Department of PURE MATHEMATICS

SUB-BASES OF PLEASANT h-BASES

ERNST S. SELMER

UNIVERSITY OF BERGEN
 Bergen, Norway

SUB-BASES OF PLEASANT h-BASES
ERNST S. SELMER

ERNST S. SELMER

We assume knowledge of the "postage stamp problem", see for instance [4]. A comprehensive treatment of this problem is contained in the author's research monograph [5] (freely available on request).

A "stamp" basis (an h-basis)

$$
A_{k}=\left\{1, a_{2}, \ldots, a_{k}\right\}, 1=a_{1}<a_{2}<\ldots<a_{k},
$$

is pleasant if and only if the regular representation $n=\sum_{1}^{k} e_{i}{ }_{i} i_{i}$ has a minimal coefficient sum among all possible representations $n=\sum_{1}^{k} x_{i} a_{i}$, for all natural numbers n. Then the $h-r a n g e ~ n_{h}\left(A_{k}\right)$ equals the regular h-range $g_{h}\left(A_{k}\right)$, which is easily determined.

Let $\Lambda_{i}=\left\{1, a_{2}, \ldots, a_{i}\right\}, 2 \leqq i \leqq k$, be a "partial basis" of A_{k}. Then A_{2} is always pleasant, and Djawadi [1] gave the following criterion for pleasantness in general: Let $\langle x\rangle$ denote the smallest integer $\geqq x$, and put

$$
\begin{equation*}
a_{i}=\gamma_{i} a_{i-1}-\underbrace{\sum_{j=1}^{i-2} \beta_{j}^{(i)} a_{j}, \quad \gamma_{i}=\left\langle\frac{a_{i}}{a_{i-1}}\right\rangle}_{\underline{\text { regular by }}} . \tag{1}
\end{equation*}
$$

Let further A_{i-1} be pleasant. Then A_{i} is pleasant if and only if

$$
\begin{equation*}
\gamma_{i}>\sum_{j=1}^{i-2} \beta_{j}^{(i)} \tag{2}
\end{equation*}
$$

Djawadi's proof has been simplified by the author [5, Ch. X].
If the condition (2) is satisfied for all $i=3,4, \ldots, k$, then all partial bases A_{i} are pleasant, and we call A_{k} completely pleasant.

Zöllner [6] showed that
(3) $k \geqq 4, A_{k}$ pleasant $\Rightarrow\left\{1, a_{2}, a_{i}\right\}$ pleasant, $3 \leqq i \leqq k$.

The condition was weakened to "A ${ }_{k}$ weakly pleasant" by Kirfel [3].
In particular, a pleasant A_{k} always has a pleasant partial basis A_{3}, and a pleasant A_{4} is thus completely pleasant. For $k \geqq 5$, there are pleasant A_{k} which are not completely pleasant. For $k=5$, all such bases were determined by Djawadi [2]:

 \qquad
 $$
\begin{equation*} \left(\frac{1+1}{n+x^{2}}\right)= \tag{T} \end{equation*}
$$

 5imabole 8 a 39
CHE
Ex - कीव , है)
 3 名
θ mextaboos 9
 4- 48
 - ロud
maneld
3mathemone [d. 2timutas
1(z)
 dater 9.4
Iaity
 Jasçualq is bre : \&

 1

$$
A_{5}=\{1,2, b, b+1,2 b\}, \quad b \geqq 4
$$

(where A_{4} is non-pleasant for $b \geqq 4$).
For $k=6$, the similar bases were characterized by Zöllner [6]. On the average, probably "most" pleasant bases are completely pleasant.

Even if the complete set of conditions (2), for $i=4,5, \ldots, k$, is not always necessary for pleasantness of A_{k}, there are some cases of necessity. Djawadi writes (1) as

$$
\begin{equation*}
a_{i}+\sum_{j=1}^{i-2} \beta_{j}^{(i)} a_{j}=\gamma_{i} a_{i-1}, \tag{5}
\end{equation*}
$$

where the left hand side is a regular representation by A_{i}. If then (2) fails, this representation has a larger coefficient sum than the non-regular representation $\gamma_{i}{ }_{i-1}$, and A_{i} is then not pleasant by definition. In particular, the condition (2) for $i=k$ is thus always necessary for pleasantness of A_{k} (whether A_{k-1} is pleasant or not).

We have observed the following trivial but perhaps useful generalization: If $i<k$, and $\gamma_{i} a_{i-1}<a_{i+1}$, the left hand side of (5) is also a regular representation by the full basis A_{k}.
Hence, if

$$
\begin{equation*}
\left\langle\frac{a_{i}}{a_{i-1}}\right\rangle_{i-1}<a_{i+1} \quad(i<k), \tag{6}
\end{equation*}
$$

the condition (2) is necessary for pleasantness of A_{k}.
If $k>3$, and we remove the basis elements $a_{3}, a_{4}, \ldots, a_{k-1}$, it follows from (3) with $i=k$ that the "sub-basis" $\left\{1, a_{2}, a_{k}\right\}$ is pleasant if A_{k} is pleasant (or only weakly pleasant by [3]). We can prove the following generalization:

THEOREM. If $k \geqq 5,3 \leqq k \leqslant k-2$, and the partial bases A_{i}, $i=k, k+1, \ldots, k$, are all pleasant, then

$$
A_{k}^{(k)}=\left\{1, a_{2}, \ldots, a_{k}, a_{k}\right\}
$$

$\frac{\text { is also pleasant. If in particular }}{A^{(k)}} A_{k}$ is completely pleasant, so is $A_{k}^{(k)}$ for all k.

Before proving this, we make some comments:
(i) We must remove a 'block" a_{k+1}, ..., a_{k-1} of elements in A_{k} up to a_{k-1}. The simplest counter-example is given by the completely pleasant basis $A_{5}=\{1,2,3,5,7\}$. Removing a_{3}, we get the non-pleasant basis $\{1,2,5,7\}$.
(ii) The condition A_{i} pleasant for $\underline{a l l} i=k, k+1, \ldots, k$ is not always necessary. For instance, the Djawadi basis (4) leads to $A_{5}^{(3)}=\{1,2, b, 2 b\}$, which is pleasant by (2).
(iii) As an example where the Theorem fails when A_{i} is not pleasant for all $i=k, k+1, \ldots, k$, consider the following extension of (4):

$$
A_{6}=\left\{1,2, b, b+1,2 b, a_{6}\right\}, b \geqq 4,
$$

which is pleasant if $a_{6}>2 b$ is chosen such that (2) holds for $i=6$. However, $A_{6}^{(4)}=\left\{1,2, b, b+1, a_{6}\right\}$ is not of the form (4), and is consequently not pleasant since the partial basis A_{4} is not.

To prove the Theorem, it will clearly suffice to use repeated removal of the next largest element, hence to show that

$$
\begin{equation*}
A_{k}^{(k-2)}=\left\{1, a_{2}, \ldots, a_{k-2}, a_{k}\right\} \tag{7}
\end{equation*}
$$

is pleasant. For this purpose, we substitute a_{k-1} from (1) with $i=k-1$ into (1) with $i=k$, and get a_{k} expressed by A_{k-2} as

$$
\begin{align*}
a_{k}=\left(\gamma_{k} \gamma_{k-1}\right. & \left.-\beta_{k-2}^{(k)}\right) a_{k-2}-\sum_{j=1}^{k-3}\left(\gamma_{k} \beta_{j}^{(k-1)}+\beta_{j}^{(k)}\right) a_{j} \\
& =\tilde{\gamma} a_{k-2}-\sum_{j=1}^{k-3} \tilde{\beta}_{j} a_{j}(\text { say }) . \tag{8}
\end{align*}
$$

Using (2) for $i=k-1$ and $i=k$, this gives

$$
\begin{aligned}
\tilde{\gamma}-\sum_{j=1}^{k-3} \tilde{\beta}_{j} & =\gamma_{k}\left(\gamma_{k-1}-\sum_{j=1}^{k-3} \beta_{j}^{(k-1)}\right)-\sum_{j=1}^{k-2} \beta_{j}^{(k)} \\
& \geqq \gamma_{k}-\sum_{j=1}^{k-2} \beta_{j}^{(k)}>0,
\end{aligned}
$$

in analogy with (2). However, we do not know if (8) corresponds to the form (1) for the basis (7), where we now need

$$
\begin{equation*}
a_{k}=\gamma a_{k-2}-\underbrace{\sum_{j=1}^{k-3} \beta_{k-3} a_{j}}_{\text {regular by }}, \quad \gamma=\left\langle\frac{a_{k}}{a_{k-2}}\right\rangle . \tag{9}
\end{equation*}
$$

(S) yd trateraty et do infor

(18)
ot

(HA) 2o moferesixa

 $20 n-2:$

ender

$$
\begin{aligned}
& \text { N. } 2 \text { ex }
\end{aligned}
$$

Equating the two expressions for a_{k}, we get

$$
\tilde{\gamma}_{k-2}+\sum_{j=1}^{k-3} \beta_{j} a_{j}=\gamma a_{k-2}+\sum_{j=1}^{k-3} \tilde{\beta}_{j} a_{j} .
$$

The left hand side is a regular representation by the pleasant basis A_{k-2}, and thus has a minimal coefficient sum:

$$
\begin{array}{r}
\tilde{\gamma}+\sum_{j=1}^{k-3} \beta_{j} \leqq \gamma+\sum_{j=1}^{k-3} \tilde{\beta}_{j} \\
\gamma-\sum_{j=1}^{k-3} \beta_{j} \geqq \tilde{\gamma}-\sum_{j=1}^{k-3} \tilde{\beta}_{j}>0 .
\end{array}
$$

This shows that (2) is satisfied for the form (9). Since A_{k-2} is pleasant, so is also the basis (7), and the Theorem is proved.

REFERENCES

[1] M. Djawadi, Kennzeichnung von Mengen mit einer additiven Minimaleigenschaft, J. reine angew. Math. 311/312 (1979), pp. 307-314.
[2] M. Djawadi, Charakterisierung einer Klasse fünfelementiger Mengen, Mainzer Seminarberichte in additiver Zahlentheorie 1 (1983), pp. 72-74.
[3] C. Kirfel and E. S. Selmer, Regular h-ranges and weakly pleasant h-bases, Math. Scand. 58 (1986), pp. xxx.
[4] E. S. Selmer, On the postage stamp problem with three stamp denominations, Math. Scand. 47 (1980), pp. 29-71.
[5] E. S. Selmer, The local postage stamp problem I, II, research monograph, Dept. of Math., Univ. of Bergen, Norway, 1986 (freely available on request).
[6] J.-Zöllner, Uber angenehme Mengen, Mainzer Seminarberichte in additiver Zahlentheorie 1 (1983), pp. 53-71.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF BERGEN
N-5000 Bergen, Norway
\qquad

E- srt T5 E4got 8

$$
\begin{aligned}
& x_{2}^{2}=\frac{2}{2}+\frac{1}{2}
\end{aligned}
$$

830viana 218

2
2

25-5y -99 , fagp

(tequper mo pidarkym ylapry

