Department of

PURE MATHEMATICS

$$
16-09-15-80 \quad \text { ISSN 0332-5407 }
$$

Some Computing Aspects of Projective Geometry I.

Basic functions, algorithms and procedures. By

Audun Holme
Department of Mathematics
Bergen, Norway

UNIVERSITY OF BERGEN
 Bergen, Norway

Some Computing Aspects of

Projective Geometry I.
Basic functions, algorithms and procedures.
By

Audun Holme
Department of Mathematics
Bergen, Norway

This research has been supported by the Norwegian Council for Science and the Humanities, NAVF. The MACSYMA system of the Math.lab. group at the Laboratory for Computer Science at MIT is used. The work of this group is supported, in part, by the US Energy Research and Developement Administration (Contract Number $E(11-1)-3070)$, and by the National Aeronautics and Space Administration under Grant NSG 1323.

Table of Contents

Introduction.

§ 1. Computing the Chern classes of a tensor product.
§ 2. Chern- and Segre classes of Grassmanians.
§ 3. A basis for some Shubert Calculus on a computer.
§ 4. Projective embeddings and duality.
§ 5. Grassmanians of lines and combinatorical identities.
§ 6. "Generating varieties" and classes of projective varieties.

Appendix.

References.

- Tbuss 2q poacie 3 18
020
 于 $\operatorname{syn} 3 \mathrm{x} 2 \mathrm{a}$ e , ह8
$\overline{2}$ 14
 -
 128
- 2982

Introduction.

The aim of this paper is to lay the foundation for certain investigations in projective geometry by means of a computer.

Here I only give some of the basic techniques which will have to play a central role in these investigations, to appear later as [Hm 8, 9]. Thus the present work is of a preliminary nature.

One of the main points at this stage has been to investigate the feasability of some of those basic techniques, implemented on a computer. For this I have been able to use the MACSYMA-system of the Mathlab-group at the Computer Science Laboratory of MIT, Cambridge, Mass. MACSYMA is a very sophisticated system for symbolic manipulation, in principle very well suited for the kind of investigation I am undertaking here and in the articles announced above.

However, there is a difficulty which became serious already at the current preliminary stage: Namely, as the size of the problem grows - for instance the number of transcendentals in the expressions one works with - then the size of the computations in some cases tend to grow exponentially. And since the elegant and flexible facilities available in MACSYMA also tend to require considerable core memory space, one frequently finds that the swell in intermediate calculations severely limits the size of the problems which can be treated. This is a serious obstacle. Moreover, for similar reasons some of the computations would tend to run for an unexpectedly long time, even in relatively simple cases.

It therefore is appearent that the present project can not be carried out exclusively within the environment of symbolic manipulation. Nevertheless, the use of MACSYMA has been indispensable, and tools of this kind will have to be used extensively in the future. In fact, aside from the obvious approach of trying to implement functions

nene

 2and
written in a language for symbolic manipulation in a lower level language, one may develop programs by obtaining intermediate results for instance by MACSYMA and use these in programs written in a lower level language. A typical example of this is given by the expressions $R E[1], R E[2]$ and $R E[3]$ which have been found using MACSYMA. RE[3] could simply not have been computed "by hand", while RE[1] is easy. These expressions make it possible to find the Chern- and Segre classes for Grassmanians of lines, of planes and of 3 -spaces in \mathbb{P}^{N} for all N, using conventional programming languages. Unfortunately MACSYMA was not able to compute RE[4]. See sections 2 and 5 for details on this.

Moreover, in my opinion there is no question that computing with MACSYMA competes favorably with traditional approaches such as the one taken by A. Lascoux in [Lx] to compute Chern classes of tensor products and the 2 nd. symmetric and exterior power: Indeed, in section 1 it is shown how this goes through smoothly for tensor products, which is used later. Also the second exterior power is treated as an example, and it is clear how to generalize this to any exterior power. The symmetric powers are dealt with similarly, but this is omitted here. From a computational point of view I believe that the present approach is preferable.

Also, it is instructive to compare R. Donagi's computations in [Do], the appendix, to the material in section 3 .

Thus in section 1, I give a procedure ${ }^{*}$) for computing the Chern polynomial of a tensor product in terms of the Chern polynomials of the factors. Using the procedure, a function carrying out the computation is then written in MACSYMA. In section 2, procedures for the Chern and Segre classes of Grassmanians are similarly given and implemented on MACSYMA. In section 3 an algorithm is given which will

[^0]

 a

 "hidthroxita" brow ant
convert expressions in the Chern classes of the universal quotient bundle of a Grassmanian into expressions in the Schubert symbols. This is done by repeatedly applying Pieri's formula. The algorithm is implemented on MACSYMA, but unfortunately the computations tend to be rather time-consuming.

In section 4 I give some basic formulae and functions for computing the embedding- and duality properties of projective varieties. This material should be viewed in light of section 6 , where the continuation of this work is outlined.

Section 5 contains some combinatorical aspects of Grassmanians of lines, which also illustrates how parts of this project can be carried out with conventional computer programs.

I would like to thank Professor Joel Moses of the Computer Science Laboratory at MIT for giving me access to the MACSYMA system, and the entire Mathlab group for their patience and help during my work with MACSYMA. In particular I would like to thank Dr. B. Trager, whith whoom I had many enlightening conversations.

§ 1. Computing the Chern classes of a tensor product.

One of the techniques which we will need in this paper, is a practicable algorithm for computation of the Chern classes of a tensor product $E * F$ of two locally free O_{X} - Modules on a scheme X, in terms of the Chern classes of E and F.

The need for such a method, as well as the related one for symmetric and exterior powers, arises in many situations. In addition to the questions studied in this paper, they are also needed for the higher order Thorn-Boardman singularities.

This is the motivation for a recent article by A. Laxoux, [Lx] where the theory of Schur-functions is utilized to obtain explicit formulae for these Chern classed.

However, while Laxoux's expressions are nice to have, and of some interest in their own right, they do not lend themselves easily to computation: The Chern classed in question are obtained in terms of certain determinants in the Segre classes of E and F, and even though the passage from Chern polynomials to Segre polynomials is trivial on a computer, the further computations with Laxoux's formulas would still be rather large.

Here we take a different and much simpler approach to this problem: Using only substitutions, expansions and simplifications, as well as the function RESULTANT, we write a function in MACSYMA,

$$
\text { TENSOR }\left(\arg _{1}, \arg _{2}, \arg _{3}, \arg _{4}\right),
$$

which when given the arguments

$$
\arg _{1}=1+c_{1}(E) T+\ldots+c_{e}(E) T^{e}
$$

$$
\begin{aligned}
& \text { athansures onto mathly }
\end{aligned}
$$

the Chern polynomial of E;

$$
\arg _{2}=e,
$$

the rank of E ;

$$
\arg _{3}=1+c_{1}(F) T+\ldots c_{f}(E) T^{f}
$$

the Chern polynomial of F ;

$$
\arg _{4}=\mathrm{f},
$$

the rank of f; will return the Chern polynomial of $E \otimes F$ in terms of the Chern classes

$$
c_{1}(E), \ldots, c_{e}(E) ; c_{1}(F), \ldots c_{f}(E)
$$

The indeterminate must be T in $\arg _{1}$ and $\arg _{3}$.
We obtain the function as follows: First, write down the
reverse Chern polynomials of E, F and $E \otimes F$ with X, Y and T as indeterminates:

$$
\begin{aligned}
& P(X)=X^{e}+c_{1}(E) X^{e-1}+\ldots+c_{e}(E) \\
& Q(Y)=Y^{f}+c_{1}(F) Y^{f-1}+\ldots+c_{f}(F) \\
& R(T)=T^{e f}+c_{1}(F \otimes F) T^{e f-1}+\ldots+c_{e f}(E \otimes F)
\end{aligned}
$$

Now regard the coefficients of P and Q as transcendentals. Then in some field extension of Q we have

$$
\begin{aligned}
& P(X)=\prod_{i}\left(X-\ell_{i}\right) \\
& Q(Y)=\prod_{j}\left(Y-m_{j}\right)
\end{aligned}
$$

This being so, it now follows from [Fl] or any other standard source on Chern classes that

$$
R(T)=\prod_{i, j}\left(T-\left(\ell_{i}+m_{j}\right)\right)
$$

For more details, see [Hm 6] .
14. To LatmorryLog ment adt

$$
\begin{aligned}
& -12-1
\end{aligned}
$$

$$
T(\text { II })^{2} \cdots+T(\text { ग }) p^{0}+1=c^{3 \operatorname{ta}}
$$

44 10 Iafmozylog nरorio odt
 enamate mimerfo puid io
(3) $2^{5} \cdots$
(8) Pa 2
2
$4 m$

Lurra in in ent

> 为

$$
\begin{aligned}
& \left.\left(L^{\prime}-\alpha\right)\right]=(\mathrm{s}) \mathrm{Y} \\
& \left.\left(\mathrm{t}^{m}-\Psi\right)\right]=(\mathrm{Y}) 9
\end{aligned}
$$

$$
\begin{gathered}
\left(\left(b^{m}+f^{4}\right)-s^{2}\right) H_{2}=(T) q \\
t+3
\end{gathered}
$$

Hence it is natural to introduce the relation

$$
T=X+Y,
$$

and we get

$$
Q(T-X)=(-1)^{f} \prod_{j}\left(X-\left(T-m_{j}\right)\right)
$$

Recall, [VdWa] Vol I section 28, that the resultant of two polynomials

$$
\begin{aligned}
& f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \\
& g(x)=b_{0} x^{m}+b_{1} x^{m-1}+\ldots+b_{m}
\end{aligned}
$$

where a_{0} and b_{0} are non-zero, is equal to

$$
r=a_{0}^{m_{b}} \prod_{i, j}^{n}\left(x_{j}-y_{i}\right) ;
$$

x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} being all the roots of

$$
f(x)=g(X)=0
$$

in some splitting field. Thus letting

$$
f(X)=Q(T-X), g(X)=P(X),
$$

we get that

$$
r=(-1)^{f} \prod_{i, j}\left(T-m_{j}-\ell_{i}\right)
$$

so that up to a sign, the resultant of $Q(T-X)$ and $P(X)$ with respect to X is equal to $R(T)$.

The function RESULTANT in MACSYMA may use different algorithms, see [MAC] p. 118. Normally the usual determinant is not computed directly. This may in some cases yield a sign different from what one expects. Rather than to keep track of this, it is better to adjust the sign in the end, which is easy because any Chern polynomial has 1 as its constant term.

$$
\begin{aligned}
& \text { noltalex act eoubotan of faxplan os th seneh } \\
& \qquad X+X=2
\end{aligned}
$$

$$
(t(x-T)-x)]^{7}(r-)=(x-T) p
$$

aretmentiog

$$
0=(x) 3=(x)^{2 / 4}
$$

$$
\therefore(x) q=(x) y \cdot(x-y) \varphi=(x) z
$$

tsolt Jos 9w

$$
=\left(z^{x}-z^{2 \pi}-x\right)\left[\int^{2}(r-)=\frac{x}{x}\right.
$$

 - ortist tentamos etit

$$
\begin{aligned}
& d+. . .8+i-a_{K_{-}} d+\frac{\left.x_{x_{-}} d=(x)_{8}\right)}{d}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. }\left(5^{x}-6^{x}\right) \prod_{62^{4}}^{a^{4}} 0^{3}=7
\end{aligned}
$$

Our function TENSOR is written as follows:
TENSOR (E, M,F,N) : =BLOCK(II, P, Q,R,S,U,V],L:M*N,
$P: X^{\wedge} M * S U B S T(1 / X, T, E), Q:(T-X) \wedge N * S U B S T(1 /(T-X), T, F)$,
R: RESULTANT ($P, Q, X), S: T^{\wedge} L * S U B S T(1 / T, T, R), S: R A T E X P A N D(S)$,
U: $5 *$ COEFF $(S, T, 8), V: S U M(C O E F F(U, T, I) * T \wedge I, I, 0, L), V)$;

In order to demonstrate this, we wish to generate Chern polynomials of two Modules, denoted by A and B. We do this by the array-defined function
$A[J]:=1+\operatorname{SUM}\left(C O N C A T(C, I, A) * T^{\wedge} I, I, 1, J\right) \$$
and a similar definition involving B. The result is as follows: (C12) A[1]; (D12)

C1A T + 1
(C13) A[2]:
(D13)
2
(C14) A [3]:
(D14)

and for B ,
(C15) B[1];
(D15) C1B T + 1
(C16) B[2]:
(D16)
$C 2 B T^{2}+C 1 B T+1$
(C17) B[3]:
(D17)
СЗВ $T^{3}+C 2 B T^{2}+C 1 B T+1$

If for instance F is of rank 1 , then of course we have a well known formula for the Chern classes of $E \otimes F$, namely

$$
c_{k}(E \otimes F)=\sum_{i=0}^{k}\binom{e-k+1}{i} c_{k-i}(E) c_{1}(F)^{i}
$$


```
    I+7.A13
                                    [118 (S100
                                T{RUY
```



```
        1+ IACO + 1 ASO + Y A&S
                                (C)A-60[2)
                                fsime
\[
4+I 513
\]
\[
\csc +\mathrm{xato}
\]
(210)
bauren
\[
\begin{equation*}
4+7 \text { 日:3 \& } T \text { 日SJ + I Rcs } \tag{1540}
\end{equation*}
\]

truan...

Moreover, for \(e=f=2\) the polynomial is rather simple, and may be familiar. We get:
(C18) \(\operatorname{TENSOR(A[1],1,B[1],1);~}\)
(D18) (C1B + (1A) \(T+1\)
(C19) \(\operatorname{TENSOR}(A[1], 1, B[2], 2):\)
(D19) \(\quad(C 2 B+C 1 A C 1 B+C 1 A) T^{2}+(C 1 B+2 C 1 A) T+1\)
(C28) \(\operatorname{TENSOR}(A[1], 1, B[3], 3)\);
(O28) \(\left(C 3 B+C 1 A C 2 B+C 1 A^{2} C 1 B+C 1 A^{3}\right)^{3}+\left(C 2 B+2 C 1 A C 1 B+3 C 1 A^{2}\right)^{2} T^{2}\)
\[
+(C 1 B+3 C 1 A) T+1
\]
(C21) TENSOR(A[2],2,B[2],2);
\((D 21)\left(C 2 B^{2}-2 C 2 A C 2 B+C 1 A C 1 B C 2 B+C 1 A^{2} C 2 B+C 2 A^{2}+C 1 B^{2} C 2 A\right.\)
4
\(+C 1 A C 1 B C 2 A) T^{+}+(2 C 1 B C 2 B+2 C 1 A C 2 B+2 C 1 B C 2 A+2 C 1 A C 2 A+C 1 A C 1 B\)
\(\left.+C 1 A^{2} C 1 B\right)^{3}+\left(2 C 2 B+2 C 2 A+C 1 B^{2}+3 C 1 A C 1 B+C 1 A^{2}\right)^{2}\)
\(+(2 \mathrm{C} 1 \mathrm{~B}+2 \mathrm{C}(\mathrm{A}) \mathrm{T}+1\)

However, already for \(e=f=3\) the expressions become quite formidable, and completely unsuited for processing "by hand". See the appendix, section 1.

We may use a similar method to obtain functions which return the Chern polynomials of any exterior or symmetric power as well. This will not be needed here, but to illustrate we shall give a function EXTERIOR2 ( \(\arg _{1}, \arg _{2}\) ),
which when given the arguments
\[
\arg _{1}=1+c_{1}(E) T+\ldots+c_{e}(E) T^{e}
\]
the Chern polynomial of \(E\) in which \(T\) must be the indeterminate, and
 sham av uafrkment

```

 <
    ```
```(6)
```

$\$ \mathrm{~S}$

```\(+18143\)(e 10\()\)
```
```

$$
7(A 198+819 \times 125+853)+T(A 13+417 \mathrm{~A}+
$$

```



- - - -
\[
1+7(1425+6135)+
\]









\[
\arg _{2}=\mathrm{e}
\]
the rank of \(E\) which must be \(\geqq 2\); will return the Chern polynomial of \(\Lambda^{2} E\). It is clear from what follows how to generalize this to a function
\[
\operatorname{EXTERIOR}\left(\arg _{1}, \arg _{2}, \arg _{3}\right)
\]
which when given a third argument
\[
\arg _{3}=r
\]
which must be \(\leqq \mathrm{e}\); will return the Chern polynomial of \(\Lambda^{r} E\).
The function is:

> EXTERIOR2 ( \(E, M\) ) : = BLOCK ([L,B,P, Q,R,S,U,V],L:M^2,B:M*(M-1)/2,
> \(P: X^{\wedge} 1 *\) SUBST ( \(1 / X, T, E\) ) \(Q:\) SUBST \((T-X, X, P), P:\) RATEXPAND ( \(P\) ), Q: RATEXPAND ( \(Q\) ) , R: RESUL TANT ( \(P, Q, X\) ),
> S: R/ (2~M*SUBST (1/2*T, X,P)), S:RATEXPAND(S), U:FACTOR (S) ,
> \(V: \operatorname{SaRT}(U), V: \operatorname{PART}(V, 1), V: T \wedge(M *(M-1) / 2) * S U B S T(1 / T, T, V)\),
> \(V: \operatorname{RATSIMF}(V), V: \operatorname{SUM}(\operatorname{COEFF}(V, T, I) * T \wedge I, I, 8, M *(M-1) / 2), V)\);

To see why this yields the correct result, denote the reverse Chern polynomials of \(E, E \otimes E\) and \(\Lambda^{2} E\) by, respectively \(P(T), Q(T)\) and \(R(T)\). As above, writing
\[
P(T)=\prod_{i}\left(T-\ell_{i}\right)
\]
we have
\[
Q(T)=\prod_{i_{1}, i_{2}}\left(T-\left(\ell_{i_{1}}+\ell_{i_{2}}\right)\right) ;
\]
and
\[
R(T)=\prod_{i_{1}<i_{2}}\left(T-\left(\ell_{i_{1}}+\ell_{i_{2}}\right)\right) ;
\]
the latter being the standard way in which the Chern classes of exterior powers are determined. Using this, we get
\[
x+g y \tau
\]



\title{
 Jmenurg bilidy a nevis
 \\ 

}



2hate



\section*{}


\(\left(L^{x}-m\right) \|_{2}=(m) q\)
\[
A\left(\left(\mathrm{~s}^{2}+\mathrm{p}^{2}\right)-\mathrm{s}\right) \mathrm{s}^{2} \mathrm{~S}^{2} \mathrm{p}^{2}=(\Psi) Q
\]
\[
\left.1\left(\int_{s^{2}} x+t^{3}\right)-T\right){ }_{S} S^{2} t^{2}=(T) \pi
\]


\[
\begin{aligned}
Q(T) & =\prod_{i}\left(T-2 \ell_{i}\right)\left\{\prod_{i_{1}<i_{2}}\left(T-\left(\ell_{i_{1}}+\ell_{i_{2}}\right)\right)\right\}^{2} \\
& =2^{e} P\left(\frac{1}{2} T\right) R(T)^{2} .
\end{aligned}
\]

This should explain everything in the function body above, except possibly the use of the function PART. This is necessary since SQRT applied to \(R(T)^{2}\) will return \(A B S(R(T))\). The PART-function picks out the expression \(R(T)\).

We obtain the following polynomials for \(2 \leqq e \leqq 4\) :
(C23) EXTERIOR\2(A[1],1):
Part fell off end.
(C24) EXTERIOR\2(A[2],2);
(D24) C1A T + 1
(C25) EXTERIOR\2 (A [3],3);
(D25)
\(-C 3 A T^{3}+C 1 A^{2} T^{2}+2 C 1 A T+1\)
(C26) EXTERIOR \(\backslash 2\) (A [4], 4);
You have run out of LIST space.
Do you want more?
Type ALL; NONE; a level-no. or the name of a space.
ALL:
(D26)
\(-C 3 A^{2} T^{6}+C 1 A^{3} T^{3}+3 C 1 A^{2} T^{2}+3 C 1 A T+1\)

As we see, the improper arguments given to the function on line (C 23) results in an error message. The function call on line ( C 26 ), while returning a simple polynomial as the answer, clearly generates large intermediate expressions.

Unfortunately this is not an infrequent situation, which tends to limit the range of results obtainable by methods such as the ones developed in this paper.
\[
-5-
\]
\[
\begin{aligned}
& \left.{ }^{G}\left(6 f_{S^{2}}+p^{2}\right)-\pi\right){s^{2 s} x^{2}}^{2}\left(2^{2 s}-2\right) T_{2} e(\mathrm{~T}) 0 \\
& \$(2) \text { (28)492 }=
\end{aligned}
\]


 - \((x)\) molaserexe nont the
bentwoitas brital aketrin aw







\section*{§ 2. Chern- and Segre classes of Grassmanians.}

Let \(G_{k}(r, A)=G(r, A)=G\) be the Grassmanian which parametrizes the linear \(r\)-subspaces of \(\mathbb{P}_{k}^{A}=\mathbb{P}^{A}\). Equivalently, \(G(r, A)\) is the scheme which represents the functor of \(r+1\) - quotients of \(V=k^{A+1}\), so in particular it carries the universal quotient
\[
\mathrm{v}_{\mathrm{G}} \rightarrow \mathrm{Q} \rightarrow 0
\]
where \(Q\) is locally free of rank \(r+1\).
Here (i.e. in this and the following section), we only summarize the basic formulae needed from the theory of Grassmanians in algebraic geometry, and the closely related theory of Schubert Calculus. For details, the reader is referred to [ Hm 7 ] or the references given there, such as [Lk 1]. Last but not least, the recent paper of R. Donagi [Do] contains among other things an exellent account of some of the material we need here.

The reader not familiar with the material which follows, may consult [ Hm 7] for a more extensive survey, with references to the literature. In using these, one should of course beware of the distinction between the projective and the affine notation. Thus the Grassmanian which we denote by \(G(r, A)\) would be denoted by \(G(r+1, A+1)\) in affine notation, used for instance in [Do].

First, we have the basic formula
\[
\begin{equation*}
\Omega_{G}^{1}=Q^{V} \otimes M, \tag{2.1}
\end{equation*}
\]
\(M\) being defined by the exact sequence
(2.2) \(\quad 0 \rightarrow M \rightarrow V_{G} \rightarrow Q \rightarrow 0\)
and where
\[
Q^{V}=\underline{H o m}_{G}\left(Q, O_{X}\right)
\]



\(1=7\)


\[
a \cdot a+\cdots
\]






 cerad buax om






\[
\begin{aligned}
& \text { allumon h hanaf anty atrad aw tber ta }
\end{aligned}
\]
\[
\begin{align*}
& \text { spropurae tosve arts yd bentleb gented M }  \tag{l,s}\\
& 0<0-N+M=0  \tag{S,S}\\
& \left(x^{0}, 8\right), \operatorname{sog}=V_{0}
\end{align*}
\]
is the dual of \(Q\). Thus in particular \(G\) is non-singular and
\[
\operatorname{dim}(G)=(r+1)(A-r)
\]

Moreover, as the sequence (2.2) is split we have the identification
\[
G(r, A)=G(A-r-1, A)
\]
and it thus suffices to consider the cases
\[
r \leqq\left[\frac{A-1}{2}\right]
\]

Since the case
\[
G(0, A)=\mathbb{P}^{A}
\]
is trivial as far as this investigation is concerned, we shall assume that
\[
1 \leqq r \leqq\left[\frac{A-1}{2}\right]
\]

Using the function TENSOR of the previous paragraph, together with the well known relation
\[
c_{t}(Q)=c_{(-t)}\left(Q^{V}\right)
\]
where as always \(c_{t}(E)\) denotes the Chern polynomial of \(E\), it is now easy to write a function in MACSYMA which computes the Chern polynomial of \(G(r, A)\), i.e. the Chern polynomial of
\[
T_{G}=\Omega_{G}^{1 V} .
\]

First, we introduce the function
CHERNPOLYBUNDLE \(\left(\arg _{1}, \arg _{2}, \arg _{3}, \arg _{4}\right)\),
which returns the Chern polynomial in the indeterminate given by \(\arg _{4}\), of a bundle (i.e. a locally free Module) denoted by \(\arg _{1}\) of rank \(=\arg _{2}\) on a variety of dimension \(=\arg _{3}\). We include also the function

SEGREPOLYBUNDLE \(\left(\arg _{1}, \arg _{2}, \arg _{3}, \arg _{4}\right)\),
which when given the same arguments as CHERNPOLYBUNDLE above, will return the Segre polynomial in terms of the Chern classes of the bundle.


\[
(A, r-x-A) B=(A+r) D
\]

\[
[t-A]=-
\]
eảso ant borliz
\[
\sin
\]

ditiy

wombiniam matinuat rean indat at
\[
\left.(v)_{(t-1}\right)^{2}=(n)_{t^{2}}
\]


 vidront.
eapuborjation



 fobtocu- 9 aiy
\[
2
\]


```

CHERNPOLYBUNDLE (Q, RANK,DIM, T) : =BLOCK ([P],
P: $1+$ SUM (CONCAT (C, $1, Q)$ *T^I $, 1,1, \operatorname{MIN}(R A N K, ~ D I M)), P)$;

```

SEGREPOLYBUNDLE (Q, RANK, DIM, T) : =TAYLORI
1/CHERNPOLYBUNDLE (Q,RANK,DIM,-T), T, 8, DIM);

Furthermore, the function
\[
\text { CHERNPOLYMDUAL }\left(\arg _{1}, \arg _{2}, \arg _{3}\right)
\]
will return the Chern-polynomial with \(\arg _{3}\) as the indeterminate of the bundle \(M^{V}\) on \(G(r, A)\), when given the arguments \(\arg _{1}=r\), \(\arg _{2}=A\). The result is expressed in terms of the Chern classes of Q . The function is:

CHERNPOLYMDUAL (R, A , T) : =BLOCK ([RANK,DIM, P], RANK: \(\mathrm{R}+1\), DIM:A-R, \(P\) : SEGREPOL YBUNDLE ( \(Q\), RANK, DIM, \(T\) ), EXPAND (P));

Using the above CHERNPOLYBUNDLE and CHERNPOLYMDUAL, together with TENSOR, we now write a function
\[
\operatorname{POLYS}\left(\arg _{1}, \arg 2\right),
\]
which when given the arguments
\[
\arg _{1}=r, \arg _{2}=A ;
\]
will do the following: First, the Chern polynomial of \(G(r, A)\) is computed by the function CHERNPOLYG given below and assigned to the variable CHEPOrA. Next, the result is printed out as
\[
\text { "CHEPOrA }=c_{t}(G(r, A)) " .
\]

Finally the same is done for the Segre polynomial of \(G(r, A)\). The function is:

\title{


}






 48k colistoming ent it of






Mathenana miona



 bof marthanery
```

POLYSG(R,A):=BLOCK([DIM,CH,D,SE],DIM: (R+1)*(A-R),
CH:CHERNPOLYG (R,A,T),CONCAT('CHEPO,R,A)::CH,
PRINT("CHEPO",R,A," = ",CH),D:1/CH,SE:TAYLOR (D,T,O,DIM),
SE:1+SUM (EXPAND (COEFF (SE,T,I))*T^I, 1,1,DIM),
CONCAT ('SEPO,R,A) ::SE,PRINT("SEPO",R,A,"=",SE),DIM);

```

The function CHERNPOLYG( \(\left.\arg _{1}, \arg _{2}, \arg _{3}\right)\) which computes the Chernpolynomial of \(G(r, A)\) in terms of the Chern classes of \(Q\), with \(\arg _{3}\) as the indeterminate and where
\[
\arg _{1}=r, \arg _{2}=A,
\]
is as follows:

CHERNPOLYG (R,A,T) : =BLOCK ([RQ,DIM,RM,F,G,H],RQ:R+1,
DIM: \((R+1) *(A-R), R I I: A-R, F:\) CHERNPOL YBUNDLE \((Q, R Q, D I M, T)\), G: CHERNPOL YMOUAL (R, A, T) , H: TENSOR (F, RA, G, RM) , H) ;

Note that \(M^{V}\) is of rank \(A-r\), so the polynomial \(c_{t}\left(M^{V}\right)\) is of degree \(A-r\). This observation yields the set of relations (actually: a set of generators for the ideal of relations) among the Chern classes of \(Q\) : In fact, the inverse of the polynomial \(c_{t}\left(Q^{V}\right)\), where \(c_{1}(Q), \ldots, c_{r-1}(Q)\) are regarded as transcendentals for the moment, contains terms
\[
\left\{\rho_{i}\left(c_{1}(Q), \ldots, c_{r+1}(Q)\right) t^{i} \mid A-r<i \leqq(r+1)(A-r)\right\}
\]
and these are all equal to zero, thus giving \(r(A-r)\) relations among the Chern classes of \(Q\). It is a classical result that these are all the relations.

This observation enables us to write the function RELATIONSOFCHERNCLASSES ( \(\arg _{1}, \arg _{2}\) ),
which when given the arguments











 ienotitar or enith

Le (amas ...wnan)

\[
\arg _{1}=\mathrm{r}, \arg _{2}=\mathrm{A} ;
\]
will return a print out as follows
\[
" \rho_{i}\left(c_{1}(Q), \ldots, c_{r+1}(Q)\right)=0 "
\]
for \(i=A-r+1, \ldots,(r+1)(A-r)\). We are not using this in the sequel, otherwise it would of course be better to let the function return a list of the relations, which could then be further manipulated on by other functions. We have:

> RELATIONSOFCHERNCLASSESG (R, A) : =BLOCK ([RANK, RANKM, P, RE] ,RANK: R +1 , RANKM:A-R,DIM:RANK*RANKM, P: SEGREPOL YBUNDLE ( \(Q\), RANK, DIM, T), FOR I FROM RANKM +1 THRU DIM DO (RE: EXPAND (COEFF (P,T, I)), PRINT (RE," = 0 ") \()\);

The following function generates the Chern and the Segre polynomials, as well as the relations of the Chern classes of \(Q\) for \(G(r, A)\) for all
\[
1 \leqq r \leqq\left[\frac{A-1}{2}\right]:
\]
\(G(A):=\operatorname{BLOCK}([E], E: \operatorname{ENTIER}((A-1) / 2)\).
FOR I THRU E DO (POLYSG(I,A),RELATIONSOFCHERNCLASSESG(I,A)));

For \(A=3\) we get the following:
(C5) G(3):
CHEPO \(13=\left(4 \mathrm{CLO}^{2}-4 \mathrm{CiO}^{2} \mathrm{C} 2 \mathrm{a}+3 \mathrm{C1a}^{4}\right)^{4} \mathrm{~T}^{4}+6 \mathrm{C1O} \mathrm{a}^{3}+7 \mathrm{CiO}^{2} \mathrm{~T}^{2}\)
SEPO \(13=\left(-4 C 2 a^{2}+4 C 1 a^{2} C 2 a+14 C 1 a^{4}\right)^{4} T^{4}-14 C 1 a^{3} T^{3} T^{4} C 1 a T+1\)
\(C 1 a^{3}-2 \operatorname{cia} c 2 a=0\)
\(c 2 a^{2}-3 \operatorname{cia} \mathrm{C} 2 a+\mathrm{Cla}^{2}=0\)

\section*{}
bvotras as tuo tinlya is
\[
\text { " } 0=\left((\theta)+x^{3}+2 .+(\rho) p_{t}\right)^{Q "}
\]


 : evsit giz , amotyonent renfo vd no






 ffa rat \((\mathrm{A}, \mathrm{y})\) ) \(\operatorname{rot}\) Llemat


\[
\text { tarliwolkot ent toa ow } \quad \bar{c}=\mathrm{A} \text { उOT }
\]

f0017 \(5+T 012 a+11012 \varepsilon+059013 A-053 A-E 109310\)

\[
\begin{aligned}
& 20
\end{aligned}
\]

\[
\begin{gathered}
19=0509105-912 \\
5+012+052 \cdot 012 E-5053
\end{gathered}
\]

A full list of results for \(3 \leqq A \leqq 6\) is given in the appendix, § 2.

There is a somewhat different method for computing the Chernand Segre classes of Grassmanians.

This utilizes the exact sequence
(2.3) \(0 \rightarrow \Omega_{G}^{1} \rightarrow\left(Q^{V}\right)^{A+1} \rightarrow Q \otimes Q^{V} \rightarrow 0\)
obtained from (2.2) by tensoring with \(Q^{V}\). It yields the formulae
\[
\begin{equation*}
\left.c_{t}(G r, A)\right)=\left(1+c_{1} t+\ldots c_{r+1} t^{r+1}\right)^{A+1} /\left(c_{t}\left(Q \otimes Q^{V}\right)\right. \tag{2.4}
\end{equation*}
\]
\[
\begin{equation*}
s_{t}\left(G(r, A)=c_{t}\left(Q \otimes Q^{V}\right) /\left(1+c_{1} t+\ldots+c_{r+1} t^{r+1}\right)^{A+1}\right. \tag{2.5}
\end{equation*}
\]

Using the function TENSOR, it is of course clear how to write functions which compute the polynomials according to the formulae above. It is best to do so by an array-defined function,
\[
\operatorname{RE}[\arg ],
\]
which when given the argument \(r=\arg\) will return \(c_{t}\left(Q \otimes Q^{V}\right)\) for \(Q\) of rank \(r+1\). Thus once \(R E\) is computed for a given value of \(r\), it is stored and may be used again when needed for a different value of A . We delete the details. One then uses the function

SEGREPOL YGRASS \((R, A):=B L O C K([D I M, S], D I M:(R+1) *(A-R)\),
S: RE \([R] /(1+\operatorname{SUM}(C O N C A T(C, I, a) * T \wedge I, 1, i, R+1))^{\wedge}(A+1)\), S: TAYLOR (S, T, Q, DIM),
S: \(1+\operatorname{SUH} 1\left(\operatorname{EXPAND}(\operatorname{COEFF}(S, T, I)) * T^{\wedge} I, 1,1\right.\), DIM), S) :

Whathmuiaeswb to egasaco sygee bra

\[
\left.0-y_{\rho} \rho \rho \sim+\frac{1+4}{}{ }^{v} \rho\right)=\frac{f}{\rho} \alpha=0
\]


\begin{abstract}



\end{abstract}

\section*{fare jum}


 noldanut odit aosu merit ani un baibo ant atorias aw it a


 -
GG(arg)
which when given the argument
\[
\arg =A
\]
will print out the new Chern and Segre polynomials in an analogous way to the function \(G(a r g)\).
(C6) GG(3):
NEWCHEPO \(\left.13=\left(6 \mathrm{C}_{2} \mathrm{a}^{2}-16 \mathrm{C} 10^{2} \mathrm{C} 2 \mathrm{O}+8 \mathrm{Cla}\right)^{4}\right)^{4}\)
\[
\begin{gathered}
+\left(8 C 1 a^{3}-4 C 10 C 20\right) T^{3}+7 \mathrm{ClO}^{2} T^{2}+4 C 10 T+1 \\
\text { NEWSEPO } 13=\left(-6 C 2 Q^{2}-16 C 10^{2} C 2 a+25 C 1 a^{4}\right) T^{4}
\end{gathered}
\]
\[
\begin{equation*}
+\left(4 \mathrm{ClO} \mathrm{C} 2 \mathrm{a}-\underset{\mathrm{DONE}}{16 \mathrm{Cla}^{3}}\right)^{3} T^{3}+9 \mathrm{Cla}^{2} T^{2}-4 \mathrm{Cla} T+1 \tag{D6}
\end{equation*}
\]
(C7) GG(4):
NEWCHEPO \(14=\left(-14 C 2 Q^{3}+88 C 1 Q^{2} C 2 Q^{2}-72 C 1 a^{4}\left(2 Q+16 C 1 a^{6}\right) T^{6}\right.\)
\(+\left(30 c 10 c 2 a^{2}-40 c 1 a^{3} c 2 a+16 c 1 a^{5}\right) T^{5}\)
\(+\left(5 c 2 a^{2}-13 c 1 a^{2} c 2 a+16 c 1 a^{4}\right) T^{4}+15 c 1 a^{3} T^{3}\)
22
\(+(\mathrm{C} 2 \mathrm{O}+11 \mathrm{C} 1 \mathrm{O}) \mathrm{T}_{3}+5 \mathrm{Cla} \mathrm{T}+124246\)
NEWSEPO \(14=\left(25 \mathrm{C} 2 \mathrm{a}^{3}-15 \mathrm{C} 1 a^{2} \mathrm{C} 2 \mathrm{a}^{2}-245 \mathrm{c} 1 a^{4} \mathrm{C} 2 \mathrm{a}+140 \mathrm{c} 1 \mathrm{a}^{6}\right)^{\mathrm{T}} \mathrm{T}^{6}\)
\(+\left(15 c 1 a c 2 a^{2}+110 c 1 a^{3} c 2 a-91 c 1 a^{5}\right) T^{5}\)
\(+\left(-5 c 2 a^{2}-40 c 1 a^{2} c 2 a+55 c 1 a^{4}\right) T^{4}+\left(10 c 1 a c 2 a-30 c 1 a^{3}\right)^{3} T^{3}\)
\(\underset{(D 7)}{\left.+114 C 1 a^{2}-C 2 a\right) T^{2}-5 C 10 T+1}\)

\title{
\((485) 02\) \\ 
}

\section*{A.}

2
\[
\begin{aligned}
& \text { : (S1) (2y) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 3140 } \\
& \text { (30) }
\end{aligned}
\]
\[
\begin{aligned}
& 1+T-1049+501910+553+ \\
& \text { singes }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 䢒 }
\end{aligned}
\]
\[
\begin{aligned}
& 36005
\end{aligned}
\]

A full list of results for \(3 \leqq A \leqq 6\) is given in the appendix, § 2.

We see that the Chern and Segre polynomials returned by the two methods are not identical. This is of course due to the relations among the Chern classes of \(Q\).

As we shall see in following paragraphs, it will be essential to find the simplest possible expressions for the Cern and Segre classes, at least when \(r\) and \(A\) are large.

The above data seem to indicate that the first method yields a simpler result than the second. However, for small values of \(r\) the second method is the best. In fact, once \(R E[R]\) is given, we can compute the polynomials for any \(A\) using less sophisticated systems than MACSYMA, and even obtain explicit if messy formulae in some cases. We return to this in section 5 .

There we will treat the case \(r=1\), i.e. \(G(1, N)\) 's in this manner, and see how the computations we are interested in, and where we use the Chern and Segre polynomials, reduce to the evaluation of straight forward combinatorical identities, which present no difficulties from a computational point of view.

Moreover, there should be a good possibility that the case \(r=2\) can be treated analogously, as we shall indicate. But for \(r=3\) there is no hope of obtaining similar combinatorical expressions, even though the method might still be usefull from a numerical point of view. This becomes clear from the expressions for \(\operatorname{RE}[1], \operatorname{RE}[2]\) and \(\operatorname{RE}[3]\) which are listed below. For \(R=4\) the computation became too large for the system, in that the intermediate expressions filled up all available space.

Thus the first method for computing the Chern and Segre polynomials


20










 \(2 \operatorname{din}+2\)










 *ipncqe pridolleve
would yield new information for the first time for \(G(4,9)\).
But at this level the method appears to be impracticable on MACSYMA. I say appear, because I have not tried to have this done as a background job with disk use.

My present opinion is that it would be better to have the functions implemented directly in a lower level language.
(C11) RE[1];
(D11)
\[
\left(4 \mathrm{c} 20-\left(10^{2}\right) T^{2}+1\right.
\]
(C12) RE [2];

\[
\left.+19 c 2 a^{2}-6 c 1 a^{2} c 2 a+c 1 a^{4}\right) T^{4}+\left(6 c 2 a-2 c 1 a^{2}\right)^{2}+1
\]
(C13) RE [3]:
You have run out of LIST space.
Do you want more?
Type ALL; NONE; a level-no. or the name of a space. ALL;
(D13) \(1256 C 4 a^{3}-192 c 1 a c 3 a c 4 a^{2}-128 c 2 a^{2} \cdot C 4 a^{2}+144 c 1 a^{2} c 2 a c 4 a^{2}\)
\(-27 c 1 a^{4} c 4 a^{2}+144 c 2 a c 3 a^{2} c 4 a-6 c 1 a^{2} c 3 a^{2} c 4 a\)
\(-88 c 1 a c 2 a^{2} c 3 a c 4 a+18 c 1 a^{3} c 2 a c 3 a c 4 a+.16 c 2 a^{4} c 4 a\)
\(-4 c 1 a^{2} c 2 a^{3} c 4 a-27 c 3 a^{4}+18 c 1 a c 2 a c 3 a^{3}-4 c 1 a^{3} c 3 a^{3}\)
\(\left.-4 \operatorname{c2a}^{3} \mathrm{c} 3 a^{2}+c 1 a^{2} \cdot \operatorname{c2a} a^{2} \mathrm{c} 3 a^{2}\right)^{12}\)
\(+1-192 c 2 a c 4 a^{2}+72 c 1 a^{2} c 4 a^{2}+216 c 3 a^{2} c 4 a-120 c 1 a c 2 a c 3 a c 4 a\).
\(+18 \mathrm{c} 1 a^{3} \mathrm{c} 3 \mathrm{a} \mathrm{c} 4 \mathrm{a}+32{\mathrm{c} 2 a^{3} \mathrm{c} 4 \mathrm{a}-6 \mathrm{cia}^{2} \mathrm{c} 2 a^{2} \mathrm{c} 4 \mathrm{a}-54 \mathrm{c} 1 \mathrm{a} \mathrm{c} 3 a^{3} \mathrm{a}}^{2}\)
\(+18 c 2 a^{2} c 3 a^{2}+42 c 1 a^{2} c 2 a c 3 a^{2}-9 c 1 a^{4 *} c 3 a^{2}-26 c 1 a c 2 a^{3} c 3 a\)
\(\left.+6 \mathrm{cia}^{3} \mathrm{c} 2 a^{2} \mathrm{C} 3 \mathrm{a}+4 \mathrm{c} 2 \mathrm{a}^{5}-\mathrm{C} 1 a^{2} \mathrm{c} 2 \mathrm{a}^{4}\right)^{10}\)




\(+1-112 c 4 a^{2}+56 c 1 a c 3 a c 4 a+24 c 2 a^{2} c 4 a-32 c 1 a^{2} c 2 a c 4 a\)
\(+6 c 1 a^{4} \mathrm{c} 4 \mathrm{a}+48 \mathrm{c} 2 \mathrm{a} \mathrm{c} a^{2}-25 \mathrm{cia}^{2} \mathrm{c3a}{ }^{2}-54 \mathrm{cia} \mathrm{c} 2 a^{2} \mathrm{c} 3 \mathrm{a}\)
\(+38 c 1 a^{3} c 2 a c 3 a-6 c 1 a^{5} c 3 a+17 c 2 a^{4}-12 c 1 a^{2} c 2 a^{3}\).
\(\left.+2 c 1 a^{4} c 2 a^{2}\right) T^{8}+\left(16 c 2 a c 4 a-6 c 1 a^{2} c 4 a+26 c 3 a^{2}\right.\).
\(-38 \mathrm{c} 1 \mathrm{a} \mathrm{c} 2 \mathrm{a} \mathrm{C} 3 \mathrm{a}+8 \mathrm{cia}^{3} \mathrm{c} 3 \mathrm{a}+28 \mathrm{c} 2 a^{3}-24 \mathrm{cia}^{2} \mathrm{c} 2 a^{2}+8 \mathrm{c} a^{4} \mathrm{c} 2 \mathrm{a}\)
\(\left.-c 1 a^{6}\right)^{T^{6}}+\left(8 C 4 a-2 C 1 a c 3 a+22 c 2 a^{2}-16 c 1 a^{2} C 2 a+3 C 1 a^{4}\right)^{4} T^{4}\)
\(+\left(8 c 2 a-3 \cdot\left(1 a^{2}\right) T^{2}+1\right.\)
(C14) RE [4]:
You have run out of LIST space.
Do you want more?
Type ALL; NONE: a level-no. or the name of a space. ALL;

You have run out of LIST space.
Do you want more?
Type ALL: NONE; a level-no. or the name of a space.
ALL;
CORE capacity exceeded (while requesting FIXNUM space)
33837 msec. so far




\[
\begin{aligned}
& \text { - }
\end{aligned}
\]

\title{
 Semori flast kot of
 TJIA \\  CoTcin frisu kols of \\  !JIA
}

0
Tet ve vapen froce

\section*{§ 3. A basis for some Schubert Calculus on a computer.}

Here we take the term Schubert Calculus to mean the formal computation with "Schubert Cycles" \(\Omega\left(a_{1}, \ldots, a_{q}\right)\) in \(A(G(r, A))\), where \(\mathrm{q}=\mathrm{A}-\mathrm{r}\).

Different notations are in use, for the ones utilized here we refer to [Hm 7]. Also, there the reader will find references to some of the literature, of which we rely particularly on the fundamental and classical source [HP].

We shall make no attempt here to pursue the Schubert Calculus on a computer for its own sake, even though such a project would certainly be a very interesting one. Rather, we develope the minimum reqired for our present purpose.

Indeed, recall the Plücker-embedding
\[
p: G(r, A) \longleftrightarrow \mathbb{P}\left(\Lambda^{r+1} V\right)=\mathbb{P}^{N}
\]
where
\[
N=\binom{A+1}{r+1}-1
\]

Then we have that
\[
0_{G(r, A)}(1)=p^{*}\left(0_{\mathbb{P}} N^{(1))}=\Lambda^{r+1} Q .\right.
\]

Hence in particular if \(D\) is a very ample divisor giving the embedding \(p\), then
\[
[D]=c_{1}(Q) .
\]

In the next sections we shall see how this makes it possible to describe properties of embeddings and duality for Grassmanians, as

\section*{}

 - \(I-A=b\) arcarive


 [GW1 anntonn fianhooarn hime





\[
f-\binom{r+A}{r+\tau}=12
\]

शrerlw
jento evsil ow nerit
\[
Q^{(+X A}=\left((1)_{V} V_{2} 0\right) * g=(1)(A, 2) D^{0}
\]
 ratrict... of owthitadma
\[
(D), p-[a]
\]


well as for a large class of varieties "generated" by Grassmanians in a sense made precise later, in terms of the Chern numbers of the universal quotient bundles \(Q\) : That is to say, in terms of the degrees of the elements
\[
c_{1}(Q)^{i_{1}} \ldots c_{r+1}(Q)^{i_{r+1}} \in A^{\operatorname{dim}}(G(r, A))
\]
where \(i_{1}+\ldots+i_{r+1}=\operatorname{dim}=(r+1)(A-r)\). The degree map is in this case an isomorphism
\[
A^{\operatorname{dim}}(G(r, A)) \xrightarrow[\cong]{\mathbb{d e g}} \mathbb{Z}
\]
so we may refer to the momomials above as the Chern numbers of \(Q\).
Hence we need an algorithm to compute the Chern numbers of \(Q\) for any \(G(r, A)\). For this we proceed as follows: It is possible to convert any polynomial \(F\) in \(c_{1}(Q), \ldots, c_{r+1}(Q)\) with integral coefficients into a linear combination in the elements \(\Omega\left(a_{1}, \ldots, a_{q}\right) \in A(G(r, A)), q=A-r\) and \(1 \leqq a_{1}<a_{2}<\ldots<a_{q} \leqq A+1\). This is done by repeated application of Pierl's Formula, which asserts the following:
\[
\begin{equation*}
\Omega\left(a_{1}, \ldots, a_{q}\right) c_{h}(Q)=\sum \Omega\left(b_{1}, \ldots, b_{q}\right) \tag{3.1}
\end{equation*}
\]
where the sum is extended over all indicies for which
\[
\sum_{j=1}^{q} b_{j}=\sum_{j=1}^{q} a_{j}-n
\]
and
\[
1 \leqq b_{1} \leqq a_{1}<b_{2} \leqq a_{2}<\ldots<b_{q} \leqq a_{q} \leqq A+1
\]

Since


 WInemgle sctat To 8saxgeb
\[
2
\]
a) quat eanget onf






 -mentiuarine awat
\[
\begin{equation*}
\left(n^{d} \cdot \cdots r^{d}\right) n ?=(0) n^{p}\left(p^{d}+\cdots \times r^{s}\right) n \tag{-1,E}
\end{equation*}
\]


Bens
\[
1=\Omega(r+2, \ldots, A+1)
\]
in \(A(G(r, A))\) we obtain the algorithm in question as follows:
First multiply \(F\) by \(\Omega(r+2, \ldots, A+1)\), then perform the substitution (3.1) in \(F\) repeatedly until \(F\) is free of \(c_{h}(Q)\), for \(h=1, \ldots, r+1\).

Since there is only one \(\Omega\left(a_{1}, \ldots, a_{q}\right) \in A^{\operatorname{dim}}(G(r, A))\), namely,
\[
a_{1}=1, a_{2}=2, \ldots, a_{q}=A-r
\]
and this element is easily seen to have degree 1, the case when \(F\) is homogeneous of (weighed) degree dim will yield an integral multiplum of \(\Omega(1, \ldots, A-r)\), and the numerical factor is the sought degree.

In principle this will solve our problem. However, it may be better to proceed in a slightly different way. This is due to the fact that the above procedure, when implemented in MACSYMA, tends to be quite time-consuming. What we can do, is first of all to observe that
\[
\Pi^{r}(i!)((r+1)(A-r))!
\]
\(\operatorname{deg}\left(c_{1}(Q)^{i}\right)=\operatorname{deg}(G(r\),
\[
\mathrm{A}))=\frac{i=1}{\prod_{i=A-r}^{A}}
\]
for all \(i \leqq \operatorname{dim}\). Here the degree is with respect to the Plücker embedding, [Hm 7]. Moreover, with the same interpretation of "deg", we have
\[
\begin{aligned}
& \operatorname{deg}\left(c_{1}(Q)^{i_{1}} c_{2}(Q)^{i_{2}} \ldots c_{r+1}(Q)^{i_{r+1}}\right)= \\
& \operatorname{deg}\left(c_{2}(Q)^{i_{2}} \ldots c_{r+1}(Q)^{i_{r+1}}\right)
\end{aligned}
\]
and since there are formulae for computing the degrees of \(\Omega\left(a_{1}, \ldots a_{q}\right)\)
\[
(1+2 \times \cdots \cdot S+2) n=1
\]


 \(\ldots+x+\ldots, t=n\) TeI
th wrmo mbentady canko
\[
I-A=p^{3} \cdot \ldots . S=s^{3}, \quad \mid=p^{3}
\]







2
quolopeg ants ou to9qeer fiftw aL eacesp sif azoH


\[
\begin{array}{r}
=\left(t+x^{2}(\theta)+x^{2} \ldots s^{2}(\rho)_{g^{2}} p^{2}(\rho)^{0}\right)^{2 p b} \\
\left({ }^{1+t^{2}}(\rho)^{2}+x^{0} \ldots S^{t}(\rho)_{S^{2}}\right) 3 \theta b
\end{array}
\]
avod ent

\footnotetext{

}
in general, all we need to do is to reduce monomials of the form
\[
c_{2}(Q)^{i_{2}} \ldots c_{r+1}(Q)^{i_{r+1}}
\]
to a linear combination in the \(\Omega\) 's. We return to this below. We now give the function which transforms a polynomial in the \(c_{i}(Q)\) 's to a linear combination in the \(\Omega\) 's.

First, the function DOMAIN \(\left(\arg _{1}, \arg 2\right)\) generates the list of all lists of indicies \(\left[a_{1}, \ldots, a_{q}\right]\) where \(q=\arg _{1}, \Sigma a_{i}=\arg { }_{2}\) and \(1 \leqq a_{1}<\ldots<a_{q}:\)

DOMAIN (M,N): =BLOC K([S,R,L],L: [],
IF \(N>=M *(11+1) / 2\)
THEN (IF EQUAL (M,1) THEN.L: [ \([N]]\)
ELSE FOR I THRU N DO
FOR S IN DOMAIN(M-1,N-I) DO
(IF \(S[M-1]<1\)
THEN (R:ENDCONS \((1,5)\),
L: CONS (ReL) ) ) , L) :

The function
\[
\text { DOMAING }\left(\arg _{1}, \arg _{2}, \arg _{3}\right)
\]
will, when given the arguments
\[
\arg _{1}=r, \arg _{2}=A, \arg _{3}=N ;
\]
return the list of all lists of indicies
\[
\left[a_{1}, \ldots, a_{A-r}\right]
\]
where
\[
1 \leqq a_{1}<\ldots<a_{N-r} \leqq A+1
\]
and
\[
\sum a_{i}=N:
\]

\[
1+2(x+2 x+2 x+2(9)+20
\]


\[
\text { - a'ด enf al aotrantidmos tasnly a ot } a^{\prime}(\rho) L^{2}
\]




\author{
 \\  \\  \\ 
}
vinuavematy ina


2 milles



\[
\varepsilon\left[+A^{\theta}+\cdots p^{\theta]}\right.
\]

9xertio
\[
1+A>+1+f^{g}>+f^{9}>1
\]

Bras
\[
\text { 市 } 4
\]

DOMAING (R, A,N): =BLOCK (IS,RR,L,M],L: [],M:A-R,
IF \(N>=M *(M+1) / 2\)
THEN (IF EQUAL (M,1) THEN (IF \(N<=A+1\) THEN L: [[N]\}) ELSE FOR I THRU MIN(N,A+1) DO

FOR S IN DOMAIN(M-1,N-1) DO
(IF \(S[M-1)<1\)
THEN (RR:ENDCONS (I,S), - L:CONS(RR,L)) ) I,L):

The function
\[
\operatorname{SUMDOMAIN}\left(\arg _{1} \arg _{2}, \arg _{3}, \arg _{4}\right)
\]
will, when given the arguments
\[
\arg _{1}=q, \arg _{2}=\sum a_{j}, \arg _{3}=h
\]
\[
\arg _{4}=\left[a_{1}, \ldots, a_{q}\right] ;
\]
return the list of all lists of indicies
\(\left[b_{1}, \ldots, b_{q}\right]\)
such that the relations in (3.1) hold:

SUMDOMAIN(M,N,H,L):=BLOCK (ID,S],D:DOMAIN(M,N-H),
FOR S IN D DO
(FOR 1 THRU M-1 DO
(IF NOT \(1 S[1]<=L[I]\) AND:L[I] < S [I \([1]\) )
THEN D: DELETE (S, D) ).
IF \(S[M]>L(M)\) THEN \(D: \operatorname{DELETE}(S, D)), D)\);

The function
\[
\text { FUNDCLASSG }\left(\arg _{1}, \arg _{2}\right)
\]
will, when given the arguments
\[
\arg _{1}=r, \arg _{2}=\mathrm{A} ;
\]
generate the fundamental class \(\Omega(r+2, \ldots, A+1)\) of \(G(r, A)\).
For this it uses the function FUNDLIST:


2


\(1>\{5-142.4!\}\)





\[
i\left[p^{B} \text { is }+\infty p^{B}\right] \Rightarrow \text { \& }{ }^{3} \mathrm{~K}
\]



00 का 3 ह. भ104




nolionte snm

\section*{}

Bthemiment enft novid rrach viflv
evertin ene



FUNOLIST (R, A): =BLOCK ([L],L: [], FOR I FROC1 R +2 . THRU A +1 DO L: ENDCONS (I,L), L);

FUNDCLASSG (R, A) : =APPLY (OMEGA, FUNDL:IST (R,A) );

The function
\[
\text { TOTALDOMAIN }\left(\arg _{1}, \arg g_{2}\right)
\]
will, when given the arguments
\[
\arg _{1}=r, \arg _{2}=\mathrm{A} ;
\]
return the list of all possible lists of indicies
\[
\left[a_{1}, \ldots, a_{A-r}\right]
\]
where
\[
1 \leqq a_{1}<a_{2}<\ldots<a_{A-r} \leqq A+1:
\]

TOTALDOMAIN (R, A) : \(=\) BLOCK (IS,LO,HI),LO: (A-R)* \((A-R+1) / 2\),
HI: SUM(I, I, R+2, A+1), S: [],
FOR J FROM LO THRU HI DO S:APPEND (DOMAING (R, A,J),S), S) :

The function
\[
\text { OMEGATRANSFORM }\left(\arg _{1}, \arg _{2}, \arg _{3}\right)
\]
when given the arguments:
\[
\arg _{1}=r, \arg _{2}=B, \arg _{3}=F\left(c_{1}(Q), \ldots, c_{r+1}(Q)\right),
\]
the last one being a polynomial in the Chern-classes of the universal quotient bundle of \(G(r, A)\), will apply the substitution (3.1)
repeatedly to \(F=F \cdot \Omega(r+2, \ldots, A+1)\) untill the expression is free of \(c_{1}(Q), \ldots, c_{r+1}(Q)\).




> molvamut ent
> 0........
\[
\begin{aligned}
& \text { eqtathert } 10 \text { etale -oflilagog } \mathrm{fla} \text { go taht ant aru才? }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 97sriw }
\end{aligned}
\]



ate
eolvanul 9nT
2
infnemineta adt figviz ro du
2



\[
(0) i_{i+1}{ }^{5}+\cdots,(\rho), 0 \text { to } 892
\]

OMEGATRANSFORM (R, A,F) : \(=B L O C K(I M, T O T, N, U, O L D, N E W]\),
\(F: F\) *FUNDCLASSG (R, A) , M:A-R, TOT: TOTALDOMAIN (R, A), FOR I THRU R +1 [OO
(FOR J THRU INF UNLESS
FREEOF (CONCAT (C, \(1, Q), F)\) DO.
FOR S IN TOT DO
( \(N: S U M(S[K], K, 1, M)\),
U: SUMDOMAIN (A-R,N, I, S) . OLD: APPLY (OMEGA, S) *CONCAT (C, \(1, Q)\). NEW: SUM (APPL Y (OMEGA, U[K]) , K, 1 ,

LENGTH(U)),
F: RATSUBST (NĘW, OLD,F) A) ,F):

It is best to assume that the (weighed) degree of \(F\) with respect to the (weighed) degrees of \(c_{1}(Q), \ldots, c_{r+1}(Q)\) is \(\leqq \operatorname{dim}=(r+1)(A-r)\). However, with the usual intersectiontheoretic interpretation of monomials in the \(c(Q)\) 's, the function returns the correct result in this case as well, namely zero. On the other hand, the term
\[
\operatorname{deg}^{2}=\left(c_{1}(Q)^{\operatorname{dim}}\right)^{2}
\]
which might occur in \(F\) (and indeed it will later on) is clearly not intended to mean the element \(c_{1}(Q)\) of \(A(G(r, A))\) raised to the 2dim power, but rather the square of the Chern number \(c_{1}(Q)^{\text {dim }}\). Thus the function OMEGATRANSFORM has to be used with caution in such cases.

The function will for instance return the following results:
OMEGATRANSFORM (2, 5, c2Q**2) ;
(D 10)
\(\operatorname{OMEGA}(2,3,6)+\operatorname{OMEGA}(1,4,6)\)
or
(c 14) OMEGATRANSFORM (2, 5, c1Q**2*c2Q-c2Q**2-c1Q*c3Q); (D 14 ) OMEGA (2, 4, 5).

The function OMEGATRANSFORM will also convert any polynomial expression in \(c_{1}(Q), \ldots, c_{r+1}(Q)\) into the corresponding one involving the \(\Omega\) 's. Thus for instance we obtain the following:


-4.





(CLD)
Wendeximetion

 nxat ant Demal tenfo orit
\[
S(\operatorname{acis}(\rho) ; 2)=S
\]



 0 cos

2 (Sgluasta a aysuricowa minangam
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}



(C 5) OMEGATRANSFORM (1, 3, CHEPO13) ;
(D 5) 60MEGA \((1,2) \mathrm{T}^{4}+120 \operatorname{MEGA}(1,3) \mathrm{T}^{3}+(70 \mathrm{MEGA}(2,3)+70 \mathrm{MEGA}(1,4)) \mathrm{T}^{2}\) \(+4 \operatorname{OMEGA}(2,4) \mathrm{T}+\operatorname{OMEGA}(3,4)\)

Here the Chern polynomial of \(G(1,3)\) has previously been computed and assigned to the variable CHEPO13 , using the function \(G\). Similarly,
(C 6) OMEGATRANSFORM (1, 3, SEPO13) ;
(D 7) 280MEGA \((1,2) \mathrm{T}^{4}-280 \operatorname{MEGA}(1,3) \mathrm{T}^{3}+(90 \operatorname{MEGA}(2,3)+90 \operatorname{MEGA}(1,4)) \mathrm{T}^{2}\) \(-4 \operatorname{OMEGA}(2,4) \mathrm{T}+\operatorname{OMEGA}(3,4)\).

The results of the function calls with \(r=1, A=4\), 5 are given in the appendix, § 3 .

What we really need are the degrees of the Chern- and Segre classes, however. To compute these, we may use the following classical formula, given in [HP]:
\[
\operatorname{dim}\left(\Omega_{\alpha_{0}}, \ldots, \alpha_{r}\right)=\sum_{i=0}^{r} \alpha_{i}-\frac{1}{2} r(r+1)
\]
\[
\begin{equation*}
\operatorname{deg}\left(\Omega_{\alpha_{0}}, \ldots, \alpha_{r}\right)=\frac{\left(\operatorname{dim} \Omega_{\alpha_{0}}, \ldots, \alpha_{r}\right)!}{\prod_{i=0}^{r}\left(\alpha_{i}!\right)} \prod_{\lambda>\mu}\left(\alpha_{\lambda}-\alpha_{\mu}\right) \tag{3.2}
\end{equation*}
\]

To get the formulae in a reasonable form, we had to introduce the Schubert-symbols \(\Omega_{\alpha_{0}}, \ldots, \alpha_{r}\), which are related to \(\Omega\left(a_{1}, \ldots, a_{A-r}\right)\)

\section*{}

 fyoxishera








\[
(1+1) x \frac{x^{2}}{0 \rightarrow t} \prod_{x^{2}}^{x}=\left(x^{2}+0^{2^{\Omega}}\right) \operatorname{acbs}
\]



in the following way (for proof, see [Hm 7] Lemma 3.6):
Lemma \(3.3 \Omega_{\alpha_{0}}, \ldots, a_{r}=\Omega\left(a_{1}, \ldots, a_{A-r}\right)\), where
\[
1 \leqq a_{1}<a_{2}<\ldots<a_{A-r} \leqq A+1
\]
are the numbers obtained from
\[
\{1,2, \ldots, A+1\}
\]
by deleting
\[
\left\{A-\alpha_{r}+1, \ldots, A-\alpha_{0}+1\right\} .
\]

Thus for instance
\[
\Omega_{0,1, \ldots, r}=\Omega(1, \ldots, A-r)
\]
and in fact this is the only Schubert cycle of dimension zero.
Obviously it has degree 1.
We therefore have an alternative way of computing the degrees of the Chern- and Segre classes: Writing
\[
P(t)=1+c_{1}(G) t+\ldots+c_{d i m}(G) t^{d i m}
\]
where
\[
G=G(r, A), \operatorname{dim}=(r+1)(A-r)
\]
and \(c_{1}, \ldots, c_{\text {dim }}\) are the Chern classes, we put
\[
\begin{aligned}
Q(t)=c_{1}(Q)^{\operatorname{dim}} & +c_{1}(G) c_{1}(Q)^{\text {dim-1}} t+\ldots \\
& +c_{d i m-1}(G) c_{1}(Q) t^{\operatorname{dim}-1}+c_{d i m}(G) t^{\text {dim }}
\end{aligned}
\]

Then putting
\[
\omega=\Omega(1, \ldots, A-r),
\]

OMEGATRANSFORM applied to \(Q(t)\) will return

 － \(\qquad\) －－－ 7






\[
\operatorname{tanex} \operatorname{cosen}
\]

\[
e_{0} \omega+e_{1} \omega t+\ldots+e_{d i m} \omega t^{d i m}
\]
where
\[
e_{i}=\operatorname{deg}\left(c_{i}(G)\right)
\]

Similarly for the Segre Polynomial.
The removal of \(\omega\) in the output is a matter of stream-lining which I did not carry out.For simplicity I gave the output as
\[
" P(t)=Q(t) "
\]
which is of course incorrect. \(Q(t)\) is the "degree" of \(P(t)\).
Since OMEGATRANSFORM is rather time-consuming, an attempt was made to save some time by arranging the computation somewhat differently, through the function PIERI and POLYSGOMEGA. Their definitions, as well as the results for \(G(1,3)\) and \(G(1,4)\), is given in the appendix, § 3.

Unfortunately the computation became too long already for \(G(1,5)\), so that this approach is clearly not feasible on MACSYMA. However, the principle itself might still work on a computer for higher Grassmanians. What we have demonstrated here, then, is that Schubert Calculus can indeed be implemented on a computer; at least the amount of Schubert Calculus needed for the current project.

Some alternatives to this method will be discussed in Sections 5 and 6.
\[
\therefore\left((0), 4^{a}\right) 2 \theta s=1^{3}
\]

I Imanonytos exges ont 302 KInisimu


\[
2\left(+1 e^{3}-(4)+\pi\right.
\]






Hummen anlt wraikirninten'? ait






- D) Din
§ 4. Projective embeddings and duality.

Let \(X\) be a non-singular, projective variety over the algebraically closed field \(k\), embedded in projective \(N\)-space by the embedding
\[
i: X C \mathbb{P}_{k}^{N}
\]

In this setting, we define the \(m\) th embedding-obstruction of the embedded variety \(X\) as
\[
\gamma_{m}=\operatorname{deg}(X)^{2}-\sum_{j=0}^{m-\operatorname{dim}(X)}\binom{m+1}{m-\operatorname{dim}(X)-j} p_{j}(x, i)
\]
provided that \(m \leqq 2 \operatorname{dim}(X)\), while \(\gamma_{m}=0\) for \(m \geqq 2 \operatorname{dim}(X)+1\). Here \(\operatorname{deg}(X)\) is the degree of \(X\) with respect to the embedding \(i\), \(\operatorname{dim}(X)\) is the dimension of \(X\) and
\[
p_{j}(X, i)=\operatorname{degree}\left(s_{j}(X)\right)
\]
is the degree, with respect to the embedding \(i\), of the \(j\) th Segre class of \(X\). One then has the following

Theorem 4.1. \(X\) may be embedded into \(\mathbb{P}_{k}^{m}\) by a projection from \(\mathbb{P}_{k}^{N}\) if and only if \(\gamma_{m}=0\).

For proofs of this and related results, see for instance
[ \(\mathrm{Hm} 2,3,4,7],[\mathrm{HR}],[\mathrm{Jn}],[\mathrm{Lk} 2-4]\) and \([\mathrm{Rb} 1-5]\) as well as [Kl].
It is sometimes convenient to express \(\gamma_{m}\) in a slightly different form. In fact, letting \(D\) denote the divisor class which corresponds to the embedding \(i\), we have
\[
\begin{aligned}
& \operatorname{deg}(x)=D^{\operatorname{dim}(x)} \\
& p_{j}(x, i)=D^{\operatorname{dim}(x)-j_{S_{j}}(x)},
\end{aligned}
\]
where we identify \(A^{\operatorname{dim}(X)}(X)\) and \(Z\) via the degree-map


 ise. Y Whanta komi hakharima







 . 0 mun thvcro bess int





\[
\begin{aligned}
& (x) t^{14-(x) \tan 5} 4=(1, x)_{4}^{q}
\end{aligned}
\]
\[
\operatorname{deg}: A^{\operatorname{dim}(X)}(X) \xrightarrow{\cong}
\]

Thus
\[
\gamma_{m}=\left(d^{\operatorname{dim}(x)}\right)^{2}-\sum_{j=0}^{m-\operatorname{dim}(x)}\binom{m+1}{m-\operatorname{dim}(x)-j} D^{\operatorname{dim}(x)-j_{s_{j}}(x)} .
\]

Furthermore, the generic projection from \(\mathbb{P}_{k}^{N}\) to \(\mathbb{P}_{k}^{m}\) induces a morphism
\[
\mathrm{p}_{\mathrm{m}}: \quad \mathrm{X} \longrightarrow \mathrm{X}^{\prime} \subset \mathbb{P}_{\mathrm{k}}^{\mathrm{m}},
\]
which has a ramification cycle on \(X\) denoted by \(\operatorname{Ram}\left(p_{m}\right)\). We now have (see [Rb], [Jn], [HR]) the

Theorem 4.2. The degree of the cycle \(\operatorname{Ram}\left(p_{m}\right)\) is given by the expression
\[
r a m_{m}=\sum_{j=0}^{m+1-\operatorname{dim}(X)}\binom{m+1}{j+1} D^{\operatorname{dim}(X)-j_{s_{j}}(X)}
\]

The observation that for \(m \leqq 2 d i m(X)\),
\[
\gamma_{m}-\gamma_{m-1}=\operatorname{ram}_{m-1}
\]
yields the
Corollary 4.2.1. Assume that \(\gamma_{2 \operatorname{dim}(X)}=0\). Then \(X\) can be embedded into \(\mathbb{P}^{m}\) via a projection from \(\mathbb{P}^{N}\) if and only if
\[
\mathrm{ram}_{\mathrm{m}}=0 .
\]
K. Johnson in [Jn] conjectured that
\[
s \leqslant \frac{2}{y}(x)^{(x) \operatorname{sub} b_{A}} \cdot \operatorname{seb}
\]

Burc


max iwem

(aft tiftyl ImLi ras l manl

noliaastgxe
\((x) 4^{t-(x)} \operatorname{mith} a(x+m)^{(x) m 2 b-l+t m} x^{x}=x^{m e z}\)
snis ablozv
34 gex
\[
110
\]
\[
0=\frac{\operatorname{mgn}}{}
\]
\[
\text { IEdy Esqutos (nos } \operatorname{lnt} \text { ) nf moantot . X }
\]
\[
\operatorname{ram}_{2 \operatorname{dim}(x)-1}=0 \Rightarrow \gamma_{2 \operatorname{dim}(x)}=0
\]

This is shown by w. Fulton and J. Hansen in \(F-H\) as a corollary of their remarkable connectedness-theorem. One of the initial motivations for the computations below was to check this conjecture against various families of examples, to be generated as described in section 6 .

The following functions will generate the Chern polynomial and the Segre polynomial of \(X\) in terms of the Chern classes \(c_{1}, \ldots, c_{\text {dim }}\) of X :

CHERNPOLY (DIM, T) : = + +SUM (CONCAT (C, J) *T^J, J, 1, DIM) ;

SEGREPOLY(DIM,T) : =TAYLOR(1/CHERNPOLY(DIM,T),T,8,DIM);

We proceed with the functions which return the \(m\) th embedding obstruction and the degree of the ramification cycle \(\operatorname{Ram}\left(p_{m}\right)\) :
```

GAMMASEGRE (DIM,M) :=DEG^2
- (BINOMIAL (I1+1,M1-DIM)*D^DIM
+SUM(BINOMIAL (M+1,M-DIM-J) *D^(D.IM-J) *CONCAT (S,J),J,
1.M-DIM));

```

It is convenient not to substitute \(D^{\text {dim }}\) for deg in the first term, see for instance the remark on the use of OMEGATRANSFORM in section 3 .

Next, we write the same entity in terms of the Chern classes of \(X\) :
\(-0=(x) \operatorname{mins} r \operatorname{los} 0=r-(x)\) actos mar
 To \(9 n 0\) Allezosd




 ix 20





(4. 147) JAHICMIE) -
20.
f(thlormat




GAMMACHERN (DIM, M): = BLOCK (IQ,P) , Q:GAMMASEGRE (DIM, M) ,
P: SEGREPOI V (DIM, T).
FOR I THRU DIM DO
Q: SUBST (COEFF (P, T, I) , CONCAT ( \((, 1), a), \operatorname{EXPAND}(a))\);
Analogously we express the degree of the ramification cycle as follows:

RAMSEGRE (DIM, M) : =BINOMIAL \((M+1\), DIM) *D^DIM
+SUM (BINOMIAL (M+1, J+DIM) *D^(DIM-J) *CONCAT (S, J), J, 1 . M-DIM+1);
```

RAMCHERN (DIM,M) :=BLDCK (IQ,P] , Q: RAMSEGRE (DIM,M),
P:SEGREPOLY(DIM,T),
FOR I THRU DIM DO Q:SUBST (COEFF (P,T,I),CONCAT (S,I),Q),
EXPAND(a)):

```

Finally we define the \(m\) th defect-obstruction of the embedded variety \(X \hookrightarrow \mathbb{P}^{N}\) as
\[
\delta_{s}=\sum_{i=s}^{d i m}\binom{i+1}{s+1} e_{d i m-i}=\sum_{i=s}^{d i m}\binom{i+1}{s+1} D^{i} c_{d i m-i}(X)
\]

The reason for this name is as follows: The dual variety \(X^{V}\) of \(X\) with respect to the embedding \(i\) is "normally" a hypersurface, i.e. a subvariety of \(\mathbb{P}^{N}\) of dimension \(N-1\), see for instance [Kl]. But more precisely we have the following result, which is proved in [Hm 7]:

Theorem 4.3. Assume that
\[
\delta_{0}=\delta_{1}=\ldots=\delta_{m-1}=0, \delta_{m} \neq 0
\]

Then
\[
\operatorname{dim}\left(X^{V}\right)=N-1-m
\]

Following A. Landman [Ln 1, 2] we shall call
\[
\mathrm{m}=\mathrm{N}-1-\operatorname{dim}\left(\mathrm{X}^{\mathrm{V}}\right)
\]
the (duality) defect of \(X\).
The corresponding function in MACSYMA is:

-xater \(=\)
-

\author{
 \\  \\  \\ 
}





గ9,
\[
\text { id } \quad \mathrm{F}
\]

\(\operatorname{DELTACHERN}(N, \operatorname{DIM}, \mathrm{M}):=\operatorname{SUM}(\operatorname{BINOMIAL}(I+1, M+1)\)
```

*D^I*CONCAT(C, DIM - I), I, M, DIM - 1)

+ BINOMIAL(DIM + 1, M + 1)*D`DIM

```

Our intended use of the above functions is the following:
We will consider a certain class of embedded varieties, for which there is given a procedure for computing the Chern classes \(c_{1}, \ldots, c_{\text {dim }}\) as well as the intersection numbers
\[
D^{n-\left(i_{1}+\ldots+i_{n}\right)}{ }_{c_{1}}^{i_{1}} \ldots c_{n}^{i_{n}}, n=\operatorname{dim}
\]

This could for instance be the varieties generated from a given one by a finite number of general hypersurface sections, or the ones obtained by blowing up certain loci; possibly both. Reasonable choices for the given variety - which we might call the generating variety - would be a Veronese-variety, or products of some simple given varieties embedded by the Segre-embedding, or finally a Grassmanian or more generally a flag-manifold. We return to this in Section 5.

In an environment established in this way, by a generating variety and a generating procedure, one would then compute the numbers
\[
\gamma_{m}, \operatorname{ram}_{m}, \delta_{m} .
\]

We return to the significance of this in Section 5 .
The most straightforward approach, which would also be the most flexible and therefore preferable to other alternatives, would be to compute the Chern polynomial of a generated variety, then the intersection numbers above and substitute them into the results of








 a moltana
20

\[
x+2+2+2
\]






RAMSEGRE(DIM, M), RAMCHERN(DIM, M)
DELTACHERN(N, DIM, M) .

In order to explore the feasability of this, and also to establish the base for using Grassmanians as generating varieties; we carried out some of the above computations for Grassmanians up to \(G(2,6)\). Of course both embedding and duality properties of \(G(1, A)\) is well known from geometric theory, see \([\mathrm{Hm} 7]\), so no new results were expected from the computations in these cases. In fact, it is known that \(G(1, A)\), which is of dimension
\[
n=2(A-1),
\]
can be embedded into \(\mathbb{P}^{2 n-3}\) via a projection from the Plücker embedding, and this is the best possible. Moreover, if \(A\) is even and \(\geqq 4\), then
\[
\operatorname{dim}\left(X^{V}\right)=N-3
\]
where
\[
N=\binom{A+1}{2}-1
\]
is the embedding-dimension of the Plücker embedding. If \(A\) is odd, then
\[
\operatorname{dim}\left(X^{V}\right)=N-1 .
\]

These results are due to A. Landman, [Lm 1, 2].
However, from what follows we do make the observation that both \(G(2,5)\) and \(G(2,6)\) can not be projected into a space of lower dimension than \(2 n+1\), where \(n\) is the dimension of \(G(2,5)\) resp. \(G(2,6)\), starting with the Plücker embedding. But this can probably be shown easily by direct geometric and elementary methods, and is









ans
abou bf A II , gntbbadmis tentokly edt to mafamomib-gntsbodute ont al ~ont
\[
\therefore r-n=\left(V_{X}\right) \operatorname{mlb}
\]





not the main point of what follows.
The main point was to see if the computational method referred to above is feasible. Unfortunately the outcome is that at the present time, at least, this direct approach does not seem to be practicable. In sections 5 and 6 we establish an alternative procedure which is less flexible, but which is better suited for large computations.

The function
\[
\operatorname{GRASS}\left(\arg _{1}, \arg 2\right)
\]
will, when given the arguments
\[
\arg _{1}=\mathrm{r}, \arg _{2}=\mathrm{A} ;
\]
print the Chern polynomial of \(G(r, A)\) in terms of the Chern classes of \(Q\), and finally evaluate
\[
\gamma_{2 \operatorname{dim}(X)}, \operatorname{ram}_{2 \operatorname{dim}(X)-1}, \cdots
\]
stopping with the first non-zero one. I also worked with a variation of GRASS which always computes at least one \(\mathrm{ram}_{i}\), in order to check Johnson's conjecture. The functions are as follows:
```

GRASS (R, A):=BLOCK ([DIM,M,GS,DE,N,TEST),DIM: (R+1)*(A-R).
CHEPO:CHERNFOLYGRASS (R,A,T),
PRINT("THE CHERNPOLYNOMIAL OF GRASSS(",R,":",A,") 1S: ",
CHEFO),
PRINT("THE RELATIONS OF THE CHERNCLASSES OF Q ARE:"),
RELATIONSOFC.HERNCLASSESG(R,A) M:2*DIM,
GS:GAMMASEGRE (DIM,M), PRINT (ARRAYAPP.LY (GAMMA, [M]) ,"=",GS),
GC:GAMMACHERN (DIM,M),GC:GRASSEVAL (GC),
GC:OMEGATRANSFORI1 (R, A,GC-DEG^2),
DE:PROD(I!,I,1,R)*DIM!/PROD(I!,I,A-R,Al,

```
    N: NUMFACTOR (GC) +DE^2, PRINT(" = ", N), TEST: \(\varnothing\),
    FOR I THRU DIM WHILE EQUAL (TEST, 8\()\) DO
        (M:M-1, GS: RAIMSECRE (DIM, M).
        PRINT (ARRAYAPPLY (RAM, [M] ) , " = ", GS) , GC: RAMCHERN (DIM, M),
        GC: GRASSEVAL (GC). GC: OMEGATRANSFORM (R, A, GC),
        N: NUMFACTOR (GC), PRINT (" \(=\) ", N ), TEST: N ),
    PRINT("DEG =".DE)):
- onoctor fesiv 20 fatrog mlaim ods for







 A an - Mra anta \(=\) iowa
 Qtauleve vifilaty hira \(n=\) an \(4-(x)+2+20\)





 -









20.




The function GRASSEVAL substitutes the Chern-classes for the Grassmanians into the general expressions:
```

GRASSEVAL(P) : =BLOCK ([H],
FOR I THRU DIM DO
H: RATSUBST (COEFF (CHEPO, T, I) ,CONCAT (C, I) ,P),
H:RATSUBST (CIO,O,H) , EXPAND (H),
FOR I THRU DIM DO
H: RATSUBST (COEFF (CHEPO,T,1), CONCAT (C, I), H),
EXPAND(H)):

```

Output from this function is listed in the appendix, § 4. The assertions made above about \(G(2,5)\) and \(G(2,6)\) follow from that.

If one were only interested in the data actually printed out by the function, this would not be the most efficient way to proceed: Indeed, one could then find the degrees of the Segre classes as in section 3 , and substitute the result directly into the expressions for \(\gamma_{m}\) and \(r a m_{m}\). But the function GRASS was also used to give \(\gamma_{m}\) and \(r_{m}\) expressed in terms of \(c_{1}(Q), \ldots, c_{r+1}(Q)\), by inserting a PRINT statement after the statement
```

GC : GRASSEVAL(FC)

```

This was done in order to look for a possible pattern, which conceivably could lead to simpler formulae for \(\gamma_{m}\) and \(r a m_{m}\) in terms of the Chern classes of \(Q\). But as no pattern seemed to emerge, it was abandoned. Another approach, which also turned out to be impracticable on MACSYMA, was to determine whether or not \(\gamma_{m}\) was zero by checking if the expression returned for \(\gamma_{m}\) in terms of \(c_{1}(Q), \ldots, c_{r+1}(Q)\) was contained in the ideal in \(Z\left[c_{1}, \ldots, c_{r+1}\right]\) generated by the relations of the Chern classes. For instance, we obtained the following results from the last version of GRASS:



(0) 510 vont 1- 107



ATsOUT REUSTAR 5 H
t(0)

5aty
 2






 (0T)




 Ro -



```

(C9) ©rass(1,3):
THE CHERNPOLYNOMIAL OF GRASS(1,3) IS:
$\left(4 C 2 Q^{2}-4 \operatorname{ciQ} Q^{2} C 2 Q+3 C 1 Q^{4}\right) T^{4}+6 C 1 Q^{3} T^{3}+7 C 1 Q^{2} T^{2}+4 \operatorname{ciQ} T+1$
THE RELATIONS OF THE CHERNCLASSES OF Q ARE:
$C 10^{3}-2 \operatorname{ciQ} \operatorname{c2Q}=0$
$2 \quad 24$
$C 2 Q-3 C 1 Q C 2 Q+C 1 Q=0$
GAMMA $=-54-9 \mathrm{D} 53-36 \mathrm{D}^{2} 52-84 \mathrm{D}^{3} 51+\mathrm{DEG}{ }^{2}-126 \mathrm{a}^{4}$
8
$=D E G^{2}+4 C 2 Q^{2}-4 C 1 Q^{2} C 2 Q-2 C 1 Q^{4}$
$=0$
FAM $=54+8 \pi 53+28 \mathrm{n}^{2} 52+56 \mathrm{n}^{3} 51+70 \mathrm{n}^{4}$
$=4 C 1 Q^{2} C 2 Q-4 C 2 Q^{2}$
$=0$
RAM $=\mathrm{IIS} \mathrm{S}+7 \mathrm{n}^{2} \mathrm{~S} 2+21 \mathrm{II}^{3} \mathrm{~S} 1+35 \mathrm{II}^{4}$
$=0^{6}$
$=0$
RAM $=\mathrm{I}^{2} S 2+6 \mathrm{n}^{3} S 1+15 \mathrm{D}^{4}$
$=0$
$=0$
RAM $_{4}=0^{3} 51+50^{4}$
$=C 1 Q^{4}$
= 2
$D E G=2$

```

This certainly looks promising: Indeed, both \(\mathrm{ram}_{5}\) and \(r a_{6}\) vanish identically here. However, it should be pointed out that had the function SEGREPOLYGRASS been used as in GG, then the resulting Chern polynomial would have been more complicated even in this simple case, so that only \(\mathrm{ram}_{5}\) would have vanished identically. We then would have gotten

2

保




 -antiase suad infitesu
\[
\operatorname{RAM}_{6}=4 C 1 Q^{2} C 2 Q-2 C 1 Q^{4}
\]

Moreover, we get
\[
\gamma_{7}=4 c_{1}(Q)^{2} c_{2}(Q)-4 c_{2}(Q)^{2}
\]
and since
\[
\begin{aligned}
& c_{1}\left(c_{1}^{3}-2 c_{1} c_{2}\right)-\left(c_{2}^{2}-c_{1}^{2} c_{2}-2 c_{1}^{2} c_{2}+c_{1}^{4}\right) \\
= & c_{1}{ }^{2} c_{2}-c_{2}^{2}
\end{aligned}
\]
we also get \(\gamma_{7}=0\) by the indicated method.
For \(G(1,4)\) the expressions are more complicated, and in fact none of them vanish identically. But the expressions are still managable enough, so that the method indicated would work. But for \(G(1,5), G(2,5), G(1,6)\) and \(G(2,6)\) the expressions become very large, and so do the relations of the Chern classes. Moreover, already the computation of the Chern polynomial beyond \(G(2,6)\) with the method used is a large affair, and even if such computations could be carried out with disk use and time, it is not clear that the result would be of much use in the given environment.
esnta bous
\[
\left(p^{2}+s^{0} p^{D S}-s^{2} p^{0}-S s^{2}\right)-\left(s^{2} p^{0 s}-\varepsilon^{3}\right) p^{0}
\]
\[
s^{0}-s^{5} t^{2}=
\]

Borifeer godaplbint add vd \(10=\mathrm{fr}\) jeg osfa eat









\[
\begin{aligned}
& \text { Bargs - gspespor }=\text { ghas } \\
& \text { Jay giv CIS }
\end{aligned}
\]
§ 5. Grassmanians of lines and combinatorical identities.

In this section we show how the numerical study of section 4 may be continued along somewhat different lines from those suggested by the material of section 3, at least in certain special cases.

Indeed, we now take up the case \(G=G(1, N)\), Grassmanians of lines in \(\mathbb{P}^{N}\).

We use the expression
\[
c_{t}\left(Q \otimes Q^{V}\right)=\left(4 c_{2} Q-c_{1} Q^{2}\right) t^{2}+1
\]
which we computed in section 2 in order to find the Chern and Segre classes of \(G\), by means of (2.4) and (2.5). Actually, using the available information on \(c_{t}\left(Q \otimes Q^{V}\right)\), we may use this method up to Grassmanians of 3 -spaces in some \(\mathbb{P}^{N}\). Of course the expressions then become quite unmanagable, at least "by hand". Moreover, since \(Q\) is of rank 2 , and \(c_{1}(Q)\) is the pull back of a hyperplane class via the Plücker embedding, in order to find the degrees of the Chern and Segre classes of \(G\), all we need are the degrees of \(c_{2}(Q)^{j}\) for \(j \leqq N-1\). By Proposition 3.6 of [ Hm 7 ] we now have
\[
c_{2}(Q)^{j}=\Omega(1,2, \ldots, j, j+3, \ldots, N+1),
\]
and since
\[
\begin{aligned}
& \{1,2, \ldots, j, j+3, \ldots, N+1\}= \\
& \{1,2, \ldots, N+1\}-\left\{N-a_{1}+1, N-a_{2}+1\right\}
\end{aligned}
\]
gives
\[
N-a_{1}+1=j+1, N-a_{0}+1=j+2
\]
so that







 "birsed wd" thaan tha wifiariarammen ettion emmened



 bvach won
\[
\begin{aligned}
& \left(1+11 . \ldots+\varepsilon+t \times 6 \cdot \ldots+s^{s}+r\right) \Omega=t(g) s^{2}
\end{aligned}
\]
\[
\begin{aligned}
& \text { asvLa } \\
& 9+b=5+0^{a}-n+1+b=P+18-15
\end{aligned}
\]
\[
a_{1}=N-j, a_{0}=N-j-1
\]
we have that
\[
c_{2}(Q)^{j}=\Omega_{N-j-1, N-j}
\]
by Lemma 3.3. Thus (3.2) gives
\[
\begin{equation*}
\operatorname{deg}\left(c_{2}(Q)^{j}\right)=\frac{(2(N-1-j))!}{(N-1-j)!(N-j)!} \tag{5.1}
\end{equation*}
\]
where the degree is taken with respect to the Plücker-embedding.
This method may also be used to compute the degrees of the monomials in the Chern classes of \(Q\) for higher Grassmanians, i.e. for \(G(r, N)\) 's with \(r>1\). But of course the size of the computations rapidly become quite large, and simple closed form expressions like (5.1) can not be expected.

If the intention with these computations were merely to compute the embedding- and duality numbers of section 4 for Grassmanians, it might not be worth the effort: Indeed, the embedding dimension of \(G(1, N)\) via a projection from the Plücker embedding is of course well known and the result easy to prove, [Hm 7] section 3. Further, A. Landman proved in [Lm 1, 2] that the dual variety of \(G(1, N)\) with respect to the Plücker embedding is of codimension 3 provided \(N\) is even and \(\geqq 4\), and of codimension 1 otherwise.

However, the main point with these computations is that it becomes possible to use \(G(1, N)\) 's - and with the extention indicated above \(G(r, N)\) 's with \(r \leqq 3-\) as generating varieties in the sense of section 6 .

Moreover, it turns out as we shall see below, that for \(G(1, N)\) 's the above known information on embeddings and duality yields certain
\[
\begin{aligned}
& x+6-4=0^{3}+6-4=t^{3} \\
& t \text { - }
\end{aligned}
\]
\[
\begin{aligned}
& \text { opvity (S.E) Buntrin है.E emmen va }
\end{aligned}
\]
 bity 10 estrigeb ent atuchtos ot bead eff aata tham hroltan them


 thespogre ed tork uns (T.E)










 a matanat


combinatorical identities, which appear to have no easy direct proofs. Thus the geometry is in this case more likely to yield combinatorical information than the other way around. This is not a new situation in Schubert Calculus.

We start with \(\gamma_{m}\) and \(\operatorname{ram}_{m}\) for \(G(1, N)\), and get the following \(\left(\right.\) see \(\left.[\mathrm{Hm} 7] \operatorname{section} 4 ; \quad c_{i}=c_{i}(Q)\right)\) :
\[
s_{\ell}(G(1, N))=
\]
[ \(\frac{6}{2}\) ]
\(\sum_{j=0}(-1)^{\ell-j\left\{\binom{N+\ell-j}{\ell-j}\binom{\ell-j}{j}-4\binom{N+\ell-1-j}{\ell-1-j}\binom{\ell-1-j}{j-1}-\binom{N-\ell-2-j}{\ell-2-j}\binom{\ell-2-j}{j}\right\} c_{1}^{\ell-2 j_{c}} c_{2}^{j} .}\)
Hence
\[
\operatorname{deg}\left(s_{\ell}(G(1, N))=\right.
\]
[ \(\frac{\ell}{2}\) ]


Letting \(n=\operatorname{dim}(G(1, N))=2 N-2\), the fact that \(G(1, N)\) may be embedded into \(\mathbb{P}^{2 n-3}\) via a projection from the Plücker embedding is equivalent to
\[
\gamma_{2 n-3}=0,
\]
which after straightforward computations yields the combinatorical identity (for \(N \geqq 3\) ):




\[
=((x, t) D),
\]




\[
0=E-S^{Y}
\]

\(\sum_{j=0}^{N-3} \sum_{\ell=2}^{2 N-5}(-1)^{\ell-j}\binom{4 N-6}{2 N-5-\ell}\left\{\binom{N+\ell-j}{\ell-j}\binom{\ell-j}{j}\right.\)
\(\left.-4\binom{N+\boldsymbol{\ell}-1-j}{\ell-1-j}\binom{\boldsymbol{\ell}-1-j}{j-1}-\binom{N+\boldsymbol{l}-2-j}{\ell-2-j}\binom{\ell-2-j}{j}\right\} \frac{(2(N-1-j))!}{(N-1-j)!(N-j)!}\)
\(=\left\{\frac{(2(N-1))!}{(N-1)!N!}\right\}^{2}\).

Similarly one obtains combinatorical identities from
\(\operatorname{ram}_{2 n-1}=\operatorname{ram}_{2 n-2}=\operatorname{ram}_{2 n-3}=0\).
We next turn to the duality-deficiency. First we obtain the following expressions for the Cher classes:
\(C_{r}(G(1, N))=\)
\(\sum_{\ell+2 s=r}(-1)^{s}\left(4 c_{2}-c_{1}{ }^{2}\right)^{s} \sum_{j=0}\binom{N+1}{\ell-j}\binom{\ell-. i}{j} c_{1}{ }^{\ell-2 j} c_{2}^{j}=\)
\(0 \leqq \ell \leq r\)
\[
\sum_{s=0}^{\left[\frac{r}{2}\right]} \sum_{j=0}^{\left[\frac{r}{2}\right]-s} \sum_{i=0}^{s}(-1)^{s+i_{4} s-i}\binom{s}{i}\binom{N+1}{r-2 s-j}\binom{r-2 s-j}{j}_{c_{1}}{ }^{r+2(i-s-j)_{c_{2}}}{ }^{s+j-i}
\]


\[
\begin{aligned}
& \text { I(t-h) }(t-1-14) s)((t-s-2)(t-s-8+t)-(t-t-1)(t-1-d+t h) d- \\
& \left\{\frac{S((1-\pi) s)}{41-15)}\right\}=
\end{aligned}
\]

Thus
\[
\operatorname{deg}\left(e_{r}(G(1, N))=\right.
\]
\(\sum_{s=0}^{\left[\frac{r}{2}\right]\left[\frac{r}{2}\right]-S} \sum_{j=0}^{s} \sum_{i=0}^{s}(-1)^{s+i} 4^{s-i}\binom{s}{i}\binom{n+1}{r-2 s-j}\binom{r-2 s-j}{j} \frac{(2(N-1-s-j+i))!}{(N-1-s-j+i)!(N-s-j+i)!}\)

We get
\[
\delta_{m}=\sum_{i=m}^{n}\binom{i+1}{m+1} \operatorname{deg}\left(c_{n-i}\left(\Omega_{G(1, N)}^{1}\right)\right)=
\]

after a straightforward computation.

Computation of the first few values of \(\delta_{m}\) yields the table on the following page.

As we see, this is in good agreement with Landman results quoted above. Moreover, there are many clearly appearing patterns in the table. It would be nice to have geometric proofs for these. So far, we can only explain the zeroes, via Landman's results qouted above.


\title{

}
 2atand

\[
\begin{aligned}
& \text { sog oll }
\end{aligned}
\]
\[
\cdots \stackrel{\rightharpoonup}{\mathrm{N}} \stackrel{\rightharpoonup}{0} \cup 0
\]
\(\Delta \rightharpoonup \omega \Delta \omega N \rightarrow \omega \rightarrow 00\)



\(\omega\) ののルのカルONOのN
NONGのールロ
－の \(\infty\) NN
\(\Delta N V \rightarrow \rightarrow \rightharpoonup \rightarrow \omega \Delta N \sigma \rightarrow \omega 00\)
ANU
\(6 \cup N \rightarrow 6 N N \rightarrow \infty N \Delta 0\)
म \(-N \cup N \omega N ン N\) A \(A \rightarrow N\)


> a \(\quad\) ルONい
> NoかのaのoのN
\[
\begin{aligned}
& N \circ \Delta \infty \infty
\end{aligned}
\]

NN•

 \(\stackrel{\rightharpoonup}{\mathrm{N}} \stackrel{\rightharpoonup}{\omega}\) の

\(N N \rightarrow 0 \infty \infty\)
\(N \Delta \infty \infty \infty \infty \Delta N\)


 ○ \(\quad\) N
\(\stackrel{\Delta}{\omega}\)
\begin{tabular}{ll}
\(\omega\) \\
\multirow{2}{c}{} \\
N \\
0
\end{tabular}










```

cpuguy m\&心R

```



```

 30&-2 +0-2
    ```


```

 at da matwom
    ```



```

 0-2, (-2)
    ```
                                    6f wit ne






                                कi motat we mo m) an ©
                            -





    Oin is
            2.3

                \(4-\)
                    2. 4 a



                    ケー









\(\qquad\)

\section*{§ 6. Generating varieties and classes of}

\section*{projective varieties.}

A well known conjecture by Horrocks and Mumford, [HM], asserts that if \(X\) is a variety embedded in \(\mathbb{P}^{n}\), and if \(X\) is non-singular and of codimension 2 , then \(X\) is a complete intersection provided \(n \geqq 6\).

A related conjecture by Hartshorne, [Hn] asserts the same conclusion under the assumption that \(X\) is nonsingular and of dimension \(>\frac{2}{3} n\), provided \(n \geqq 7\).

These conjectures clearly testify to the current lack of information on examples of non singular projective varieties of high dimension.

If a classification theory of the type carried out by SwinnertonDyer [Sw] for varieties of degree 4 could be carried out in general, these and many other questions would of course be settled. But such a general classification-theory is clearly not in sight at this time.

However, the fundamental idea underlying Swinnerton-Dyers classification is to obtain all varieties from a fundamental set of varieties by processes such as blowing up subvarieties and taking hyperplane sections. While such a procedure might not yield a complete classification in general, it still can be used to generate lists of examples, and provide the starting point for a systematical search for counterexamples to conjectures such as the above.

Initially one should search for subvarieties of projective space, of high diemnsion and of relatively low codimension. One would then be able to get some idea of how frequent non-singular varieties of this type are, and of course examine such questions as whether they are complete intersections or not.

The procedure which we propose is therefore to start out with a variety such as for instance a suitable Grassmanian, a Veronese-


 \(\rightarrow\) -

To Bure refumerthendef at in tient nofitcmesase ent tohnu motamfonos


 matomembin diment
连















> . fon ze anottoparesnt atelqmoo


variety or a product of projective spaces embedded by the Segreembedding (see [Hm 7], [Da] and [Vi] for details on the last two cases). We would then modify the situation by blowing up suitable subschemes, such as a finite number of possibly mutiple points or Schubert-varieties in the case of Grassmanians. In all of these cases there are well known algorithms for computation of the Chern- and Segre polynomials of the new variety in terms of that of the old one and data associated with the center of blowing up. Moreover, the new variety comes with a natural projective embedding, given by the projective embedding of the blow-up of the ambient space with the given center induced from the interpretation of a blow-up as a monoidal transformation.

Thus there are natural projective embeddings of the results of each modification, and furthermore algorithms for the computation of the corresponding degrees of the Chern- and Segre classes.

Another possible modification is for instance to take sections with hypersurfaces, in which case the degrees of the new Chern- and Segre classes are expressed in terms of the corresponding data for the original variety and the degree of the hypersurface by particularly simple formulae.

Thus once an initial variety is selected - which we will call the generating variety - a whole class of projective varieties is generated by all possible modifications of the type described above applied repeatedly in any order. Of course the class of admissible modifications may vary, one could for example start with the simplest one which is to take hypersurface sections. Also, it is no essential limitation to restrict the permissible zero dimensional centers for the blowing ups to simple points.

To get a good picture of each such generated class of projective varieties, one should ideally have classified the varieties in them according to projective equivalence. In principle this should be


















 -anCumiot afomtio 20.






possible to do on a computer, with the availability of a sufficiently powerfull system for symbolic manipulation like MACSYMA. But given the results from section 3 in particular, I rather doubt that an investigation along these lines is feasible at this time. This is mainly due to the size such computations would necessarily have.

However, there is a coarser equivalence of a homological nature which is well suited for a computer. Under this equivalence varieties for which the degrees of all monomials in the Chern classes are equal, and for which the Chow rings are not "too different", will be identified.

All of the above adresses itself to non-singular varieties. But singular varieties may also be considered. In the singular case we will have to compute the invariants introduced in [ Hm 4 ], and which are actually degrees of different types of Segre classes introduced later in the singular case by Fulton and Mc Phersson, [FM]. Moreover, one also needs the degrees of Fultons singular Chern classes, [F] and [Hm 6]. If one allows singularities, the computation of the invariants of the modified variety in terms of those of the original one becomes more difficult, and further development of the general theory is needed before this can be done. The reason why this would be of interest, is among other things the following: We may obtain more non singular varieties if we allow singular generating varieties. Also, the choice of admissible modifications is greatly expanded, since we may take cones over given subvarieties, or more generally form the join of two given projective subvarieties of some projective space, see [AK]. Furthermore, we can modify by deformations as in [Hm 5] or as in [Hm 1].

The program outlined above will constitute the continuation of this paper, \(\left[\begin{array}{ll}\mathrm{Hm} & 8\end{array}\right]\) and \([\mathrm{Hm} 9]\).








 baト1Iさnob上 ad


















\[
\text { [ } Q \text { de }] \text { bme }[\theta \text { mif }\} \text {, ragag aldit to }
\]

Appendix Printouts
§ 1. Output from the functions TENSOR and EXTERIOR 2.
(C12) A[1];
\(101 ?\)
(Ć13) A[2];
(13)
(14) \(A[3]\);
(D14)
(C15) B[1]:
(D15)
(C16) B[2]:
(D16)
(C17) B[3];
(D17)
(C18) \(\operatorname{TENSOR}(A[1], 1, B[1], 1)\);
(D18)
(C19) \(\operatorname{TENSOR}(A[1], 1, B[2], 2)\) :
(D19)
\[
\left(C 2 B+C 1 A C 1 B+C 1 A^{2}\right) T^{2}+(C 1 B+2 C(A) T+1
\]
(C28) TENSOR(A[1], 1, B[3], 3);
\(C 2 B T^{2}+C 1 B T+1\)
\((D 2 B)\left(C 3 B+C 1 A C 2 B+C 1 A^{2} C 1 B+C 1 A^{3}\right) T^{3}+\left(C 2 B+2 C 1 A C 1 B+3 C 1 A^{2}\right) T^{2}\) \(+(C 1 B+3 C 1 A) T+1\)
(C21) TENSOR (A [2] , 2, B[2], 2);
\((021) 1 C 2 B^{2}-2 C 2 A C 2 B+C 1 A C 1 B C 2 B+C 1 A^{2} C 2 B+C 2 A^{2}+C 1 B^{2} C 2 A\)
\(+C 1 A C 1 B C 2 A) T^{4}+\left(2 C 1 B C 2 B+2 C 1 A C 2 B+2 C 1 B C 2 A+2 C 1 A C 2 A+C 1 A C 1 B^{2}\right.\)
\(\left.+C 1 A^{2} C 1 B\right)^{T^{3}}+\left(2 C 2 B+2 C 2 A+C 1 B^{2}+3 C 1 A C 1 B+C 1 A^{2}\right)^{2}\)
\(+(2 C 1 B+2 C 1 A) T+1\)
(C22) TENSOR(A [3], 3, B \([3], 3)\);
\(1022)^{1} 1 C 3 B^{3}+3 C 3 A C 3 B^{2}+C 1 A C 2 B C 3 B^{2}-2 C 1 B C 2 A C 3 B^{2}-3 C 1 A C 2 A C 3 B^{2}\)
\(+C 1 A^{2} C 1 B C 3 B^{2}+C 1 A^{3} C 3 B^{2}+3 C 3 A^{2} C 3 B-3 C 1 B C 2 B C 3 A C 3 B\)
 \(-2 C 1 A^{2} C 1 B C 3 A C 3 B+C 2 A C 2 B^{2} C 3 B-2 C 2 A^{2} C 2 B C 3 B+C 1 A C 1 B C 2 A C 2 B C 3 B\)




\(+C 1 A^{2} C 2 A C 2 B C 3 B+C 2 A^{3} C 3 B+C 1 B^{2} C 2 A^{2} C 3 B+C 1 A C I B C 2 A^{2} C 3 B+C 3 A^{3}\) \(-3 C 1 B C 2 B C 3 A^{2}-2 C 1 A C 2 B C 3 A^{2}+C 1 B C 2 A C 3 A^{2}+C 1 B^{3} C 3 A^{2}+C 1 A C 1 B^{2} C 3 A^{2}\)
\(+C 2 B^{3} C 3 A-2 C 2 A C 2 B^{2} C 3 A+C 1 A C 1 B C 2 B^{2} C 3 A+C 1 A^{2} C 2 B^{2} C 3 A+C 2 A^{2} C 2 B C Z A\)
\(+\mathrm{C1B}^{2} \mathrm{C} 2 \mathrm{AC2BC} C 3 A+\mathrm{C} A \mathrm{~A} C 1 B\left(2 A(2 B C 3 A) \mathrm{T}^{9}\right.\)
\(+13 C 2 B C 3 B^{2}-6 C 2 A C 3 B^{2}+2 C 1 A \cdot C 1 B C 3 B^{2}+3 C 1 A^{2} C 3 B^{2}-3 C 2 B C 3 A C 3 B\)

\(+2 C 1 A C 2 B^{2} C 3 B-3 C 1 A C 2 A C 2 B C 3 B+2 C 1 A^{2} C 1 B C 2 B \cdot C 3 B+2 C 1 A^{3} C 2 B C 3 B\)
\(+2 C 1 B C 2 A^{2} C 3 B+3 C 1 A C 2 A^{2} C 3 B+2 C 1 A C 1 B^{2} C 2 A C 3 B+2 C 1 A^{2} C 1 B C 2 A C 3 B\)
\(-6 C 2 B C 3 A^{2}+3 C 2 A C 3 A^{2}+3 C 1 B^{2} C 3 A^{2}+2 C 1 A C 1 B C 3 A^{2}+3 C 1 B C 2 B^{2} C 3 A\)
\(+2 C 1 A C 2 B^{2} C 3 A-3 C 1 B C 2 A C 2 B C 3 A+2 C 1 A C 1 B^{2}\) C2B. C3A
\(+2 C 1 A^{2} C 1 B C 2 B C 3 A+2 C 1 B C 2 A^{2} C 3 A+2 C 1 B^{3} C 2 A C Z A+2 C 1 A C 1 B^{2} C 2 A C 3 A\)
\(+C 2 A C 2 B^{3}-2 C 2 A^{2} C 2 B^{2}+C 1 A C 1 B C 2 A C 2 B^{2}+C 1 A^{2} C 2 A C 2 B^{2}+C 2 A^{3} C 2 B\)
\(\left.+C 1 B^{2} C 2 A^{2} C 2 B+C 1 A C 1 B C 2 A^{2} C 2 B\right) T^{8}\)
\(+13 C 1 B C 3 B^{2}+3 C 1 A C 3 B^{2}-21 C 1 B C 3 A C 3 B-21 C 1 A C 3 A C 3 B+3 C 2 B^{2} C 3 B\)
\(-6 C 2 A C 2 B C 3 B+6 C 1 A C 1 B C 2 B C 3 B+6 C 1 A^{2} C 2 B C 3 B+3 C 2 A^{2} \cdot C 3 B\)
\(+3 C 1 A C 1 B C 2 A C 3 B+3 C 1 A^{2} C 2 A C 3 B+2 C 1 A^{2} C 1 B^{2} C 3 B+2 C 1 A^{3} C 1 B C 3 B\)
\(+3 C 1 B C 3 A^{2}+3 C 1 A C 3 A^{2}+3 C 2 B^{2} C 3 A-6 C 2 A C 2 B C Z A+3 C 1 B^{2} C 2 B C Z A\)
\(+3 C 1 A C 1 B C 2 B C 3 A+3 C 2 A^{2} C 3 A+6 C 1 B^{2} C 2 A C 3 A+6 C 1 A C 1 B C 2 A C 3 A\)
\(+2 C 1 A C 1 B^{3} C 3 A+2 C 1 A^{2} C 1 B^{2} C 3 A+C 1 A C 2 B^{3 .}+3 C 1 B C 2 A C 2 B^{2}\)
\(+C 1 A^{2} C 1 B C 2 B^{2}+C 1 A^{3} C 2 B^{2}+3 C 1 A C 2 A^{2} C 2 B+3 C 1 A \cdot C 1 B^{2} C 2 A C 2 B\)
\[
\begin{aligned}
& \text { es en en }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 电 }
\end{aligned}
\]
\(\left.+3 C 1 A^{2} C 1 B C 2 A C 2 B+C 1 B C 2 A^{3}+C 1 B^{3} C 2 A^{2}+C 1 A C 1 B^{2} C 2 A^{2}\right)^{7}\)

\(+3 C 1 A C 2 A C 3 B+4 C 1 A C 1 B^{2} C 3 B+8 C 1 A^{2} C 1 B C 3 B+2 C 1 A^{3} C 3 B+3 C 3 A^{2}\)
+3 C1B C2B C3A - 4 C1A C2B C3A +8 C1B C2A C3A +6 C1A C2A C3A \(+2 C 1 B^{3}\) C3A
\(+8 C 1 A C 1 B^{2} C 3 A+4 C 1 A^{2} C 1 B C 3 A+C 2 B^{3}+C 2 A C 2 B^{2}+4 C 1 A C 1 B C 2 B^{2}\)
\(+3 C 1 A^{2} C 2 B^{2}+C 2 A^{2} C 2 B+4 C 1 B^{2} C 2 A C 2 B+7 C 1 A C 1 B C 2 A \cdot C 2 B\)
\(+4 C 1 A^{2} C 2 A C 2 B+2 C 1 A^{2} C 1 B^{2} C 2 B+2 C 1 A^{3} C 1 B C 2 B+C 2 A^{3}+3 C 1 B^{2} C 2 A^{2}\)
\(\left.+4 C 1 A C 1 B C 2 A^{2}+2 C 1 A C 1 B^{3} C 2 A+2 C 1 A^{2} C 1 B^{2} C 2 A\right) T^{6}\)
\(+16 C 2 B C 3 B-3 C 2 A C 3 B+3 C 1 B^{2} C 3 B+10 C 1 A C 1 B C 3 B+6 C 1 A^{2} C 3 B\)
\(-3 C 2 B C 3 A+6 C 2 A C 3 A+6 C 1 B^{2} C 3 A+10 C 1 A C 1 B C 3 A+3 C 1 A^{2} C 3 A\)
\(+3 C 1 B C 2 B^{2}+5 C 1 A C 2 B^{2}+6 C 1 B C 2 A C 2 B+6 C 1 A C 2 A C 2 B+5 C 1 A C 1 B^{2} C 2 B\)
\(+8 C 1 A^{2} \mathrm{C} 1 \mathrm{BC} C 2 B+2 C 1 A^{3} \mathrm{C} 2 \mathrm{~B}+5 \mathrm{C1BC2A}^{2}+3 C 1 A C 2 A^{2}+2 C 1 B^{3} C 2 A\)
\(\left.+8 C 1 A C 1 B^{2} C 2 A+5 C 1 A^{2} C 1 B C 2 A+C 1 A^{2} C 1 B^{3}+C 1 A^{3} C 1 B^{2}\right)^{5}\)
\(+16 C 1 B C 3 B+6 C 1 A C 3 B+6 C 1 B C 3 A+6 C 1 A C 3 A+3 C 2 B^{2}+3 C 2 A C 2 B\)
\(+3 C 1 B^{2} C 2 B+12 C 1 A C 1 B C 2 B+6 C 1 A^{2} C 2 B+3 C 2 A^{2}+6 C 1 B^{2} C 2 A\)

\(+13 C 3 B+3 C 3 A+6 C 1 B C 2 B+7 C 1 A C 2 B+7 C 1 B C 2 A+6 C 1 A C 2 A+C 1 B^{3}\)
\(\left.+7 C 1 A C 1 B^{2}+7 C 1 A^{2} C 1 B+C 1 A^{3}\right)^{3}+13 C 2 B+3 C 2 A+3 C 1 B^{2}+8 C 1 A C 1 B\)
\(\left.+3 C 1 A^{2}\right) T^{2}+(3 C 1 B+3 C 1 A) T+1\)
(C23) EXTERIOR\Z(A[1],1);
Part fell off end.
(C24) EXTERIOR\2(A[2],2);

 6



 1) lass af3-A1J S + ASJ G13 A1J S + ASo -813 A13 p + 5

 \(\$\)





 f

 \(1+1(\mathrm{~A} \mid 3 \varepsilon+810 \varepsilon)+\mathrm{T}(\mathrm{A} 10 \varepsilon+\) -fit enaikioniearva rent


(C25) EXTERIOR\2(A [3],3):
(D25)
\[
-C 3 A T^{3}+C 1 A^{2} T^{2}+2 C 1 A T+1
\]
(C26) EXTERIOR\2 (A [4], 4):
\[
-C 3 A^{2} T^{6}+C 1 A^{3} T^{3}+3 C 1 A^{2} T^{2}+3 C 1 A T+1
\]

\section*{§ 2. Output from the functions \(G, G G\) and \(R E\).}
(C5) G(3);

\(+4 \mathrm{ClOT}+1\)
SEPO \(13=\left(-4 C 20^{2}+4 C 10^{2} C 2 O+14 C 1 a^{4}\right) T^{4}-14 C 10^{3} T^{3}\)
\[
+9 \operatorname{cia}^{2} T^{2}-4 C 10 T+1
\]
\(C 1 a^{3}-2 \operatorname{cia} c 2 a=0\)
\(C 2 a^{2}-3 \operatorname{c1a}{ }^{2} \mathrm{C} 2 a+\mathrm{Cla}^{4}=0\)
(C6) G(4):
CHEPO \(14=\left(4 C 2 a^{3}+12 C 1 a^{2} C 2 a^{2}-13 C 1 a^{4} C 2 a+4 C 1 a^{6}\right)^{T^{6}}\)
\(+\left(20 C 1 a C 2 a^{2}-20 c 1 a^{3} c 2 a+10 c 1 a^{5}\right) \cdot T^{5}\)
\(+\left(4 c 2 a^{2}-7 c 1 a^{2} c 2 a+14 c 1 a^{4}\right)^{4}+15 C 1 a^{3} T^{3}\)
\(+\left(1020+11 \mathrm{ClO}^{2}\right)_{3}^{2} T^{2}+5 \mathrm{ClO}_{2} \mathrm{~T}+\mathrm{D}_{2}\)
SEPO \(14=\left(3 C 2 a^{3}+79 \mathrm{Cla}^{2} \mathrm{C2a}{ }^{2}-426 \mathrm{C1a} \mathrm{a}^{4} \mathrm{C} 2 \mathrm{a}+198 \mathrm{C10}\right)^{6} \mathrm{~T}^{6}\)
\(+\left(5 \mathrm{ClO} \mathrm{C} 2 \mathrm{a}^{2}+150 \mathrm{c} 10^{3} \mathrm{c} 2 \mathrm{a}-185 \mathrm{c} 10^{5}\right)^{5} \mathrm{~T}^{5}\)
\(+\left(-3 c 2 a^{2}-46 c 1 a^{2} c 2 a+57 c 1 a^{4}\right) T^{4}+\left(10 c 1 a c 2 a-30 c 1 a^{3}\right)^{T^{3}}\)
\(+\left(14 \mathrm{C10}{ }^{2}-(2 a) T^{2}-5 C 1 a T+1\right.\)
\(C 2 a^{2}-3 c 1 a^{2} c 2 a+C 1 a^{4}=0\)
\(3 c 1 a c 2 a^{2}-4 c 1 a^{3} c 2 a+c 1 a^{5}=0\)
\(-c 2 a^{3}+6 c 1 a^{2} c 2 a^{2}-5 c 1 a^{4} c 2 a+c 1 a^{6}=0\)
(C7) G(5):
CHEPO \(15=19{\mathrm{C} 2 a^{4}}^{4}-18 \mathrm{Cla}^{2} \mathrm{C} 2 \mathrm{a}^{3}+42 \mathrm{Cla}^{4} \mathrm{C} 2 \mathrm{a}^{2}-26 \mathrm{C} 10^{6} \mathrm{C} 2 \mathrm{a}\)
\(\left.+5 \mathrm{C10})^{8}\right)^{8}+\left(75 \mathrm{ClO}^{3} \mathrm{C} 20^{2}-60 \mathrm{c} 10^{5} \mathrm{C} 2 \mathrm{a}+15 \mathrm{Cla}\right)^{7} \mathrm{~T}^{7}\)
\(+\left(-6 \mathrm{C} 2 \mathrm{a}^{3}+78 \mathrm{Cla}^{2} \mathrm{C} 2 \mathrm{a}^{2}-66 \mathrm{C} 10^{4} \mathrm{C} 2 \mathrm{a}+25 \mathrm{Cla}\right)^{6} \mathrm{~T}^{6}\) 1＋Toras\％
\[
\log ^{2}
\]
\(x+1\) axd＋-1.010 C ＋ a \(a\) el \(\varepsilon\) s 1．TOI3 8t＋0S2 013 OS－OS：
 \(1+T\) a1Ja＋\(+501011+0.5)+\)




 \(\frac{2}{2} 012+059 \operatorname{cosy} a-5053005 \mathrm{E}\)就 －（コ）ロ（Tว）
－－a nazin


\[
\left.+130 c 1 a c 2 a^{2}-30 c 1 a^{3} c 2 a+30 c 1 a^{5}\right) 5^{5}
\]
\[
\left.+17 c 2 a^{2}-2 c 1 a^{2} c 2 a+31 c 1 a^{4}\right) T^{4}+\left(6 c 1 a c 2 a+26 c 1 a^{3}\right)^{T^{3}}
\]
\[
\left.+12 c 2 a+16 \operatorname{cia}^{2}\right)_{4}^{\top}{ }^{2}+6 \operatorname{cia}{\underset{2}{2}}^{\top}+1_{3}
\]
\[
\text { SEPO } 15=1-52 C 2 a^{4}+1318 C 1 a^{2} c 2 a^{3}-828 C 1 a^{4} c 2 a^{2}-902 C 1 a^{6} \mathrm{C} 2 a^{2}
\]
\[
\left.+500 c 10^{8}\right)^{8} T^{8}+1-252 C 10 C 2 a^{3}+C 1 a^{3} c 20^{2}+984 C 1 a^{5} \mathrm{C} 20
\]
\[
\left.-455 C 1 a^{7}\right) T^{7}+\left(26 \cdot{\mathrm{C} 20^{3}}^{3}+18 \mathrm{C1O}^{2} \mathrm{C} 20^{2}-522 \mathrm{C1} a^{4} \mathrm{C} 20+319 \cdot \mathrm{C1a}^{6}\right)
\]
\[
T^{6}+\left(6 \mathrm{Cla} \mathrm{C} 20^{2}+230 c 10^{3} \mathrm{c} 20-194 \mathrm{c} 10^{5}\right) \mathrm{T}^{5}
\]
\[
+\left(-3 c 2 a^{2}-78 c 1 a^{2} c 2 a+185 c 1 a^{4}\right)^{4} T^{4}+\left(18 c 1 a c 2 a-50 c 1 a^{3}\right)^{3} T^{3}
\]
\(3 \operatorname{c1a} \mathrm{C} 2 \mathrm{a}-4 \mathrm{C} 1 a^{2} \mathrm{C} 2 \mathrm{a}+\mathrm{C1a}=0\)
\(-c 2 a^{3}+6 \mathrm{cla}^{2} \mathrm{C} 2 \mathrm{a}^{2}-5 \mathrm{c}_{2} \mathrm{a}^{4} \mathrm{c} 2 \mathrm{a}+\mathrm{Cla}^{6}=0 \mathrm{C}^{6}\)
-4 c1a c2a +10 c1a \(c 2 a-6 c 1 a c 2 a+c 1 a=8\)
\(\mathrm{C} 2 \mathrm{a}^{4}-10 \mathrm{cia}^{2} \mathrm{C} 2 \mathrm{a}^{3}+15 \mathrm{C} 1 a^{4} \mathrm{C} 2 \mathrm{a}^{2}-7 \mathrm{C} 1 a^{6} \mathrm{C} 2 \mathrm{a}+\mathrm{C} 10^{8}=0\)
CHEPO \(25=18 c 3 a^{3}-24 c 1 a c 2 a c 3 a^{2}+4 c 1 a^{3} c 3 a^{2}+52 c 1 a^{2} c 2 a^{2} c 3 a\)
\(-36 c 1 a^{4} c 2 a c 3 a+7 c 1 a^{6} c 3 a-8 c 1 a c 2 a^{4}-20 c 1 a^{3} c 2 a^{3}\)
\(\left.+38 \mathrm{cia}^{5} \mathrm{C} 2 \mathrm{a}^{2}-21 \mathrm{cia}{ }^{7} \mathrm{c} 2 \mathrm{a}+4 \mathrm{cia}\right)^{9} \mathrm{t}^{9}\)
\(+1-22 c 1 a^{2} \mathrm{c} 3 a^{2}+56 \mathrm{c} 1 a \mathrm{c} 2 a^{2} \mathrm{c} 3 \mathrm{a}-12 \mathrm{c} 1 a^{3} \mathrm{c} 2 \mathrm{a} \mathrm{C} 3 \mathrm{a}+2 \mathrm{c} 1 a^{5} \mathrm{c} 3 \mathrm{a}\)
\(\left.-4 c 2 a^{4}-48 c 1 a^{2} c 2 a^{3}+85 c 1 a^{4} c 2 a^{2}-57 c 1 a^{6} c 2 a+14 c 1 a^{8}\right)^{8}\)
\(+1-30 c 1 a c 3 a^{2}+24 c 2 a^{2} c 3 a+36 c 1 a^{2} c 2 a c 3 a+2 c 1 a^{4} c 3 a\)

\(+1-15 c 3 a^{2}+30 c 1 a c 2 a c 3 a+26 c 1 a^{3} c 3 a+43 c 1 a^{2} c 2 a^{2}\)
\(\left.-84 \mathrm{ClO}^{4} \mathrm{C} 2 \mathrm{a}+43 \mathrm{c} 1 a^{6}\right) \mathrm{T}^{6}+\left(41 \mathrm{Cla}^{2} \mathrm{C} 3 \mathrm{a}+22 \mathrm{Cla} \mathrm{C} 2 \mathrm{a}^{2}\right.\)

\title{

}

 2









Sis Sur sa, os en
\(\left.-63 c 1 a^{3} c 2 a+50 c 1 a^{5}\right) T^{5}+\left(24 c 10 c 3 a+3 . c 2 a^{2}-27 c 10^{2} c 2 a\right.\)
\(\left.+45 c 1 a^{4}\right) T^{4}+\left(6 c 3 a-6 c 1 a c 2 a+32 c 1 a^{3}\right) T^{3}+17 C 1 a^{2} T^{2}\)
+6 C10 T + 1
SEPO \(25=1-484 C 3 a^{3}+1212 C 10 C 2 a C 3 a^{2}-9364 C 1 a^{3} C 3 a^{2}\)
\(-1750 \mathrm{c} 1 a^{2} \mathrm{c} 20^{2} \mathrm{c} 30+19266 \mathrm{c} 1 a^{4} \mathrm{c} 2 \mathrm{a} \mathrm{c} 3 \mathrm{a}-9684 \cdot \mathrm{C1a} \mathrm{a} \mathrm{c} 3 \mathrm{a}\)
\(-70 \mathrm{c} 10 \mathrm{c} 20^{4}+1882 \mathrm{c} 10^{3} \mathrm{c} 20^{3}-10860 \mathrm{c} 10^{5} \mathrm{c} 20^{2}+18572 \mathrm{c} 10^{7} \mathrm{c} 20\)
\(\left.a^{9}\right)^{9}+\left(2596 C 1 a^{2} c 3 a^{2}-8 c 1 a \operatorname{c} 2 a^{2} c 3 a\right.\)
\(-5184{\mathrm{c} 1 a^{3}}^{3} \mathrm{c} 2 \mathrm{a} \mathrm{c} 3 \mathrm{a}+3878 \mathrm{c} 1 a^{5} \mathrm{c} 30+13 \mathrm{c} 2 a^{4}-18 \mathrm{c} 1 a^{2} \mathrm{c} 2 a^{3}\)
\(\left.+2923 \mathrm{C} 10^{4} \mathrm{C} 20^{2}-4280 \mathrm{c} 10^{6} \mathrm{c} 20+1271 \mathrm{c} 10^{8}\right) \mathrm{T}^{8}\)
\(+1-510 c 1 a c 3 a^{2}+12 c 2 a^{2} c 3 a+1808 c 1 a^{2} c 2 a c 3 a-1530 c 1 a^{4} c 3 a\)
\(-12 c 1 a c 2 a^{3}-558 \mathrm{cia}^{3} \mathrm{c} 2 a^{2}+1590 \mathrm{c} 1 a^{5} \cdot \mathrm{c} 2 \mathrm{a}-632 \mathrm{cra} \mathrm{a}^{7} \mathrm{~T}^{7}\)
\(+151 c 3 a^{2}-182 c 1 a c 2 a c 3 a+586 c 1 a^{3} c 3 a+35 c 1 a^{2} c 2 a^{2}\)
\(\left.-570 \mathrm{ClO}^{4} \mathrm{c} 2 \mathrm{a}+322 \mathrm{c1a}^{6}\right)^{6} \mathrm{~T}^{6}+\left(-197 \mathrm{cia}^{2} \mathrm{C} 30+14 \mathrm{C} 10 \mathrm{C} 2 \mathrm{a}^{2}\right.\)
\(\left.+183 \mathrm{C} 1 a^{3} \mathrm{C} 20-168 \mathrm{C} 10^{5}\right)^{5}+\left(48 \mathrm{C} 10 \mathrm{C} 30-3 \mathrm{C} 2 a^{2}-45 \mathrm{c} 1 a^{2} \mathrm{c} 2 \mathrm{a}\right.\)
\(884^{4} 4^{4}\left(00^{3} \quad 2 \quad 2\right.\)
- 6 C10 T + 1
\(2 \operatorname{cia} c 3 a+c 2 a^{2}-3 \operatorname{cia}^{2} c 2 a+c 1 a^{4}=0\)
\(-2 c 2 a c 3 a+3 c 1 a^{2} c 3 a+3 c 1 a c 2 a^{2}-4 c 1 a^{3} c 2 a+c 1 a^{5}=0\) \(C 3 a^{2 .}-6 c 1 a c 2 a c 3 a+4 c 1 a^{3} c 3 a-c 2 a^{3}+6 c^{2} a^{2} c 2 a^{2}-5 c 1 a^{4} c 2 a\) \(+C 10^{6}=0\)
\(3 c 1 a c 3 a^{2}+3 c 2 a^{2} c 3 a-12 c 1 a^{2} c 2 a c 3 a+5 c 1 a^{4} c 3 a-4 c 1 a c 2 a^{3}\)
\[
\begin{aligned}
& +10 c 1 a^{3}{ }_{2}^{2} a^{2}-6 c 1 a^{5} c 2 a+c 1 a^{7}=0 \\
& 12 c 1 a c 2 a^{3} c 3 a-20 c 1 a^{3} c 2 a c 3 a
\end{aligned}
\]
\(-3 c 2 a c 3 a^{2}+6 c 1 a^{2} c 3 a^{2}+12 c 1 a c 2 a^{2} c 3 a-20 c 1 a^{3} c 2 a c 3 a\)

\[
2
\] 8. 013
\(\operatorname{Ds3} \operatorname{ara} A-1 \quad-1\)





\(+21 \mathrm{Cla}^{5} \mathrm{C} 2 a^{2}-8 \mathrm{Cla}^{7} \mathrm{c} 2 \mathrm{a}+\mathrm{C1a}^{9}=0\)
(C8) G(6):
CHEPO \(16=19 C 2 a^{5}+36 C 10^{2} C 2 a^{4}-182 C 1 a^{4} c 2 a^{3}+186 C 10^{6} c 2 a^{2}\)

\left.\(+252{\mathrm{c} 10^{5}}^{5} \mathrm{C} 20^{2}-126 \mathrm{c} 10^{7} \mathrm{c} 20+21 \mathrm{c} 1 a^{9}\right)^{9} \mathrm{~T}^{9}\)
\(\left.+13 c 20^{4}-87 c 10^{2} c 20^{3}+310 c 10^{4} c 20^{2}-194 C 10^{6} c 20+41 c 10^{8}\right)^{8} T^{8}\)

\(+\left(C 2 a^{3}+127 C 1 a^{2} c 2 a^{2}-93 c 1 a^{4} C 2 a+62 C 1 a^{6}\right) T^{6}\)


\(+\left(3 c 20+22\left(10^{2}\right) T_{2}^{2}+7{ }_{4} C 10 T+1\right.\)
SEPO \(16=1-1414 \mathrm{Cla}^{2} \mathrm{C} 2 a^{4}-18914 \mathrm{Cla}^{4} \mathrm{C} 2 a^{3}+47.362 \mathrm{Cla}^{6} \mathrm{C} 2 \mathrm{a}^{2}\)
\(\left.-33264 \mathrm{C} 10^{8} \mathrm{C} 2 \mathrm{a}+6916 \mathrm{Cla}^{10}\right) \mathrm{T}^{10}\)
\(+1780 \mathrm{ClO} \mathrm{C20}{ }^{4}+2254 \mathrm{ClO}^{3} \mathrm{C} 20^{3}-14448 \cdot \mathrm{C10} \mathrm{a}^{5} \mathrm{C} 2 \mathrm{a}^{2}+14616 \cdot \mathrm{C10}{ }^{7} \mathrm{C} 20\)
\(\left.-3888 \mathrm{C1a}^{9}\right)^{\mathrm{T}^{9}}+\left(-78 \mathrm{C2a}^{4}+162 \mathrm{Cla}^{2} \mathrm{C} 2 \mathrm{a}^{3}+4218 \mathrm{Cla}^{4} \mathrm{C2a}^{2}\right.\)
\(\left.-6618 \mathrm{C} 10^{6} \mathrm{C} 20+2196 \mathrm{c} 10^{8}\right) \mathrm{T}^{8}+\left(-154 \mathrm{C} 10 \mathrm{C} 20^{3}-1120 \mathrm{C} 10^{3} \mathrm{C} 20^{2}\right.\)
\(\left.+2954 \mathrm{C} 10^{5} \mathrm{C} 20-1274 \mathrm{C} 1 \mathrm{a}^{7}\right) \mathrm{T}^{7}+126 \mathrm{C20}+236 \mathrm{C} 10^{2} \mathrm{C} 20^{2}\)
\(\left.-1228 c 1 a^{4} c 2 a+716 c 1 a^{6}\right) T^{6}+\left(-28 c 1 a c 2 a^{2}+.448 c 1 a^{3} c 2 a\right.\)
\(\left.\left.-378 c 1 a^{5}\right)^{5}+\left(182 c 1 a^{4}-133 c 1 a^{2} \mathrm{c} 2 a\right)\right)^{4}\)
\(+\left(28 C 10 c 20-77 C 1 a^{3}\right) T^{3}+\left(27 C 1 a^{2}-3 C 20\right) T^{2}-7 C 10 T+1\)
\(-c 2 a^{3}+6 \mathrm{cla}^{2} \mathrm{a}^{2} \mathrm{ca口}^{2}-5 \mathrm{C}_{2} a^{4} \mathrm{c} 2 a_{5}+\mathrm{Cla}{ }^{6}=0{ }_{7}\)
\(-4 c 1 a c 2 a+10 c 1 a c 2 a-6 c 1 a c 2 a+c 1 a=0\)
\(c 2 a^{4}-10 \mathrm{cia}^{2} \mathrm{c} 2 a^{3}+15 \mathrm{cia}^{4} \mathrm{c} 2 a^{2}-7 \mathrm{c} 1 a^{6} \mathrm{c} 2 a+\mathrm{C} 1 a^{8}=\theta\)
\(4_{4} \quad 33_{3} 3_{5}{ }_{2} \quad 4_{7}=9\)


 \(-6 c 1 a^{2} \cdot \operatorname{c2a} a^{2} c 3 a^{2}-150 c 1 a^{4} c 2 a c 3 a^{2}+47 c 1 a^{6} \cdot c 3 a^{2}\)
\(-6 c 1 a c 2 a^{4} c 3 a-40 c 1 a^{3} c 2 a^{3} c 3 a+211 c 1 a^{5} \cdot c 2 a^{2} c 3 a\)
\(-132 \mathrm{cia}^{7} \mathrm{c} 2 \mathrm{a} \mathrm{c} 3 \mathrm{a}+23 \mathrm{c} 1 a^{9} \mathrm{c} 3 \mathrm{a}+9 \mathrm{cza}^{6}-45 \mathrm{cia}^{2} \mathrm{c} 2 \mathrm{a}^{5}\)
\(+185{\mathrm{c} 10^{4}}^{4} \mathrm{c} 2 \mathrm{a}^{4}-170 \mathrm{c} 10^{6} \mathrm{c} 20^{3}+125 \mathrm{c} 10^{8} \mathrm{c} 2 a^{2}-41 \mathrm{c} 10^{18} \mathrm{c} 2 \mathrm{a}\)
\(\left.+5 \mathrm{cia}^{12}\right)^{12}+18 \mathrm{c}^{12} \mathrm{cza}^{3}+114 \mathrm{cia}^{2} \mathrm{cza}^{3}+90 \cdot \mathrm{cia} \mathrm{c} 2 a^{2} \mathrm{cza}^{2}\)





\(-259 \mathrm{cla}^{5} \mathrm{c} 2 \mathrm{a} \mathrm{c} 3 \mathrm{a}+56 \mathrm{c} 1 a^{7} \mathrm{c} 3 \mathrm{a}-15 \mathrm{cza}+123 \mathrm{c} 1 a^{2} \mathrm{c} 2 a^{4}\)
\(\left.-516 \mathrm{cia}^{4} \mathrm{c} 2 a^{3}+564 \mathrm{cia}^{6} \mathrm{c} 20^{2}-262 \mathrm{c1a}{ }^{8} \mathrm{c} 2 \mathrm{a}+.45 \mathrm{c} 10^{10}\right) \cdot \mathrm{T}^{10}\)


 \(0-2010+\cos +0.5 a-\operatorname{sos} 3 \operatorname{sot} 2+\cos 2\).
 \(02013+053013 r-052013 d 1+\operatorname{cosj} 013\) oi -0.0

 6.
(20) 0in?














\(+1-7 c 3 a^{-3}-28\) c1a c2a c3a- \(266 c 1 a^{3} c 3 a^{2}+22 c 2 a^{3} c 3 a\)
\(+230 c 1 a^{2} c 2 a^{2} c 3 a+47 c 1 a^{4} c 2 a c 3 a+29 c 1 a^{6} c 3 a+51 c 1 a c 2 a^{4}\)
\(\left.-375 \mathrm{c} 1 a^{3} \mathrm{c} 2 a^{3}+537 \mathrm{c} 1 a^{5} \mathrm{c} 2 a^{2}-337 \mathrm{cia}^{7} \mathrm{c} 2 \mathrm{a}+75 \mathrm{c} 1 a^{9}\right)^{9}\)
\(+1-15 c 2 a c 3 a^{2}-247 c 1 a^{2} c 3 a^{2}+66 c 1 a c 2 a^{2} c 3 a+185 c 1 a^{3} c 2 a c 3 a\)
\(+64 c 1 a^{5} \mathrm{C} 3 \mathrm{a}+22 \mathrm{C2} \mathrm{a}^{4}-185 \mathrm{C1} a^{2} \mathrm{C} 2 a^{3}+395 \mathrm{C} 1 a^{4} \mathrm{C} 2 a^{2}\)
\(\left.-362 \cdot c 1 a^{6} \mathrm{c} 2 \mathrm{a}+106 \mathrm{c} 10^{8}\right) \mathrm{T}^{8}+\left(-185 \mathrm{c} 10 \mathrm{C} 30^{2}-15 \mathrm{c} 20^{2} \mathrm{c} 3 \mathrm{a}\right.\)
\(+122 c 10^{2} \mathrm{C} 20 \mathrm{C} 30+143 \mathrm{c} 10^{4} \mathrm{c} 30-44 \mathrm{C} 10 \cdot \mathrm{C} 20^{3}+232 \mathrm{C} 10^{3} \mathrm{C} 20^{2}\)
\(\left.-322 c 10^{5} \mathrm{c} 20+127 c 10^{7}\right)^{T^{7}}+\left(-9 c 3 a^{2}+20 c 10 c 2 a c 30\right.\)
\(\left.+169 c 1 a^{3} c 3 a-11 c 2 a^{3}+115 c 1 a^{2} c 2 a^{2}-221 c 1 a^{4} c 2 a+128 c 1 a^{6}\right)\)
\(T^{6}+16 c 2 a c 3 a+110 c 1 a^{2} c 3 a+33 c 10 c 2 a^{2}-100 \cdot c 1 a^{3} c 2 a\)
\(\left.+109010^{5}\right)^{5}+142010-30+6 \cdot 20^{2}-25010^{4} \cdot 20+810^{4}\)

SEPO \(26=13699\) C3a - 12142 C1a C2a C3a +3185 C1a C3a
\(+4758 c 2 a^{3} c 3 a^{2}-68043 c 1 a^{2} c 2 a^{2} c 3 a^{2}+131775 c 1 a^{4} c 2 a c 3 a^{2}\)


\(+603 c 2 a^{6}-738 c 1 a^{2} c 2 a^{5}-121479 \cdot c 1 a^{4} c 2 a^{4}+344794 c 1 a^{6} c 2 a^{3}\)
\(\left.-354873 \mathrm{Cla}^{8}{\mathrm{C} 2 a^{2}}^{2}+142370 \mathrm{C1a}{ }^{18} \mathrm{C} 2 \mathrm{a}-19272 \mathrm{Cia}^{12}\right) \mathrm{T}^{12}\)
\(+1528 \mathrm{c} 2 \mathrm{ac3a}{ }^{3}-11341 \mathrm{c} 1 a^{2} \mathrm{c} 3 a^{3}+12100 \mathrm{c} 1 a^{\mathrm{c}} \mathrm{c} 2 a^{2} \mathrm{c} 3 a^{2}\)
\(+914 \mathrm{cla}^{3} \mathrm{c} 2 \mathrm{a} \mathrm{C3a}^{2}+26340 \mathrm{c} 1 \mathrm{a}^{5} \mathrm{c} 3 \mathrm{a}^{2}+77 \mathrm{c} 2 \mathrm{a}^{4} \cdot \mathrm{c} 30\)
\(-48312 c 1 a^{2} c 2 a^{3} c 3 a+187674 c 1 a^{4} c 2 a^{2} c 3 a-116728 c 1 a^{6} \mathrm{c} 2 a \mathrm{C} 20\)
\[
\begin{aligned}
& \text { \& }
\end{aligned}
\]
\(+28184 \mathrm{C} 10^{8} \mathrm{C} 30+882 \cdot \mathrm{C} 10 \mathrm{C} 20^{5}+29844 \mathrm{ClO}^{3} \mathrm{C} 20^{4}-183008 \mathrm{C} 10^{5} \mathrm{C} 20^{3}\)
\(\left.+117192 \mathrm{C1a}^{7}{\mathrm{C} 2 a^{2}}^{2}-49076 \mathrm{C1O}^{9} \mathrm{C} 20+6644 \mathrm{ClO}^{11}\right) \mathrm{T}^{11}\)
\(+13696 \mathrm{C} 1 a \mathrm{C} 3 a^{3}-1188 \mathrm{C} 2 a^{2} \mathrm{c} 3 a^{2}-6509 \mathrm{C} 1 a^{2} \mathrm{C} 20 \mathrm{C} 3 a^{2}\)
\(+281 \mathrm{C10} 0^{4} \mathrm{C} 30^{2}+5734 \mathrm{C} 10 \mathrm{C} 20^{3} \mathrm{C} 30-21074 \mathrm{C} 10^{3} \mathrm{C} 20^{2} \mathrm{C} 30\)
\(+28790 c 1 a^{5} \mathrm{c} 2 \mathrm{a} c 3 a-3252 c 10^{7} \mathrm{c} 3 \mathrm{a}-125 \mathrm{c} 2 a^{5}-5617 \mathrm{c} 1 a^{2} \mathrm{c} 2 a^{4}\)
\(+28828 \mathrm{C} 10^{4} \mathrm{C} 2 \mathrm{a}^{3}-33579 \mathrm{C} 10^{6} \mathrm{C} 20^{2}+13005 \mathrm{C} 10^{8} \mathrm{C} 2 \mathrm{a}-1322 \mathrm{Cla}{ }^{10}\) ) \(T^{10}+1-462 c 3 a^{3}+1358 c 1 a c 2 a c 3 a^{2}-3286 c 1 a^{3} c 3 a^{2}-376 c 2 a^{3} c 3 a\)
\(+4219 c 1 a^{2} c 2 a^{2} c 3 a+339 c 1 a^{4} c 2 a c 3 a-2616 c 1 a^{6} \mathrm{c} 3 a\)
\(+641 \mathrm{C} 10 \mathrm{C} 2 \mathrm{a}^{4}-7885 \mathrm{C} 10^{3} \mathrm{C} 20^{3}+8032 \mathrm{C10} \mathrm{c}^{5} \mathrm{C} 2^{2}-1367 \mathrm{C} 10^{7} \mathrm{C} 2 \mathrm{a}\)
\(\left.-515 c 1 a^{9}\right)^{9}+\left(-66 c 20 c 3 a^{2}+1667 c 1 a^{2} c 30^{2}-824 c 10 c 2 a^{2} c 3 a\right.\)
\(-2035 c 1 a^{3} \mathrm{c} 2 \mathrm{a} \mathrm{c} 3 \mathrm{a}+2579 \mathrm{c} 1 a^{5} \mathrm{c} 30-25 \mathrm{c} 2 a^{4}+1601 \mathrm{c} 1 a^{2} \mathrm{c} 2 a^{3}\)
\(\left.-1538 \mathrm{C} 10^{4} \mathrm{c} 2 \mathrm{a}^{2}-1219 \mathrm{c} 10^{6} \mathrm{c} 2 \mathrm{a}+885 \mathrm{c} 10^{8}\right)^{8} \mathrm{~T}^{8}\)

\(\left.-268 \mathrm{C1O} \mathrm{C2} \mathrm{a}^{3}+274 \mathrm{ClO}^{3}{\mathrm{C} 20^{2}}^{2}+1134 \mathrm{ClO}^{5} \mathrm{C} 20-748 \mathrm{C} 10^{7}\right)^{7}\)
\(+158 c 3 a^{2}-146 c 1 a c 2 a c 3 a+657 c 1 a^{3} c 3 a+22 c 2 a^{3}-84 c 1 a^{2} c 2 a^{2}\)
\(\left.-620 c 1 a^{4} \mathrm{c} 2 a+586 \mathrm{c} a^{6}\right) \mathrm{T}^{6}+\left(8 \mathrm{c} 2 \mathrm{a} c 3 a-229 \mathrm{c} 1 a^{2} \mathrm{c} 3 \mathrm{a}\right.\)
\left.\(+30 \mathrm{c} 1 \mathrm{a}{\mathrm{C} 2 a^{2}}^{2}+254 \mathrm{Cla}{ }^{3} \mathrm{c} 2 \mathrm{a}-298 \mathrm{cia}^{5}\right)^{5} \mathrm{~T}^{5}\).
\(+\left(56 c 1 a c 3 a-5 c 2 a^{2}-76 c 1 a^{2} c 2 a+155 c 1 a^{4}\right)^{4} \top^{4}\)
\(+\left(-7 c 3 a+14 c 1 a c 2 a-70 c 1 a^{3}\right) T^{3}+\left(26 c 1 a^{2}-c 2 a\right) T^{2}-7 c 1 a T\) \(+1\)
\(-2 c 2 a c 3 a+3 c 1 a^{2} c 3 a+3 c 1 a^{\circ} c 2 a^{2}-4 c 1 a^{3} c 2 a+c 1 a^{5}=0\)



 ex a












\[
\text { a } \frac{10 y y}{}
\]

Totj \(5=T \operatorname{cosj}-010\) asi \(+T+013\) or \(-050013 M+\operatorname{DEJ} T-1+\)
\(\mathrm{C} 3 a^{2}-6 \mathrm{c} 1 a \mathrm{C} 2 \mathrm{a} \mathrm{C} 3 a+4 \mathrm{C} 1 a^{3} \mathrm{c} 3 a-c 2 a^{3}+6 c 1 a^{2} c 2 a^{2}-5 c 1 a^{4} \mathrm{c} 2 a\)
\[
\begin{aligned}
& +c 10^{6}={ }^{8} \\
& 4 c 10 \cdot c 20^{3}
\end{aligned}
\]
\[
+10 \mathrm{cla}^{3} \mathrm{c}^{3} a^{2}-6 \mathrm{c1a}{ }^{5} \mathrm{c} 2 a+\mathrm{C1a}^{7}=0
\]
\(-3 c 2 a c 3 a^{2}+6 c 1 a^{2} c 3 a^{2}+12 c 1 a c 2 a^{2} c 3 a-20 c 1 a^{3} c 2 a c 3 a\)
\(+6 c 1 a^{5} c 3 a+c 2 a^{4}-18 c 1 a^{2} c 2 a^{3}+15 C 1 a^{4} c 2 a^{2}-7 C 1 a^{6} \mathrm{C} 2 a+c 1 a^{8}\)
\(c 3 a^{=0}-12 c 10 c 2 a c 3 a^{2}+10 c 10^{3} c 3 a^{2}-4 c 2 a^{3} c 3 a+30 c 1 a^{2} c 2 a^{2} c 3 a\) \(-30 c 1 a^{4} c 2 a c 3 a+7 c 10^{6} c 3 a+5 c 1 a c 2 a^{4}-20 c 1 a^{3} c 2 a^{3}\)

\(4 \mathrm{c} 1 a \mathrm{c} 3 a^{3}+6 \mathrm{c} 2 a^{2} \mathrm{c} 3 a^{2}-30 \mathrm{c} 1 a^{2} \mathrm{c} 2 a \mathrm{C} 3 a^{2}+15 \mathrm{c} a^{4} \mathrm{c} 3 a^{2}\)
\(-20 c 10 c 2 a^{3} c 3 a+60 c 10^{3} c 2 a^{2} c 3 a-42 c 1 a^{5} c 2 a c 3 a+8 c 1 a^{7} c 3 a\)
\(-c 2 a^{5}+15 c 1 a^{2} c 2 a^{4}-35 c 1 a^{4} c 2 a^{3}+28 c 1 a^{6} c 2 a^{2}-9 c 1 a^{8} c 2 a\)
10
\(+\mathrm{ClO}=8\)
\(-4 c 2 a c 3 a^{3}+10 c 1 a^{2} c 3 a^{3}+30 c 1 a c 2 a^{2} c 3 a^{2}-60 c 1 a^{3} c 2 a c 3 a^{2}\)
\(+21 c 10^{5} c 3 a^{2}+5 c 2 a^{4} c 3 a-60 c 10^{2} c 2 a^{3} c 3 a+185 c 1 a^{4} c 2 a^{2} c 3 a\)
\(-56{\mathrm{c} 1 a^{6}}^{6} \mathrm{c} 2 \mathrm{a} \mathrm{C} 3 \mathrm{a}+9 \mathrm{cla}^{8} \mathrm{c} 3 \mathrm{a}-6 \mathrm{c} 1 \mathrm{a} \mathrm{C} 2 a^{5}+35 \mathrm{C} 1 a^{3} \mathrm{c} 2 a^{4}\)
 \(a^{4}-20 \mathrm{c} 1 \mathrm{a} \mathrm{c} 2 \mathrm{a} \mathrm{c} 3 a^{3}+20 \mathrm{c} 1 a^{3} \mathrm{c} 3 a^{3}-18 \mathrm{c} 2 a^{3} \mathrm{c} 3 a^{2}\) \(+98 c 1 a^{2} c 2 a^{2} c 3 a^{2}-185 c 1 a^{4} c 2 a c 3 a^{2}+28 c 1 a^{6} c 3 a^{2}\).
\(+30 \mathrm{C} 10 \mathrm{C} 20^{4} \mathrm{c} 30-140 \mathrm{c} 10^{3} \mathrm{C} 20^{3} \mathrm{c} 30+168 \mathrm{C} 10^{5} \mathrm{C} 20^{2} \mathrm{E} 30\)
 \(-84 C 1 Q^{6} \mathrm{C} 2 Q^{3}+45 \mathrm{C} 1 Q^{8} \mathrm{C} 2 Q^{2}-11 \mathrm{C} 1 Q^{18} \mathrm{C} 2 Q+\mathrm{C} 1 Q^{12}\)

(D5) 78
(C6) GG(3);
NEWCHEPO \(13=\left(6 C 2 Q^{2}-16 C 1 Q^{2} C 2 Q+8 C 1 Q^{4}\right)^{4} T^{4}\)

NEWSEPO \(13=\left(-6 C 2 Q^{2}-16 C 1 Q^{2} C 2 O+25 C 10^{4}\right)^{T^{4}}\)
\[
+\left(4 C 10 C 2 O-\underset{D O N E}{16 C 1 a^{3}}\right)^{3} T^{2}+9 C 1 a^{2} T^{2}-4 C 10 T+1
\]
(C7) GG(4);
NEWCHEPO \(14=\left(-14 C 2 a^{3}+88 C 1 a^{2} C 2 a^{2}-72 C 1 a^{4} \mathrm{C} 2 \mathrm{a}+16 \mathrm{C} 1 \mathrm{a}^{6}\right)^{6} \mathrm{~T}^{6}\)
\(+\left(30 c 1 a c 2 a^{2}-40 c 1 a^{3} c 2 a+16 c 1 a^{5}\right)^{T^{5}}\)
\(\left.+16 c 2 a^{2}-13 c 1 a^{2} c 2 a+16 c 1 a^{4}\right)^{4} T^{4}+15 c 1 a^{3} T^{3}\)
\(+\left(020+11\left(10^{2}\right) T_{3}^{2}+5 \operatorname{cia} T_{2}+1{ }_{2}\right.\)
NEWSEPO \(14=\left(25 \mathrm{C} 2 \mathrm{a}^{3}-15 \mathrm{C10} \mathrm{C} 2 \mathrm{a}^{2}-245 \mathrm{C} 1 \mathrm{a}^{4} \mathrm{C} 2 \mathrm{O}+14 \mathrm{C10}{ }^{6}\right)^{6} \mathrm{~T}^{6}\)
\(+\left(15 c 10 c 20^{2}+110 c 10^{3} c 20-91 c 10^{5}\right)^{T^{5}}\)
\(+\left(-5 c 2 a^{2}-40 c 1 a^{2} c 2 a+55 c 1 a^{4}\right) T^{4}+\left(10 c 1 a c 2 a-30 c 1 a^{3}\right) T^{3}\)
\(+\left(14 C 10^{2}-C 2 Q\right) T^{2}-5 C 1 a T+1\)
(D7)
DONE
(C8) GG (5) ;
NEWCHEPO \(15=147 C 2 Q^{4}-368 C 1 a^{2} C 2 Q^{3}+584 C 1 a^{4} C 2 Q^{2}-224 C 10^{6} C 2 O\)
\(+32 \mathrm{C10})^{8} \mathrm{~T}^{8}+\left(-84 \mathrm{C1O} \mathrm{C} 2 \mathrm{a}^{3}+248 \mathrm{C1O}^{3} \mathrm{C20}{ }^{2}-168 \mathrm{C10} \mathrm{a}^{5} \mathrm{C} 2 \mathrm{a}\right.\)
\(\left.+32 C 10^{7}\right) T^{7}+\left(-8 C 2 a^{3}+185 C 1 a^{2} C 2 a^{2}-96 C 1 a^{4}\left(20+32 C 1 a^{6}\right)^{6} T^{6}\right.\)
\(+\left(36 \mathrm{Cla} \mathrm{C2a}{ }^{2}-38 \mathrm{Cla}{ }^{3} \mathrm{C} 2 \mathrm{a}+32 \mathrm{C10}\right)^{5} \mathrm{~T}^{5}\)
\(+\left(7 c 20^{2}-2 c 10^{2} c 2 a+31 c 1 a^{4}\right)^{4} T^{4}+\left(6 c 10 c 20+26 c 10^{3}\right) T^{3}\)

\(+\left(2 \mathrm{C} 2 \mathrm{a}+16 \mathrm{Clu}^{2}\right) \mathrm{T}_{4}^{2}+6 \mathrm{Cla} T_{2}+1\)
NEWSEPO \(15=1-98{\mathrm{C} 20^{4}}^{4}+560 \mathrm{C10} \mathrm{C}^{2} \mathrm{C} 2 \mathrm{a}^{3}+1134 \mathrm{C10}{ }^{4} \mathrm{C} 2 \mathrm{O}^{2}\)
\(\left.-2436 \mathrm{c} 1 a^{6} \mathrm{c} 2 \mathrm{a}+825 \mathrm{c} 1 \mathrm{a}^{8}\right) \mathrm{T}^{8}+\left(-168 \mathrm{C} 10 \mathrm{C} 2 a^{3}-336 \mathrm{C} 1 a^{3} \mathrm{c} 2 a^{2}\right.\)
\(\left.+1260 \mathrm{cla}^{5} \mathrm{c} 2 \mathrm{a}-540 \mathrm{cla}^{7}\right) \mathrm{T}^{7}+\left(28 \mathrm{C2O}^{3}+63 \mathrm{C10}{ }^{2} \mathrm{C20}{ }^{2}\right.\)
\(44^{4} 6^{6} \quad 30^{5}\)
\(-588 \mathrm{C} 1 \mathrm{a} \mathrm{C} 2 \mathrm{a}+336 \mathrm{C} 1 \mathrm{a}) \mathrm{T}+(238 \mathrm{C1a} \mathrm{C} 2 \mathrm{a}-196 \mathrm{C1O}) \mathrm{T}\)
\(+\left(-3 c 2 a^{2}-78 c 1 a^{2} c 2 a+185 c 1 a^{4}\right) T^{4}+(18 c 1 a c 2 a-50 c 1 a)^{3} T^{3}\)
\(+\left(20 c 1 a^{2}-2 c 2 a\right) T^{2}-6 c 1 a T+1\)
NEWCHEPO \(25=1-142 \mathrm{CBO}^{3}+1862 \mathrm{C1OC2aC3a}^{2}-1832 C 1 a^{3} \mathrm{C} a^{2}\)
\(-162 c 2 a^{3} c 3 a+198 c 1 a^{2} c 2 a^{2} c 3 a-36 c 1 a^{4} c 2 a c 3 a+88 c 1 a^{6} c 3 a\)

\(\left.+128 C 1 a^{9}\right) T^{9}+\left(132 C 20 C 3 Q^{2}-393 C 1 a^{2} C 3 Q^{2}+162 C 10 C 20^{2} c 30\right.\)
\(-174 c 1 a^{3} c 2 a c 3 a+140 c 1 a^{5} c 3 a+81 c 2 a^{4}-684 c 1 a^{2} c 2 a^{3}\)
\(\left.+1078 \mathrm{C1a}{ }^{4} \mathrm{c} 2 a^{2}-612 \mathrm{c} 1 a^{6} \mathrm{C} 2 \mathrm{a}+112 \mathrm{c} 10^{8}\right) \mathrm{T}^{8}\)

\(\left.-162 \mathrm{c} 1 a \mathrm{c} 2 \mathrm{a}^{3}+474 \mathrm{c} 1 a^{3} \mathrm{c} 2 a^{2}-396 \mathrm{cia}^{5} \mathrm{c} 2 \mathrm{a}+96 \mathrm{c} 1 \mathrm{a}^{7}\right)^{\mathrm{T}}\)
\(+1-12 c 3 a^{2}-42 c 1 a c 2 a c 3 a+116 c 1 a^{3} c 3 a-20 c 2 a^{3}\)
\(\left.+166 \mathrm{Cla}^{2} \mathrm{C} 2 \mathrm{a}^{2}-228 \mathrm{C1a}^{4} \mathrm{C} 2 \mathrm{a}+80 \mathrm{C10}\right)^{6} \mathrm{~T}^{6}\)
\(+\left(-6 c 2 a c 3 a+72 c 1 a^{2} c 3 a+42 c 1 a c 2 a^{2}-108 c 1 a^{3} c 2 a+64 c 1 a^{5}\right)\)
\(T^{5}+\left(30 c 1 a c 3 a+6 c 2 a^{2}-36 c 1 a^{2} c 2 a+48 c 1 a^{4}\right) T^{4}\)
\(+\left(6 c 3 a-6 c 1 a c 2 a+32 c 1 a^{3}\right) T^{3}+17 C 10^{2} T^{2}+6 C 10 T+\frac{1}{2}\)
NEWSEPO \(25=1-218 \mathrm{C} a^{3}+1746 \mathrm{c} 10 \mathrm{C} 2 \mathrm{a} \mathrm{C} 3 \mathrm{a}^{2}-3720 \mathrm{c} 1 a^{3} \mathrm{c} 3 a^{2}\)




```

 &}
 T(013 M)
 f+TD10a-T TDSOS - SIJ ESI +
    ```





```

 a 8
    ```

```

 5,H
    ```



        4 \& \(\frac{1}{2}\) \&


\(-150 c 2 a^{3} c 3 a-656 c 1 a^{2} c 2 a^{2} c 3 a+5502 c 1 a^{4} c 2 a c 3 a\)
\(-3416 c 1 a^{6} c 3 a+420 c 1 a c 2 a^{4}-1618 c 1 a^{3} c 2 a^{3}-364 c 1 a^{5} c 2 a^{2}\)
\(\left.+2816 \mathrm{cia}^{7} \mathrm{c} 2 a-678 \mathrm{c} 1 a^{9}\right)^{\mathrm{T}}{ }^{9}+\left(-284 \mathrm{c} 20{\mathrm{c} 3 a^{2}}^{2}+1281 \mathrm{c1a}^{2} \mathrm{c} 3 a^{2}\right.\)
\(-18 \mathrm{c} 1 a^{c} 2 a^{2} \mathrm{c} 2 \mathrm{a}-1998 \mathrm{c} a^{3} \mathrm{c} 2 \mathrm{a} \mathrm{c} 3 \mathrm{a}+1898 \mathrm{c} 1 a^{5} \mathrm{c} 3 \mathrm{a}-45 \mathrm{c} 2 a^{4}\)
\(\left.+580 \mathrm{c1a}^{2} \mathrm{c} 2 a^{3}-1176 \mathrm{c} 1 a^{6} \mathrm{c} 2 a+489 \mathrm{c} 1 \mathrm{a}^{8}\right)^{8} \mathrm{~T}^{8}\)
\(+1-330 c 1 a c 3 a^{2}+30 c 2 a^{2} c 3 a+564 c 1 a^{2} c 2 a c 3 a-954 c 1 a^{4} c 3 a\)
\(\left.-150 \mathrm{c} 10 \mathrm{c} 2 a^{3}+98 \mathrm{c} 1 a^{3} \mathrm{c} 2 a^{2}+638 \mathrm{c} 1 a^{5} \mathrm{c} 2 \mathrm{a}-344 \mathrm{c} 10^{7}\right)^{7} \mathrm{~T}^{7}\)
\(+148 c^{2} a^{2}-182 c 1 a c 2 a c 3 a+424 c 1 a^{3} c 3 a+28 c 2 a^{3}-70 c 1 a^{2} c 2 a^{2}\)
\(\left.-300 \mathrm{c1a}{ }^{4} \mathrm{c} 2 a+231 \mathrm{c} 1 a^{6}\right)^{\mathrm{T}^{6}}+\left(6 \mathrm{c} 2 a \mathrm{c} 3 \mathrm{a}-156 \mathrm{cia}{ }^{2} \mathrm{c} 3 a\right.\)
\(+30 c 1 a c 2 a^{2}+120 c 1 a^{3}\left(2 a-146\left(1 a^{5}\right) \mathrm{T}^{5}\right.\)
\(+\left(42 c 1 a c 3 a-6 c 2 a^{2}-36 c 1 a^{2} c 2 a+85 c 1 a^{4}\right)^{4} \top^{4}\)

(C9) GG (6):
NEWCHEPO \(16=\left(-135 C 2 a^{5}+1532 c 1 a^{2} c 2 a^{4}-2936 c 1 a^{4} \mathrm{c} 2 a^{3}\right.\)
\(+2864 \operatorname{cin}^{6}-20^{2}-6080^{8}\left(20+64\left(10^{18}\right) T^{18}\right.\)
\(+1329 \mathrm{c} 1 a \mathrm{c} 2 a^{4}-1176 \mathrm{c} 1 a^{3} \mathrm{c} 2 a^{3}+1232 \mathrm{cia}^{5} \mathrm{c} 2 a^{2}-480 \mathrm{c} 1 a^{7} \mathrm{c} 2 a\)
\(\left.+64 \mathrm{cla}^{9}\right)^{9} \mathrm{~T}^{9}+\left(39 \mathrm{C} 2 a^{4}-347 \mathrm{Cla}^{2} \mathrm{c} 2 \mathrm{a}^{3}+656 \mathrm{c} 1 a^{4}{\mathrm{c} 2 a^{2}}^{2}\right.\)
\(\left.-352 \mathrm{cla}^{6} \mathrm{c} 2 \mathrm{a}+64 \mathrm{c} 1 \mathrm{a}^{8}\right)^{8} \mathrm{~T}^{8}+\left(-56 \mathrm{c} 1 \mathrm{a} \mathrm{c} 2 \mathrm{a}^{3}+315 \mathrm{cia}^{3} \mathrm{cza}{ }^{2}\right.\)
\(\left.-224 \mathrm{cla}^{5} \mathrm{c} 2 \mathrm{a}+64 \mathrm{c} \mathrm{a}^{7}\right)^{\mathrm{T}^{7}}+\left(-\mathrm{c2a}{ }^{3}+139 \mathrm{c1a}^{2} \mathrm{c} 2 \mathrm{a}^{2}-183 \mathrm{C1a}{ }^{4} \mathrm{c} 2 \mathrm{a}\right.\)
\(+64\left(1 a^{6}\right) \top^{6}+\left(49 \operatorname{c1a} C 2 a^{2}-14\left(1 a^{3}\left(2 a+63\left(10^{5}\right) T^{5}\right.\right.\right.\)
\(\left.+19 c 2 a^{2}+28 c 1 a^{2} c 2 a+57 c 1 a^{4}\right) T^{4}+\left(14 c 1 a c 2 a+42 c 1 a^{3}\right)^{3} T^{3}\)



 \(\frac{8.8}{4.1013885+053} 013\) atil \(-053-01388 a+\)







 \(+63100+63\) Le imeminious





\(+\left(3 \mathrm{C} 20+22\left(10^{2}\right) T_{5}^{2}+7 \mathrm{C1O} T_{2}+1\right.\)
NEWSEPO \(16=\left(378{\mathrm{C} 20^{5}}^{5}-4830 \mathrm{ClO}^{2} \mathrm{C} 2 \mathrm{a}^{4}+22176 \mathrm{C1a} \mathrm{C}^{6} \mathrm{C}^{2}\right.\)
\(\left.-21821 \mathrm{Cla}^{8} \mathrm{C} 2 \mathrm{a}+5005 \mathrm{Cla}^{10}\right) \mathrm{T}^{10}\)
\(+11850 \mathrm{C} 10 \mathrm{C} 2 \mathrm{a}^{4}-840 \mathrm{c} 1 a^{3} \mathrm{c} 2 a^{3}-9240 \mathrm{c} 1 a^{5} \mathrm{c} 2 a^{2}+11616 \mathrm{c} 1 a^{7} \mathrm{c} 20\)

\(\left.-6806 \mathrm{c} 10^{6} \mathrm{c} 2 \mathrm{a}+2879 \mathrm{c} 10^{8}\right)^{8} \mathrm{~T}^{8}+\left(-168 \mathrm{c} 10 \mathrm{C} 20^{3}-1088 \mathrm{c} 10^{3} \mathrm{c} 2 \mathrm{a}^{2}\right.\)
\(\left.+2856 \mathrm{C} 1 a^{5} \mathrm{C} 2 \mathrm{a}-1254 \mathrm{C1a}\right)^{7} \mathrm{~T}^{7}+\left(28{\mathrm{C} 20^{3}}^{3}+224 \mathrm{ClO}^{2} \mathrm{C} 20^{2}\right.\).
\(\left.-1218 \mathrm{C10}{ }^{4} \mathrm{C} 2 \mathrm{a}+714 \mathrm{C10}\right)^{6} \mathrm{~T}^{6}+\left(-28 \mathrm{C} 10 \mathrm{C} 20^{2}+448 \mathrm{ClO}^{3} \mathrm{C} 2 \mathrm{a}\right.\)
\(\left.-378 \mathrm{cia}^{5}\right) T^{5}+\left(182 \mathrm{C10}{ }^{4}-133 \mathrm{C10} \mathrm{C} 20\right)^{2} T^{4}\)
\(\left.+(28 \mathrm{C} 10 \mathrm{C} 2 \mathrm{O}-77 \mathrm{C10})_{4}^{3}\right) T^{3}+\left(27 \mathrm{cla}^{2}-3 \mathrm{C} 2 \mathrm{a}\right) T^{2}-7 \mathrm{C} 10 \mathrm{~T}_{3}+1\) NEWCHEPO \(26=1197\) C3Q +6924 C10 C2a C30 - 7764 C10 C30
\(+3078 \mathrm{c} 20^{3} \mathrm{C} 30^{2}-29871 \mathrm{c} 10^{2} \mathrm{c} 20^{2} \mathrm{C} 30^{2}+37245 \mathrm{C} 10^{4} \mathrm{C} 20 \mathrm{C} 30^{2}\)
\(-18471 \mathrm{c} 10^{6} \mathrm{C3O}{ }^{2}+2106 \mathrm{C10} \mathrm{C20}{ }^{4} \mathrm{c} 30+4962 \mathrm{c} 10^{3} \mathrm{c} 20^{3} \mathrm{c} 30\)
\(-12324 \mathrm{cla}^{5} \mathrm{c} 2 \mathrm{a}^{2} \mathrm{C} 30+5714 \mathrm{c} 1 a^{7} \mathrm{c} 2 \mathrm{a} \mathrm{C} 30-612 \mathrm{c} 10^{9} \mathrm{C} 30+972 \mathrm{c} 2 \mathrm{a}^{6}\)
\(-11367 \mathrm{C} 10^{2} \mathrm{C} 20^{5}+26685 \mathrm{C} 10^{4} \mathrm{C} 2 \mathrm{a}^{4}-26448 \mathrm{C} 10^{6} \mathrm{C} 20^{3}\)

\(+11064 c 2 a c 3 a^{3}-3311 c 1 a^{2} c 3 a^{3}-6848 c 1 a c 2 a^{2} c 3 a^{2}\)
\(+15036 c 1 a^{3} c 2 a c 3 a^{2}-6013 c 1 a^{5} c 3 a^{2}+567 c 2 a^{4} c 3 a\)
\(-630 c 1 a^{2} c 2 a^{3} \mathrm{c} 30-2954 \mathrm{c} 1 a^{4} \mathrm{c} 20^{2} \mathrm{c} 30+2802 \mathrm{c} 1 a^{6} \mathrm{c} 2 \mathrm{a} \mathrm{c} 3 \mathrm{a}\)
\(-148 \mathrm{c} 10^{8} \mathrm{C} 3 \mathrm{a}-2268 \mathrm{c} 1 \mathrm{a} \mathrm{C} 2 \mathrm{a}^{5}+9639 \mathrm{c} 1 a^{3} \mathrm{C} 2 \mathrm{a}^{4}-13356 \mathrm{C} 1 a^{5} \mathrm{c} 2 a^{3}\)
\(\left.+8532 \mathrm{C1O}^{7}{\mathrm{C} 20^{2}}^{2}-2608 \mathrm{C10}{ }^{9} \mathrm{C} 2 \mathrm{a}+384 \mathrm{C1O}^{11}\right) \mathrm{T}^{11}\)
\[
\begin{aligned}
& -52 .
\end{aligned}
\]
\[
\begin{aligned}
& \text { at ne }
\end{aligned}
\]
\[
\begin{aligned}
& \text { a } 2 \text { a }
\end{aligned}
\]
\[
\begin{aligned}
& 083 \text { 053 a13 sass + 085 pes 013 paes - 085 053 019 a83 - }
\end{aligned}
\]
\(+1-994 \mathrm{c} 10 \mathrm{C} 30^{3}-582 \mathrm{c} 2 \mathrm{a}^{2} \mathrm{C} 30^{2}+4791 \mathrm{c} 1 a^{2} \mathrm{c} 20 \mathrm{C} 30^{2}\)
\(-3063 c 10^{4} c 30^{2}-648 c 10 c 20^{3} c 30-12 c 10^{3} c 20^{2} c 30\)
\(+266 \mathrm{c} 10^{5} \mathrm{c} 2 \mathrm{a} \mathrm{C} 3 Q^{5}+156 \mathrm{c} 10^{7} \mathrm{c} 3 Q^{7}-243 \mathrm{c} 20^{5}+2781 \mathrm{c} 10^{2} \mathrm{c} 20^{4}\)
\(44^{4} 3^{6} 2^{2} 10\) 10 10
\(-5976 \mathrm{c} 10^{4} \mathrm{C} 2 Q^{3}+5100 \mathrm{c} 10^{\circ} \mathrm{C} 20^{2}-1952 \mathrm{C} 10^{\circ} \mathrm{C} 20+272 \mathrm{C} 10^{\circ}\) ) T
\(+1-154 c 30^{3}+1050 c 10 c 20 c 30^{2}-1309 c 10^{3} c 30^{2}-148 c 20^{3} c 30\)
\(+406 c 1 a^{2} c 2 a^{2} c 3 a-294 c 1 a^{4} c 2 a c 3 a+308 c 1 a^{6} c 3 a+567 c 10 c 2 a^{4}\)

\(+\left(114 c 20 c 30^{2}-423 c 10^{2} c 30^{2}+284 c 10 c 20^{2} c 30-286 c 10^{3} c 20 c 30\right.\)
\(+348 \mathrm{c} 10^{5} \mathrm{C} 30+61 \mathrm{C} 20^{4}-680 \mathrm{c} 10^{2} \mathrm{C} 20^{3}+1324 \mathrm{C} 10^{4} \mathrm{c} 20^{2}\)
\(\left.-928 \mathrm{C} 10^{6} \mathrm{C} 2 \mathrm{Q}+288 \mathrm{C} 10^{8}\right)^{\mathrm{T}} \mathrm{T}^{8}+\left(-84 \mathrm{C} 10 \mathrm{C} 3 \mathrm{Q}^{2}+42 \mathrm{C} 2 \mathrm{a}^{2} \mathrm{C} 30\right.\)
\(-126 c 1 a^{2} c 2 a c 3 a+308 c 10^{4} c 30-140 c 10 c 2 a^{3}+532 c 10^{3} c 2 a^{2}\)
\(\left.-560 \mathrm{C} 10^{5} \mathrm{C} 20+176 \mathrm{C} 10^{7}\right) T^{7}+\left(-6 \mathrm{c} 30^{2}-24 \mathrm{c} 10 \mathrm{C} 20 \mathrm{C} 30\right.\)
\(\left.+220 c 10^{3} \mathrm{c} 30-14 \mathrm{C} 20^{3}+172 \mathrm{c} 10^{2} \mathrm{C} 20^{2}-288 \mathrm{c} 10^{4} \mathrm{C} 20+144 \mathrm{C} 10^{6}\right)\)
\(T^{6}+\left(119 C 1 a^{2} C 30+42 C 10 C 2 Q^{2}-112 C 1 a^{3} C 20+112 C 1 a^{5}\right)^{5} T^{5}\)
\(+\left(42 \mathrm{C} 10 \mathrm{C} 3 \mathrm{a}+6 \mathrm{C} 2 \mathrm{Q}^{2}-25 \mathrm{C} 1 Q^{2} \mathrm{C} 2 \mathrm{a}+80 \mathrm{C} 10^{4}\right)^{4} \mathrm{~T}^{4}\)
\(+\left(7 C 30+49 C 1 Q^{3}\right) T^{3}+\left(C 2 Q+23 C 1 Q^{2}\right) T^{2}+7 C 1 Q T+1\)
NEWSEPO \(26=1966 \mathrm{C} 3 \mathrm{a}^{4}-18312 \mathrm{C} 10 \mathrm{C} 20 \mathrm{C} 3 \mathrm{a}^{3}+39592 \mathrm{C} 10^{3} \mathrm{C} 3 \mathrm{a}^{3}\)
\(-1484 c 20^{3} \mathrm{C} 30^{2}+53396 \mathrm{c} 10^{2} \mathrm{c} 20^{2} \mathrm{C} 30^{2}-156618 \mathrm{c} 10^{4} \mathrm{c} 20 \mathrm{C} 30^{2}\)
\(+85932 c 10^{6} c 30^{2}-5544 c 10 c 20^{4} c 30-6552 c 10^{3} c 20^{3} c 30\)
\(+114828 \mathrm{C} 10^{5} \mathrm{C} 20^{2} \mathrm{C} 30-148448 \mathrm{C} 10^{7} \mathrm{C} 20 \mathrm{C} 30+41272 \mathrm{C} 10^{9} \mathrm{C} 30\)
Whation \(x\) and
Lexis.
S
- \(083 a-1+\mathrm{F}+0102 \pi t+053\) ets
4.


 DES DSS D19 823det - 0ET 0.2 013 3EEcद + 0EN DS


\(-294 c 2 a^{6}+18332 c 1 a^{2} c 2 a^{5}-35780 c 1 a^{4} c 2 a^{4}+14322 c 1 a^{6} c 2 a^{3}\) \(\left.+33957 \mathrm{C} 10^{8} \mathrm{C} 2 \mathrm{a}^{2}-28828 \mathrm{C} 1 \mathrm{a}^{18} \mathrm{C} 2 \mathrm{a}+5551 \mathrm{ClO}^{12}\right) \mathrm{T}^{12}\)

\(+51632 c 1 a^{3} c 2 a c 3 a^{2}-48530 c 1 a^{5} c 3 a^{2}+686 c 2 a^{4} c 3 a\)
\(-1736 c 1 a^{2} c 2 a^{3} c 3 a-38178 c 1 a^{4} c 2 a^{2} c 3 a+68712 c 1 a^{6} \mathrm{c} 2 a \mathrm{c} 3 a\)
\(-25179 \mathrm{c} 1 a^{8} \mathrm{C} 3 \mathrm{a}-1764 \mathrm{C} 1 \mathrm{a} \mathrm{C} 2 a^{5}+12432 \mathrm{C} 1 a^{3} \mathrm{C} 2 a^{4}-9248 \mathrm{C} 1 a^{5} \mathrm{c} 2 a^{3}\)
\(\left.-16830 \mathrm{Cla}^{7}{\mathrm{C} 2 \mathrm{a}^{2}}^{2}+17842 \mathrm{Cla}^{9} \mathrm{C} 2 \mathrm{a}-4882 \mathrm{C} 1 \mathrm{a}^{11}\right) \mathrm{T}^{11}\)
\(+12352 \mathrm{C} 1 \mathrm{a} \mathrm{C} 3 \mathrm{a}^{3}+756 \mathrm{C} 2 \mathrm{a}^{2} \mathrm{C} 3 a^{2}-13776 \mathrm{c} 1 a^{2} \mathrm{c} 2 \mathrm{a} \mathrm{C} 3 \mathrm{a}^{2}\)
\(+17262 \mathrm{Cla}{ }^{4}{\mathrm{C} 3 a^{2}}^{2}+1864 \mathrm{C} 10 \mathrm{C} 2 \mathrm{a}^{3} \mathrm{C} 30+10136 \mathrm{C} 10^{3} \mathrm{C} 2 a^{2} \mathrm{C} 30\)
\(-38668 \mathrm{c} 1 a^{5} \mathrm{c} 2 \mathrm{ac} \mathrm{c} a+14616 \mathrm{c} 1 a^{7} \mathrm{c} 3 \mathrm{a}+154 \mathrm{c} 2 a^{5}-3472 \mathrm{c} 1 a^{2} \mathrm{c} 2 a^{4}\)
\begin{tabular}{lllll}
4 & 3 & 8 & 2 & 18 \\
\hline
\end{tabular}
\(4998 \mathrm{C1a} \mathrm{C2a} \mathrm{+} \mathrm{7518} \mathrm{C1a} \mathrm{C2a} \mathrm{-} 10857 \mathrm{C1O} \mathrm{C} 2 \mathrm{O}+2926 \mathrm{C1O}\) ) T
\(+1-273 c 3 a^{3}+2646 c 1 a c 2 a c 3 a^{2}-6412 c 1 a^{3} c 3 a^{2}-196 c 2 a^{3} c 3 a\)
\(-1841 \mathrm{C} 10^{2} \mathrm{C} 20^{2} \mathrm{C} 30+12124 \mathrm{C} 10^{4} \mathrm{C} 20 \mathrm{C} 30-7980 \mathrm{C} 10^{6} \mathrm{C} 30\)
\(+686 \mathrm{c} 10 \mathrm{C} 2 \mathrm{a}^{4}-2240 \mathrm{c} 10^{3} \mathrm{c} 20^{3}-2898 \mathrm{C10} 0^{5} \mathrm{c} 20^{2}+6252 \mathrm{c} 10^{7} \mathrm{c} 2 \mathrm{a}\)
\(\left.-2035 c 10^{9}\right)^{9} T^{9}+\left(-273 c 20 c 3 Q^{2}+1960 c 10^{2} c 3 a^{2}+126 c 10 c 2 a^{2} c 30\right.\)
\(-4860 c 1 a^{3} \mathrm{c} 2 \mathrm{a} \mathrm{C} 30+4832 \mathrm{c} 10^{5} \mathrm{c} 30-70 \mathrm{c} 2 a^{4}+791 \mathrm{c} 10^{2} \mathrm{c} 20^{3}\)
\(\left.+882 c 1 a^{4} c 2 a^{2}-3360 \mathrm{c1a}{ }^{6} \mathrm{c} 20+1365 \mathrm{c} 10^{8}\right) \mathrm{T}^{8}\)
\(+1-441 c 1 a c 3 a^{2}+21 c 2 a^{2} c 3 a+1064 c 1 a^{2} c 2 a c 3 a-1841 c 1 a^{4} c 3 a\)
\(\left.-196 \mathrm{Cla} \mathrm{C} 2 \mathrm{a}^{3}-161 \mathrm{c} 1 a^{3} \mathrm{c} 2 \mathrm{a}^{2}+1652 \mathrm{c} \mathrm{a}^{5} \mathrm{c} 2 \mathrm{a}-876 \mathrm{c} \mathrm{a}^{7}\right)^{7} \mathrm{~T}^{7}\)
\(+155 c 3 a^{2}-186 c 1 a c 2 a c 3 a+732 c 1 a^{3} c 3 a+25 c 2 a^{3}-15 c 1 a^{2} c 2 a^{2}\)




 \(\square\)



 \(2(x) d x\)






\(\left.-721 c 1 a^{4} c 2 a+532 c 1 a^{6}\right) \uparrow^{6}+\left(14 c 2 a c 3 a-238 c 1 a^{2} c 3 a\right.\)
\(\left.+21 c 1 a c 20^{2}+266 c 1 a^{3} c 20-301 c 10^{5}\right)^{T^{5}}\)
\(+\left(56 c 1 a c 3 a-5 c 2 a^{2}-76 c 1 a^{2} c 2 a+155 c 1 a^{4}\right)^{4} T^{4}\)
\(+\left(-7 c 3 a+14 c 1 a c 2 a-70 c 1 a^{3}\right) T^{3}+\left(26 c 1 a^{2}-c 2 a\right) T^{2}-7 c 1 a T\)
\(+1\)
(D9)
DONE
(C18) CLOSEFILE (HOLME, OUT1);
\[
\begin{aligned}
& \text { A } 8 \text { \& } s+2
\end{aligned}
\]
(C3) GRIND (RE) :
\(R E[R]:=\operatorname{BLOCK}\left([F, G, H, K, L, M, N], F: X^{\wedge}(R+1)+\operatorname{SUM}\left(C O N C A T(C, I, Q) * X^{\wedge}(R+1-1), I, 1, R+1\right)\right.\), \(G:\) RATSUBST \((X-1, X, F), H: F-G, K: R E S U L T A N T ~(F, H, X), L: K\),
FOR I THRU R+1 DO L:RATSUBST (CONCAT \(\left.(C, I, Q) * T^{\wedge} I, \operatorname{CONCAT}(C, I, Q), L\right)\),
\(\left.M: L * \operatorname{COEFF}(L, T, 8), N: \operatorname{SUM}\left(\operatorname{EXPAND}(\operatorname{COEFF}(M, T, I)) * T^{\wedge} I, I, 8,(R+1)^{\wedge} 2\right), N\right) \$\)
(D3)
DONE
(C4) RE[1];
(D4)
\(\left(4 c 2 a-c 1 a^{2}\right) T^{2}+1\)
(C5) RE [2]:
CONCAT FASL DSK MAXOUT being loaded
loading done
\((D 5)\left(27 c 3 Q^{2}-18 c 1 Q c 2 a c 3 a+4 c 1 a^{3} c 3 Q+4 c 2 a^{3}-c 1 a^{2} c 2 a^{2}\right)^{6}\)
\[
\left.+19 c 20^{2}-6 c 1 Q^{2} C 20+C 10^{4}\right) T^{4}+\left(6 C 2 Q-2 C 1 Q^{2}\right) T^{2}+1
\]
(C6) RE [3];
(D6) \(1256 C 4 a^{3}-192 C 10 C 30 C 4 a^{2}-128 C 2 a^{2} C 4 a^{2}+144 C 1 a^{2} C 20 C 4 a^{2}\)
\(-27 c 1 a^{4} c 4 a^{2}+144 c 20 c 3 a^{2} c 4 a-6 c 1 a^{2} c 3 a^{2} c 4 a-80 c 1 a c 2 a^{2} c 3 a c 4 a\)
\(+18 c 1 a^{3} c 2 a c 3 a c 4 a+16 c 2 a^{4} c 4 a-4 c 1 a^{2} c 2 a^{3} c 4 a-27 c 3 a^{4}\)


\(+18 c 1 a^{3} c 3 a c 4 a+32 c 2 a^{3} c 4 a-6 c 1 a^{2} c 2 a^{2} c 4 a-54 c 1 a c 3 a^{3}\)
\(+18 c 2 a^{2} c 3 a^{2}+42 c 1 a^{2} c 2 a c 3 a^{2}-9 c 1 a^{4} c 3 a^{2}-26 c 1 a c 2 a^{3} c 3 a\)
\(\left.+6 c 1 a^{3} c 2 a^{2} \mathrm{c} 3 a^{2}+4 c 2 a^{5}-c 1 a^{2} \mathrm{c} 2 a^{4}\right) T^{18}\)
\(+1-112 c 4 a^{2}+56 c 1 a c 3 a c 4 a+24 c 2 a^{2} c 4 a-32 c 1 a^{2} c 2 a c 4 a+6 c 1 a^{4} c 4 a\)
\(+48 c 2 a c 3 a^{2}-25 c 1 a^{2} c 3 a^{2}-54 c 1 a c 2 a^{2} c 3 a+38 c 1 a^{3} c 2 a c 3 a-6 c 1 a^{5^{\circ}} c 3 a\)
\(\left.+17 \mathrm{C} 2 \mathrm{a}^{4}-12 \mathrm{C} 1 a^{2} \mathrm{C} 2 \mathrm{a}^{3}+2 \mathrm{Cla}^{4} \mathrm{C} 2 \mathrm{a}^{2}\right)^{8} \mathrm{~T}^{8}\)
\(+116 c 2 a c 4 a-6 c 1 a^{2} c 4 a+26 c 3 a^{2}-30 c 1 a c 2 a c 3 a+8 c 1 a^{3} c 3 a+28 c 2 a^{3}\)



 3 3nn
\[
+i+5.5015-\cos 31
\]

; [S] 3 (2ว)
(mag andikan









 E

 aithory a





\(\left.-24 \mathrm{cla}^{2} \mathrm{C} 20^{2}+8 \mathrm{cia}^{4} \mathrm{C} 20-\mathrm{C} 10^{6}\right)^{\mathrm{T}}\)
\(+\left(8 c 4 a-2 c 1 a c 3 a+22 c 2 a^{2}-16 c 1 a^{2} c 2 a+3 c 1 a^{4}\right)^{t^{4}}\)
22
\(+18 \mathrm{C2Q}-3 \mathrm{C} 1 \mathrm{a}) \mathrm{T}+1\)
(C7) RE [4];
You have run out of LIST space.
Do you want more?
Type ALL; NONE; a level-no. or the name of a space. ALL;

You have run out of LIST space.
Do you want more?
Type ALL; NONE; a level-no. or the name of a space. ALL;

You have run out of LIST space. Do you want more?
Type ALL; NONE; a level-no. or the name of a space. ALL;

You have run out of FIXNUM space.
Do you want more?
Type ALL; NONE; a level-no. or the name of a space. ALL:

115235 msec .
139662 msec.
170254 msec.
202918 msec.
max allocation exceeded
FIXNUM storage capacity exceeded
283987 msec . so far
(C8) CLOSEFILE (HOLME,OUT2);
```

 3u a a S S S
    ```



\[
\begin{array}{r}
1+T(0.3 \varepsilon-\operatorname{Dsj} 8)+ \\
2(6) 39(2)
\end{array}
\]
sosge TETJ to two mun ever way Sevon trish woy ola
 tIIA
- Fisper TEIJ to fuo nut eves uav Farcat hase upu of 2 11]
- DDsqe TCld lo fun nun gvef koy Sanea t नह Noy of
 .
 §svan Itser yoy ou
(2) kitur
tula
.Sean- zescif
-
xamen wexand

babseoke nolyesalls xemit
Ufijeqsa sogs noje HUWk17

(STUO, WMOH) 3J17300コJ (83)
```

§ 3. Output from Schubert Calculus.

```

\section*{(C5) GRIND (PIERI);}

PIERI (R, A, TOT,F) :=BLOCK ([M, N, U, OLD, NEW],
\(F: F * F U N D C L A S S G(R, A), M: A-R\),
FOR I THRU R +1 DO
(FOR J THRU INF UNLESS FREEOF (CONCAT (C, I, a),F) DO
FOR S IN TOT DO
( \(N: \operatorname{SUM}\) (S \([K], K, 1, M\) ),
U: SUMDOMAIN (A-R,N,I,S),
OLD: APPLY (OMEGA, S) *CONCAT ( \(C, I, Q)\),
NEW: SUM (APPLY (OMEGA, U[K]) ,K,1,
LENGTH(U)),
F: RATSUBST (NEW, OLD,F)) I, F) \$
(D5)
DONE
(C6) GRIND (POLYSGOMEGA);
POLYSGOMEGA (R, A) : =BLOCK ( [DIM, CH, D, SE], DIM: (R+1) *(A-R), CH: CHERNPOLYG (R, A, T), TOT: TOTALDOMAIN (R, A), PRINT("CHEPO", R, A, " =", CH) ,H:CH,
H:PIERI (R, A, TOT, H) , PRINT (" = " , H) ,
H:C1Q~DIM*RATSUBST (T/C1Q, T,CH),
H:PIERI (R, A, TOT, H), PRINT (" \(=", H), D: 1 / C H\),
SE: TAYLOR (D, T, Ø, DIM),
SE: \(1+\) SUM (EXPAND (COEFF (SE, T, I) ) *T^I, I, 1, DIM), PRINT ("SEPO", R, A, " =" SE) , E: PIERI (R, A, TOT, SE), PRINT(" = ", E), E:CIQ^DIM*RATSUBST(T/CIO, T,SE), E:PIERI (R, A, TOT, E), PRINT (" = ", E), PRINT ("DONE") ) \$ DONE
(C7) LINEL:78;
(D7)
(C8) POLYSGOMEGA \((1,3)\);
CONCAT FASL DSK MAXOUT being loaded
loading done
HAYAT FASL DSK MACSYM being loaded
loading done
CHEPO \(13=\left(4 \mathrm{CLO}^{2}-4 \mathrm{ClO}^{2} \mathrm{C} 2 \mathrm{O}+3 \mathrm{ClO}^{4}\right)^{4} \mathrm{~T}^{4}+6 \mathrm{ClO}^{3} \mathrm{~T}^{3}+7 \mathrm{C1O} \mathrm{~T}^{2}\)
+4 C1O T + 1
\(=6\) OMEGA \((1,2) T^{4}+12 \operatorname{OMEGA}(1,3) T^{3}\)
\(+(7 \operatorname{OMEGA}(2,3)+7 \operatorname{OMEGA}(1,4)) T^{2}+4 \operatorname{OMEGA}(2,4) T+\operatorname{OMEGA}(3,4)\)
\(=6 \operatorname{OMEGA}(1,2) T+12 \operatorname{OMEGA}(1,2) T+14 \operatorname{OMEGA}(1,2) T\)
SEPO \(13=\left(-4 C 2 Q^{2}+4 C 1 a^{2} \mathrm{C} 20+14 C 1 a^{4}\right) T^{4}-14 C 1 a^{3} T^{3}\)
chi. Mnemuerm
Q haverencienous



2020
| เรา1



2-2


, TM10,6,T, OI SOUMAT + ב



 -
(20)
\(020-2\)
05

 ennot billatsol
betheol gniod MYROAM Reu Jenन TAYAM emub golbsal
2 \(1+5-0134+\)
 \(\sim\)



\(=28 \operatorname{OMEGA}(1,2) T^{4}-28 \operatorname{OMEGA}(1,3) T^{3}\)
\(+(9 \operatorname{OMEGA}(2,3)+\underset{4}{9} \operatorname{OMEGA}(1,4)) \mathrm{T}^{2}-4 \operatorname{amEGA}(2,4) \mathrm{T}+\underset{2}{\operatorname{OMEGA}(3,4)}\)
\(=28 \operatorname{OMEGA}(1,2) T^{4}-28 \operatorname{OMEGA}(1,2) T^{3}+18 \operatorname{OMEGA}(1,2) T\)
\(-8 \operatorname{OMEGA}(1,2) T+2 \operatorname{OMEGA}(1,2)\)
DONE
(D8)
DONE
(C9) POLYSGOMEGA \((1,4)\);
CHEPO \(14=\left(4 \mathrm{C}_{2}{ }^{3}+12 \mathrm{C1O}^{2} \mathrm{C} 2 \mathrm{a}^{2}-13 \mathrm{ClO}^{4} \mathrm{C} 2 \mathrm{a}+4 \mathrm{C1a}\right)^{6} \mathrm{~T}^{6}\)
\(+\left(20 c 1 a c 2 a^{2}-20 c 1 a^{3} c 2 a+10 c 1 a^{5}\right)^{5}\)
\(+\left(4 c 2 a^{2}-7 c 1 a^{2} c 2 a+14 c 1 a^{4}\right)^{4} T^{4}+15 C 1 a^{3} T^{3}\)
\(+\left(C 2 a+11 C 1 a^{2}\right) T^{2}+5 C 1 a T+1\)
\(=10 \operatorname{OMEGA}(1,2,3) \top^{\top}+30 \operatorname{OMEGA}(1,2,4)^{\top}{ }^{5}\)
\(+(35 \operatorname{OMEGA}(1,3,4)+25 \operatorname{OMEGA}(1,2,5)) \top\)
\(+(15 \operatorname{OMEGA}(2,3,4)+30 \operatorname{OMEGA}(1,3,5)) \mathrm{T}^{3}\)
\(+(11 \operatorname{OMEGA}(2,3,5)+12 \operatorname{OMEGA}(1,4,5)) \mathrm{T}^{2}+5 \operatorname{OMEGA}(2,4,5) T\)
+ OMEGA \((3,4,5)\)
You have run out of LIST space.
Do you want more?
Type ALL; NONE; a level-no. or the name of a space.
ALL;
\(=18 \operatorname{OMEGA}(1,2,3) T^{6}+30 \operatorname{OMEGA}(1,2,3) T^{5}+60 \operatorname{OMEGA}(1,2,3) \mathrm{T}^{4}\)
+75 OMEGA \((1,2,3) T^{3}+57 \operatorname{OMEGA}(1,2,3) T^{2}+25 \operatorname{OMEGA}(1,2,3) T\)
+5 OMEGA \((1,2,3)\)
SEPO \(14=\left(3 \mathrm{C} 2 \mathrm{a}^{3}+79 \mathrm{ClO}^{2} \mathrm{C} 2 \mathrm{a}^{2}-426 \mathrm{C1} \mathrm{a}^{4} \mathrm{C} 2 \mathrm{a}+198 \mathrm{C} 1 \mathrm{a}^{6}\right)^{6} \mathrm{~T}^{6}\)
\(+\left(5 \mathrm{Cla} \mathrm{C} 2 \mathrm{a}^{2}+150 \mathrm{C} 1 a^{3} \mathrm{c} 2 \mathrm{a}-185 \mathrm{C1a}\right)^{5} \mathrm{~T}^{5}\)
\(+\left(-3 c 2 a^{2}-46 c 1 a^{2} c 2 a+57 c 1 a^{4}\right)^{4} T^{4}+\left(10 c 1 a c 2 a-30 c 1 a^{3}\right) T^{3}\)

T (E , D)ADMO 8S - T (S , L)AD3MO BS (4. .2) A2am + T qs. S) Auan a s



> arico

3
(80)
\[
i+T \cdot 013 \mathrm{a}+\mathrm{S}(\mathrm{~S}(013 \mathrm{E}+\operatorname{DS3)}+
\]
\[
\frac{1}{4}
\]
\[
\mathbb{E}
\]
 12 a cianain a
 Seron frish vols ol
 2
 2
\[
\begin{aligned}
& \text { Con }
\end{aligned}
\]
\(+\left(14 C 1 a^{2}-C 2 a\right) T^{2}-5 C 1 a T+1\)
63583 msec.
\(=220 \operatorname{OMEGA}(1,2,3) T^{6}-220 \operatorname{OMEGA}(1,2,4) T^{5}\)
\(+(125 \operatorname{OMEGA}(1,3,4)+65 \operatorname{OMEGA}(1,2,5)) \mathrm{T}^{4}\)
3
\(+(-38 \operatorname{OMEGA}(2,3,4)-50 \operatorname{OMEGA}(1,3,5)) \mathrm{T}\)
\(+(14 \operatorname{OMEGA}(2,3,5)+13 \operatorname{OMEGA}(1,4,5)) \mathrm{T}^{2}-5 \operatorname{OMEGA}(2,4,5) \mathrm{T}\)
\(+\operatorname{OMEGA}(3,4,5)\)
83168 msec.
\(=220 \operatorname{OMEGA}(1,2,3) T^{6}-228 \operatorname{OMEGA}\left(1,2,31 T^{5}\right.\)
+198 OMEGA \((1,2,3) T^{4}-130 \operatorname{OMEGA}(1,2,3) T^{3}\)
\(+68 \operatorname{OMEGA}(1,2,3) T^{2}-25 \operatorname{OMEGA}(1,2,3) T+5 \operatorname{OMEGA}(1,2,3)\)


\section*{§ 4. Output from Grass.}
```

THE CHERNPOLYNOMIRL OF GRRSS (1,3) IS: $\left(4 \mathrm{C} 2 \mathrm{O}^{2}-4 \mathrm{CIO} \mathrm{C} 2 \mathrm{O}+3 \mathrm{C} 10\right) \mathrm{T}+6 \mathrm{C} 10 \mathrm{~T}+7 \mathrm{C} 10 \mathrm{~T}+4 \mathrm{C} 10 \mathrm{~T}+1$
THE RELATIONS OF THE CHERNCLASSES OF Q ARE:

```
```

C10-2c10 c2a=0

```
C10-2c10 c2a=0
c20}\mp@subsup{}{}{2}-3c1\mp@subsup{0}{}{2}c2a+c10=
c20}\mp@subsup{}{}{2}-3c1\mp@subsup{0}{}{2}c2a+c10=
GAMMA \(=-54-9 D S 3-36 D^{2} S 2-84 D^{3} S 1+D E G^{2}-126 D^{4}\)
```

$=0$
$R R H=S 4+8 D S 3+28 D^{2} S 2+56 D^{3} S 1+78 D^{4}$
7
$R A M=D S 3+7 D^{2} S 2+21 D^{3} S 1+35 D^{1}$
$=0^{6}$
$R A M=D^{2} S 2+6 D^{3} S 1+15 D^{4}$
$=0^{5}$
RAM $=D^{3} S 1+5 D^{4}$

- 2
DEG $=2$
(IN25) GRASS (1,6);
THE CHERNPOLYNOMIAL OF GRASS (1,4$)$ IS: $\left(4 \mathrm{c}_{2}{ }^{3}+12 \mathrm{c10}^{2} \mathrm{c} 20^{2}-13\left(10^{4} \mathrm{c} 20+4 \mathrm{c} 10^{6}\right)^{6} \mathrm{~T}^{6}\right.$

```
\(\begin{array}{lllllllllllllllllll}2 & 3 & 5 & 2 & 2 & 3 & 3 & 2\end{array}\)
\(+\left(28 \mathrm{c} 10 \mathrm{c} 2 \mathrm{a}^{2}-28 \mathrm{c} 10 \mathrm{C} 2 \mathrm{C}+18 \mathrm{c} 10\right) \mathrm{T}+\left(4 \mathrm{c} 20^{2}-7 \mathrm{c} 10^{2} \mathrm{c} 20+14 \mathrm{C} 10\right) \mathrm{T}+15 \mathrm{c} 10 \mathrm{~T}+(\mathrm{C} 20+11 \mathrm{c} 10)^{2} \mathrm{~T}+5 \mathrm{C}\) :
```

the relations of the cherhclasses of a rre:
${\mathrm{c} 20^{2}}^{2}-3{\mathrm{c} 10^{2}}^{2} \mathrm{c} 20+\mathrm{c}_{10}{ }^{4}=\theta$
23
$3 \mathrm{C} 10 \mathrm{C} 20-\mathrm{C} 10 \mathrm{C} 2 \mathrm{O}+\mathrm{C} 10=8$
$-0^{3}{ }^{2} 2^{2}+50^{4}+20+c 10^{6}$

12

- 8
RAM $=56+120 S 5+66 D^{2} S 4+228 D^{3} S 3+495 D^{4} S 2+792 D^{5} S 1+924 D^{6}$
0^{11}
= 8
${ }^{\text {RAM }}{ }_{18}=0 S 5+110^{2} 54+550^{3} 53+1650^{4} S 2+3380^{5} 51+4620^{6}$
$=\theta^{18}$
RAM $_{9}=0^{2} S 4+180^{3} S 3+450^{4} S 2+1280^{5} S 1+2180^{6}$
RAM $_{8}=0^{3} S 3+90^{4} S 2+360^{5} S 1+840^{6}$
$=2$
DEG $=5$

${ }^{6}$
（ 9

96

特

禹

 $8 m+912+950-019 \mathrm{~m}-2595135$

 （20）

(IN26) GRASS (1,5);

THE CHERNPOL YNOMIAL OF GRASS $(1,5) 15:\left(9 C 20^{4}-18 C 10^{2} C 20^{3}+42 C 10^{4} C 20^{2}-26 C 10^{6} C 20+5 C 10^{8}\right)^{8}$
$+\left(75 C 10^{3} c 20^{2}-68 c 10^{5} c 20+15 C 10^{7}\right)^{7}+\left(-6 c 20^{3}+78 C 10^{2} C 20^{2}-66 C 10^{2} C 20+25 C 10^{6}\right) T^{6}$
$+\left(30 \mathrm{c} 10 \mathrm{C} 20^{2}-38 \mathrm{c} 10^{3} \mathrm{c} 20+30 \mathrm{c} 10^{5}\right)^{5} \mathrm{~T}^{5}+\left(7 \mathrm{c} 20^{2}-2 \mathrm{c} 10^{2} \mathrm{C} 20+31 \mathrm{c} 10^{4}\right) \mathrm{T}^{4}+\left(6 \mathrm{c} 10 \mathrm{c} 20+26 \mathrm{C} 10^{3}\right) \mathrm{T}^{3}+(2 \mathrm{C} 20+16$ +6 C10 T + 1
THE RELATIONS OF THE CHERNCLASSES OF a RRE:
$3 \mathrm{ClO}_{3} \mathrm{C}_{2}^{2}-4 \mathrm{ClO}^{3} \mathrm{C} 2 \mathrm{O}+\mathrm{Cla}^{5}=0$
$-c 2 a^{3}+6 c_{3} 0^{2} \mathrm{C} 20^{2}-5 \mathrm{c} 1 a^{4} \mathrm{C} 20+\mathrm{C} 10^{6}=8$
$-c 10 c 20^{3}+10 c 10^{3} c 20^{2}-6 c 10^{5} c 20+c 10^{7}=0$

```
- 2 - 6 6
```

$\mathrm{C} 20-18 \mathrm{C} 10 \mathrm{C} 2 \mathrm{O}+15 \mathrm{C} 10 \mathrm{C} 20-7 \mathrm{C} 10 \mathrm{C} 2 \mathrm{O}+\mathrm{ClO}$
GAMMA $=-S 8-17 D S 7-136 D^{2} S 6-688 D^{2} S 5-2388 D^{2} S 4-6188 D^{5} S 3-12376 D^{6} S 2-19448 D S 1+D E G-24318 D^{2}$
$R A M=S 8+16 D S 7+128 D^{2} S 6+568 D^{3} S 5+1828 D^{0} S 4+4368 D^{5} S 3+8888 D^{6} S 2+11448 D^{7} S 1+12870 D^{8}$

15

$R A M=D S 7+15 D^{2} S 6+185 D^{3} S 5+455 D^{6} S 4+1365 D^{5} S 3+3883 D^{6} S 2+5885 D^{7} S 1+6435 D^{8}$
$R A M=D^{2} S 6+14 D^{3} S 5+91 D^{4} S 4+364 D^{5} S 3+1881 D^{6} S 2+2802 D^{7} S 1+3083 D^{8}$

- 0
$R A M=D^{3} S 5+13 D^{4} S 6+78 D^{5} S 3+286 D^{6} S 2+715 D^{7} S 1^{\circ}+1287 D^{8}$
12
$=6$
$D E G=14$
(IN27) $\operatorname{GRRSS}(2,5)$;
THE CHERNPOLYNOMIAL OF GRASS $(2,5)$ IS: $18 C 30^{3}-24 C 10 C 20 C 30^{2}+4 C 10^{3} C 30^{2}+52 C 10^{2} C 20^{2} C 30-36 C 10^{4} C 20 C 30$

$+1-22 c 10^{2} c 30^{2}+56 c 10^{2} c 20^{2} c 30-12 c 10^{3} c 20 c 30+2 c 10^{5} c 30-4 c 20^{4}-48 c 10^{2} c 2 a^{3}+85 c 10^{2} c 20^{2}-57 c 10^{6} c 20^{2}$
 $T^{7}+\left(-15 c 30^{2}+30 c 10 c 20 c 30+26 c 10^{3} c 30+43 c 10^{2} c 20^{2}-84 c 10^{4} c 20+43 c 10^{6}\right)^{6} T^{6}$
$+\left(41 c 10^{2} c 30+22 c 10 c 20^{2}-63 c 10^{3} c 20+50 c 10^{5}\right)^{5}+\left(24 c 10 c 30+3 c 20^{2}-27 c 10^{2} c 20+45 c 10\right) T^{4}$

$$
3 \quad 3 \quad 2
$$

$+(6$ C $30-6$ C10 $C 20+32$ C10 $) T+17 C 10 T+6 C 10 T+1$
THE RELATIONS OF THE CHERNCLASSES OF a ARE:
$2 \mathrm{C} 10 \mathrm{C} 30+{\mathrm{C} 20^{2}}^{2}-3 \mathrm{c} 10^{2} \mathrm{C} 20+\mathrm{C} 10^{4}=$
$-2 c 2 a c 3 a+3 c 1 a^{2} c 3 a+3 c 1 a c 2 a^{2}-c 1 a^{3} c 2 a+c 1 a^{5}=8$
 2

禹

$$
\begin{aligned}
& 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { P }
\end{aligned}
$$

$$
=30^{3}-12 c 10 c 2 a c 30^{2}+18 c 10^{3} c 30^{2}-4 c 20^{3} c 30+38 c 10^{2} c 2 a^{2} c 30-38 c 10^{4} \mathrm{c} 20 \mathrm{c} 30+7 c 10^{6} \mathrm{c} 30+5 \mathrm{c} 10 \mathrm{c} 20^{4}-28 \mathrm{c} 10^{3}
$$

(IN28) GRASS $(2,6) ;$
ORE capacity exceeded (whlle requesting LIST space)
11774 msec . so far
[AK] A. B. Altman and S. L. Kleiman: "Joins of schemes, linear projections". Compositio Math., 31. pp. 309-343 (1975).
[Da] M. Dale: "Embedding-obstruction for products of non-singular projective varieties". Preprint Series, Department of Mathematics, Univ. of Bergen, Norway (1976). To appear in Math. Scand.
[Do] R. Y. Donagi: "On the geometry of Grassmanians". Duke Math. Journal, pp. 795-837 (1977).
[F] W. Fulton: "Rational Equivalence on Singular Varieties". Publ. Math. de l'IHES, No 45, 147-167.
[F-H] Fulton, W. and Hansen, J.: "A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings". Annals of Mathematica, 110 (1979) pp 159-166.
[FM] W. Fulton and R. MacPherson: "Intersecting cycles on an Algebraic Variety". In the same volume as [Kl].
[Hm 1] A. Holme: "A general embedding theorem in formal geometry". Compositio Math., 93, pp. 41-68 (1973).
[Hm 2] - " - "An embedding-obstruction for algebraic varieties" (research announcement). Bull. Amer. Math. Soc. 80 , pp. 932-934 (1974).
[Hm 3] -" - : "Embedding-obstruction for smooth, projective varieties $I^{\prime \prime}$. To appear in Advances in Mathematics.
[Hm 4] - " - : "Embedding-obstruction for singular algebraic varieties in \mathbb{P}^{N} ", Acta Mathematica, 135, pp 155-185 (1975).
[Hm 5] - " - : "Deformation and stratification of secant structure". To appear in the proceedings from a symposium on algebraic geometry, Tromsø 1977.
[Hm 6] - " - : "Introducción a la teoria de clases características en la geometría algebraica". Monografias del Instituto de las Matemáticas, UNAM, México (1978).

[Hm 7] A. Holme: "Embeddings, projective invariants and classifications". Monografias del Instituto de las Matemáticas, UNAM, México (1978).
[Hm 8] - " - "On the classification problem in projective geometry". To appear.
[Hm 9] - " - "Some computing aspects of projective geometry II. Generating varieties and admissible modifications". To appear.
[HR] - " - and J. Roberts: "Pinch-points and multiple locus of generic projections of singular varieties". Preprint Series, Department of Mathematics, University of Bergen, Norway (1976).
[Hn] R. Hartshorne: "Varieties of small codimension in projective space". Bull. Amer. Math. Soc., 80, pp.1017-1032 (1974).
[HM] G. Horrocks and D. Mumford: "A rank 2 vector bundle on \mathbb{P}^{4} with 15,000 symmetries". Topology Vol. 12, pp 63-82 (1973).
[HP] W. F. D. Hodge and D. Pedoe: Methods of Algebraic Geometry . 3 vols., Cambridge Univ. Press, London 1952.
[Jn] K. W. Johnson: "Immersion and embedding of projective varieties". Thesis, Brown University (1976).
[Kl] S. L. Kleiman: "The enumerative theory of singularities". In Real and complex singularities, P. Holm (editor). Proceedings of the Nordic Summer School. NAVF Symposium in Mathematics. Oslo august 5-25, 1976. Sijthof \& Noodhoff International Publishers, Groningen, The Netherlands 1978.
[Ln 1] A. Landman: "Examples of varieties with "Small" dual varieties". Lecture at Aarhus University, June 24, 1976.
[Ln 2] -" - "Picard-Lefschetz theory and dual varieties". Lecture at Aarhus University, June 30, 1976.
[Lk 1]
D. Laksov: "Algebraic cycles on Grassman varieties". Advances in Mathematics 9, 267-295 (1972).
[Lk 2] - " - "Some enumerative properties of secants to nonsingular projective schemes". Math. Scand. 39, pp 171-190 (1976) .
[Lk 3] - " - : "Secant bundles and Todd's formula for the double points of maps into \mathbb{P}^{n} ". Preprint M.I.T. (1976).
[Lk 4] - " - "Residual intersections and Todd's formula for the double locus of a morphism". Preprint M.I.T. (1976).
[Lx] A. Lascoux: "Clases de Chern d'un produit tensoriel". C. R. Acad. Sc., Paris, t. 286 (27 fév. 1978).
[MAC] MACSYMA Reference Manual. The Math. lab. group, MIT 1977.
[Rb 1] J. Roberts: "Generic projections of algebraic varieties". Amer. Journ. of Math., 93, pp. 191-215 (1971).
[Rb 2] - " : "The variation of critical cycles in algebraic family". Trans. Amer. Math. Soc. 168, pp. 153-164 (1972).
[Rb 3] -" - "Singularity subschemes and generic projections". Trans. Amer. Math. Soc., 212, pp. 229-268 (1975).
[Rb 4] -" - "A stratification of the dual variety. (Summary of results with indications of proofs)". Preprint (1976).
[Rb 5] - " - "Hypersurfaces with non-singular normalization and their double loci". Preprint (1977).
[Sw] H. P. F. Swinnerton-Dyer: "An enumeration of all varieties of degree $4^{\prime \prime}$. Amer. Journ. of Math., pp. 403-418 (1973).
[VI] J.-C. Vignal: Thesis, Masters degree. Department of Mathematics, University of Bergen, Bergen, Norway.
[VaWa] B. L. van der Waerden: Algebra. Heidelberger Taschenbücher. Springer Verlag 1967.

- (scer) aes-pas , a aptrantsition at asonsvba

(aren)

 (ryer) ats-rer aga tee withak 20 .nywot .toma

 (Trer) Jfituqe2y . "foof afdivo D Itent bris

[^1]
[^0]: *) The word "procedure" is used here in a less technical sense than the word "algorithm".

[^1]: araer baitut meanliga

