Department of PURE MATHEMATICS

No 30-06-01-84 ISSN 0332-5047

ON THE POSTAGE STAMP PROBLEM WITH THREE STAMP DENOMINATIONS, III

ERNST S. SELMER

UNIVERSITY OF BERGEN

Bergen, Norway

ERNST S. SELMER

The present paper is an immediate continuation of Selmer [7] and Selmer - Rödne [8]. All references to theorems and formulas from sections 1-13 are automatically to [7] or [8].
14. The sets of $h=$ and $(h)-1)$-representable numbers.

Let $A_{k}^{\prime}=A_{k} U\{0\}$. The set (1.2) of h-representable numbers (at most h addends) may then in standard terminology be denoted by $h A_{k}^{\prime}$. Our aim in the present section is to determine the sets $h_{0} A_{3}^{\prime}$ and $\left(h_{0}-1\right) A_{3}^{\prime}$.

We shall rely heavily on the results in Rödseth [6], and use his notation, with one exception: He operates with an integer $r, 0 \leqq r<a_{3}$. To avoid confusion with our use of r, we shall replace his r by ℓ.

Rödseth's Lemma 4 states that

$$
t_{-\ell}^{*}=x_{v}\left(a_{3}-1\right)+y_{v}\left(a_{3}-a_{2}\right),\left(x_{v}, y_{v}\right) \in X_{v} \cup Y_{v}
$$

We consider the numbers $\left(a_{11} \equiv \ell\left(\bmod a_{3}\right)\right)$:
(14.1) $\left(h_{0}-t\right) a_{3}-t_{-\ell}^{*}=\left(h_{0}-t-x_{v}-y_{v}\right) a_{3}+y_{v} a_{2}+x_{v} \geqq 0$,
and claim that these belong to $h_{0} A_{3}^{\prime}$ for $t \geqq 0$. This is trivial if $h_{0}-t-x_{v}-y_{v} \geqq 0$, since the coefficient sum $\sum=h_{0}-t \leqq h_{0}$. It remains to show that the set

NMIMOMI GMATC JDATEOS गHI WO

 }

\qquad

$$
\frac{1}{2} A(r-0 t) \text { bas }
$$

> fedt e9jsus is smened edtiezLugt
 wd

$$
\text { Joz ofl? zadt wode of antsmex } 11
$$

$$
\begin{aligned}
& \cdot v^{x} u v^{x}\left(y ^ { x } \cdot v ^ { x } \cdot \left(y^{a}-2^{a)} v^{x}+\left(1-z^{8)} v^{x}=a^{3}\right.\right.\right. \\
& \text { 我 }
\end{aligned}
$$

$$
S_{\ell}=\left\{l, \ell+a_{3}, \ell+2 a_{3}, \ldots, y_{v} a_{2}+x_{v}-a_{3}\right\} \subset h_{0} A_{3}^{\prime}
$$

And this is proved by Rödseth, since S_{ℓ} is just the sequence (4.1) of [6].

On the other hand, the numbers (14.1) do not belong to $h_{0} A_{3}^{\prime}$ if $t=-t^{\prime}<0$. Assume to the contrary that

$$
\left(h_{0}+t^{\prime}\right) a_{3}-t_{-\ell}^{*}=x_{3} a_{3}+x_{2} a_{2}+x_{1}, \sum x_{i}=h^{\prime} \leqq h_{0}
$$

As in section 3 , we conclude that

$$
t_{-\ell}^{*}-t^{\prime} a_{3}=\left(h_{0}-h^{\prime}\right) a_{3}+x_{1}\left(a_{3}-1\right)+x_{2}\left(a_{3}-a_{2}\right)
$$

has a representation by $\bar{A}_{3}=\left\{a_{3}-a_{2}, a_{3}-1, a_{3}\right\}$, cf. (2.15). (Rödseth uses $A_{3}^{*}=\bar{A}_{3} \cup\{0\}$.) But this is a contradiction, since $t_{-\ell}^{*}$ is defined as the smallest integer in its residue class (mod a_{3}) with a representation by $\overline{\mathrm{A}}_{3}$.

Letting $\left(X_{v}, y_{v}\right)$ run through all lattice points of $X_{V} U Y_{V}$, we get all residue classes $\ell\left(\bmod a_{3}\right)$, and have the following

THEOREM 14.1.
$h_{0} A_{3}^{\prime}=\bigcup_{\left(x_{v}, y_{v}\right) \in X_{v} U Y_{v}}\left\{\left(h_{0}-t-x_{v}-y_{v}\right) a_{3}+y_{v} a_{2}+x_{v} \geqq 0, t=0,1, \ldots\right\}$.

For use in the next section, we shall also determine (h h_{0} 1) A_{3}^{\prime}. C1early

$$
\left(h_{0}-1\right) A_{3}^{\prime} \subset h_{0} A_{3}^{\prime}-a_{3}=\left\{n-a_{3} \mid n \in h_{0} A_{3}^{\prime}\right\} .
$$

If A_{3} is pleasant, it suffices to use regular representations, and clearly

$$
\frac{1}{\varepsilon^{A}} 0^{n}=\left\{e^{s}-v^{x}+S^{3} v^{x}+\cdots c^{3 S}+8{ }^{2} e^{2}+3\left(e^{2}\right)=s^{2}\right.
$$

$$
.10130(t . \Delta)
$$

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

Wht nux f visix) amiateil

 yItas IO
 XITs9fo

$$
\left(h_{0}-1\right) A_{3}^{\prime}=\left(h_{0} A_{3}^{\prime}-a_{3}\right) \cap \mathbb{N}_{0}
$$

(where $\mathbb{N}_{0}=\{0,1,2, \ldots\}$) For non-pleasant A_{3}, however, we get problems with the number n_{0} of (11.13):
(14.2) $n_{0}=a_{3}-r-1=(f-1) a_{2}+a_{2}-1=n_{h_{0}-1}\left(A_{3}\right)+1 \notin\left(h_{0}-1\right) A_{3}^{\prime}$,
where $n_{0}+a_{3}=2 f a_{2}+r-1 \in h_{0} A_{3}^{\prime}$, since $1 \leqq r \leqq a_{2}-f-1$ by (4.3). (For pleasant A_{3}, it follows from (2.8) that
$\left.\mathrm{n}_{0}+\mathrm{a}_{3}=\mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right)+1 \notin \mathrm{~h}_{0} \mathrm{~A}_{3}^{\prime}.\right)$
We shall show that n_{0} is usually the only exception:

THEOREM 14.2. For A_{3} non-pleasant, with $r \neq 1$ and $s \neq q$, we have
(14.3) $\left(h_{0}-1\right) A_{3}^{\prime}=\left(h_{0} A_{3}^{\prime}-a_{3}\right) \cap \mathbb{N}_{0} \backslash\left\{a_{3}-r-1\right\}$.

To prove this, we replace h_{0} by $h_{0}-1$ in the arguments leading to Theorem 14.1. The only critical point is whether now $S_{\ell} \subset\left(h_{0}-1\right) A_{3}^{\prime}$.

To show that $S_{\ell} \subset h_{0} A_{3}^{\prime}$, Rödseth used his Lemma 5 , which states that for $1 \leqq i \leqq v$, we have

$$
\begin{align*}
x_{i-1}+y_{i-1}+Q_{i}-1 \leqq h_{0} & \text { if } P_{i} \leqq s_{i} \tag{14.4}\\
x_{i}+y_{i}+R_{i}-1 \leqq h_{0} & \text { if } P_{i}>s_{i} .
\end{align*}
$$

If these relations hold with strict inequalities, it follows that $S_{\ell} \subset\left(h_{0}-1\right) A_{3}^{1}$.

We note that Rödseth's division algorithm for a_{3} / a_{2} is the same as the one leading to our Theorem 6.1. In particular, we have

$$
Q^{1 A n}\left(\theta^{-1} \frac{1}{2} \Lambda_{0} d\right)=\Delta A\left(R \theta^{n}\right)
$$

$$
c^{2}\left(r-a^{h}\right) \Rightarrow 2^{8}
$$

$$
\begin{equation*}
x^{e}<1-q 1 \quad 0^{\gamma} \geq 1-x^{\pi}+x^{x}+x^{x} \tag{a,A1}
\end{equation*}
$$

$$
\text { AAPt - dh S } 2
$$

$$
\begin{aligned}
& \frac{3}{4} 0^{2} \Rightarrow \text { a }^{2} \text { Jisht woile at } \\
& 1 \rightarrow 2
\end{aligned}
$$

$a_{3}=q_{1} a_{2}-s_{1}$, hence $q_{1}=q, s_{1}=s$, and $v>0$ for a nonpleasant A_{3}, when $s \geqq q$ by (2.10).

Studying Rödseth's proof of his Lemma 5, we observe the following facts:

1) For $i=1$, when $P_{1}=q_{1} \leqq s_{1}$, we have equality in (14.4) if and only if $\left(x_{0}, y_{0}\right)$ is the upper right corner of Y_{0} :

$$
\begin{equation*}
\left(x_{0}, y_{0}\right)=\left(s_{0}-1, p_{1}-P_{0}-1\right)=\left(a_{2}-1, f-1\right) . \tag{14.6}
\end{equation*}
$$

Then $y_{0} a_{2}+x_{0}$ is just the number n_{0} of (14.2).
2) For $i>1$, hence $Q_{i}>1$, a necessary condition for equality in (14.4) or (14.5) is $s_{i}=s_{i-1}-1$ or $s_{i+1}=s_{i}-1$, respectively. But then such a relation must hold from the start:

$$
s=s_{1}=s_{0}-1=a_{2}-1 \text {, hence } r=1
$$

(cf. the recurrence relation $s_{j+1}=q_{j+1} s_{j}-s_{j-1}, q_{j+1} \geqq 2$). If $r \neq 1$, we thus have strict inequalities in (14.4-5) for all i>1.

In Rödseth's proof of $S_{l} \subset h_{0} A_{3}^{\prime}$, he divides S_{ℓ} into "subsequences" between $y_{i-1} a_{2}+x_{i-1}$ and

$$
y_{i} a_{2}+x_{i}=y_{i-1} a_{2}+x_{i-1}+Q_{i}\left[\frac{x_{i-1}}{s_{i}}\right] a_{3}
$$

We have noted that the case $i=1$ needs a special treatment. Since $s_{1}=s, Q_{1}=1$, we must consider the numbers $z a_{3}+y_{0} a_{2}+x_{0}$, $0 \leqq z<\left[x_{0} / s\right]$. Using the " a_{3}-transfer" $a_{3}=q a_{2}-s$ of section 11 , this may be written as

$$
\begin{equation*}
z a_{3}+y_{0} a_{2}+x_{0}=\left(y_{0}+z q\right) a_{2}+x_{0}-z s \tag{14.7}
\end{equation*}
$$

with positive constant term, and a coefficient sum

$$
\Sigma=x_{0}+y_{0}-z(s-q) \leqq x_{0}+y_{0} .
$$

$$
-4=
$$

 Hetosi gniwollot

2

$$
I=I \text { ocorad c } 1-S^{S}=D^{S}-0^{z=} t^{e}=z
$$

 ye matathes ad vom of eft

$$
\begin{align*}
& 2+8 s-0^{x}+g^{28}\left(p^{x}+0^{2}\right)=0^{x}+s^{5} 0^{x}+e^{83}
\end{align*}
$$

$$
0^{x}+0^{x} \text { ह } \quad(2-c)^{2}-10^{x}+0^{x}=3
$$

If $x_{0}+y_{0}<h_{0}$, then also $\sum<h_{0}$ for all z. If $x_{0}+y_{0}=h_{0}$, corresponding to the corner (14.6), then $\sum<h_{0}$ for $z>0$ if $s>q$, but $\sum=h_{0}$ for all z when $s=q$.

If $s=q$, then $v=1$ by Theorem 7.1, and the "subsequence" just completed covers the whole of S_{ℓ}. If $v>1$, we have seen that the remaining subsequences yield no problems if $r \neq 1$.

This completes the proof of (14.3), and also shows that if $s=q$, then

$$
\begin{equation*}
\left(h_{0}-1\right) A_{3}^{\prime}=\left(h_{0} A_{3}^{\prime}-a_{3}\right) \cap \mathbb{N}_{0} \backslash\left\{t a_{3}-r-1 \mid t=1,2, \ldots,\left[\frac{a_{2}-1}{s}\right]\right\} \tag{14.8}
\end{equation*}
$$

Here $t a_{3}-r-1=n_{0}+(t-1) a_{3}=n_{0}+z a_{3}$, with $0 \leqq z<\left[x_{0} / s\right]=\left[\left(a_{2}-1\right) / s\right]$. Note that we may use also $z=\left[x_{0} / s\right]$ in (14.7), but the resulting number is then contained in $h_{0} A_{3}^{\prime}$ but not in $h_{0} A_{3}^{\prime}-a_{3}$.

We finally treat the case $r=1$. A modification of Rödseth's method then seems to become rather complicated. However, we can settle the case directly by a more elementary application of a_{3} transfers. With $r=1$, the only such transfers which may reduce the coefficient sum are of the form

$$
\begin{equation*}
e a_{3}=(e f+1) a_{2}-\left(a_{2}-e\right), e=1,2, \ldots \tag{14.9}
\end{equation*}
$$

As in section 11 , we start with the regular representations

$$
\begin{equation*}
n=e_{3} a_{3}+e_{2} a_{2}+e_{1}, e_{1} \leqq a_{2}-1, e_{2} \leqq f-1 . \tag{14.10}
\end{equation*}
$$

For $r=1$, it is unnecessary to consider $e_{2}=f$, since already $f a_{2}+1$ gives a new a_{3}.

$$
-2-2
$$

$$
\sim
$$

$$
\text { Attue } \left.\mathcal{C}^{B S}+0^{h}=\varepsilon^{B(1}-J\right)+0^{n}=1-T-\varepsilon^{B J} \text { 日Tsh }
$$

$$
2^{n}-\frac{1}{c} A_{0}^{d} \text { nt } 100
$$

$$
\begin{equation*}
\operatorname{lel}^{2} \tag{01.51}
\end{equation*}
$$

For the n of (14.10), we shall decide if $n \in h_{0} A_{3}^{\prime}$. If $\Sigma_{\mathrm{e}}=\sum \mathrm{e}_{\mathrm{i}} \leqq \mathrm{h}_{0}$, we are finished. If $\sum_{\mathrm{e}}>\mathrm{h}_{0}$, we must try a transfer (14.9) with $e \leqq e_{3}$. The transfer is possible only if it yields a non-negative constant term, that is, if $e_{1} \geqq a_{2}-e$.

Similarly, we shall decide if $n^{\prime} \in\left(h_{0}-1\right) A_{3}^{\prime}$, where
(14.11)

$$
\mathrm{n}^{\prime}=\mathrm{n}-\mathrm{a}_{3}=\left(\mathrm{e}_{3}-1\right) \mathrm{a}_{3}+\mathrm{e}_{2} \mathrm{a}_{2}+\mathrm{e}_{1} \quad\left(\mathrm{e}_{3}>0\right),
$$

with $\sum_{e}^{\prime}=\sum_{e}-1$, hence no problem if $\Sigma_{e} \leqq h_{0}$. If an a_{3}-transfer (14.9) is necessary and possible in (14.10), and yields a new $\sum \leqq h_{0}$, then the same transfer gives $\sum^{\prime} \leqq h_{0}-1$ in (14.11), provided it is possible, that is, if $e \leqq e_{3}-1$. It is easily seen that this combination of conditions $\underline{\text { fails }}$ only in the case

$$
\begin{equation*}
n=e_{3} a_{3}+(f-1) a_{2}+a_{2}-e_{3}, \quad \sum=h_{0}+1 \tag{14.12}
\end{equation*}
$$

Thus $n^{\prime}=n-a_{3} \notin\left(h_{0},-1\right) A_{3}^{\prime}$ if $n^{\prime}=e_{3} a_{3}-e_{3}-1$.
For the n of (14.12), we must use $e=e_{3}$ in (14.9), and get $n=\left(e_{3}+1\right) f a_{2}$, hence

$$
n \in h_{0} A_{3} \Leftrightarrow\left(e_{3}+1\right) f \leqq h_{0}=a_{2}+f-2 \Leftrightarrow e_{3} \leqq\left[\frac{a_{2}-2}{f}\right]
$$

We have thus shown that if $r=1$, then
(14.13) $\left(h_{0}-1\right) A_{3}^{\prime}=\left(h_{0} A_{3}^{\prime}-a_{3}\right) \cap \mathbb{N}_{0} \backslash\left\{t\left(a_{3}-1\right)-1 \mid t=1,2, \ldots,\left[\frac{a_{2}-2}{f}\right]\right\}$.

For $t=1$, we get $t\left(a_{3}-1\right)-1=a_{3}-2=n_{0}$.
No problems arise if we have $s=q$ and $r=1$ simultaneously.
Then $s=q=a_{2}-1, f=q-1=a_{2}-2$, and the "subtrahends" \{ \} in (14.8) and (14.13) both consist of n_{0} only.

$$
t+0^{H}=3 \cdot \Sigma^{9}-s^{5}+s^{6}(1-\beta)+\varepsilon^{s} \delta^{\theta}=\pi
$$

The bल⿱ manmadiantaz $(T+-$ a)
and

$$
0^{1 h}=5-e^{3}+1-\left(1+c^{3}\right) 3192 \operatorname{sw} \cdot f=d \quad 107
$$

The results (14.3), (14.8) and (14.13) imply that, but for the specified exceptions with $t>1$ for $r=1$ or $s=q$, the integers $\geqq \mathrm{a}_{3}$ with a representation in at most h_{0} addends from A_{3} have such a representation containing a_{3}.

In particular, $\left[0, \mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right)\right] \subset \mathrm{h}_{0} \mathrm{~A}_{3}^{\prime}$. It then follows from (14.3) that

$$
\begin{equation*}
r \neq 1, s \neq q \Rightarrow\left[0, n_{h_{0}}\left(A_{3}\right)-a_{3}\right] \backslash\left\{a_{3}-r-1\right\} \subset\left(h_{0}-1\right) A_{3}^{\prime} \tag{14.14}
\end{equation*}
$$

This was first observed numerically for a large number of bases A_{3}, and gave the impetus for the investigations in this section.

As in Rödseth [6], let $\Lambda(n)$ denote the number of addends in a minimal representation of n by a given basis A_{k}. We clearly have

$$
\Lambda\left(n_{h}\left(A_{k}\right)-(x+1) a_{k}+1\right) \geqq h-x, \Lambda\left(n_{h}\left(A_{k}\right)-x a_{k}\right) \geqq h-x
$$

since otherwise addition of $(x+1) a_{k}$ or $x a_{k}$ would yield a contradiction. This raises the question whether there are integers $x>0$ such that for the interval of 1 ength a_{k} :

$$
\begin{equation*}
\left[n_{h}\left(A_{k}\right)-(x+1) a_{k}+1, n_{h}\left(A_{k}\right)-x a_{k}\right] \subset(h-x) A_{k}^{\prime} \tag{14.15}
\end{equation*}
$$

We have just seen that this holds with $x=1$ if $k=3, h=h_{0}, A_{3}$ non-pleasant, $r \neq 1, s \neq q$. Already for $x=2$, however, it is easy to find counterexamples:

$$
A_{3}=\{1,7,11\}, h_{0}=6, n_{6}\left(A_{3}\right)=48 ; \Lambda(17)=5 .
$$

We have made the interesting observation that for Frobenius dependent A_{3} with $r>1$, (14.15) holds also with larger x :
 Eation ent whe
 5 Maimisthop rou方stmoagrgor \& doue
 jed

$$
\left.x-d \leq(s 5 x-(A) d r) A, x-d S\left(r+d^{3(1}+x\right)-(A) d n\right) A
$$

 : es Iquaxetetmuos bitiz of

$$
z=(\Omega r) M \text {; } 8 \mathrm{~A}=\left(\varepsilon^{A}\right) d^{n}, x^{0}=0^{d},(1 T, \Gamma, r)=\varepsilon^{A}
$$

PROPOSITION 14.1. Let A_{3} be Frobenius-dependent, with $r>1$. In the notation (5.8), let

$$
(p-1) a_{2} \leqq n \leqq n_{h_{0}}\left(A_{3}\right), \quad x=\left[\frac{n_{h_{0}}\left(A_{3}\right)-n_{1}}{a_{3}}\right]
$$

Then

$$
n \in\left(h_{0}-x\right) A_{3}^{\prime}
$$

A proof will be published elsewhere.
15. The cases with $n_{h}\left(A_{4}\right)=n_{h}\left(A_{3}\right)$.

In (3.3), we raised the question of basis extensions which do not increase the h-range . We shall solve this question completely in the case

$$
\begin{equation*}
\mathrm{n}_{\mathrm{h}}\left(\mathrm{~A}_{4}\right)=\mathrm{n}_{\mathrm{h}}\left(\mathrm{~A}_{3} \cup\left\{\mathrm{a}_{4}\right\}\right)=\mathrm{n}_{\mathrm{h}}\left(\mathrm{~A}_{3}\right), \mathrm{a}_{4}>\mathrm{a}_{3} . \tag{15.1}
\end{equation*}
$$

Even if A_{4} enters the formulation, the results depend entirely on the properties of A_{3}.

We see from (3.4) that the regular h-range g_{h} always increases by a basis extension (assuming admissible bases). The same argument shows that if A_{3} is pleasant, then

$$
n_{h}\left(A_{4}\right) \geqq g_{h}\left(A_{4}\right)>g_{h}\left(A_{3}\right)=n_{h}\left(A_{3}\right)
$$

so that we may assume non -pleasant A_{3} in (15.1).
If $a_{4}>n_{h_{0}}\left(A_{3}\right)+1$, then A_{4} is not admissible for $h=h_{0}$ (where $h_{0}=a_{2}+f-2$ refers to A_{3}). If then $h=h_{0}^{\prime}>h_{0}$ is the smallest h for which A_{4} is admissible, we trivially have

$$
\begin{aligned}
& \text { - } \frac{1}{2} A(x-0 d) \geqslant \pi \\
& \text { - Steriveate Borlaildurg ed IIfw Zooxq A }
\end{aligned}
$$

 बace orjt mí

$$
\begin{equation*}
\left(f_{g^{s)}}^{s)} \cup E^{A}\right) d^{\pi=}=\left(A^{A}\right) d^{(\pi)} \tag{f.टा}
\end{equation*}
$$

 - an 10 deisvecrota onj

(1. हT) fit A Jasasglg-nor omuees vim ow terlt oz

$n_{h}\left(A_{4}\right)=n_{h}\left(A_{3}\right)$ for $h<h_{0}^{\prime}$. On the other hand, it follows from (2.14) that

$$
\mathrm{n}_{\mathrm{h}_{0}^{\prime}}\left(\mathrm{A}_{4}\right) \geqq \mathrm{a}_{4}+\mathrm{n}_{\mathrm{h}_{0}^{\prime}-1}\left(\mathrm{~A}_{3}\right)=\mathrm{a}_{4}+\mathrm{n}_{\mathrm{h}_{0}^{\prime}}\left(\mathrm{A}_{3}\right)-\mathrm{a}_{3}>\mathrm{n}_{\mathrm{h}_{0}^{\prime}}\left(\mathrm{A}_{3}\right)
$$

Similarly, it follows from from (2.13-14) that

$$
n_{h^{\prime}}\left(A_{4}\right) \geqq n_{h^{\prime}}\left(A_{3}\right), h^{\prime} \geqq h_{0}^{\prime} \Rightarrow n_{h}\left(A_{4}\right)>n_{h}\left(A_{3}\right), h>h^{\prime} .
$$

We may therefore restrict the problem (15.1) to the case

$$
\begin{equation*}
\mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{4}\right)=\mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right), \mathrm{a}_{3}<\mathrm{a}_{4} \leqq \mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right)+1 \tag{15.2}
\end{equation*}
$$

Note that a similar simplification does not apply to larger bases, since the analogue of (2.14) does not necessarily hold for $k>3$.

We already know one case of (15.2), resulting from the basis A_{h+2} of section 3 :
(15.3) $a_{2}=h_{0}+1, a_{3}=h_{0}+2, a_{4}=\alpha a_{2}+a_{3}, 1 \leqq \alpha \leqq h_{0}-1$.

To solve the general problem, we note that

$$
\mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{4}\right)=\mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right) \Leftrightarrow \mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right)+1 \notin \mathrm{~h}_{0} \mathrm{~A}_{4}^{\prime}
$$

(15.4)

$$
\Leftrightarrow \mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right)+1-\delta \mathrm{a}_{4} \notin\left(\mathrm{~h}_{0}-\delta\right) \mathrm{A}_{3}^{\prime}, \delta=1,2, \ldots, \mathrm{~h}_{0}
$$

$$
\text { In most cases, it suffices to consider } \delta=1 \text {. Since }
$$

$$
N=n_{h_{0}}\left(A_{3}\right)+1-a_{4} \in\left[0, n_{h_{0}}\left(A_{3}\right)-a_{3}\right] \subset\left(h_{0} A_{3}^{\prime}-a_{3}\right) \cap \mathbb{N}_{0}
$$

(15.4) fails already for $\delta=1$ if N does not belong to the exceptions in (14.3), (14.8) or (14.13). These cases have the
maxi awollol if band radforait no tad \gg an $\operatorname{Tot}(8 A) d^{n}=(A) d a$ tent ($\Delta \mathrm{t}, \mathrm{S}$)

pebplorlt of (t.at) moldorq, guld jaltuast arotareds xem ow

 $\varepsilon<x$

common exception n_{0} of (14.2), and $N=n_{0}$ does in fact lead to a general solution of (15.2):
(15.5) $\quad a_{4}=\hat{a}_{4}=n_{h_{0}}\left(A_{3}\right)-a_{3}+r+2=n_{h_{0}}\left(A_{3}\right)-n_{h_{0}-1}\left(A_{3}\right) \Rightarrow n_{h_{0}}\left(A_{4}\right)=n_{h_{0}}\left(A_{3}\right)$.

This is clear since we cannot use $\delta \geqq 2$ in (15.4):

$$
2 \hat{a}_{4}>\mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right)+1 \Leftrightarrow \mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right)>2 \mathrm{a}_{3}-2 \mathrm{r}-3
$$

which always holds by (2.8). - Note that $\hat{a}_{4}=a_{3}$ if A_{3} is pleasant.

If $a_{4} \neq \hat{a}_{4}$, a necessary condition for (15.2) is that N equals one of the exceptions in (14.8) or (14.13), with $t>1$ (since $t=1$ corresponds to n_{0}).

We start with (14.13), hence $r=1$. Then $n_{h}\left(A_{3}\right)$ is given by (2.28), and we find that we must choose
(15.6) $a_{4}=a_{3}+\tau\left(a_{3}-1\right), \tau=1,2, \ldots,\left[\frac{a_{2}-2}{f}\right]-1$
(while $\tau=\left[\left(a_{2}-2\right) / f\right]$ corresponds to $\left.\hat{a}_{4}\right)$. We shall see that this is also sufficient for (15.2) to hold.

We consider a representation

$$
\begin{equation*}
n_{h_{0}}\left(A_{3}\right)+1=x_{4} a_{4}+x_{3} a_{3}+x_{2} a_{2}+x_{1} \tag{15.7}
\end{equation*}
$$

and must show that $\sum \mathrm{x}_{\mathrm{i}}>\mathrm{h}_{0}$. This is trivial if $\mathrm{x}_{4}=0$, so we can assume $x_{4}>0$, and observe that

$$
\mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right)+1 \equiv 0, \mathrm{a}_{4} \equiv \mathrm{a}_{3} \equiv 1 \quad\left(\bmod \mathrm{a}_{3}-1=\mathrm{fa} \mathrm{a}_{2}\right) .
$$

With $x_{2}=\kappa f+x_{2}^{\prime}, 0 \leqq x_{2}^{\prime}<f,(15.7)$ then gives
 :(S.Et) Zo noituloe Leremon
+4mergifg

 matistitgeatqot is reblenoo oh

$$
\begin{equation*}
A^{x+}+s^{2} s^{x}+y^{8} a^{x}+p^{15} A^{x}=r+\left(\varepsilon^{A}\right) d^{I T} \tag{r,2r}
\end{equation*}
$$

 3erls sexuedo bure. $0<\Delta x$ emueas uss
$x_{4}+x_{3}+x_{1} \equiv\left(f-x_{2}^{\prime}\right) a_{2}$, hence $x_{4}+x_{3}+x_{1} \geqq\left(f-x_{2}^{\prime}\right) a_{2}$
$x_{4}+x_{3}+x_{2}+x_{1} \geqq x_{4}+x_{3}+x_{2}^{\prime}+x_{1} \geqq\left(f-x_{2}^{\prime}\right) a_{2}+x_{2}^{\prime} \geqq a_{2}+f-1=h_{0}+1$,
as required. - In particular, we get the known case (15.3) from (15.5-6) with $f=1$.

We next consider (14.8), hence $s=q, a_{3}=q\left(a_{2}-1\right)$. By (2.29), we now have two possibilities for $n_{h_{0}}\left(A_{3}\right)$:

$$
n_{h_{0}}\left(A_{3}\right)=\left(\left[\frac{a_{2}-1}{s}\right]+2\right) a_{3}-r- \begin{cases}2, & \text { if } s \nmid\left(a_{2}-1\right) \\ 3, & \text { if } s \mid\left(a_{2}-1\right)\end{cases}
$$

These two cases must be considered separately.
If $s \nmid\left(a_{2}-1\right)$, we find that we must choose

$$
\begin{equation*}
a_{4}=(\tau+1) a_{3}, \quad \tau=1,2, \ldots,\left[\frac{a_{2}-1}{s}\right]-1 \tag{15.8}
\end{equation*}
$$

(while $\tau=\left[\left(a_{2}-1\right) / s\right]$ corresponds to $\left.\hat{a}_{4}\right)$. Again, this is also sufficient for (15.2) to hold:

We consider a representation (15.7). Since $a_{3} \mid a_{4}$, we get

$$
x_{2} a_{2}+x_{1} \equiv n_{h_{0}}\left(A_{3}\right)+1 \equiv-r-1=-a_{2}+f \quad\left(\bmod a_{3}=q\left(a_{2}-1\right)\right)
$$

from which we draw two conclusions:

1) $\mathrm{x}_{2} \mathrm{a}_{2}+\mathrm{x}_{1} \geqq \mathrm{a}_{3}-\mathrm{r}-1$
2) $x_{2} a_{2}+x_{1} \equiv x_{2}+x_{1} \equiv f-1 \quad\left(\bmod a_{2}-1\right)$.

Assuming $\sum x_{i} \leqq h_{0}$ in (15.7), hence $x_{4}>0$, we get $x_{2}+x_{1}<h_{0}=$ $(f-1)+\left(a_{2}-1\right)$, so $x_{2}+x_{1}=f-1$, and

$$
\begin{aligned}
& s^{s}(s x-7) s \rho^{x}+\varepsilon^{x}+f^{x} \text { gamad, } g^{-t}\left(g^{x} x-7\right)=t^{x}+t^{x+} f^{x} \\
& 2
\end{aligned}
$$

$$
\begin{aligned}
& 1-1-d^{8} \cdot 5 q^{x+} s^{3} s^{x}-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dinsif } I-7=-x+-x \text { oe. }(1--s)+(1-2)
\end{aligned}
$$

$$
x_{2} a_{2}+x_{1} \leqq(f-1) a_{2}=a_{3}-r-a_{2},
$$

contradicting the first conclusion.
If $s \mid\left(a_{2}-1\right)$, hence $m=\left(a_{2}-1\right) / s$ an integer, we find that we must choose

$$
a_{4}=(\tau+1) a_{3}-1, \quad \tau=1,2, \ldots, \frac{a_{2}-1}{s}-1=m-1
$$

Now (15.4) holds for $\delta=1$, and we examine $\delta=2$:

$$
\mathrm{n}_{\mathrm{h}_{0}}\left(\mathrm{~A}_{3}\right)+1-2 \mathrm{a}_{4}=(m-2 \tau) \mathrm{a}_{3}-\mathrm{r}=(\mathrm{m}-2 \tau-1) \mathrm{a}_{3}+\mathrm{f} \mathrm{a}_{2}
$$

If $\tau \geqq\left[\frac{1}{2}(m+1)\right]$, this expression is negative, and an examination of (15.4) for $\delta \geqq 2$ is unnecessary, so (15.2) holds. If $\tau<\left[\frac{1}{2}(m+1)\right]$, however, the right hand side belongs to $\left(h_{0}-2\right) A_{3}^{\prime}$, and (15.4) fails for $\delta=2$. Thus (15.2) is satisfied only if
(15.9) $\quad a_{4}=(\tau+1) a_{3}-1, \quad \tau=\left[\frac{1}{2}(m+1)\right], \ldots, m-1 ; m=\frac{a_{2}-1}{s}$.

Summing up, we have the following

THEOREM 15.1. For non-pleasant A_{3}, the equality (15.2) holds if and only if we have one of the cases:

(15.5)	for arbitrary A_{3},
(15.6)	for $r=1$,
$(15.8-9)$	for $s=q$.

Based on computations by Mossige, this result was conjectured long before a proof was found. The cases $r=1$ or $s=q$ are also proved in Krätzig-Berle [4, Kap.4], the "if" part along the lines above, the "only if" part by explicit representations for $n_{h_{0}}\left(A_{3}\right)+1$ from $h_{0} A_{4}^{\prime}$ in the remaining cases.

$$
s^{5}-1-c^{6}=s^{E(f-1)} z^{x+s^{5}} s^{x}
$$

Ferly briz ow roystai pus el(t- s^{4} $\left(f-g^{-1}\right) \mid e \cdot z I$

\qquad

$$
S, T=T, T-c^{B}(T+T)=A^{B}
$$

$$
S=3 \text { shlursxa sw Enes , } t=\frac{a}{} \text { tot abtor (} \ddagger \text {. द1) woh }
$$

 gitnorToz bdt oved su-, qu malmmud

$$
\begin{equation*}
\text { ¿A pretridxs }-07^{2} \tag{2.21}
\end{equation*}
$$

$$
\begin{array}{ll}
r=107 & (e, e r) \\
p=e, & (e-8,21)
\end{array}
$$

16. The cases with $\mathrm{n}_{\mathrm{h}}\left(\mathrm{A}_{3} \cup\{\mathrm{a}\}\right)=\mathrm{n}_{\mathrm{h}}\left(\mathrm{A}_{3}\right), \mathrm{a}<\mathrm{a}_{3}$.

In analogy with (3.3), it is quite natural to ask for cases when

$$
\begin{equation*}
n_{h}\left(A_{k}^{*}\right)=n_{h}\left(A_{k-1} \cup\{a\}\right)=n_{h}\left(A_{k-1}\right), \quad 1<a<a_{k-1}, a \notin A_{k-1}, \tag{16.1}
\end{equation*}
$$

assuming admissible bases.
We need a particular result for the similar problem regarding regular h -ranges:

$$
\begin{equation*}
1<a<a_{2} \Rightarrow g_{h}\left(A_{k}^{*}\right)>g_{h}\left(A_{k-1}\right) . \tag{16.2}
\end{equation*}
$$

The proof is simple: It follows from Hofmeister [1, Satz 1] that the constant term of the regular representation for $g_{h}\left(A_{K}\right)$ equals $a_{2}-2$ for all admissible A_{κ}. We conclude that the constant term $a_{2}-1$ of $g_{h}\left(A_{k-1}\right)+1$ has a regular representation in at most $a_{2}-2$ addends 1 and $a \leqq a_{2}-1$.

In particular, $g_{h}\left(A_{3}^{*}\right)>g_{h}\left(A_{2}\right)$, and hence also $n_{h}\left(A_{3}^{*}\right)>n_{h}\left(A_{2}\right)$. The first possibility for (16.1) thus occurs when $k=4$:

$$
\begin{equation*}
n_{h}\left(A_{4}^{*}\right)=n_{h}\left(A_{3} \cup\{a\}\right)=n_{h}\left(A_{3}\right), \quad 1<a<a_{3}, \quad a \neq a_{2} \tag{16.3}
\end{equation*}
$$

As in the preceding section, a study of this equality depends entirely on the properties of A_{3}.

If $h=h_{0}^{*}$ is the smallest h for which A_{4}^{*} is admissible, we clearly have $h_{0}^{*} \leqq h_{0}$ (where again $h_{0}=a_{2}+f-2$ refers to A_{3}). To be "fair" to A_{3}, we restrict the examination of (16.3) to $h \geqq h_{0}$.

Before doing this, we just mention the analogous problem for regular h-ranges. By (16.2), we must then assume $a_{2}<a<a_{3}$, and it is not difficult to prove that for $h \geqq h_{0}$:

$$
\log ^{2}
$$

- coend sidiazimbs zrimuers

ST TELuDElysa E Gaan aw
teg8astal T864897

$$
\left(1-x^{A}\right) \text { (g }<\left(X^{x} A\right) f^{g} \text { d } S^{B>B>1}
$$

Ehe
 A.

 (40)

$$
0^{\text {fi }} \text { § } \mathrm{d}
$$

$$
\begin{equation*}
g_{h}\left(A_{4}^{*}\right)=g_{h}\left(A_{3}\right) \Leftrightarrow a=f a_{2}+\rho, 0 \leqq \rho<r . \tag{16.4}
\end{equation*}
$$

(My original proof is reproduced in Krätzig-Berle [4, p.27].)
Similar arguments show that (16.3) is impossible with pleasant
A_{3}. With $n_{h}\left(A_{4}^{*}\right) \geqq g_{h}\left(A_{4}^{*}\right)$ and $n_{h}\left(A_{3}\right)=g_{h}\left(A_{3}\right)$, equality in (16.3) could only occur under the conditions of (16.4). But by (2.8-9), we then have

$$
\mathrm{n}_{\mathrm{h}}\left(\mathrm{~A}_{3}\right)+1=\left(\mathrm{h}-\mathrm{h}_{0}+2\right) \mathrm{a}_{3}-\mathrm{r}-1=\left(\mathrm{h}-\mathrm{h}_{0}\right) \mathrm{a}_{3}+1 \cdot \mathrm{a}+\mathrm{f} \mathrm{a}_{2}+\mathrm{r}-\rho-1,
$$

with a coefficient sum $\leqq h$ except in the one case $r=a_{2}-1$, $\rho=0$, hence $f \geqq 2$. But then

$$
\mathrm{n}_{\mathrm{h}}\left(\mathrm{~A}_{3}\right)+1=\left(\mathrm{h}-\mathrm{h}_{0}\right) \mathrm{a}_{3}+2 \mathrm{a}+\mathrm{a}_{2}-2, \quad \sum \leqq \mathrm{~h} .
$$

In what follows, we may thus assume non-pleasant A_{3} in (16.3).

Since A_{3} and A_{4}^{*} have a common largest element a_{3}, it is possible to use Meures' result (2.16), which in combination with (2.13) shows that for $h \geqq h_{0}-1$:

$$
n_{h}\left(A_{k}\right) \leqq h a_{k}-g\left(\bar{A}_{k}\right)-1
$$

with equality if $h \geqq h_{1}$ ("stabilization", cf. section 3). For non-pleasant A_{3}, we know that $h_{1}=h_{0}$. For A_{4}^{*}, we put $\mathrm{h}_{1}=\mathrm{h}_{1}^{*}$. With

$$
\bar{A}_{3}=\left\{a_{3}-a_{2}, a_{3}-1, a_{3}\right\}, \bar{A}_{4}^{*}=\bar{A}_{3} \cup\left\{a_{3}-a\right\}
$$

we thus get, for $h \geqq h_{0}$:

$$
\mathrm{n}_{\mathrm{h}}\left(\mathrm{~A}_{3}\right)=\mathrm{ha} \mathrm{~B}_{3}-\mathrm{g}\left(\overline{\mathrm{~A}}_{3}\right)-1, \quad \mathrm{n}_{\mathrm{h}}\left(\mathrm{~A}_{4}^{*}\right) \leqq \mathrm{ha}_{3}-\mathrm{g}\left(\overline{\mathrm{~A}}_{4}^{*}\right)-1 .
$$

 svanl merlt aw $(\mathrm{e}-8.5)$ $A-Q-1+g^{B 1}+s \cdot 1+z^{D(}\left(Q^{f i-d)}=r-x-\varepsilon^{B(S}+0^{d-n} d=1+\left(\varepsilon^{A} A d^{n}\right.\right.$
 modt Jul - is ≤ 3 eonert $+0=0$

$$
1-\left(x^{A}\right) z-x^{18 f} \geq\left(x^{A}\right) x^{n}
$$

$$
\left\{s-\varepsilon^{B}\right\} \cup c^{\bar{A}}=\hbar \bar{A},\left\{\varepsilon^{2}+1-\varepsilon^{B}+s^{B}-\varepsilon^{B}\right\}=\varepsilon^{A}
$$

$$
0 \mathrm{f} \leq \mathrm{A} \text { тoz }, 398 \text { evdj } \mathrm{sw}
$$

Since trivially $n_{h}\left(A_{4}^{*}\right) \geqq n_{h}\left(A_{3}\right)$, this shows that

$$
\begin{equation*}
g\left(\bar{A}_{4}^{*}\right)=g\left(\bar{A}_{3}\right) \Rightarrow n_{h}\left(A_{4}^{*}\right)=n_{h}\left(A_{3}\right) \text { for } h \geqq h_{0} \tag{16.5}
\end{equation*}
$$

$$
\begin{equation*}
h \geqq h_{1}^{*}: n_{h}\left(A_{4}^{*}\right)=n_{h}\left(A_{3}\right) \Rightarrow g\left(\bar{A}_{4}^{*}\right)=g\left(\bar{A}_{3}\right) \tag{16.6}
\end{equation*}
$$

We obviously have $g\left(\bar{A}_{4}^{*}\right) \leqq g\left(\overline{\mathrm{~A}}_{3}\right)$. With strict inequality, $\mathrm{g}\left(\overline{\mathrm{A}}_{3}\right)$ has a representation by $\overline{\mathrm{A}}_{4}^{*}$:

$$
g\left(\bar{A}_{3}\right)=x_{1}\left(a_{3}-a\right)+x_{2}\left(a_{3}-a_{2}\right)+x_{3}\left(a_{3}-1\right)+x_{4} a_{3}
$$

It follows that

$$
\mathrm{n}_{h_{0}}\left(\mathrm{~A}_{3}\right)+1=\mathrm{h}_{0} \mathrm{a}_{3}-\mathrm{g}\left(\overline{\mathrm{~A}}_{3}\right)=\left(\mathrm{h}_{0}-\sum \mathrm{x}_{\mathrm{i}}\right) \mathrm{a}_{3}+\mathrm{x}_{1} \mathrm{a}+\mathrm{x}_{2} \mathrm{a}_{2}+\mathrm{x}_{3}
$$

has a representation by A_{4}^{*} with coefficient sum $h_{0}-x_{4} \leqq h_{0}$, provided that $\sum \mathrm{x}_{\mathrm{i}} \leqq \mathrm{h}_{0}$. We thus have the following partial converse of (16.5):
(16.7)

$$
g\left(\bar{A}_{3}\right) \in h_{0} \bar{A}_{4}^{*} \Rightarrow n_{h}\left(A_{4}^{*}\right)>n_{h}\left(A_{3}\right) \quad \text { for } \quad h \geqq h_{0}
$$

We only proved this for $h=h_{0}$ above, but the general result with $h \geqq h_{0}$ then follows immediately from (2.13-14).

There is one trivial case of equality in (16.3):
(16.8) $f=1, a_{2}=h_{0}+1, a_{3}=h_{0}+r+1, a=a_{2}-t r \geqq 2$

$$
\begin{equation*}
\Rightarrow n_{h}\left(A_{4}^{*}\right)=n_{h}\left(A_{3}\right) \quad \text { for } \quad h \geqq h_{0} \tag{16.9}
\end{equation*}
$$

This follows from (16.5), since $\overline{\mathrm{A}}_{3}$ and $\overline{\mathrm{A}}_{4}^{*}$ are "equivalent" as Frobenius bases:

$$
\overline{\mathrm{A}}_{3}=\left\{\mathrm{r}, \mathrm{a}_{3}-1, \mathrm{a}_{3}\right\}, \overline{\mathrm{A}}_{4}^{*}=\left\{\mathrm{r},(\mathrm{t}+1) \mathrm{r}, \mathrm{a}_{3}-1, \mathrm{a}_{3}\right\} .
$$

$$
\varepsilon^{B} f^{x+c}\left(f-\varepsilon^{E}\right) \varepsilon^{x}+\left(s^{B}-\varepsilon^{B}\right) s^{x}+\left(B-\varepsilon^{B}\right) f^{x}=\left(\varepsilon^{A}\right) 8
$$

 $4(2 . \partial 1) 20$ gexev

$$
\left.\mathcal{X}^{B} \dot{\varepsilon}^{B} \cdot I-\varepsilon^{B}+T(T+y), x\right)=A^{A} \cdot\left\{\varepsilon^{B}, 1-\varepsilon^{B} \cdot T\right\}=\varepsilon^{\bar{A}}
$$

The second element of \bar{A}_{4}^{*} is a multiple of the first one. We assume that A_{3} is non-pleasant. If it is also nondependent, it follows from Theorem 10.1 that

$$
n_{h_{0}}\left(A_{4}^{*}\right) \geqq n_{h_{0}}\left(A_{3}\right) \geqq\left(h_{0}+1\right) a_{2}-a_{3}
$$

Let $1<a<\mathrm{a}_{2}$. We then get $\mathrm{h}_{1}^{*} \leqq \mathrm{~h}_{0}$ by Theorem 3.1 , and can combine (16.5-6) to an equivalence for non-dependent A_{3}. And for Frobenius-dependent A_{3}, Krätzig-Berle [4, p.23] shows very simply that we always have $n_{h}\left(A_{4}^{*}\right)>n_{h}\left(A_{3}\right)$ except in the already settled cases (16.8), hence
(16.10) $1<a<a_{2}: g\left(\bar{A}_{4}^{*}\right)=g\left(\bar{A}_{3}\right) \Longleftrightarrow n_{h}\left(A_{4}^{*}\right)=n_{h}\left(A_{3}\right)$.

Based on extensive computations by Mossige, I conjectured the following results:

THEOREM 16.1. Let $a_{2}<a<a_{3}$. Then

$$
\mathrm{n}_{\mathrm{h}}\left(\mathrm{~A}_{4}^{*}\right)>\mathrm{n}_{\mathrm{h}}\left(\mathrm{~A}_{3}\right) \text { for } \mathrm{h} \geqq \mathrm{~h}_{0}
$$

THEOREM 16.2. Let $1<a<\mathrm{a}_{2}$. In addition to (16.8), there is one more case of equality in (16.9):

$$
\begin{aligned}
f & =1, a_{2}=h_{0}+1, a_{3}=h_{0}+r+1, a=t r+1 \\
h_{0} & =\tau r+\rho, 0 \leqq \rho<r-1, \tau \geqq \rho \\
r & \equiv-1(\bmod \rho+1), t=1,2, \ldots,\left[\frac{\tau+1}{\rho+1}\right] .
\end{aligned}
$$

Both theorems were proved in the Master's thesis [2] of my student Kirfel. He used the methods of Rödseth [5] for determining

$$
c^{s-}-s^{\epsilon\left(1+0^{f}\right)} s\left(\varepsilon^{A}\right) 0^{f^{d i}} \leqslant\left(p^{A}\right) 0^{f^{f I}}
$$

 sonod. (8.)tr) esana bsityea

Mo intis

$$
\begin{aligned}
& \text { 20 }
\end{aligned}
$$

the Frobenius number $g\left(\bar{A}_{3}\right)$. A shortened version [3] is submitted for publication.

Another student of mine, Krätzig-Berle, gave an independent and very elegant proof of Theorem 16.1 in her Diplomarbeit [4, Satz 3.1]. Using the inequalities of Theorems 10.2-5, she could determine a h_{0}-representation by A_{4}^{*} of $n_{h_{0}}\left(A_{3}\right)+1$.

We note that the bases A_{3} of Theorem 16.2 satisfy the conditions (8.1-2), and so $n_{h}\left(A_{3}\right)$ can be determined explicitly by (8.3). It is fairly straightforward (cf. [4, Satz 2.3]) to show that this h-range is not increased when extending the basis with $a=t r+1$. The hard problem is of course to show that all other cases (except (16.8)) lead to an increase of the h-range.

- due el [द] noidiay bongstone $A \cdot(\bar{A})$ g Tadiun eutnadora off

REFERENCES

1. G. Hofmeister, Über eine Menge von Abschnittsbasen, J. Reine Angew. Math. 213 (1963), 43-57.
2. C. Kirfel, Erweiterung dreielementiger Basen bei konstanter Frobeniuszah1 und Reichweite, Master's thesis, Dept. of Math., Univ. of Bergen, 1982.
3. C. Kirfe1, Erweiterung dreielementiger Basen bei konstanter Frobeniuszah1, II, to appear.
4. E. Krätzig-Berle, Zum Reichweitenproblem für dreielementige Basen, Diplomarbeit, Mainz, 1983.
5. Ö. Rödseth, On a 1inear diophantine problem of Frobenius, J. Reine Angew. Math. 301 (1978), 171-178.
6. Ö. Rödseth, On h-bases for n, Math. Scand. 48 (1981), 165-183.
7. E.S. Selmer, On the postage stamp problem with three stamp denominations, Math. Scand. 47 (1980), 29-71.
8. E.S. Selmer and A. Rödne, On the postage stamp problem with three stamp denominations, II, Math. Scand. 53 (1983), 145-156.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BERGEN
N-5000 BERGEN
NORWAY

\qquad
 atheri biadion fricu nituk, teanma

 - Lisacie lot 11 . Inistaminedory

$$
, 021-205
$$

