'!, B-a'?, n=n , m=n, V = U v_, the sum over all pairs of
nces o (S Kq o o= =n TI= (' 5) <N < I < and V =
sequenc I ( * Yol ) . ( 3 In ) TR
=2 = 0o0c =8b .
eros ( a, bj o ,ai 5 )
il al r+l r+l
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