Department of PURE MATHEMATICS

No 30-06-01-84

ISSN 0332-5047

ON THE POSTAGE STAMP PROBLEM WITH THREE STAMP DENOMINATIONS, III

ERNST S. SELMER

UNIVERSITY OF BERGEN Bergen, Norway

ON THE POSTAGE STAMP PROBLEM WITH THREE STAMP DENOMINATIONS, III

ERNST S. SELMER

The present paper is an immediate continuation of Selmer [7] and Selmer - Rödne [8]. All references to theorems and formulas from sections 1-13 are automatically to [7] or [8].

14. The sets of h_0 and $(h_0$ - 1)-representable numbers.

Let $A_k' = A_k \cup \{0\}$. The set (1.2) of h-representable numbers (at most h addends) may then in standard terminology be denoted by hA_k' . Our aim in the present section is to determine the sets h_0A_3' and $(h_0 - 1)A_3'$.

We shall rely heavily on the results in Rödseth [6], and use his notation, with one exception: He operates with an integer r, $0 \le r < a_3$. To avoid confusion with our use of r, we shall replace his r by ℓ .

Rödseth's Lemma 4 states that

$$t_{-\ell}^* = x_v(a_3 - 1) + y_v(a_3 - a_2), (x_v, y_v) \in X_v \cup Y_v$$
.

We consider the numbers (all $\equiv \ell \pmod{a_3}$):

$$(14.1) \quad (h_0 - t)a_3 - t_{-\ell}^* = (h_0 - t - x_v - y_v)a_3 + y_va_2 + x_v \ge 0 ,$$

and claim that these belong to $h_0A_3^*$ for $t\ge 0$. This is trivial if h_0 - t - x_V - $y_V\ge 0$, since the coefficient sum \sum = h_0 - $t\le h_0$. It remains to show that the set

ON THE POSTAGE STAMP PROBLEM WITH THREE STAMP DENOMINATIONS, III

BRAIST S. SELMER

The present paper is an immediate continuation of Selmer [7] and Selmer - Rödne [8]. All references to theorems and formulas from sections 1-15 are automatically to [7] or [8].

14. The sets of ho- and (ho - 1)-representable numbers.

Let $A_k' = A_k \cup \{0\}$. The set (1.2) of h-representable numbers (at most h addends) may then in standard terminology be denoted by hAk. Our aim in the present section is to determine the sets $h_0A_k^2$ and $(h_0 - 1)A_k^4$.

We shall rely heavily on the results in Ködseth [6], and use his notation, with one exception: He operates with an integer r, $0 \le r < a_s$. To avoid confusion with our use of r, we shall replace his r by ℓ .

Rödseth's Lemma 4 states that

 $t_{2}^{*} = x_{V}(a_{3} - 1) + y_{V}(a_{3} - a_{2}), (x_{V}, y_{V}) \in X_{V} \cup Y_{V}$

We consider the numbers (all # % (mod ag)):

 $(14.1) \quad (h_0 - t)a_3 - t = (h_0 - t - x_0 - y_0)a_3 + y_0a_2 + x_0 \ge 0$

and claim that these belong to $h_0A_3^1$ for t 2 0 . This is trivial if $h_0 - t - x_y - y_y \ge 0$, since the coefficient sum $\sum = h_0 - t \le h_0$. It remains to show that the set

$$S_{\ell} = \{\ell, \ \ell + a_3, \ \ell + 2a_3, \ \dots, \ y_{v}a_2 + x_{v} - a_3\} \subset h_0A_3' \ .$$

And this is proved by Rödseth, since S_{ℓ} is just the sequence (4.1) of [6].

On the other hand, the numbers (14.1) do <u>not</u> belong to $h_0A_3^*$ if $t=-t^*<0$. Assume to the contrary that

$$(h_0 + t')a_3 - t_{-\ell}^* = x_3a_3 + x_2a_2 + x_1, \sum x_i = h' \le h_0$$
.

As in section 3, we conclude that

$$t_{-\ell}^* - t'a_3 = (h_0 - h')a_3 + x_1(a_3 - 1) + x_2(a_3 - a_2)$$

has a representation by $\bar{A}_3 = \{a_3 - a_2, a_3 - 1, a_3\}$, cf. (2.15). (Rödseth uses $A_3^* = \bar{A}_3 \cup \{0\}$.) But this is a contradiction, since $t_{-\ell}^*$ is defined as the smallest integer in its residue class (mod a_3) with a representation by \bar{A}_3 .

Letting $(x_V^{},y_V^{})$ run through all lattice points of $X_V^{}\cup Y_V^{}$, we get all residue classes & (mod $a_3^{})$, and have the following

THEOREM 14.1.

$$h_0 A_3^{!} = \bigcup_{\substack{(x_V, y_V) \in X_V \cup Y_V}} \{(h_0 - t - x_V - y_V)a_3 + y_V a_2 + x_V \ge 0, t = 0, 1, ...\} .$$

For use in the next section, we shall also determine $(h_0 - 1)A_3^{\prime}$. Clearly

$$(h_0 - 1)A_3^{\bullet} \subset h_0A_3^{\bullet} - a_3 = \{n - a_3 \mid n \in h_0A_3^{\bullet}\} \ .$$

If A_3 is <u>pleasant</u>, it suffices to use regular representations, and clearly

 $S_{g} = (2, 2 + a_{g}, 2 + 2a_{g}, ..., y_{g} + x_{y} - a_{g}) \in h_{0}\Lambda_{g}^{1}$.

And this is proved by Rödseth, since S, is just the sequence (4.1) of [6].

On the other hand, the numbers (14.1) do not belong to $h_0A_3^1$ if $t=-t^1<0$. Assume to the contrary that

 $(h_0 + t)a_3 - t_2 = x_3a_3 + x_2a_2 + x_1, \Sigma x_1 = h' \le h_0$.

As in section 3, we conclude that

 $t_{2g}^{x} - t_{2g}^{y} = (h_{0} - h^{y})a_{3} + x_{1}(a_{3} - 1) + x_{2}(a_{3} - a_{2})$

has a representation by $\bar{\Lambda}_3' = (a_3 - a_2, a_3 - 1, a_3)$, cf. (2.15). (Rödseth uses $\Lambda_3' = \bar{\Lambda}_3$ V [0] .) But this is a contradiction, since to defined as the smallest integer in its residue class (mod ag) with a representation by $\bar{\Lambda}_3$.

Letting (x_y, y_y) run through all lattice points of $x_y \cup Y_y$ we get all residue classes 4 (mod a_3), and have the following

THEOREM 14.1.

 $h_0A_3^2 = U \quad (0h_0 - t - x_y - y_y)a_3 + y_ya_2 + x_y \ge 0, t = 0, 1, ...)$. $(x_y, y_y) \in X_y \cup Y_y$

For use in the next section, we shall also determine $(h_0 - 1)A_3^2$ Clearly

 $(h_0 - 1)A_3^1 = h_0A_3^1 - a_3 = \{n - a_3 \mid n \in h_0A_3^1\}$.

If A₃ is pleasant, it suffices to use regular representations,
and clearly

$$(h_0 - 1)A_3^{\dagger} = (h_0A_3^{\dagger} - a_3) \cap \mathbb{N}_0$$

(where $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$). For non-pleasant \mathbb{A}_3 , however, we get problems with the number \mathbb{n}_0 of (11.13):

$$(14.2) \quad \mathbf{n}_0 = \mathbf{a}_3 - \mathbf{r} - 1 = (\mathbf{f} - 1)\mathbf{a}_2 + \mathbf{a}_2 - 1 = \mathbf{n}_{\mathbf{h}_0 - 1}(\mathbf{A}_3) + 1 \notin (\mathbf{h}_0 - 1)\mathbf{A}_3' ,$$

where $n_0 + a_3 = 2fa_2 + r - 1 \in h_0A_3'$, since $1 \le r \le a_2 - f - 1$ by (4.3). (For pleasant A_3 , it follows from (2.8) that $n_0 + a_3 = n_{h_0}(A_3) + 1 \notin h_0A_3'$.)

We shall show that n_0 is usually the <u>only</u> exception:

THEOREM 14.2. For A_3 non-pleasant, with $r \neq 1$ and $s \neq q$, we have

$$(14.3) \qquad (h_0 - 1)A_3' = (h_0 A_3' - a_3) \cap \mathbb{N}_0 \setminus \{a_3 - r - 1\} .$$

To prove this, we replace h_0 by h_0 - 1 in the arguments leading to Theorem 14.1. The only critical point is whether now $S_{\ell} \subset (h_0 - 1)A_3^{\prime} \ .$

To show that $S_{\ell} \subset h_0 A_3$, Rödseth used his Lemma 5, which states that for $1 \le i \le v$, we have

(14.4)
$$x_{i-1} + y_{i-1} + Q_i - 1 \le h_0$$
 if $P_i \le s_i$

(14.5)
$$x_i + y_i + R_i - 1 \le h_0 \quad \text{if } P_i > s_i$$

If these relations hold with <u>strict inequalities</u>, it follows that $S_{\ell} \subset (h_0 - 1)A_3^{\prime}$.

We note that Rödseth's division algorithm for a_3/a_2 is the same as the one leading to our Theorem 6.1. In particular, we have

(ho - 1)As = (hoAs - as) n No

(where $N_0 = (0, 1, 2, ...)$). For non-pleasant A_3 , however, we get problems with the number n_0 of (11.13):

 $(14.2) \quad n_0 = a_3 - \tau - 1 = (f - 1)a_2 + a_2 - 1 = n_{n_0 - 1}(A_5) + 1 \notin (n_0 - 1)A_5^2 ,$

where $n_0 + a_3 = 2fa_2 + r - 1 \in h_0 A_3^2$, since $1 \le r \le a_2 - f + 1$ by (4.5). (For pleasant A_5 , it follows from (2.8) that $n_0 + a_5 = n_h (A_5) + 1 \notin h_0 A_3^4$.)

We shall show that no is usually the only exception:

THEOREM 14.2. For As non-pleasant, with r + 1 and s + q ,

we have

(14.3) $(h_0 - 1)A_3 = (h_0A_3 - a_3) \cap N_0 \times \{a_3 - x - 1\}$

To prove this, we replace h_0 by h_0 - 1 in the arguments leading to Theorem 14.1. The only critical point is whether now $S_* \subset (h_* - 1) A L$.

To show that $S_g \subset h_0 A_3^1$, Rödseth used his Lemma S, which states that for 1 s i s v , we have

 $x_{i-1} + y_{i-1} + Q_i - 1 \le h_0$ if $P_i \le s_i$

(14.5) $x_1 + y_2 + R_1 - 1 \le h_0$ if $P_1 > s_1$

If these relations hold with strict inequalities, it follows that $S_{\rm s} = (h_{\rm o} - 1) A_{\rm o}^4$.

We note that Rödseth's division algorithm for a_3/a_2 is the same as the one leading to our Theorem 6.1. In particular, we have

 $a_3 = q_1 a_2 - s_1$, hence $q_1 = q$, $s_1 = s$, and v > 0 for a non-pleasant A_3 , when $s \ge q$ by (2.10).

Studying Rödseth's proof of his Lemma 5, we observe the following facts:

1) For i = 1, when $P_1 = q_1 \le s_1$, we have equality in (14.4) if and only if (x_0, y_0) is the upper right corner of Y_0 :

$$(14.6) (x0, y0) = (s0 - 1, P1 - P0 - 1) = (a2 - 1, f - 1).$$

Then $y_0 a_2 + x_0$ is just the number n_0 of (14.2).

2) For i > 1, hence $Q_i > 1$, a necessary condition for equality in (14.4) or (14.5) is $s_i = s_{i-1} - 1$ or $s_{i+1} = s_i - 1$, respectively. But then such a relation must hold from the start:

$$s = s_1 = s_0 - 1 = a_2 - 1$$
, hence $r = 1$

(cf. the recurrence relation $s_{j+1} = q_{j+1}s_j - s_{j-1}, q_{j+1} \ge 2$). If $r \ne 1$, we thus have strict inequalities in (14.4-5) for all i > 1.

In Rödseth's proof of $S_\ell < h_0 A_3^*$, he divides S_ℓ into "subsequences" between $y_{i-1} a_2 + x_{i-1}$ and

$$y_i a_2 + x_i = y_{i-1} a_2 + x_{i-1} + Q_i \left[\frac{x_{i-1}}{s_i} \right] a_3$$
.

We have noted that the case i=1 needs a special treatment. Since $s_1=s$, $Q_1=1$, we must consider the numbers $za_3+y_0a_2+x_0$, $0 \le z < [x_0/s]$. Using the "a_3-transfer" $a_3=qa_2-s$ of section 11, this may be written as

(14.7)
$$za_3 + y_0a_2 + x_0 = (y_0 + zq)a_2 + x_0 - zs$$
,

with positive constant term, and a coefficient sum

$$\sum = x_0 + y_0 - z(s - q) \le x_0 + y_0.$$

 $a_3 = q_1 a_2 - s_1$, hence $q_1 = q_1 s_1 = s_1$, and $q_2 = s_2$, and $q_3 = s_3$, when $q_4 = s_2$ and $q_5 = s_3$, and $q_5 = s_4$, when $q_5 = s_5$ and $q_5 = s_5$, and $q_5 = s_5$.

Sendying Rödseth's proof of his Lemma 5, we observe the

following facts

1) For i=1, when $P_1=q_1\leq s_1$, we have equality in (14.4) if and only if (x_0,y_0) is the upper right corner of Y_0 :

 $(14.6) = (x_0, y_0) = (s_0 - 1, p_1 - p_0 - 1) = (a_2 - 1, f - 1)$

Then $y_0a_2 + x_0$ is just the number n_0 of (14.2).

2) For 1 > 1, hence $Q_1 > 1$, a necessary condition for equality in (14.4) or (14.5) is $s_1 = s_{1-1} - 1$ or $s_{1+1} = s_1 - 1$ respectively. But then such a relation must hold from the start:

 $s = s_1 = s_0 - 1 = a_2 - 1$, hence r = 1

(cf. the recurrence relation $s_{j+1} = q_{j+1}s_j = s_{j-1}$, $q_{j+1} \ge 2$). If r + 1, we thus have strict inequalities in (14.4-5) for all i > 1. In Rödseth's proof of $S_c \subset h_0 A_s^1$, he divides S_c into "subsequences" between y_s , $a_s + x_s$, and

 $y_1a_2 + x_1 = y_{1-1}a_2 + x_{1-1} + Q_1\left[\frac{x_{1-1}}{s_1}\right]a_3$

We have noted that the case i=1 needs a special treatment. Since $s_1=s$, $Q_1=1$, we must consider the numbers za_5 , $y_0a_2+x_0$, $0 \le z < [x_0/s]$. Using the "a₅-transfer" $a_5=qa_2-s$ of section 11, this may be written as

 $(14.7) za_3 + y_0a_2 + x_0 = (y_0 + zq)a_2 + x_0 - zs.$

with positive constant term, and a coefficient sum

 $x_0 + y_0 - z(s - q) \le x_0 + y_0$

If $x_0 + y_0 < h_0$, then also $\sum < h_0$ for all z. If $x_0 + y_0 = h_0$, corresponding to the corner (14.6), then $\sum < h_0$ for z > 0 if s > q, but $\sum = h_0$ for all z when s = q.

If s = q , then v = 1 by Theorem 7.1, and the "subsequence" just completed covers the whole of S_{ℓ} . If v > 1 , we have seen that the remaining subsequences yield no problems if r \pm 1 .

This completes the proof of (14.3), and also shows that if s = q, then

$$(14.8) \quad (h_0 - 1)A_3' = (h_0 A_3' - a_3) \cap \mathbb{N}_0 \setminus \left\{ ta_3 - r - 1 \mid t = 1, 2, \dots, \left[\frac{a_2 - 1}{s} \right] \right\} .$$

Here $ta_3 - r - 1 = n_0 + (t - 1)a_3 = n_0 + za_3$, with $0 \le z < [x_0/s] = [(a_2 - 1)/s]$. Note that we may use also $z = [x_0/s]$ in (14.7), but the resulting number is then contained in $h_0A_3^{\dagger}$ but not in $h_0A_3^{\dagger} - a_3$.

We finally treat the case r=1. A modification of Rödseth's method then seems to become rather complicated. However, we can settle the case directly by a more elementary application of a_3 -transfers. With r=1, the only such transfers which may reduce the coefficient sum are of the form

(14.9)
$$ea_3 = (ef + 1)a_2 - (a_2 - e), e = 1, 2, ...$$

As in section 11, we start with the <u>regular</u> representations

(14.10)
$$n = e_3 a_3 + e_2 a_2 + e_1, e_1 \le a_2 - 1, e_2 \le f - 1.$$

For r = 1, it is unnecessary to consider $e_2 = f$, since already $fa_2 + 1$ gives a new a_3 .

If $x_0 + y_0 < h_0$, then also $\sum h_0$ for all $z - k_0 + y_0 = h_0$ corresponding to the corner (14.6), then $\sum h_0$ for z > 0 if s > 0, but $\sum h_0$ for all z when s = 0.

If s=q, then v=1 by Theorem 7.1, and the "subsequence" just completed covers the whole of S_{χ} . If v>1, we have seen that the remaining subsequences yield no problems if $\tau+1$. This completes the proof of (14.3), and also shows that if

s = q , then

 $(14.8) \quad (n_0 - 1)A_3^1 = (n_0 A_3^1 - a_3) \quad (n_0 - \{n_3 - r - 1 \mid r = 1, 2, \dots, \left[\frac{n_2 - 1}{3}\right]\}$

Here $\tan z - r - 1 = n_0 + (t - 1)a_3 = n_0 + aa_3$, with $0 \le z < (x_0/s] = [(a_2 - 1)/s]$. Note that we may use also $z = (x_0/s)$ in (14.7), but the resulting number is then contained in $h_0 A_3^4$ but not in $h_0 A_3^4 - a_3$.

We finally treat the case r = 1. A modification of Hödseth's method then seems to become rather complicated. However, we can settle the case directly by a more elementary application of a_2 -transfers. With r = 1, the only such transfers which may reduce the coefficient sum are of the form

(14.9) es, = (ef + 1)a, - (a, - e), e = 1, 2, ...

As in section 11, we start with the regular representations

(14.10) $n = e_1 a_2 + e_2 a_3 + e_4$, $e_1 \le a_2 - 1$, $e_2 \le f - 1$.

For r=1, it is unnecessary to consider $e_2=f$, since already fa_2+1 gives a new a_2 .

For the n of (14.10), we shall decide if $n \in h_0A_3'$. If $\sum_e = \sum_i e_i \le h_0$, we are finished. If $\sum_e > h_0$, we must try a transfer (14.9) with $e \le e_3$. The transfer is possible only if it yields a non-negative constant term, that is, if $e_1 \ge a_2 - e$.

Similarly, we shall decide if $n' \in (h_0 - 1)A_3'$, where

(14.11)
$$n' = n - a_3 = (e_3 - 1)a_3 + e_2a_2 + e_1 \qquad (e_3 > 0)$$
,

with $\Sigma_e' = \Sigma_e - 1$, hence no problem if $\Sigma_e \le h_0$. If an a_3 -transfer (14.9) is necessary and possible in (14.10), and yields a new $\Sigma \le h_0$, then the <u>same</u> transfer gives $\Sigma' \le h_0 - 1$ in (14.11), provided it is possible, that is, if $e \le e_3 - 1$. It is easily seen that this combination of conditions <u>fails</u> only in the case

(14.12)
$$n = e_3 a_3 + (f - 1)a_2 + a_2 - e_3, \sum = h_0 + 1$$
.

Thus $n' = n - a_3 \notin (h_0 - 1)A_3'$ if $n' = e_3 a_3 - e_3 - 1$. For the n of (14.12), we must use $e = e_3$ in (14.9), and get $n = (e_3 + 1)fa_2$, hence

$$n \in h_0 A_3 \Leftrightarrow (e_3 + 1) f \le h_0 = a_2 + f - 2 \Leftrightarrow e_3 \le \left\lceil \frac{a_2 - 2}{f} \right\rceil$$

We have thus shown that if r = 1, then

$$(14.13) \quad (h_0 - 1)A_3' = (h_0 A_3' - a_3) \cap \mathbb{N}_0 \setminus \left\{ t(a_3 - 1) - 1 \mid t = 1, 2, \dots, \left[\frac{a_2 - 2}{f} \right] \right\}.$$

For t = 1, we get $t(a_3 - 1) - 1 = a_3 - 2 = n_0$.

No problems arise if we have s=q and r=1 simultaneously. Then $s=q=a_2-1$, $f=q-1=a_2-2$, and the "subtrahends" {} in (14.8) and (14.13) both consist of n_0 only.

For the n of (14,10), we shall decide if $n \in h_0 \Lambda_2^1$. If $\sum_e = \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1}$

Similarly, we shall decide if $n' \in (h_0 - 1)\Lambda_+^1$, where

(14.11) $n' = n - a_3 = (e_3 - 1)a_3 + e_2a_2 + e_1 - (e_3 > 0)$,

with $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$

(14.12) $n = e_3 a_3 + (f - 1)a_2 + a_2 - e_3$, $\Sigma = h_0 + 1$.

Thus n' = n - ag (On - 1)A; if n' = egag - eg - 1 ,

For the n of (14.12), we must use $e = e_3$ in (14.9), and get $n = (e_3 + 1)fa_3$, hence

 $n \in h_0 A_3 \Leftrightarrow (e_3 + 1)f \leq h_0 = a_2 + f - 2 \Leftrightarrow e_3 \leq \left[\frac{a_2 - 2}{f}\right]$

We have thus shown that if r = 1 , then

For t = 1, we get t(ay - 1) - 1 = ay - 2 = ng .

No problems arise if we have s=q and r=1 simultaneously. Then $s=q=a_2-1$, $f=q-1=a_2-2$, and the "subtrahends" i) in (14.8) and (14.13) both consist of n_0 only.

The results (14.3), (14.8) and (14.13) imply that, but for the specified exceptions with t > 1 for r = 1 or s = q, the integers $\stackrel{\geq}{=} a_3$ with a representation in at most h_0 addends from A_3 have such a representation containing a_3 .

In particular, [0, $n_{h_0}(A_3)$] $\subset h_0A_3^*$. It then follows from (14.3) that

$$(14.14) r + 1, s + q \Rightarrow [0, n_{h_0}(A_3) - a_3] \setminus \{a_3 - r - 1\} \subset (h_0 - 1)A_3^{\dagger}.$$

This was first observed numerically for a large number of bases \mbox{A}_3 , and gave the impetus for the investigations in this section.

As in Rödseth [6], let $\Lambda(n)$ denote the number of addends in a \min representation of n by a given basis A_k . We clearly have

$$\Lambda \left(n_h(A_k) - (x+1)a_k + 1 \right) \ge h - x, \Lambda \left(n_h(A_k) - xa_k \right) \ge h - x,$$

since otherwise addition of $(x + 1)a_k$ or xa_k would yield a contradiction. This raises the question whether there are integers x > 0 such that for the interval of length a_k :

We have just seen that this holds with x=1 if k=3, $h=h_0$, A_3 non-pleasant, $r\neq 1$, $s\neq q$. Already for x=2, however, it is easy to find counterexamples:

$$A_3 = \{1, 7, 11\}, h_0 = 6, n_6(A_3) = 48; \Lambda(17) = 5.$$

We have made the interesting observation that for <u>Frobenius-dependent</u> A_3 with r>1, (14.15) holds also with larger x:

The results (14.3), (14.8) and (14.13) imply that, but for the specified exceptions with t > 1 for r = 1 or s = q, the integers as with a representation in at most ho addends from A, have such a representation containing a.

In particular, 10, $n_{h_0}(A_3)$ | $n_{h_0}(A_3)$. It then follows from (14.3) that

(14.14) r + 1, s + q + 10, $n_0 (A_5) - a_5 > (a_5 - r - 1) = (h_0 - 1)A_5$.

This was first observed numerically for a large number of bases λ_3 , and gave the impetus for the investigations in this section.

As in Rödseth [6], let $\Lambda(n)$ denote the number of addends in a minimal representation of n by a given basis Λ_K . We clearly have

 $-\Lambda(n_h(A_h) - (x + 1)a_h + 1) \ge h - x, \Lambda(n_h(A_h) - xa_h) \ge h - x$,

since otherwise addition of $(x + 1)a_{\chi}$ or xa_{χ} would yield a contradiction. This raises the question whether there are integers x > 0 such that for the interval of length a_{χ} :

(14.15) $[n_h(A_k) - (x + 1)a_k + 1, n_h(A_k) - xa_k] \in (n - x)A_k$

We have just seen that this holds with x = 1 if k = 3, $h = h_0$, A_1 non-pleasant, $r \neq 1$, $s \neq q$. Already for x = 2, however, it is easy to find counterexamples:

 $A_{3} = \{1, 7, 11\}, h_{0} = 6, h_{0}(A_{2}) = 48 \ ; h(17) = 5 \ .$

We have made the interesting observation that for <u>Frobenius</u>-dependent A, with r > 1, (14.15) holds also with larger x;

PROPOSITION 14.1. Let A_3 be Frobenius-dependent, with r > 1. In the notation (5.8), let

$$(p-1)a_2 \le n \le n_{h_0}(A_3), x = \left[\frac{n_{h_0}(A_3) - n}{a_3}\right].$$

Then

$$n \in (h_0 - x)A_3^{\dagger}.$$

A proof will be published elsewhere.

15. The cases with $n_h(A_4) = n_h(A_3)$.

In (3.3), we raised the question of <u>basis extensions</u> which do not increase the h-range . We shall solve this question completely in the case

(15.1)
$$n_h(A_4) = n_h(A_3 \cup \{a_4\}) = n_h(A_3), a_4 > a_3$$

Even if $\,{\rm A}_4^{}\,\,$ enters the formulation, the results depend entirely on the properties of $\,{\rm A}_3^{}\,\,.$

We see from (3.4) that the $\underline{regular}$ h-range g_h always increases by a basis extension (assuming admissible bases). The same argument shows that if A_3 is pleasant, then

$$n_h(A_4) \ge g_h(A_4) > g_h(A_3) = n_h(A_3)$$
,

so that we may assume non-pleasant A_3 in (15.1).

If $a_4 > n_{h_0}(A_3) + 1$, then A_4 is <u>not admissible</u> for $h = h_0$ (where $h_0 = a_2 + f - 2$ refers to A_3). If then $h = h_0' > h_0$ is the smallest h for which A_4 is admissible, we trivially have

PROPOSITION 14.1. Let A, be Probenius-dependent, with r > 1
(n the notation (5.8), let

$$(p-1)a_2 \le n \le n_{B_0}(N_3), x = \left[\frac{n_{b_0}(A_3) - n}{a_3}\right]$$

Then

$$n \in (h_0 - x)A_3^t$$

A proof will be published elsewhere.

15. The cases with $n_h(A_4) = n_h(A_3)$

In (3.3), we raised the question of basis extensions which de not increase the h-range. We shall solve this question completely in the case

(15.1)
$$n_h(A_d) = n_h(A_7 \cup \{a_d\}) = n_h(A_7)$$
, $a_d > a_3$.

Even if A_4 enters the formulation, the results depend entirely on the properties of A_4 .

We see from (5.4) that the regular h-range gh always increases by a basis extension (assuming admissible bases). The same argument shows that if A, is pleasant, then

$$n_{\rm H}(A_4) \ge g_{\rm H}(A_4) > g_{\rm H}(A_3) = n_{\rm H}(A_3)$$

so that we may assume non-pleasant A, in (15.1).

If $a_4 > n_{h_0}(A_5) + 1$, then A_4 is not admissible for $h = h_0$ (where $h_0 = a_2 + f - 2$ refers to A_5). If then, $h = h_0^* > h_0$ is the smallest h for which A_4 is admissible, we trivially have

 $n_h(A_4) = n_h(A_3)$ for $h < h_0$. On the other hand, it follows from (2.14) that

$$n_{h_0^{\dagger}}(A_4) \ge a_4 + n_{h_0^{\dagger}-1}(A_3) = a_4 + n_{h_0^{\dagger}}(A_3) - a_3 > n_{h_0^{\dagger}}(A_3)$$
.

Similarly, it follows from from (2.13-14) that

$$n_{h'}(A_4) \ge n_{h'}(A_3), h' \ge h'_0 \Rightarrow n_{h}(A_4) > n_{h}(A_3), h > h'$$
.

We may therefore restrict the problem (15.1) to the case

(15.2)
$$n_{h_0}(A_4) = n_{h_0}(A_3), a_3 < a_4 \le n_{h_0}(A_3) + 1.$$

Note that a similar simplification does not apply to larger bases, since the analogue of (2.14) does not necessarily hold for $k\,>\,3$.

We already know one case of (15.2), resulting from the basis ${\rm A}_{h+2}$ of section 3:

$$(15.3) \quad a_2 = h_0 + 1, \ a_3 = h_0 + 2, \ a_4 = \alpha a_2 + a_3, \ 1 \le \alpha \le h_0 - 1.$$

To solve the general problem, we note that

$$n_{h_0}(A_4) = n_{h_0}(A_3) \Leftrightarrow n_{h_0}(A_3) + 1 \notin h_0A_4^*$$

$$(15.4) \Leftrightarrow n_{h_0}(A_3) + 1 - \delta a_4 \notin (h_0 - \delta)A_3', \delta = 1, 2, ..., h_0.$$

In most cases, it suffices to consider $\delta = 1$. Since

$$N = n_{h_0}(A_3) + 1 - a_4 \in [0, n_{h_0}(A_3) - a_3] \subset (h_0A_3' - a_3) \cap \mathbb{N}_0,$$

(15.4) <u>fails</u> already for δ = 1 if N does not belong to the exceptions in (14.3), (14.8) or (14.13). These cases have the

 $n_h(A_4) = n_h(A_3)$ for $h < h_0^4$. On the other hand, it follows from (2.14) that

 $n_{h_0^{\prime}}(A_4) \ge a_4 + n_{h_0^{\prime}-1}(A_3) = a_4 + n_{h_0^{\prime}}(A_3) - a_5 > n_{h_0^{\prime}}(A_3)$

Similarly, it follows from from (2.13-14) that

 $n_h(\Lambda_A) \ge n_h(\Lambda_S)$, $h' \ge h_0' \Rightarrow n_h(\Lambda_A) > n_h(\Lambda_S)$, h > h'.

We may therefore restrict the problem (15.1) to the case

(15.2) $n_{h_0}(A_4) = n_{h_0}(A_3)$, $a_3 < a_4 \le n_{h_0}(A_3) + 1$

Note that a similar simplification does not apply to larger bases; since the analogue of (2.14) does not necessarily hold for

-We already know one case of (15.2), resulting from the basis An+2 of section 5:

(15.3) $a_2 = h_0 + 1$, $a_3 = h_0 + 2$, $a_4 = aa_2 + a_3$, $1 \le \alpha \le h_0 = 1$

To solve the general problem, we note that

 $n_{h_0}(\Lambda_4) = n_{h_0}(\Lambda_3) \leftrightarrow n_{h_0}(\Lambda_3) \leftrightarrow 1 \notin h_0\Lambda_4$

(15.4) $\approx n_{h_0}(A_3) + 1 - \delta a_4 \notin (h_0 - \delta) A_3^1, \delta = 1, 2, ..., h_0$

In most cases, it suffices to consider 6 = 1 . Since

 $n_0(A_3) + 1 - a_4 \in (0, n_{h_0}(A_3) + a_3) = (h_0A_3^2 - a_3) \cap N_0$

(15.4) fails already for 8 = 1 if N does not belong to the exceptions in (14.3), (14.8) or (14.13). These cases have the

common exception n_0 of (14.2), and $N = n_0$ does in fact lead to a general solution of (15.2):

$$(15.5) \quad a_4 = \hat{a}_4 = n_{h_0}(A_3) - a_3 + r + 2 = n_{h_0}(A_3) - n_{h_0-1}(A_3) \Rightarrow n_{h_0}(A_4) = n_{h_0}(A_3) .$$

This is clear since we cannot use $\delta \ge 2$ in (15.4):

$$2\hat{a}_4 > n_{h_0}(A_3) + 1 \Leftrightarrow n_{h_0}(A_3) > 2a_3 - 2r - 3$$
,

which always holds by (2.8). - Note that $\hat{a}_4 = a_3$ if A_3 is pleasant.

If $a_4 \neq \hat{a}_4$, a necessary condition for (15.2) is that N equals one of the exceptions in (14.8) or (14.13), with t > 1 (since t = 1 corresponds to n_0).

We start with (14.13), hence r = 1. Then $n_{h_0}(A_3)$ is given by (2.28), and we find that we must choose

(15.6)
$$a_4 = a_3 + \tau(a_3 - 1), \tau = 1, 2, ..., \left[\frac{a_2 - 2}{f}\right] - 1$$

(while $\tau = [(a_2 - 2)/f]$ corresponds to \hat{a}_4). We shall see that this is also sufficient for (15.2) to hold.

We consider a representation

$$(15.7) n_{h_0}(A_3) + 1 = x_4 a_4 + x_3 a_3 + x_2 a_2 + x_1,$$

and must show that $\sum x_i > h_0$. This is trivial if $x_4 = 0$, so we can assume $x_4 > 0$, and observe that

$$n_{h_0}(A_3) + 1 \equiv 0$$
, $a_4 \equiv a_3 \equiv 1 \pmod{a_3 - 1 = fa_2}$.

With $x_2 = \kappa f + x_2'$, $0 \le x_2' < f$, (15.7) then gives

common exception n_0 of (14.2), and $N=n_0$ does in fact lead to a general solution of (15.2):

(15.5) $\mathbf{a}_4 = \mathbf{a}_4 = n_{h_0}(\Lambda_3) - \mathbf{a}_3 + \mathbf{r} + 2 = n_{h_0}(\Lambda_3) - n_{h_0-1}(\Lambda_3) - n_{h_0}(\Lambda_4) = n_{h_0}(\Lambda_3)$

This is clear since we cannot use 6 2 2 in (15.4):

 $2\alpha_4 > n_{h_0}(\Lambda_3) + 1 \approx n_{h_0}(\Lambda_3) > 2\alpha_3 - 2\tau - 3$,

which always holds by (2.8). - Note that $a_4 = a_5$ if A_5 is pleasant.

If $a_4 \neq \hat{a}_4$, a necessary condition for (15.2) is that N equals one of the exceptions in (14.8) or (14.15), with t > 1 (since t = 1 corresponds to n_0).

We start with (14.13), hence r=1. Then $n_{\rm h}(\Lambda_3)$ is given by (2.28), and we find that we must choose

(15.6) $a_4 = a_5 + \tau(a_5 - 1), \tau = 1, 2, \dots, \left[\frac{a_2 - 2}{t}\right] = 1$

(while $.\tau = \lfloor (a_2 - 2)/f \rfloor$ corresponds to a_4). We shall see that this is also sufficient for (15.2) to hold.

We consider a representation

(15.7) $n_{h_0}(A_3) + 1 = x_4 a_4 + x_5 a_5 + x_2 a_2 + x_4$

and must show that $\sum x_1 > h_0$. This is trivial if $x_4 \neq 0$, so we can assume $x_4 > 0$, and observe that

 $n_{h_0}(A_3) + 1 \equiv 0$, $a_4 \equiv a_5 \equiv 1$ (mod $a_5 - 1 = fa_2$)

With $x_2 = \kappa f + x_2^2$, $0 \le x_2^2 < f$, (15.7) then gives

 $x_4 + x_3 + x_1 \equiv (f - x_2') a_2 \text{ , hence } x_4 + x_3 + x_1 \geq (f - x_2') a_2$ $x_4 + x_3 + x_2 + x_1 \geq x_4 + x_3 + x_2' + x_1 \geq (f - x_2') a_2 + x_2' \geq a_2 + f - 1 = h_0 + 1 \text{ ,}$ as required. - In particular, we get the known case (15.3) from (15.5-6) with f = 1 .

We next consider (14.8), hence s=q, $a_3=q(a_2-1)$. By (2.29), we now have two possibilities for $n_{h_0}(A_3)$:

$$n_{h_0}(A_3) = \left(\left[\frac{a_2-1}{s}\right]+2\right)a_3-r-\left\{\begin{array}{c} 2 \text{, if } s \nmid (a_2-1) \\ 3 \text{, if } s \mid (a_2-1) \end{array}\right.$$

These two cases must be considered separately.

If $s \nmid (a_2 - 1)$, we find that we must choose

(15.8)
$$a_4 = (\tau + 1)a_3, \quad \tau = 1, 2, \dots, \left[\frac{a_2 - 1}{s}\right] - 1$$

(while $\tau = [(a_2 - 1)/s]$ corresponds to \hat{a}_4). Again, this is also sufficient for (15.2) to hold:

We consider a representation (15.7). Since $a_3 \mid a_4$, we get

$$x_2 a_2 + x_1 \equiv n_{h_0} (A_3) + 1 \equiv -r - 1 = -a_2 + f \pmod{a_3} = q(a_2 - 1)$$
,

from which we draw two conclusions:

1)
$$x_2 a_2 + x_1 \ge a_3 - r - 1$$

2)
$$x_2 a_2 + x_1 \equiv x_2 + x_1 \equiv f - 1 \pmod{a_2 - 1}$$
.

Assuming $\sum x_i \le h_0$ in (15.7), hence $x_4 > 0$, we get $x_2 + x_1 < h_0 = (f-1) + (a_2-1)$, so $x_2 + x_1 = f-1$, and

 $x_4 + x_5 + x_1 \equiv (f - x_2^*) a_2$, hence $x_4 + x_5 + x_1 \ge (f - x_2^*) a_2$

 $x_4 + x_3 + x_2 + x_1 \ge x_4 + x_3 + x_2^2 + x_1 \ge (f - x_2^2)a_2 + x_2^2 \ge a_2 + f - 1 = h_0 + 1$,

as required. - In particular, we get the known case (15.5) from (15.5-6) with f=1.

We next consider (14.8), hence s=q , $a_3=q(a_2-1)$. By (2.29), we now have two possibilities for $n_{h_0}(A_3)$:

$$n_{\text{b_0}}(\Lambda_3) = (\left[\frac{a_2-1}{-s}\right] + 2)a_3 - c - \left\{\begin{array}{ccc} 2 & \text{if } s \nmid (a_2-1) \\ 3 & \text{if } s \mid (a_3-1) \end{array}\right]$$

These two cases must be considered separately.

(15.8)
$$a_1 = (\tau + 1)a_3$$
, $\tau = 1, 2, \dots, \left\lceil \frac{a_2 - 1}{s} \right\rceil - 1$

(while $t = l(a_2 - 1)/s$) corresponds to \hat{a}_3). Again, this is also sufficient for (15.2) to hold:

We consider a representation (15.7). Since at | ad , we get

 $x_2 a_2 + x_1 = n_{10}(A_3) + 1 = -x - 1 = -a_2 + f \pmod{a_3} = q(a_2 - 1))$,

from which we draw two conclusions:

1) x2a2+x1 2.a3-x-1

2) $x_2a_2 + x_1 \equiv x_2 + x_1 \equiv f - 1 \pmod{a_2 - 1}$

Assuming $\sum x_1 \le h_0$ in (15.7), hence $x_4 > 0$, we get $x_2 + x_1 < h_0 = (f-1) + (a_2-1)$, so $x_2 + x_1 = f-1$, and

$$x_2 a_2 + x_1 \le (f - 1) a_2 = a_3 - r - a_2$$
,

contradicting the first conclusion.

If $s \mid (a_2 - 1)$, hence $m = (a_2 - 1)/s$ an integer, we find that we must choose

$$a_4 = (\tau + 1)a_3 - 1$$
, $\tau = 1, 2, \dots, \frac{a_2 - 1}{s} - 1 = m - 1$.

Now (15.4) holds for $\delta = 1$, and we examine $\delta = 2$:

$$n_{h_0}(A_3) + 1 - 2a_4 = (m - 2\tau)a_3 - r = (m - 2\tau - 1)a_3 + fa_2$$
.

If $\tau \geq [\frac{1}{2}(m+1)]$, this expression is negative, and an examination of (15.4) for $\delta \geq 2$ is unnecessary, so (15.2) holds. If $\tau < [\frac{1}{2}(m+1)]$, however, the right hand side belongs to $(h_0 - 2)A_3'$, and (15.4) fails for $\delta = 2$. Thus (15.2) is satisfied only if

(15.9)
$$a_4 = (\tau + 1)a_3 - 1$$
, $\tau = \left[\frac{1}{2}(m + 1)\right], \dots, m - 1$; $m = \frac{a_2 - 1}{s}$.

Summing up, we have the following

THEOREM 15.1. For non-pleasant A_3 , the equality (15.2) holds if and only if we have one of the cases:

(15.5) for arbitrary
$$A_3$$
,

(15.6)
$$for r = 1$$
,

$$(15.8-9)$$
 for $s = q$.

Based on computations by Mossige, this result was conjectured long before a proof was found. The cases r=1 or s=q are also proved in Krätzig-Berle [4, Kap.4], the "if" part along the lines above, the "only if" part by explicit representations for $n_{h_0}(A_3) + 1$ from $n_0(A_4)$ in the remaining cases.

 $x_2a_2 + x_1 \le (f - 1)a_2 = a_3 - r - a_2$

contradicting the first conclusion.

If $s \mid (a_2-1)$, hence $m = (a_2-1)/s$ an integer, we find that e must choose

 $a_2 = (\tau + 1)a_3 - 1$, $\tau = 1, 2, \dots, \frac{a_2 - 1}{s} - 1 = m - 1$

Now (15.4) holds for $\delta = 1$, and we examine $\delta = 2$:

 $n_{h_0}(A_3) + 1 - 2a_4 = (m - 2\tau)a_3 - \tau = (m - 2\tau - 1)a_3 + \epsilon a_2$

If $\tau \ge [\frac{1}{2}(m+1)]$, this expression is negative, and an examination

of (15.4) for 6 2 2 is unnecessary, so (15.2) holds. It

r < [1(m+1)] , however, the right hand side belongs to $(h_0 - 2)A_3^2$

and (15.4) fails for $\delta = 2$. Thus (15.2) is satisfied only if

(15.9) $a_4 = (\tau + 1)a_3 - 1$, $\tau = [1(m+1)], ..., m-1; m = \frac{a_2+1}{2}$

Summing up, we have the following

THEOREM 15.1. For non-pleasant A., the equality (15.2) holds if and only if we have one of the cases:

(15.5) for arbitrary Ag

(15.8-9) for s = q .

Based on computations by Mossige, this result was conjectured long before a proof was found. The cases r = 1 or s = q are also proved in Krätzig-Berle [4, Kap.4], the "if" part along the lines above, the "only if" part by explicit representations for nh (A,) + 1 from hoA, in the remaining cases.

16. The cases with $n_h(A_3 \cup \{a\}) = n_h(A_3)$, $a < a_3$.

In analogy with (3.3), it is quite natural to ask for cases when

$$(16.1) \quad n_h(A_k^*) = n_h(A_{k-1} \cup \{a\}) = n_h(A_{k-1}) , \quad 1 < a < a_{k-1} , \quad a \notin A_{k-1} ,$$

assuming admissible bases.

We need a particular result for the similar problem regarding regular h-ranges:

(16.2)
$$1 < a < a_2 \Rightarrow g_h(A_k^*) > g_h(A_{k-1}).$$

The proof is simple: It follows from Hofmeister [1, Satz 1] that the constant term of the regular representation for $g_h(A_\kappa)$ equals a_2-2 for all admissible A_κ . We conclude that the constant term a_2-1 of $g_h(A_{k-1})+1$ has a regular representation in at most a_2-2 addends 1 and $a \le a_2-1$.

In particular, $g_h(A_3^*) > g_h(A_2)$, and hence also $n_h(A_3^*) > n_h(A_2)$. The first possibility for (16.1) thus occurs when k=4:

$$(16.3) \quad n_h(A_4^*) = n_h(A_3 \cup \{a\}) = n_h(A_3) , \quad 1 < a < a_3 , \quad a \neq a_2 .$$

As in the preceding section, a study of this equality depends entirely on the properties of \mbox{A}_{3} .

If $h=h_0^*$ is the smallest h for which A_4^* is admissible, we clearly have $h_0^* \le h_0$ (where again $h_0=a_2+f-2$ refers to A_3). To be "fair" to A_3 , we restrict the examination of (16.3) to $h \ge h_0$.

16. The cases with $n_h(\Lambda_3 U(a)) = n_h(\Lambda_3)$, a < a -

In analogy with (3.3), it is quite natural to ask for cases when

(16.1) $n_h(A_k^*) = n_h(A_{k-1} \cup \{a\}) = n_h(A_{k-1})$. Is a $A_{k-1} \cup A_{k-1} \cup A_$

assuming admissible bases.

We need a particular result for the similar problem regarding regular h-ranges:

(16.2) 1 < a < a 2 = 8h (AL) > 8h (AL-1)

The proof is simple? It follows from Holmeister [1, Satz 1] that the constant term of the regular representation for $\mathcal{E}_h(A_k)$ equals a_2-2 for all admissible A_k . We conclude that the constant term a_2-1 of $\mathcal{E}_h(A_{k-1})+1$ has a regular representation in at most a_2-2 addends 1 and a_3-2-1 .

In particular, $g_h(A_3^2) > g_h(A_2)$, and hence also $n_h(A_3^2) > n_h(A_2)$ The first possibility for (16.1) thus occurs when k=4:

As in the preceding section, a study of this equality depends entirely on the properties of A₅.

If $h=h_0^*$ is the smallest h for which A_1^* is admissible, we clearly have $h_0^* \le h_0$ (where again $h_0 = a_2 + f - 2$ refers to A_3). To be "fair" to A_3 , we restrict the examination of (16.3) to h > h

Before doing this, we just mention the analogous problem for regular h-ranges. By (16.2), we must then assume a2 < a < a3, and it is not difficult to prove that for h & h0:

(16.4)
$$g_h(A_4^*) = g_h(A_3) \iff a = fa_2 + \rho, 0 \le \rho < r.$$

(My original proof is reproduced in Krätzig-Berle [4, p.27].)

Similar arguments show that (16.3) is impossible with pleasant A_3 . With $n_h(A_4^*) \ge g_h(A_4^*)$ and $n_h(A_3) = g_h(A_3)$, equality in (16.3) could only occur under the conditions of (16.4). But by (2.8-9), we then have

$$n_h(A_3) + 1 = (h - h_0 + 2)a_3 - r - 1 = (h - h_0)a_3 + 1 \cdot a + fa_2 + r - \rho - 1$$
,

with a coefficient sum \leq h $\,$ except in the one case $\,$ r = a_2 - 1 , ρ = 0 , hence $\,$ f \geq 2 . But then

$$n_h(A_3) + 1 = (h - h_0)a_3 + 2a + a_2 - 2$$
, $\Sigma \le h$.

In what follows, we may thus assume non-pleasant A_3 in (16.3).

Since A_3 and A_4^* have a <u>common largest element</u> a_3 , it is possible to use Meures' result (2.16), which in combination with (2.13) shows that for $h \ge h_0 - 1$:

$$n_h(A_k) \le ha_k - g(\overline{A}_k) - 1$$
,

with equality if $h \ge h_1$ ("stabilization", cf. section 3). For non-pleasant A_3 , we know that $h_1 = h_0$. For A_4^* , we put $h_1 = h_1^*$. With

$$\overline{A}_3 = \{a_3 - a_2, a_3 - 1, a_3\}, \overline{A}_4^* = \overline{A}_3 \cup \{a_3 - a\},$$

we thus get, for $h \ge h_0$:

$$n_h(A_3) = ha_3 - g(\overline{A}_3) - 1$$
, $n_h(A_4^*) \le ha_3 - g(\overline{A}_4^*) - 1$.

 $g_h(A_1^*) = g_h(A_2) \iff a = fa_2 + p , 0 \le p < \tau$.

(My original proof is reproduced in Krätzig-Berle (4, p.271.)

Similar arguments show that (16.3) is impossible with pleasant A₃: With $n_h(A_4^*) \ge g_h(A_4^*)$ and $n_h(A_3) = g_h(A_3^*)$, equality in (16.3) could only occur under the conditions of (16.4). But by (2.8-9), we then have

 $n_h(A_3) + 1 = (h - h_0 + 2)a_3 - r - 1 = (h - h_0)a_3 + 1 \cdot a + fa_2 + r - \rho - 1$,

with a coefficient sum \leq h except in the one case $T=a_2-1$, p=0 , hence $f\geq 2$. But then

 $n_h(A_3) + 1 = (h - h_0)a_3 + 2a + a_2 - 2$, $\sum h$

In what follows, we may thus assume non-pleasant A, in (16.3)

Since A_3 and A_4^* have a common largest element a_3 , it is possible to use Meures' result (2.16), which in combination with (2.15) shows that for $h \ge h_0 - 1$:

$n_{\rm h}(\lambda_{\rm K}) \le ha_{\rm k} - g(\Lambda_{\rm K}) - 1$,

with equality if $h \ge h_1$ ("stabilization", cf. section 3). For non-pleasant A_5 , we know that $h_1 = h_0$. For A_4^* , we put $h_4 = h_1^*$. With

 $\overline{A}_3 = \{a_3 - a_2, a_3 - 1, a_3\}, \overline{A}_1^* = \overline{A}_3 \cup \{a_3 - a\}$

we thus get, for h≥ho:

 $n_b(A_3) = ha_3 - g(\overline{A}_3) - 1$, $n_b(A_4^*) \le ha_3 - g(\overline{A}_4^*) - 1$.

Since trivially $n_h(A_4^*) \ge n_h(A_3)$, this shows that

$$(16.5) g(\overline{A}_4^*) = g(\overline{A}_3) \Rightarrow n_h(A_4^*) = n_h(A_3) for h \ge h_0$$

$$(16.6) h \ge h_1^* : n_h(A_4^*) = n_h(A_3) \Rightarrow g(\overline{A}_4^*) = g(\overline{A}_3).$$

We obviously have $g(\overline{A}_4^*) \le g(\overline{A}_3)$. With strict inequality, $g(\overline{A}_3)$ has a representation by \overline{A}_4^* :

$$g(\overline{A}_3) = x_1(a_3 - a) + x_2(a_3 - a_2) + x_3(a_3 - 1) + x_4a_3$$
.

It follows that

$$n_{h_0}(A_3) + 1 = h_0 a_3 - g(\overline{A}_3) = (h_0 - \sum x_i) a_3 + x_1 a + x_2 a_2 + x_3$$

has a representation by A_4^* with coefficient sum $h_0 - x_4 \le h_0$, provided that $\sum x_i \le h_0$. We thus have the following partial converse of (16.5):

$$(16.7) g(\overline{A}_3) \in h_0 \overline{A}_4^* \Rightarrow n_h(A_4^*) > n_h(A_3) for h \ge h_0.$$

We only proved this for $h=h_0$ above, but the general result with $h \ge h_0$ then follows immediately from (2.13-14).

There is one trivial case of equality in (16.3):

(16.8)
$$f = 1$$
, $a_2 = h_0 + 1$, $a_3 = h_0 + r + 1$, $a = a_2 - tr \ge 2$

(16.9)
$$\Rightarrow n_h(A_4^*) = n_h(A_3) \text{ for } h \ge h_0.$$

This follows from (16.5), since \overline{A}_3 and \overline{A}_4^{\star} are "equivalent" as Frobenius bases:

$$\overline{A}_3 = \{r, a_3 - 1, a_3\}, \overline{A}_4^* = \{r, (t+1)r, a_3 - 1, a_3\}.$$

Since trivially $n_h(A_A^*) \ge n_h(A_S)$, this shows that

(16.5) $g(\overline{A}_1^2) = g(\overline{A}_3) + n_h(A_1^2) = n_h(A_3)$ for $h \ge h_0$

(16.6) $h \ge h_1^* : n_h(A_4^*) = n_h(A_3) = g(\overline{A_4}) = g(\overline{A_3})$

We obviously have $g(\overline{A}_4^*) \le g(\overline{A}_3)$. With strict inequality, $g(\overline{A}_3)$ has a representation by \overline{A}_4^* :

 $g(\overline{A}_3) = x_1(a_3 - a) + x_2(a_3 - a_2) + x_3(a_3 - 1) + x_4 a_3$

It follows that

 $n_{h_0}(A_3) + t = h_0 a_3 - g(\overline{A}_3) = (h_0 - \overline{\lambda} x_1) a_3 + x_1 a_1 + x_2 a_2 + x_3$

has a representation by A_4^* with coefficient sum $h_0 - x_4 \le h_0$, provided that $\sum x_1 \le h_0$. We thus have the following partial converse of (16.5):

(16.7) $g(\overline{A}_3) \in h_0 \overline{A}_4^* = n_h(A_4^*) > n_h(A_3)$ for $h \geq h_0$

We only proved this for $h=h_0$ above, but the general result with $h \ge h_0$ then follows immediately from (2.15-14).

There is one trivial case of equality in (16.3):

(16.8) f=1, a2=h0+1, a3=h0+r+1, a=a2-tr≥2

(16.9) \Rightarrow $n_h(A_4^*) = n_h(A_3)$ for $h \ge h_0$

This follows from (16.5), since $\overline{\Lambda}_3$ and $\overline{\Lambda}_4^*$ are "equivalent" as Frobenius bases:

 $\overline{A}_{3} = (r, a_{3} - 1, a_{3}), \overline{A}_{4}^{*} = (r, (t + 1)r, a_{3} - 1, a_{3})$

The second element of \overline{A}_4^{\star} is a multiple of the first one.

We assume that A_3 is non-pleasant. If it is also non-dependent, it follows from Theorem 10.1 that

$$n_{h_0}(A_4^*) \ge n_{h_0}(A_3) \ge (h_0 + 1)a_2 - a_3$$
.

Let $1 < a < a_2$. We then get $h_1^* \le h_0$ by Theorem 3.1, and can combine (16.5-6) to an equivalence for non-dependent A_3 . And for Frobenius-dependent A_3 , Krätzig-Berle [4, p.23] shows very simply that we always have $n_h(A_4^*) > n_h(A_3)$ except in the already settled cases (16.8), hence

(16.10)
$$1 < a < a_2 : g(\overline{A}_4^*) = g(\overline{A}_3) \iff n_h(A_4^*) = n_h(A_3)$$
.

Based on extensive computations by Mossige, I conjectured the following results:

THEOREM 16.1. Let
$$a_2 < a < a_3$$
. Then
$$n_h(A_4^*) > n_h(A_3) \quad \underline{\text{for}} \quad h \geq h_0 .$$

THEOREM 16.2. Let $1 < a < a_2$. In addition to (16.8), there is one more case of equality in (16.9):

f = 1,
$$a_2 = h_0 + 1$$
, $a_3 = h_0 + r + 1$, $a = tr + 1$
 $h_0 = \tau r + \rho$, $0 \le \rho < r - 1$, $\tau \ge \rho$
 $r \equiv -1 \pmod{\rho + 1}$, $t = 1, 2, \dots, \left[\frac{\tau + 1}{\rho + 1}\right]$.

Both theorems were proved in the Master's thesis [2] of my student Kirfel. He used the methods of Rödseth [5] for determining

The second element of \$\tilde{A}_1^*\$ is a multiple of the first one.

We assume that \$A_2\$ is non-pleasant. If it is also nondependent, it follows from Theorem 18.1 that

EB = 2 E(1+0) & (ho +1) = 2 = 83

Let $1 < a < a_2$. We then get $h_1^* \le h_0$ by Theorem 3.1, and can combine (16.5-6) to an equivalence for non-dependent A_5 . And for Probenius-dependent A_5 , Krätzig-Berle (4, p-23) shows very simply that we always have $n_h(A_4^*) > n_h(A_5^*)$ except in the already settled cases (16.8), hence

(16.10) $1 < a < a_2 : g(\overline{\Lambda}_4^*) = g(\overline{\Lambda}_5) \iff n_h(\Lambda_4^*) = n_h(\Lambda_5)$

Based on extensive computations by Mossige, I conjectured the following results:

THEOREM 16.1. Let ay < a < ay . Then

nn(An) > nn(An)

THEOREM 16.2. Let 1 < a < a . In addition to (16.8), there is one more case of equality in (16.9):

f = 1, a2 = h0 + 1, a3 = h0 + r F1, a = tr + 1

0 5 r , f - x > 0 2 0 , q + xr = nd

 $\tau = -1 \pmod{p+1}$, $\tau = 1, 2, \dots, \frac{\tau+1}{p+1}$

Both theorems were proved in the Master's thesis [2] of my student Kirfel. He used the methods of Rödseth [5] for determining

the Frobenius number $g(\overline{A}_3)$. A shortened version [3] is submitted for publication.

Another student of mine, Krätzig-Berle, gave an independent and very elegant proof of Theorem 16.1 in her Diplomarbeit [4, Satz 3.1]. Using the inequalities of Theorems 10.2-5, she could determine a h_0 -representation by A_4^* of $n_{h_0}(A_3) + 1$.

We note that the bases A_3 of Theorem 16.2 satisfy the conditions (8.1-2), and so $n_h(A_3)$ can be determined explicitly by (8.3). It is fairly straightforward (cf. [4, Satz 2.3]) to show that this h-range is not increased when extending the basis with a = tr + 1. The hard problem is of course to show that all other cases (except (16.8)) lead to an increase of the h-range.

the Probenius number $g(\overline{A}_3)$. A shortened version [3] is submitted for publication.

Another student of mine, Krätzig-Berle, gave an independent

and very elegant proof of Theorem 16.1 in her Diplomarbeit [4, Satz 3.1]. Using the inequalities of Theorems 10.2-5, sho

could determine a ho-representation by Ai of nho(Az) +1.

We note that the bases As of Theorem 46.2 satisfy the conditions (8.1-2), and so nh(Az) can be determined explicitly by (8.3). It is fairly straightforward (cf. [4, Satz 2.3]) to show that this h-range is not increased when extending the basis with a = tr +1. The hard problem is of course to show that all other cases (except (16.8)) lead to an increase of the h-range.

REFERENCES

- 1. G. Hofmeister, <u>Über eine Menge von Abschnittsbasen</u>, J. Reine Angew. Math. 213 (1963), 43-57.
- C. Kirfel, <u>Erweiterung dreielementiger Basen bei konstanter</u>
 <u>Frobeniuszahl und Reichweite</u>, Master's thesis, Dept. of
 Math., Univ. of Bergen, 1982.
- 3. C. Kirfel, <u>Erweiterung dreielementiger Basen bei konstanter</u>
 Frobeniuszahl, II, to appear.
- 4. E. Krätzig-Berle, <u>Zum Reichweitenproblem für dreielementige</u>

 <u>Basen</u>, Diplomarbeit, Mainz, 1983.
- 5. Ö. Rödseth, On a linear diophantine problem of Frobenius,
 J. Reine Angew. Math. 301 (1978), 171-178.
- 6. Ö. Rödseth, On h-bases for n, Math. Scand. 48 (1981), 165-183.
- 7. E.S. Selmer, On the postage stamp problem with three stamp denominations, Math. Scand. 47 (1980), 29-71.
- 8. E.S. Selmer and A. Rödne, On the postage stamp problem with three stamp denominations, II, Math. Scand. 53 (1983), 145-156.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BERGEN
N-5000 BERGEN
NORWAY

REFERENCES

- 1. G. Hofmeister, Über eine Menge von Abschnittsbasen, J. Reine
- Z. C. Kirfel, Erweiterung dreielementiger Basen bei Konstanter
 Frobeniuszahl und Reichweite, Master's thesis, Dept. of
- C. Kirfel, Brweiterung dreielementiger Basen bei konstanter Frobeniuszahl, II, to appear.
- 4. E. Krätzig-Berle, Zum Reichweitenproblem für dreichentige Basen, Diplomarbeit, Mainz, 1985.
- 5. Ö. Rödseth, On a linear diophantine problem of Probenius.
- 6. Ö. Rödseth, On h-bases for n, Math. Scand. 48 (1981), 163-183
 - 7. B.S. Selmer, On the postage stamp problem with three stamp depominations, Math. Scand. 47 (1980), 29-71.
 - 8. E.S. Selmer and A. Rüdne, On the postage stamp problem with three stamp denominations, II, Math. Scand. 53 (1983),

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BERGEN
N-5000 BERGEN

