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POLYNOMIALS HOMOLOGICALLY

SUPPORTED ON

DETERMINANTAL LOCI

i
Pi otr Pragacz & Jan Ratajski

INTRODUCTION

The aim of this paper, which should be considered as a supplement to

[P], is to extend the main theorem of [P] to other homology theories. Let

H( ) be a homology theory with properties specified in Section 1. Fix

integers m>o, n>o and r^O. Assume that

c , cn 1 C ')m

We say, following [P], that P

ted on r-th degeneracy locus i f for

<p: ? > & of vector bundles on X,

a € H(X)

e Z[c.,c.'] is universally suppor

every scheme X, every morphism

P(c (g) c (g);c (?) c (?) ) n a € Im im1 ni  

Here , for

the map i: D (<p) > X is the inclusion, and i : H(D (<p)) > H(X)r * r
is the induced morphism on homology.

i
Research carried out during the author's stay at the University of Ber-

gen (Norway). This stay was supported by the N.A.V.F.. Thanks are due to

Stein Arild Stromme for creating this opportunity and to Department of

Mathematics in Bergen - for hospital ity.

(c. ,c.') = (c 1

is a sequence of m+n variables with deg c = deg c ' = ii i

rank g= n, rank ?= m and every

D ( <p ) : = { x e X I rank <p ( x ) r } ,r '
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Define 9 to be the set of all polynomials universally supportedr
on r-th degeneracy locus . It follows from the project ion formula for i

that 9 c Z[c. ,c. '] is an ideal.r

In [P] the author gave a description of 9 in the case of the Chowr
groups. In this work we show that the same result holds true for other

homology theories

The homology we consider here are endowed with a "cl-map"

A ( ) > H ( ), where A are Chow homology, or, they are singulark 2k k
homology. The proof in [P] does not go through (at least verbatim) for

these homology. An obstruction is provided by the fact that even for such

a nice homology theory as the Borel-Moore homology, the schemes used

in the proof in [P] have nontrivial odd homology (see Remark 2.3).

Similar arguments show that complex affine determinantal varieties Dr
can have nontrivial odd Borel-Moore homology. Therefore, the problem of

PM
computation of H (D ) is more difficult than computation of A(D )* r r
(see [P]) and IH*(D ) (see [Z]) .

r

In order to overcome this obstruction we modify the construction

from [P] by using a certain compact ificat ion of it. This allows us to

proceed with schemes for which the cl-map is an isomorphism (in par

ticular odd-homology vanish) and preserving the needed genericity pro

perties at the same time. Then, it is possible to follow the lines of

the proof given in [P]. This gives us a proof which is valid both for

Chow homology and other homology theory simultaneously.

We treat also the case of morphisms with symmetries. This case is

somehow more difficult. to tackle than the "generic" one. In order to

overcome additional difficulties we

vi ty of morphisms of Chow groups of

tion 3.5 ). This fact appears to be

of independent interest.

The setup of the present paper

prove a certain fact about surjecti

stratified schemes ( see Proposi

quite useful, and thus it seems to be

is borrowed from an useful work

[R-X]. In addition to the homology theory treated there we prove the

theorem in the singular homology case. Note that this last version of

the theorem simplifies significant ly calculations from Section 1 in

[P-P].
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Wc thank A. Biarynicki-Birula, W. Ful ton and W. Zelazko for alert ing us

to think about this problem. Thanks are due to L.Kaup and Z.Marciniak for

useful informat ions about different homology theories (especially concern

ing Poincaré duality) transmitted to us during the Algebraic Geometry

School -Rajgrod 1990. Wc are also grateful to A.Parusinski for pointing

out some corections and simpl if ications in response to a preliminary

draft of this paper.

Notation

1. Homology groups.
Let X be a scheme

A (X) denotes the Chow group of k-dimensional cycles modulo rationalk

If the ground field is C, H (X,Z) denotes the k-th singular homology
c k

group (in the notation of [B] this corresponds to H (X,Z) ); and H (X,Z)

denotes the k-th singular cohomology group (in the notation of [B] -
Ir RM

H (X,Z)). Moreover, H (X) denotes the k-th Borel-Moore homology (witheld k
closed supports) or "homology with locally finite supports" (in the

notation of [B] - H° ld (X,Z) or H (X,Z) )k k

2. Partitions

1. HOMOLOGY THEORIES USED IN THIS ARTICLE

Let kbe an algebraical ly closed field. By a "scheme" wc shall

understand an algebraic k-scheme of finite type which can be embedded

as a closed subscheme of a smooth k-scheme of finite type. The restri

ction on k comes from the fact that in our arguments wc use an homology

theory satisfying properties (a)-(e) below. In the character ist ic 0

case it is the homology with locally finite supports, or the Borel-Moore

homology ([B-M], [B,Ch.s], [F, Ch. l9] , [ l , Ch. 9] ) , and if k has positive

equivalence; A(X):= © A (X) (also for singular X).

By a part it ion wc mean a sequence of integers I = (i  . . , i )
where i > i > . . . > i > 0 .

12 k
Instead of (i,..., i) (k-times) wc will write (i) k .

For partitions I = (i i ), J = (J i'---'V« I+J will denot

the sequence ( i + j  . . , i + j ) , and I c J will mean that \s \
for every h .
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character ist ic p, then the homology theory is defined as some suitable

£-adic cohomology, £-a prime number different from p ( [L, Sect . 6] ) .

Recall, for instance, that Borel-Moore homology of a complex varie-
BM

ty X, denoted H (X) , are defined as the singular homology of X if X

is proper, and as the relative singular homology of X modulo X\X if

X is not proper and X is a compact if icat ion of X. In [B-M], [B,Ch.s]
DU

a sheaf-theoretic construction of H (X) is given ( in the notationi

By H wc will denote a "cl-homology" theory that is, a functor

from schemes to abelian groups that is covariant for proper maps and

contravariant for open embeddings. Moreover wc assume that the follow

ing conditions are sat i sf i ed

(a) Let Xbe a scheme, Y a closed subscheme and U = X \ Y . Then

there exists a long exact sequence

(b) For any finite disjoint union of schemes u X and for all i

(c) For all schemes and all integers i there exists a map

cl : A (X) > H (X)X i 2i

that commutes with pushforward by proper morphism and with restri-

ction to open sets. A (X) is here and in the sequel the Chow group

of i-dimensional cycles modulo rational equivalence (see [F] for a

precise definition and properties).

In character ist ic owe shall say that "cl is an isomorphism"

In characteristic p > 0 wc shall say that "cl is an isomor

phism" if for prime l* p

is an isomorphism for all i, and H (X) = 0 for all i2i+l

(d) If Kis a scheme such that cl is an isomorphism then for every

of [B] this is H^(X,?) where ?=Z and <p=cld )i

> H (U) » H (Y) > H (X) > H (U) >i+l i i i

H(OX)= © H (X )
'jJ j ' J

i f cl is an isomorphism and H (X) = 0 for all i.X r 2i+l

cl ® 1 : A (X) ®1 D > H (X)X 1 i £ 2i
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vector bundle g on X the map cl _,«. is an isomorphism, where P(g)r (fe J
is the Projective bundle associated with g.

(e) (Chern classes) Given a vector bundle g on a scheme X there

exist uniquely defined Chern classes c (g) n - operators on H(X).i
They satisfy the conditions specified e.g. in Theorem 3.2 in

[F]. Note that [F, Theorem 3.2 (d) - the pullback property] requires
*

f : H(X) > H(X' ) associated with a flat morphism f. In the case of

the Borel-Moore homology, such a f exists by [V, Sect.3.2].
»

In the case of cl-homology in char p, f exists for flat f

by [L, Sect.s]. For a definition of Chern classes operators in this

case see [L,Sect.7].

Note also that for every polynomial P in the Chern classes of

a vector bundle g and every cycle aon X,

Pushforward formulas for Grassmannian bundles, like [P,Proposi

tion 2.2], are valid for these homology theories and singular homology

H(-,Z), when appriopriately formulated.

Final ly, recall that for the Grassmannian bundle ir: G (g) —> X,r
parametrizing rank r- (sub) bund les of g, the map

n : A (G (g)) > A (X)* i r i

is surjective for every i. This follows, for instance, from [P,Proposi

tion 2.2]; or can be obtained by Noetherian induction on X (cf. the second

step in the proof of [P, Lemma 3.7]).

2. GENERIC MORPHISMS

is given. Define s inductively as follows

Then define s (c.,c.') by the formula

cl ( P(c.(g)) n a ) = P(c.(g)) n cl (a)x x

Assume that a sequence of m+n variables

(c. ,c. ' ) = (c  . . , c ,c '  . . , c ' )1 ni m

s =s c -s c +...+(-1) ci i-l 1 i-2 2 i
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s (c.,c.') = £ (-l) i_k s c'i u k i-kk

Let D denote the partition (m-r) . Let us denote by 9 ther r

ideal in Z[c.,c.'] generated by s (c.,c.') where Idd . It isI r

known [P, Proposition 6.1] that 9 is generated by a finite setr

The ideal 9 of all polynomials universally supported on r-thr
degeneracy locus (see Introduction) admits the following description.

Theorem 2.1 For any homology theory specified in Section 1, wc have

3
The proof of the inclusion 9 c 9 is verbatim after [P, Ch.3].r r

The essential problem is to prove an opposite inclusion. Let us introduce
first some notation.

Let W, V be vector spaces over kof dimension w = dim W, v = dim V.

Let G = G (W) be a Grassmannian parametrizing m-quotients of W and let

G = G (V) be a Grassmannian parametrizing n-subspaces of V. Denote by Qn n
the tautological rank m-quotient bundle on G and by R the tautological

mp m r
rank n (sub)bundle on G . Moreover let Fl ' =Fl ' (W) be the flagn

variety parametrizing the flags of quotients of W of dimension m and r,

and Fl =Fl (V) be the flag variety parametrizing the flags ofr ,n r,n

subspaces of Vof dimension r,n . Let R r eR n be the tautological

flag on Fl
r,n

2
It is an open problem, whether this set gives a minimal set of genera-

tors of the ideal for m^n. Wc thank S.A.Stromme for helping us to check

with "MACAULAY" that this holds true for a large number of cases.
3

Wc correct an inaccuracy in quotation in the mentioned proof:

[P] p.427 - replace [F, Proposition 1.7] by [F, Theorem 6.2(a)].10 F

Finally, for a given partition I = (i  ..,i ) wc put

s (c. ,c. ' ) = Det s (c. ,c. ' )
1 * -p+^ J, <u p J 1 — p,q — k

{ s (c.,c. ') II c (r) n"r > 2D +1 'r

9=9
r r
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A forthcoming Remark 2.3 will show that the proof of 9c 9 fromr r
[P] does not work for the Borel-Moore homology. Wc begin with the fol

lowing useful fact.

Lemma 2.2 Let X be a complex space and YcX be a closed subset. Assume

that X \ Y is a 2dimX - homology manifold. Then there is an exact sequ

ence

where H X (-,Z) denotes the singular cohomology.

Proof. The assertion follows from the long exact sequence (a) for the

Borel-Moore homology and the isomorphism

valid for 2dimX - homology manifold X. The latter isomorphism follows

from [B-M, Theorem 7.9 with ø=cld and 9=l] (see also [B, Ch.9]). For a

particularly transparent treatment of such a Poincaré-type duality -

see [K]. The isomorphism in question follows from [K, Theorem 2.1 with

A=ø, ?=Z and (p=c\d] and [K, Theorem 4.2 with ?=Z and <p=cld] in the
notation from loe. eit..

Remark 2.3 (A raison d'étre of this article)

BM
Wc prove that for D from construction (13) in [P] wc have H (D ) * 0.* 1 3 1
This construction will be recalled in Step 1 of the proof of Theorem 2.1

where a morphism <p' is defined. Here, wc take k=C, m,n^2 and write D.

for D (<*>'). Note that obviously D\ D is a 2d i mD -homology manii i i-l i
fold, so wc can apply Lemma 2.2.

Wc have a locally trivial fibration

with the fiber Gl ( 1 ) . Wc use the spectral sequence of fibration

Invoking H°(G1(1),Z) = H^GKD.Z) =Z , H l (Gl(l),Z) =0 for i 2,

wc get Ep ' q = 0 for q 2 and all p . Moreover, denoting d = dim D

. ..^hBM (Y) —> HBM (X) —* H2dimX_i (X\Y,Z) —-> HBM (Y) —> .... (#)i i i-l

HBM (X) = H2dimX_i (X,Z),i

D \ D > Fl"1 ' 1 xFI =FF
1 0 l,n

EP.q = HP (FF Hq (Gl(l),Z)) => Hp+q (D \ D ,Z)2 10
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wc get in E' ' '& 2

(2d-2)(2d-4) (2d-3)

Thus rk H (D \D ,Z)2:3. The following segment of the exact sequence (#)

In particular, if wc take a standard desingularizat ion

wc see that w : H (Z) > H (D ) is not surjective because the even'* * * i
Borel- Moore homology groups of Z are zero. This obstructs to extend

the first proof of 9 c 9 from [P, Ch.3] to the Borel-Moore homologyr r
case. The second proof (see [P,Ch.7]), not using a desingularizat ion

does not go through as well because the remark shows that the restriction
BM BM

map H (D ) > H (D \ D ) is not surjective.2i r 2i r r-1

Remark 2.4 Similar arguments show that for affine determinantal variety
BM

D (over k=C) wc have H (D ) * 0 ( here, wc use the notation of [P,i 3 i
Ch.4], and assume m,n 2). Wc have a locally trivial fibration

with fiber Gl(l) , which gives the spectral sequence

E2d-4,1 =H2d-4 (FF> Hl (G1(j ) Z) )2

=H2dimFF-2 (FF)Z)=z 4

„2d-3,0 „2d-2,0
L = L =

2 2

=H2dimFF-l (FF)Z)=0 =H2dimFF (FF(Z)=z

HBM (D ) > H2d " 3 (D \ D ,Z) > HBH (D ),3 1 10 2 0

where HBM (D )= H (GmxG ,Z) =Z 2 , shows HBM (D )* 0.2 0 2 n 3 1

T): Z = Hom W , R {l) > D
L GmxFl GmxFl J *

1 ,n 1 ,n

D \ D > G 1 x G
i o i

Ep,q = Hp ( G*xG , Hq (Gl(l),Z) )-* Hp+q (D \ D ,Z)2 1 10
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Wc have Ep ' q = 0 for q£ 2 and all p. Moreover, in E' ' ' , for2 —^

Thus shows rk H (D \D ,Z) £ 1. Again the exact sequence (#)

BM
This remark shows that the problem of computation of H (D )* r

( and probably also a si mi lar question about singular homology ) is more

subtle than computation of A(D ) (see [P]) and IH*(D ) (see [Z]) .r r

Wc give now a proof of the inclusion 9 c 9 , which is valid forr r
homology theories from Section 1.

Notation Given two vector bundles g and ? , the polynomial s (c.,c. ')

special ized with c = c (g) and c ' = c (?) will be denotedF i i J J
s (g-S*) .

i

Step 1 (A construction from [P])

Define

On X' there exists a tautological morphism <p':?' > g' . Note two

features of this construction:

1) The Chern classes of g' , ?' are algebraical ly independent (over Z)

2) The matrix of </>' is given locally by mxn matrix of indeterminates.

HBM (D ) > H2d"3 (D \D ;Z) > HBM (D )3 1 10 2 0

where HBM (D ) = H (pt,Z) = 0 , shows HBM (D ) * 02 0 2 3 1

X' := Hom(Q ,R ) > GG : = Gm x GGG GG n

?' := Q , &'= Rx • X '

if w, v => oo
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Step 2 (A compact if ication of X' )

The following construction is inspired by [K-L, p. 161]. Let

X is a relative Grassmannian over GG and is endowed with the tauto

logical rank m (sub)bundle iP c (Q ©R) . Wc define a morphism (of

fibrations over GG) from X' to X. Fix a point (M,N) € GG. Wc assign

to f € Hom(M, N) (in X' ) the point given by( M,N)

This assignment defines an open immersion X' c >X. Wc have ft = '3-'

and the value of the restriction of 9> c > (Q © R) to X' , in thex

point (M,N,f:M >N) €X' , is given by

M  > M©N such that m i > (m,f(m)) , mcM

Lemma 2.5 (1) The map D c X >GG is a locally trivial fibra-r
tion; its fiber over a point (M,N) €GG is the r-th determinantal

Schubert variety in G=G (M©N) given by the inequalitym

Pr N

NG ) s rrk [ 9>G « > (M©N) G

(2) If w, v —> oo , the Chern classes of & and SF become algebraical

ly independent (over Z) in A(X).

Proof. (1) The required trivial ization is given by {u xU } where {Ua a
is the standard covering of G trivial izing the bundle R and {U } isn

the standard covering of G trivial izing the bundle Q.

X: =G ( Q ® K ) >GG .m GG GG

(The graph of f) < > M© N (in X )(M,N)

Therefore, if wc define <3, \ = 9> , §-.= 9 and <p as the composit:

pr>
§t =f C >(Q © ft) 1 >g= ftX x

wc have <p\ , = <p'  Final ly, wc put D:= D (<p) .
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(2) Wc have &\ =8' ,9H'x' 'x = f . Then an eventual re lat ion

gives rise to the relation

which is not possible.

Step 3 (A standard desingularizat ion of D )r

Consider the diagram of schemes

T) 71

vi'
1

D X
r

where Q is the tautological quotient bundle on G.

Lemma 2.6 The inclusion j: Z > G can be identified with the fol

lowing inclusion of Grassmannian bundles on GF = G x Fl

M

and final ly L c N and dim L

where W h> M and dim M = m

final ly K c M © N and dim K m

£ot s (g) s (?) = 0 in A(X) (a €Z)1 ) S-* X. -J 1 t J

£ a s (g* )s{T ) = 0 in A(X' )

*G j
Z = Zeros fS* >g_ > Q "1 c > G = G (g)*• lx li r

Proof. A point of G is represented by (M,N,K, L) where W >-» M

and dim M= m ; Ne V and dim N=n; KcM©N and dim K= m

inally L c N and dim L = r.

A point of G( Q © Rin) ) is represented by (M.LcN.K)m GF GF

W »-» M and dim M= m ; Ne V and dim N= n, dim L= r
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/ n \
This allows us to identify G and G ( Q © R ). A pointm GF GF

(M,N,K,L) belongs to Z iff the composit

is zero. This means that K c M© L and thus Z is identified with

*
Corollary 2.7 j : A(G) > A(Z) is surjective.

Proof. Let if be the tautological rank m (sub) bundle on G(Q © Rm GF GF
( r )

Then the tautological rank m (sub)bundle on G(Q © R ) is f _m GF GF 'Z

The assertion now follows from a well-known description of

AfG (Q © ft (n) )] and AfG (Q © R{r) )) as free A(GF)-modules withm GF GF J «• m GF GF -*

bases given respectively by Schur polynomials s {?) , Ic(n) m and

s (y|_), Ic(r) m (see e.g. [F, Chap. l4]), and, from the equality

r.

4 k
Lemma 2 . 8 Under the above identif icat ion Z is given in

Z = G (Q © ft (r) ) by the inequalitym GF GF

In other words Z is the k-th determinantal Schubert subvariety in

G (Q © R ir) ) > GF.
m GF GF

Proof. Let xc D . Then x can be represented by (M,N,K) where

W —>-» M and dim M= m , N c > V and dim N= n, KcM©N and

dim K= m. Moreover rk( K c >M © N > N ) -? k . The point 7)~ (x)

is then represented by (M,N,K,L) where dim L= r , LeN and

K c M © L . Since then

4
A similar analysis was done earlier in [Kl-La].

Pr
K < > M © N >-> N >-> N / L

G( Q © R{r) )m GF GF

j*( Si m) = s i cy| z )

Define Zk = -n -1 (D ) , k=o, 1k

rk( y—> Q © R{r) —> R{r) ) z * k

rk ( K c >M © L >L ) =rk ( K < >M © N > N ) k
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the asser t ion follows.  

Step 4 (A theorem of Rosse 110 - Xambo)

Wc say, following [F, Ex. 1.9.1] , that a scheme X has a cellular

decomposition if there exists a filtration

such that X are closed, and each X \ X is a disioint union ofi i i-l
m

locally closed subschemes C isomorphic to affine spaces AIJij

The C will be referred to as cells of cellular decomposition. Iti j

is well known (see e.g. [R-X, Corollary]) that if X admits a cellu

lar decomposition then A (X) is a finitely generated free abelian

group for which the classes of closures of the i-dimensional cells

form a basis.

Wc record the following result [R-X, Theorem 2],

Theorem 2. 9 Let Xbe a scheme which admits a cellular decomposition

and let f: X' > X be a morphism such that for all cells C of
_! *J

the decomposition f (C ) = C x F where Fis a fixed scheme. Thenij ij

(i) For all i there exists an epimorphism

© A (X) ® A (F) > A (X' )
r s i

r+s = i
(##)

(ii) If cl is an isomorphism and A (F) is free for all i, then

(##) is an isomorphism for all i, and cl is an isomorphismx' r

,k
Wc apply this result to D Z

k

Let, for a sequence I : l<i <. . . <i <w , å( I ) denote the (open)1 m

Schubert cell in Gm (W) (tåken with respect to a fixed flag in W) with

generic point given by a matrix : ("*" means a place occupied by a free

parameter, empty places are occupied by zeros).

X = X :> X d ... d X d X = ø
n n-1 0 -1
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1 11
1 2 3

The Pliicker coordinate p(I) given by the minor tåken on columns

i  ..,i is not zero. Thus fi( I ) c G (W) \ Zeros (p(D) which is a set1 m
over which the tautological bundles are trivial. If wc repeat the same

consideration with Schubert cells Q(J) in G (V) ( here J:
n

l<j < ... <j <v ), then wc see that the fibrations D —> GG andln k
Zk >GF —> GG are trivial over fi(I) x fi(J) . Moreover, the fiber

of D >GG is a Schubert variety, and, the fiber of Z >GG isk
a product of a Schubert variety and a Grassmannian. Thus these fibers

have cellular decomposit ions, and wc infer from Theorem 2.9 the follow

ing result.

It
cl are isomorphisms. In particular, wc have H (D ) = H (Z )=0k t-t- odd k odd

Step 5 (Final calculations)

From Step 4 , wc get for every i a commutative diagram with

exact rows

4- 4/
(###)

Since cl^ , cl^k are isomorphisms wc have for U = D \ D andD Z k k-1k

* * 1

**Q * * 1

**Q** Q # *1

t t r

Corollary 2.10 For any "cl-homology" theory from Section 1, cl and
k

H (Zk_l ) > H (Zk ) > H (Zk \Zk_l ) > 02i 2i 2i

H (D ) > H (D ) > H (D \D ) > 0
2i k-1 2i k 2i k k-1

U= Zk \ Zk_l , H (U) = A (U) if char k= 0, and, H (U)2i i 2i
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Therefore, since Z \ Z > D \ Dk k-1A (U) ® Z„ if char k = p.

is a Grassmannian bundle, the induced map

is surjective (see Section 1). Thus by induction on k and a diagram

chase in (###) wc get

The Proposition implies Im i = j ) . To compute the latter

group wc can use the Chow groups because of Corollary 2. 10. Now, wc
5

will mimick the arguments from [P, p.431] and prove

At first, Im J is a principal ideal in A(G) generated by [Z]

c (S** ®Q) = s (Q-s_) • Indeed, by Corollary 2.7 for z etop U n-r lx by Corollary 2.7 for z € A(Z)

formula,

J.(z) - J.U*g) - [ZI- g

Secondly, wc know that every element g e A(G) has a presentation

5
Wc correct misprints in [P]: 431 - read: s (E-F) ...;

1 n-r
(m-r) +1

431 - read: ... Lemma 3.6 ... .
5,10

H (Zk \ Zk_l ) > H (D \ D )2i 2i k k-1

Proposition 2.11 17 :H (Z) > H (D ) is surjective for every i.* 2i 2i r ° J

Im i =f s (g-S1 ) II c (r) n_r ] (####)* *. D +1 ' Jr

(m)
*

there exists g <= A(G) such that z = j (g) . Then, by the projection

g = £a s (Q) where a € A(X) and I c (r) n_r (see e.g. [F] Ch. 14).

Thus

ir([Z]-g) - it. f s (Q-SU • E«s(Q)* * n-r U IIL (m) I

 ". [E «I S n-r (Q"VL I (m) +1 J
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= V a s (g-5)
u I D+l
I r

by using succesively the factorization formula [P, Lemma I.l] and the

push forward formula [P, Proposition 2.2].

This proves Theorem 2. 1 for "cl-homology" theory, because if

w, v —> oo the Chern classes of g and 3 are algebraical ly independent,

so (####) is sufficient to get the assertion.

The same proof works for singular homology because D , G and Zr
are proper and thus their singular homology coincide with the Borel-

Moore homology
D D D

Remark 2.12 The "singular homology" version of Theorem 2.1 allows

us to perform the key calculations in [P-P, Proposition 1.6] without

any use of the Chow groups; this gives a significant simpl if icat ion.

3.MORPHISMS WITH SYMMETRI ES

In this Section wc will deal with symmetric and ant isymmetric vec

tor bundle morphisms. Wc assume here char k * 2. Wc will treat first

the symmetric case; necessary modifications needed for the ant isymmetric

case will be specified in Remark 3.10.

Assume that a sequence (c. ) = (c  ..,c ) of variables is given1 n

support ed on r-th symmetric degeneracy locus i f for every scheme X,
v

every symmetric morphism <p: & > g of vector bundles on X, rankg = n

and every a € H(X)

P(c (g), . . . ,c (g)) n a € Im i1 nn *

where i : H(D (<p)) > H(X) is the induced homology-morphism associated* r
to the inclusion i: D (<p) >X. Define f to be the ideal of allr r
polynomials universally supported on r-th symmetric degeneracy locus .

In this Section the following polynomials Q (c. ) indexed by

(deg c =i). Wc say, following [P], that P € Z[c. ] is universally
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will play a crucial role. First define s. inductistrict partitions I

ve ly as follows

Then define

QjCc.)
s c

k i-k
k

Let A denote the partitionr (n-r, n-r-1, . . . , 2, 1 ) . Let us denote by

9 the ideal in Z[c. ] generatedr
known [P, Proposition 7.17] that

by Q (c. ) where I d A . It isI r
9 is generated by a finite setr

Theorem 3.1 For any homology theory specified in Section 1, wc have

The proof of the inclusion 9 c 9 is verbatim after [P Ch.7].r r
In the proof of the opposite inclusion wc will follow the notation

from Section 2. Moreover, given a vector bundle g , the polynomial

Q (c. ) specialized with c = c (g) will be denoted by Q (g)I i i I

Step 1 (A construction from [P])

Define

and

V
On X' there exists a tautological morphism <p' :&' > g . Note two

( « % i-ls =s c -s c +...+(-1) ci i-l 1 i-2 2 i

Q (c. ) := Q (c. )Q (c. ) +2 £ (-1) PQ (c. ).i,j i j i+P.J-PP

Finally, for a given strict partition I = (i  ..,i ) wc put

Q (c. ) = Pfaff ian | Q (c. )1 * >* _- _-- pq J 1 p,q k

(wc can assume k even by putting i =0 i f necessary)k

<Q. _ (c. ) I c (r) n_r }A +1 '
r

9=9
r r

X' : = S2R > G
n

&'= Rx

6
Recall that I= ( i i ) is strict if i >...>i

1 k 1 k
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features of this construction:

1) The Chern classes of g' are algebraical ly independent (over Z)
if v > oo .

2) The matrix of <p' is given locally by nxn symmetric matrix of inde
terminates.

Step 2 (A compact i f icat ion of X' )

v
Let $ be a symplectic form on R © R given by the matrix

0 I
1 0

where here, and in the sequel, I denotes the nxn identity matrix.

Denote by

V
the relative Grassmannian parametrizing rank n subbundles of R © R

that are isotropic with respect to $. X is endowed with the tauto
v

logical rank n (sub)bundle 9> c {R © R ) . We define a morphism (ofx
fibrations over G ) from X' to X. Fix a point Ne G . We assignn nV
to a symmetric f € Hom(N ,N) (in X* ) the point given byN

NV © N (in X )N

We need

Lemma 3.2 If f is symmetric then the graph of f is an isotropic

Proof. I f A is a matrix of f then the graph of fis spanned by the
columns of

I
A

Then the assertion follows from the equality

where A is symmetric.

The above assignment defines an open immersion X' c >X. Put

X:= G* ( RV © R ) > G
n n

(The graph of f) < >

v
subspace of N © N (with respect to $ )

ti, A 1 ] [° * ' '[' = [I.A1 ] [*1 =A-A1 = 0,[-1 0 [ A J I
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&:= 9,5/ , and define the following symmetric morphism on X,

where * is given by

[!!]
Lemma 3.3 Wc have (p\ = 2w y

Proof. The assertion follows from the equality

where A is symmetric.

Lemma 3.4 (1) The map D (<p) c X > G is a locally trivial fibrationr n
its fiber over a point N€ G is "the r-th determinantal Schubertn

V V V
rank {<? < >(N© NK -^-> (N © N ) A y ) < r

G G

(2) If v >oo , the Chern classes of g and become algebraical ly inde

pendent (over Z) in A(X).

Proof. The proof of (2) is analogous to the proof of Lemma 2.5 (2).

As for (1), wc invoke here the following fact from [L-S, page 36 ].6
It follows from loe. eit. that there exists an irreducible Schubert

$ 2
subvariety in G such that its restriction to open subset S N

2
is the r-th determinantal variety in S N. The above inequality defines

also an irreducible subvariety in G as a calculation in local coordi

nates shows. Moreover, by Lemma 3.3 , the restriction of this subvariety
2

to S N is the r-th determinantal variety. Our assertion follows.

Step 3 (A standard desingularizat ion of D (<p) )r

Consider the diagram of schemes {<p is symmetric)

v. y c—> (ftv ©æ) -JU (^ © Ry ) —^ yvx x

[I, A1 ] j J * - [I.A1 ] j =A+ A 1 = 2A,

variety" in G =G (N ©N) given by the inequalityn
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Z = Zeros (g^ > 8 > Q )
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c > G = G (g)
r

71

1
D {<p)r

X

where Q is the tautological bundle on G.

Now, in order to mimick the proof from Section 2 wc will use the
7

following fact.

Assume that both

and

are locally trivial fibrations; and there exists an open affine covering
( k)

{U } of S trivializing them simultaneously. Under this trivializa-

r)

*
Then j : A(G) > A(Z) is surjective

Proof. Wc claim that it suffices to show the surjectivity of j"

7
Note that Proposition 3.5 and Lemma 3.6 give an alternative proof of

Corollary 2.7 and 2.10.

= Zeros [ 0 > Kea(g®Q >A2 Q)]

Proposition 3.5 Let D = Dr>D d .. . d D d D = ø be a sequenceL r r _i o-l

of closed schemes. Put S = D\ D . Let ti : G > D be a morphismk k k-1

and j : Z —> G a regular embedding

n: Gs _ Skk
TT i „ : Z_ > S

|zs s*
k

tion the map j: Z (k) > G (k) is equal to
a a

lxh
TI (k) „(k) , .Ak)U X F c > U x G
a a

(k) (k) *
where h: F c > G is a regular embedding. Assume that h

A(G ) > A(F ) is surjective ( k=l

where j =j c, :Z_ > G .Wc have a commutative diagram
k k k
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A(GD ) > A(GQ ) > A(GS ) > 0k-1 k k

with exact rows. To be more precise, the vertical maps are "refined Gysin

homomorphisms" constructed as in [F, Ch. 6.2] from fibre squares

Z > G Z > G Z > G

Wc denote the Gysin morphism associated to the latter fibre square by j*

to emphasis its dependence on k. The commutat ivity of the left hand side

diagram follows from the fibre square

Z > G

and [F, Theorem 6.2(a)]. The commutat ivity of the right hand side dia

gram follows from [F, Theorem 6.2(b)]. Assuming by induction the surje

ctivity of the left vertical map ( for k=l, it becomes j' ) and of j'

wc get the final assertion by a diagram chase.

In turn, the surject ivity of j" can be proved by Noetherian indu-k
ction. Take Uc S an affine open subset trivial izing simultaneouslyk
Z and G . Wc have a diagram with exact rows

k k

I J * i, >L- vi'

A(ZD ) > A(ZD ) > A(Zg ) > 0
k-1 k k

ZD -^ GDk-1 k-1

I I

ZD > G D ZS > GSk k k k
and

\L- vi' SV vt-

ZD —» GD
k-1 k-1

4'

ZD —» GDk k

I I
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A(Gg y) > A(GS ) > A(G ) > 0k k

SV sl' \L-

Again, the diagram is commutative by [F, Theorem 6.2 (a) and (b)]. Since

dim(S \ U) < dim S , wc get the surjectivity of the left vertical map byk k
Noetherian induction. Wc have a commutative diagram [F, Theorem 6.2 (b)]

* *
Since U is open affine, the p 's are epimorphisms. Final ly, h

surjective implies the surjectivity of A(G..) > A(Z..). This concludes

the proof of the proposition.

Wc record also the following fact which combines Theorems 1 and 2

from [R-X]

and asssume that S has a cellulark

decomposition. Let tt : Z —> D be a morphism such that the restriction of
(k)

7i: Z > S is a locally trivial fibration. Assume that its fiber F
k (k)

satisfies: cl (k) is an isomorphism and A(F ) is free (k-1,..., r).r

Then, for every k, cl_, is an isomorphism
k

Proof. It follows from Theorem 2.9 and our assumptions that cl„ are
S

k

isomorphisms. To end wc proceed by induction on k. In char 0 case, it

follows from the commutative diagram

A(Zg ) > A(ZS ) > A(Z ) > 0
k k

 . „(k) . (lxh) .... r,(k)x
A(UxG ) > A(UxF )

/f, /t,
* #

p P*2 K 2

*

( n (k) , h r ( k) vA(G ) > A(F )

Lemma 3.6 Let D = DdD d...dDdD =ø be a sequence ofr r-l o-i

closed schemes. Put S = D \ Dk k k-1
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A. (Zn ) > A t (Zn ) > A (Zc ) > 0i L) i D i S
k-1 k k

•i? 'i/ 4/

that A (Z,-, ) = H (Z_, ). In char p case wc tensonze all Chow groupsi D 2i D & rk k

In the notation before Proposition 3.5 wc put D : = D (<p) and

Z k : = T)_1 (D )(= Zn ).k IJk

Corollary 3. 7 In the notation before Proposition 3.5 , the map
*

j : A(G) > A(Z) is surjective.

Proof. Wc use Proposition 3.5 and its notation. In our situation, it

is sufficient to find an open covering of X, trivial izing the bundle 9'.

Take first an open covering {U} trivial izing R. Then denoting by p

the projection X= Gs (ftV© R) >G, wc have p_l (U) =U x Gs (NV© N)nn n
$ V

where dimN=n; so if wc take an open covering {U'} of G (N ©N) trivian
l izing the tautological vector bundle on it, wc obtain an open covering

{UxU'} trivializing 6?.

Since D = D ((p) wc have G (k) =G (A), dimA=n; F (k) =G (B),BcA,k k r r-k
(k) (k)

dimß=n-k; and the embedding h: F c > G is given as follows. Let

A=B © C , then L€ G (B) is sent via h into L©C e G (A). Clearlyr-k r
( k)

under this embedding the tautological quotient bundle on G restricts
(k)

to the tautological quotient bundle on F . This implies the surjecti

vi ty of j because of the well known description of the Chow ring of a

Grassmannian in terms of Schur polynomials of the tautological quotient

bundle (see e.g. [F,Ch. l4]).

*

H 2 . lZD » — H2I (ZD' — H2I (ZS» — °k-1 k k

by Ip and repeat the arguments. Moreover,

O=H (Z_ ) > H (Zn ) > H . (Zc )=02i+l D 2i+l D 2i+l S
k-1 k k

implies H (Z^ )=02i+l Dk
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Corollary 3.8 For any "cl-homology" theory from Section 1, cl andDkIt
cl are isomorphisms. In particular, wc have H (D ) = H (Z )=0_,k odd k odd

Proof. Since the fiber of D > G is a Schubert variety (in an iso-k
tropic Grassmannian), the assertion for D follows from Theorem 2.9.k
Since D \ D as a difference of two Schubert varieties has a celluk k-1
lar decomposition, the assertion for Z is a consequence of Lemma 3.6

Step 4 (Final calculations)

From Step 3, wc get as in Section 2:

The Proposition implies Im i = tt (Im j ) . To compute the latter

group wc can use the Chow groups because of Corollary 3.8. Now, wc

will mimick the arguments from [P, Ch.7] and prove

At first, Im j is a principal ideal in A(G) generated by [Z]

R is the tautological subbundle on G. Indeed, by Corollary 3.7,
*

for z € A(Z) there exists g € A(G) such that z = j (g) . Then

Secondly, wc know that every element g e A(G) has a presentation

g=£ a s (Q) where a € A(X) and I c (r) n"r (see e.g. [F] Ch. 14).

Thus

• £ as (Q)
1 J

Proposition 3.9 77 :H (Z) > H (D ) is surjective for every i.* 2i 2i r

Im i f =( QA +i (g) II c (r) n_r ] (#####)r

c {Ken (g_®Q >A2Q) ) = c (R®Q + S2Q) - c (R®Q) Q A (Q), wheretop lx top top Ar

J # (z) = j.(j*g) = [Z]- g

K.UZI-g) =ti c (R®Q) Q. (Q)* * top AL r

=*. lac (R®Q) Q (Q)* *- i top A+lLI r J
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I r

by using succesively the factorization formula [P, Lemma 1.13] and the

push forward formula [P, Proposition 2.8].

This proves Theorem 3. 1 for "cl-homology" theory, because if

v —-> oo the Chern classes of & are algebraically independent, so (#####)

is sufficient to get the assertion.

The same proof works for singular homology because D , G and Zr
are proper and thus their singular homology coincide with the Borel-

Moore homology.

Remark 3.10 One can prove similarly an analogous assertion for antisym

metric morphisms. In the proof of Theorem 3.1 one makes the following

modifications: take r-even and in all stratif icat ions use even k;

replace $ by * and vice versa in all definitions and calculat ions; rep

lace polynomials Q (c. ) and Q (g) by P-polynomials 2 Q (-) (see

[P] for details); and final ly, change A to the partition A'r r

(n-r-I, n-r-2, . . . , 2, 1 ) . The "ant isymmetric version" of Theorem2,1). The "antisymmetric version" of Theorem 3.1 is
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