Department of PURE MATHEMATICS

ON REGULAR FROBENIUS BASES

By
ERNST S. SELMER

UNIVERSITY OF BERGEN
 Bergen, Norway

Department of Mathematics
University of Bergen
5007 Bergen
NORWAY

ON REGULAR FROBENIUS BASES

By
ERNST S. SELMER

ERNST S. SELMER

1. Definition of regular bases.

In a recent paper [6] in Math. Scand., Marstrander considers the Frobenius number $g\left(A_{k}\right)$ of a basis of $k+1$ positive integers

$$
A_{k}=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{k}\right\} ; a_{0}>1,\left(a_{0}, a_{1}\right)=1
$$

He does not comment the fact that the condition $\left(a_{0}, a_{1}\right)=1$ is really a restriction for $k>2$. It is well known in Frobenius theory (cf. Rödseth [7]) that we may remove a common factor of all but one of the basis elements, but not for a smaller number of elements.

If necessary by reindexing $a_{2}, a_{3}, \ldots, a_{k}$, Marstrander gives A_{k} in ordered form by

$$
\text { (1.1) }\left\{\begin{array}{l}
a_{i}=a_{1} b_{i}-a_{0} c_{i}, \quad i=1,2, \ldots, k+1 \quad\left(a_{k+1}=0\right) \\
1=b_{1}<b_{2}<\ldots<b_{k}<b_{k+1}=a_{0} \\
0=c_{1}<c_{2}<\ldots<c_{k}<c_{k+1}=a_{1} .
\end{array}\right.
$$

To obtain this, some dependent bases are excluded (but there may still be dependencies in a basis in ordered form). We put

$$
B_{k}=\left\{1, b_{2}, \ldots, b_{k+1}\right\}, C_{k}=\left\{0, c_{2}, \ldots, c_{k+1}\right\}
$$

Many of Marstrander's results bear a certain resemblance to earlier results of Hofmeister. In most cases, however, this resemblance is mainly formal. In one instance (Remark to Theorem 3), Marstrander makes a direct reference to results in Hofmeister's lecture notes [3]. These results have later been published in [4] (not easily accessible). Marstrander's reference is to Theorem 5 of [4].

For later use, we must quote some more definitions from Marstrander. Since $b_{1}=1$, any positive integer may be expressed by the basis $\left\{1, b_{2}, \ldots, b_{j}\right\}, j \leqq k+1$, as $n=\Sigma_{1}^{j} x_{i} b_{i}$ with $x_{i} \geqq 0$ (in many ways). Following Hofmeister, we denote the (unique) regular representation by $n=\sum_{1}^{j} e_{i} b_{i}$. We then introduce

$$
\begin{aligned}
R(n, j) & =\Sigma_{1}^{j} e_{i} c_{i}, \quad R(n)=R(n, k) \\
M(n, j) & =\max \left\{\sum_{1}^{j} x_{i} c_{i} \mid n=\Sigma_{1}^{j} x_{i} b{ }_{i}\right\}
\end{aligned}
$$

 20.

es) 1 $\operatorname{san} 7 \mathrm{I}$ vel havaz berobzo gi gh

mox 4i angij cisi so etom gidoe stoup it aum ow seu xojsi tol

$$
\begin{aligned}
& (x, y t) \pi-(\pi) x ; t_{i}, 7 t=(i, \pi) 9
\end{aligned}
$$

Marstrander now defines the (ordered) basis A_{k} to be regular if

$$
\begin{equation*}
R(n, k+1)=M(n, k+1), \quad \forall n \in \mathbb{N} . \tag{1.2}
\end{equation*}
$$

This property clearly depends on the choice of the (coprime) basis elements a_{0} and a_{1}.

The definition (1.2) may seem artificial, but it turns out to be highly useful. A good illustration of its usefulness is Marstrander's striking Lemma 2.

Incidentally, this Lemma also has a function which is not pointed out by Marstrander. The condition (1.2) is apparently "infinite", since it shall hold for all natural numbers n. However, regularity is equivalent to the condition
(1.3) $\ell=\sum_{1}^{k} e_{i} b_{i} \Rightarrow t_{\ell}=\sum_{1}^{k} e_{i} a_{i}, \quad \ell=1,2, \ldots, a_{0}-1$,
where the minimal system $\left\{t_{\ell}\right\}$ can always be determined by a "finite work".
2. On the conditions for regularity.

Marstrander's main use of regular bases lies in the determination of the Frobenius number $g\left(A_{k}\right)$. Our interest has been a study of regular bases as such, regardless of applications. We shall treat some aspects which were not considered by Marstrander, but first quote one more result from his paper: Let $\langle x\rangle$ denote the smallest integer $\geqq x$, and put
(2.1) $b_{i+1}=q_{i} b_{i}-s_{i}, \quad q_{i}=\left\langle\frac{b_{i+1}}{b_{i}}\right\rangle$, hence $0 \leqq s_{i}<b_{i}$.

Let further $j<k+1$, and assume that

$$
R(n, j)=M(n, j), \quad \forall n \in \mathbb{N}
$$

(always satisfied for $j=2$). Then Marstrander's Lemma 4 says that

$$
R(n, j+1)=M(n, j+1), \forall n \in \mathbb{N}
$$

if and on1y if

$$
\begin{equation*}
c_{j+1} \geqq q_{j} c_{j}-R\left(s_{j}\right) \tag{2.2}
\end{equation*}
$$

$$
\text { UL } 3 \pi V=(1+\{, M) N=(f+x, f) g, \quad(S, f)
$$

 （2）

 mond limas orts of qualsutupo ei

 ＂为TOM

 flaq bita－X §

se

生京 yluo bins 71

$$
\begin{equation*}
\left(f_{\mathrm{z}}\right) 9-h^{2} p=1 \neq \mathrm{p} \tag{non}
\end{equation*}
$$

If this condition is satisfied for all $j=2,3, \ldots, k$, we get (1.2) and hence regularity. We shall then call A_{k} completely regular (our term).

For later use, let us write out explicitly the conditions (2.2) for $j=2$ and $j=3$:

$$
\begin{equation*}
c_{3} \geqq q_{2} c_{2}=\left\langle\frac{b_{3}}{b_{2}}\right\rangle c_{2} \tag{2.3}
\end{equation*}
$$

(note that $R\left(s_{2}\right)=0$ since $s_{2}<b_{2}$ and $c_{1}=0$),

$$
\begin{equation*}
c_{4} \geqq q_{3} c_{3}-R\left(s_{3}\right)=\left(\frac{b_{4}}{b_{3}}\right) c_{3}-\left[\frac{s_{3}}{b_{2}}\right] c_{2} \tag{2.4}
\end{equation*}
$$

(since $b_{3}>s_{3}=e_{1}+e_{2} b_{2}$, with $e_{2}=\left[s_{3} / b_{2}\right]$).
We make three observations regarding the conditions (2.2):
(i) Analysing Marstrander's proof of his Lemma 4, it is easily seen that the condition (2.2) is necessary for regularity of A_{k} when $j=k$, and for all $j<k$ such that

$$
b_{j+1}+s_{j}<b_{j+2}
$$

(since then all representations of $b_{j+1}+s_{j}$ by $\left\{1, b_{2}, \ldots, b_{j+1}\right\}$ are the same as by the full basis B_{k}).
(ii) Since $s_{j}<b_{j}$, we can replace $R\left(s_{j}\right)$ of (2.2) by $R\left(s_{j}, j-1\right)$, or just as well by $R\left(s_{j}, j\right)$:

$$
\begin{equation*}
c_{j+1} \geqq q_{j} c_{j}-R\left(s_{j}, j\right) \tag{2.5}
\end{equation*}
$$

It is easily seen that this condition is equivalent to (2.2), even if $s_{i}<b_{i}$ is deleted in (2.1):

$$
\begin{equation*}
b_{i+1}=q_{i} b_{i}-s_{i}, \quad s_{i} \geqq 0 \tag{2.6}
\end{equation*}
$$

(the remainder $s_{i}-\left[s_{i} / b_{i}\right] b_{i}$ then corresponds to the s_{i} of (2.1)). - This observation, though perhaps trivial, will be very useful in § 4 below.
(iii) For $k=2$, the one condition (2.3) is necessary and sufficient for regularity of A_{2}. Already for $k=3$, there are regular bases A_{3} which satisfy (2.4) but not (2.3), and which are consequently not completely regular. A simple example is given by

 - (minet zujo) tatirgen

$$
x \frac{1}{2}-\quad \mathrm{Bite} \quad S=1 \quad x
$$

$$
s^{2}\left(\frac{c^{d}}{s^{d}}\right)=s^{3} g^{p} \frac{c^{3}}{\varepsilon^{3}}
$$

 $\left(6 e^{2}\right) \pi-0^{3} p=1+t^{2}$

20

$$
\begin{equation*}
0 \leqslant i^{2} \times i^{2}-d_{1} P=1+i^{d} \tag{0,5}
\end{equation*}
$$

 0 2 2

 gel meyng a

$$
\begin{equation*}
A_{3}=\{4,5,2,3\}, B_{3}=\{1,2,3,4\}, C_{3}=\{0,2,3,5\} \tag{2.7}
\end{equation*}
$$

The regularity of A_{3} is easily established from (1.3). By Marstrander's Lemma 4, there must exist an $n \in \mathbb{N}$ such that $R(n, 3)<M(n, 3)$. We can use $n=4=b_{3}+b_{1}=2 b_{2}$, where $R(n, 3)=c_{3}=3, M(n, 3)=2 c_{2}=4$.
3. The case $k=2$.

In the simplest case $k=2$, we have

$$
\begin{aligned}
& A_{2}=\left\{a_{0}, a_{1}, a_{2}\right\}, a_{2}=a_{1} b_{2}-a_{0} c_{2} \\
& B_{2}=\left\{1, b_{2}, a_{0}\right\}, C_{2}=\left\{0, c_{2}, a_{1}\right\} .
\end{aligned}
$$

As already noted, A_{2} is then regular if and only if the condition (2.3) is satisfied:

$$
\begin{equation*}
a_{1} \geqq\left\langle\frac{a_{0}}{b_{2}}\right\rangle c_{2} \tag{3.1}
\end{equation*}
$$

In this case, we shall see that regularity corresponds to a well known property in Frobenius theory.

The Frobenius number $g\left(A_{2}\right)$ was determined by Rödseth [7]. He puts

$$
a_{2} \equiv a_{1} s_{0}\left(\bmod a_{0}\right), 0 \leqq s_{0}<a_{0} ; \text { hence } s_{0}=b_{2}
$$

and then performs the Euclidean division algorithm with negative remainders on the ratio $a_{0}: s_{0}$. The algorithm stops after a certain number v of division steps, determined by a condition of the form $R_{V+1} \leqq 0<R_{V}$. In particular,

$$
R_{0}=c_{2}, \quad R_{1}=\left\{\frac{a_{0}}{b_{2}}\right\rangle c_{2}-a_{1}
$$

and a comparison with (3.1) shows that A_{2} is regular just when $v=0$ in Rödseth's algorithm.

In this case, Rödseth's general formula for $g\left(A_{2}\right)$ shows that

$$
\begin{equation*}
g\left(A_{2}\right)=-a_{0}+a_{1}\left(b_{2}-1\right)+a_{2}\left(q_{2}-1\right)-\min \left\{a_{1} s_{2}, a_{2}\right\} \tag{3.2}
\end{equation*}
$$

where $a_{0}=b_{3}=a_{2} b_{2}-s_{2}$ of (2.1).
The same result, under a condition equivalent to (3.1), was
$\{2, \Sigma, S, 0), \varepsilon^{3},(A, \delta, S, l)=\varepsilon^{\text {d }}+\left(\varepsilon, S, \varepsilon_{z}+\right\}=\varepsilon^{A} \quad(P, S)$

 stodich $* S S^{d S}=f^{d}+z^{d}=H=\pi$ SEM MGS on $\cdot(\varepsilon, \pi) M>(\varepsilon, \pi) S \cdot$ t $=\sin ^{5}=(8, \pi) M+\Sigma=\varepsilon^{2}=(\varepsilon, 41) K$

$$
s^{3} 0^{s}-s^{d} i^{s}=s^{A} e^{(}\left(f^{n}+r^{B} \text { is } 0^{B)}=s^{A}\right.
$$

$$
\left.\left\{, 13+s^{2}, 0\right), F^{2}=5^{2}+0^{4}+5^{d}, 1\right\}=8^{8}
$$

 4hallaftae af (E.S)

$$
\begin{equation*}
2^{3}\left\{\frac{8^{23}}{\varepsilon^{d}}\right\rangle=15 \tag{1.8}
\end{equation*}
$$

 - vaopsh athingtorg if ytragozq muant

$$
\text { , } 58 \text { Luaftitan in } \quad x^{9}>-0 \geqslant 1+y^{9}
$$

$$
-1^{8}-s^{a}\left(\frac{0^{5}}{s^{6}}\right)=1^{9}
$$

already given by Hofmeister [2], as a special case of a rather complicated theorem. A direct and simple proof of (3.2) was presented by the author [8] (before Rödseth [7] appeared).

4. Regular partial bases.

If $k<k$, and A_{k} is regular, we may ask under what conditions a "partial basis"

$$
A_{K}=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}
$$

is also regular. Even if all conditions (2.2) should be satisfied, the question is far from trivial, since now

$$
B_{k}=\left\{1, b_{2}, \ldots, b_{k}, a_{0}\right\}, C_{k}=\left\{0, c_{2}, \ldots, c_{k}, a_{1}\right\}
$$

are not partial bases of B_{k} and C_{k}.
We can, however, prove the following
THEOREM 1. Let $k \geqq 3$, and $2 \leqq k<k$. If A_{k} satisfies the conditions

$$
\begin{gathered}
R(n, k)=M(n, k), \quad \forall n \in \mathbb{N} \\
c_{j+1} \geqslant q_{j} c_{j}-R\left(s_{j}\right), j=k, k+1, \ldots, k
\end{gathered}
$$

(hence A_{k} regular), then the partial basis A_{k} is regular. In particular, all A_{k} are regular if A_{k} is completely regular.

It will clearly suffice to prove Theorem 1 first for $k=k-1$, and then use this result repeatedly. We thus assume that

$$
\begin{equation*}
R(n, k-1)=M(n, k-1), \quad \forall n \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
c_{k} \geqq q_{k-1} c_{k-1}-R\left(s_{k-1}, k-1\right) \\
c_{k+1} \geqq q_{k} c_{k}-R\left(s_{k}, k-1\right)
\end{array}\right.
$$

Since $s_{k-1}<b_{k}$ and $s_{k}<b_{k}$, we may insert a second argument $k-1$ in the R-functions. From

$$
b_{k}=q_{k-1} b_{k-1}-s_{k-1}, \quad b_{k+1}=q_{k} b_{k}-s_{k}
$$

we get

"elesd Isjutst" a

$$
x, \cdots,, f+x, y=t \cdot(, z) x-\frac{2}{1}+p \leqslant i+t^{2}
$$

$$
\left.\begin{array}{c}
\left(1-x=1+x^{2}\right) 8-1+x^{2} p-x^{p} s d^{2} \\
\left(1-x^{2}, x^{2}\right) A-x^{2} x^{p}+1+x^{2}
\end{array}\right\}
$$

$$
x x^{2}-x^{d} x^{p}=1+x^{d}+1-x^{2}-1-x^{d} y-x^{p}=x^{d}
$$

$$
b_{k+1}=q_{k} q_{k-1} b_{k-1}-\left(q_{k} s_{k-1}+s_{k}\right)
$$

for use in the "reduced" basis

$$
B_{k}=B_{k-1}=\left\{1, b_{2}, \ldots, b_{k-1}, b_{k+1}=a_{0}\right\} .
$$

Departing from (4.1), and using the condition (2.2) in the form (2.5-6), we see that $A_{k}=A_{k-1}$ is regular if and only if

$$
c_{k+1} \geqq q_{k} q_{k-1} c_{k-1}-R\left(q_{k} s_{k-1}+s_{k}, k-1\right)
$$

The two inequalities (4.2) give

$$
c_{k+1} \geq q_{k} q_{k-1} c_{k-1}-\left\{q_{k} R\left(s_{k-1}, k-1\right)+R\left(s_{k}, k-1\right)\right\}
$$

so we are through if we can show that

$$
R\left(q_{k} s_{k-1}+s_{k}, k-1\right) \geqq q_{k} R\left(s_{k-1}, k-1\right)+R\left(s_{k}, k-1\right)
$$

And this is an immediate consequence of (4.1) and Marstrander's Lemma 3.

The many \geqq in the proof indicate that all the conditions of Theorem 1 are not always necessary. As an example in the simplest case $k=3, k=2$, consider the basis A_{3} of (2.7). Even if this fails to satisfy (2.3), the partial basis

$$
A_{2}=\{4,5,2\} \text {, with } B_{2}=\{1,2,4\}, C_{2}=\{0,2,5\},
$$

satisfies (3.1) and is thus regular.
5. The connection with pleasant h-bases.

We assume knowledge of the "postage stamp problem", see for instance [9]. A comprehensive treatment of this problem is contained in the author's research monograph [10] (freely available on request).

A "stamp" basis (an h-basis)

$$
\mathcal{A}_{k}=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right\}, 1=\alpha_{0}<\alpha_{1}<\ldots<\alpha_{k}
$$

is pleasant if and only if the regular representation $n=\sum_{0}^{k} e_{i} \alpha_{i}$ has a minimal coefficient sum among all possible representations $n=\sum_{0}^{k} x_{i} \alpha_{i}$, for all natural numbers n. Then the h-range $n_{h}\left(A_{k}\right)$ equals the regular $h-r a n g e ~ g_{h}\left(\mathcal{A}_{\mathrm{k}}\right)$, which is easily determined (see for instance [5]).

For an arbitrary (not necessarily pleasant) A_{k}, we form the "complementary basis"
.d

$$
\left(1+x, x^{8}+1-x^{2} x^{\rho}\right) 9+1-x^{2} t-x^{P} f^{p} \leq 1+2 t^{2}
$$

$$
\text { ovig }(S, p) \text { esinifsuponh ows stiT }
$$

$$
\left(1-x \cdot x^{e}\right)^{9}+\left(1-x_{8}-1-x^{2}\right) y_{3} p^{2}=\left(1=x+x^{2}+1-x^{2} x^{p}\right) 9
$$

 0
 Tu lulaus tuald ei- Bins $(1,2)$ ank
\qquad

 (akend-d dir) atead "quaste" A

 - (l21 פamevanit To3 Matitash nis 304: Tharand whernours Iquos!

$$
\begin{aligned}
& 1 x^{8}+1-x^{3} x^{p} x^{2}+1-x^{d}+-x^{p} x^{p}=1 * x^{d} \\
& \text { anatide Minturnath } \\
& 4 \mathrm{M}
\end{aligned}
$$

$$
\begin{equation*}
\bar{A}_{k}=\left\{\alpha_{k}-\alpha_{k-1}, \alpha_{k}-\alpha_{k-2}, \ldots, \alpha_{k}-\alpha_{1}, \alpha_{k}-1, \alpha_{k}\right\} \tag{5.1}
\end{equation*}
$$

and consider this as a Frobenius basis. By Meures' theorem, we then have

$$
\begin{equation*}
n_{h}\left(\mathcal{R}_{k}\right)=h a_{k}-g\left(\bar{\Omega}_{k}\right)-1, h \geqq h_{1} . \tag{5.2}
\end{equation*}
$$

The bound h_{1} is usually difficult to determine. When \mathcal{A}_{k} is pleasant, however, both h_{1} and $n_{h}\left(\ell_{k}\right)$ are known, and the Frobenius number $g\left(\bar{\Omega}_{\mathrm{k}}\right)$ then follows directly from (5.2).

It is natural to ask when $\overline{\mathcal{~}}_{k}$ of (5.1) can be organized as a regular basis. We now have two coprime elements, $\alpha_{k}-1$ and α_{k}, which can be used as a_{0} and a_{1} (in any order). The most interesting choice turns out to be $a_{0}=\alpha_{k}, a_{1}=\alpha_{k}-1$. It is easily seen that this leads to the ordered form (1.1):

$$
\left\{\begin{array}{l}
A_{k}=\left\{\alpha_{k}, \alpha_{k}-1, \alpha_{k}-\alpha_{1}, \alpha_{k}-\alpha_{2}, \ldots, \alpha_{k}-\alpha_{k-1}\right\} \tag{5.3}\\
B_{k}=\mathcal{A}_{k} ; c_{i}=b_{i}-1, \quad i=1,2, \ldots, k+1
\end{array}\right.
$$

The regularity condition (1.2) says that for all representations $n=\sum_{1}^{k+1} x_{i} b_{i}$, the regular one should give the maximal

$$
\sum_{1}^{k+1} x_{i} c_{i}=\sum_{1}^{k+1} x_{i}\left(b_{i}-1\right)=n-\sum_{1}^{k+1} x_{i} .
$$

In other words, the coefficient sum must be minimal for the regular representation of any n by $B_{k}=\mathcal{A}_{k}$. We have thus proved

THEOREM 2.

$$
A_{k} \text { of (5.3) regular } \Leftrightarrow \Omega_{k} \text { pleasant. }
$$

This has the very interesting consequence that we may consider regularity of Frobenius bases as a generalization of pleasantness for h-bases. Properties in the former case then carry over into similar properties in the latter.

As an example, let us study the analogue of Marstrander's condition (2.2) in the case (5.3). Now $b_{i}=\alpha_{i-1}, c_{i}=b_{i}-1$, and a straightforward calculation gives the following result: Put

$$
\alpha_{j}=\left\{\frac{\alpha_{j}}{\alpha_{j-1}}\right\rangle \alpha_{j-1}-\sum_{0}^{j-2} e_{i} \alpha_{i}
$$

where the sum is regular by \mathcal{A}_{i-2}. The condition (2.2) then takes the form

$$
\left\langle\frac{\alpha_{j}}{\alpha_{j-1}}\right\rangle>\Sigma_{0}^{j-2} e_{i}
$$

2
 sved
ene

 (

$$
1^{1-x^{3}} 1^{3}-a=(1-)_{2} d x^{T+8}+3 i^{1+x_{3}}
$$

MEsostris

 orcol

Assuming d_{j-1} pleasant, this is the necessary and sufficient condition for A_{j} to be pleasant. This is a well known result of Djawadi [1] in the theory of h-bases.

As another example, Theorem 1 above corresponds to an earlier result by the author [11]: If $k \geqq 3,1 \leqq k \leqq k-2$, and A_{i} is pleasant for $i=k, k+1, \ldots, k$, then the "sub-basis"

$$
A_{k}^{(k)}=\left\{1, \alpha_{1}, \ldots, \alpha_{k}, \alpha_{k}\right\}
$$

is also pleasant.
Conversely, however, we can not always draw conclusions from pleasant h-bases to regular Frobenius bases. As an example, Djawadi [1] showed that if \mathcal{A}_{3} is pleasant, then so is $\mathcal{A}_{2}=\left\{1, \alpha_{1}, \alpha_{2}\right\}$, and Zöllner [12] could replace \mathcal{g}_{3} by \mathcal{g}_{k} in this statement. Hence, the condition (2.3) is necessary for regularity of A_{k} in (5.3). On the other hand, we gave in (2.7) an example of a regular Frobenius basis which does not satisfy (2.3).

We mentioned above the alternative choice $a_{0}=\alpha_{k}-1, a_{1}=\alpha_{k}$ in $\overline{\mathcal{I}}_{k}$ of (5.1). The resulting ordered basis A_{k} is easily constructed, in analogy with (5.3). However, nothing as interesting as Theorem 2 comes out of this choice. We only mention that if the resulting A_{k} is completely regular, it is "highly" dependent, and reduces to one of the two cases

$$
\left\{\alpha_{k}-\alpha_{k-1}, \alpha_{k}-1\right\} \text { or }\left\{\alpha_{k}-\alpha_{k-1}, \alpha_{k}\right\}
$$

(since $\alpha_{k}-\alpha_{k-1}$ divides all the other basis elements of $\overline{\mathcal{A}}_{k}$). In either case, the determination of $g\left(A_{k}\right)$ is of course trivial.

REFERENCES

1. M. Djawadi, Kennzeichnung von Mengen mit einer additiven Minimaleigenschaft, J. reine angew. Math. 311/312 (1979), 307-314.
2. G. Hofmeister, Zu einem Problem von Frobenius, Kgl. Norske Vid. Selsk. Skrifter 1966 Nr. 5, 1-37.
3. G. Hofmeister, Lineare diophantische Probleme, Lecture notes, Math. Inst., Joh. Gutenberg-Univ., Mainz, 1978.
4. G. Hofmeister, Linear diophantine problems, Bull. Iranian Math. Soc. 8 (1981), 121-155.

$$
4^{2} \times x^{2}+\cdots+1+2+17=(x) p
$$

Titeessiq oels ei

 ((2.8) ixtatase ton zooli dointu aleud:

 0
 Sak . Jn*

$$
\text { What estas cwit att } 20 \text { gip of zooubsi }
$$

2

5. C. Kirfel and E. S. Selmer, Regular h-ranges and weakly pleasant h-bases, Math. Scand. 59 (1986), 30-40.
6. O. Marstrander, On a problem of Frobenius, Math. Scand. 58 (1986), 161-175.
7. Ö. J. Rödseth, On a linear diophantine problem of Frobenius, J. reine angew. Math. 301 (1978), 171-178.
8. E. S. Selmer, On the linear diophantine problem of Frobenius, J. reine angew. Math. 293/294 (1977), 1-17.
9. E. S. Selmer, On the postage stamp problem with three stamp denominations, Math. Scand. 47 (1980), 29-71.
10. E. S. Selmer, The local postage stamp problem I, II, Research monograph, Dept. of Math., Univ. of Bergen, Norway, 1986 (freely available on request).
11. E. S. Selmer, Sub-bases of pleasant h-bases (to appear).
12. J. Zöllner, Über angenehme Mengen, Mainzer Seminarberichte in additiver Zahlentheorie 1 (1983), 53-71.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BERGEN
N-5007 BERGEN
NORWAY
futy

$$
.2 \Gamma 1-101
$$

20

YAWYOK
m

