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SUMMARY

We prove the existence and uniqueness for a quasilinear Skorohod stochastic differential
equation with an integral type boundary condition. The initial value may depend on the
values of the process at any instant later than a fixed time e. The result is a direct extension
of a result by Buckdahn and Nualart on Skorohod equations with boundary conditions.
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1 Introduction

The techniques of the anticipating calculus in [NZB6], [NPBB] and others have made
it possible to study anticipating stochastic differential equations. The direct exten
sion of the Ito-stochastic differential equations are the Skorohod equations using the
nonadapted integral originating from [Sko7s]. These have been closely studied in the
papers by Buckdahn, [Buc9l] and [Buc92]. In particular, quasilinear SDE's with the
Skorohod integral are studied in [BucBB]. Allowing possibly anticipating coefficients and
initial values opens for a lot of new problems previously only considered for determinis
tic differential equations. For instance, for the quasilinear equation with the Skorohod
integral

the boundary condition

has been studied in [BN93] and existence and uniqueness of a solution have been proved
also for nondeterministic b and i/;. It is clear that this type of boundary condition
requires us to consider nonadapted solutions even in the case where b is adapted and
i/> deterministic. Boundary conditions for Stratonovich equations are studied in [NP9l],
[OPB9] and [Don9l] and conditions for Markov solutions are derived. In [BN93] it is
shown that if, in the Skorohod case, both b and if) are linear and deterministic the
solution can be given an explicit form from which it is clear that the solution is Markov.
But at the same time they give an example where one may also have Markov solutions
when 6 is nonlinear, at least in the case where b is random. This indicates that it may
be hard to find a natural necessary and sufficient condition for Markovian solutions in
the Skorohod case.

In the present note wc would like to generalize the existence and uniqueness result
for the above equation to existence and uniqueness for the same equation but with the
more general condition that

where / is a signed Borel measure, E a Borel subset of [e, 1] (for some e > 0) and g a
given measurable function.

One motivation for this more general condition is that since it is not clear whether X
has continuous paths in general (see, however, theorem 4.1 of [BN93] ) it may be more
natural with a condition that takes into consideration a larger part of the trajectory
rather than just the value of X\. And the condition Xo — i/>{Xi) can of course still be
recovered by letting / be concentrated at s — 1. Wc will prove existence and uniqueness
for an equation with this kind of boundary condition. It will be necessary with the
stronger nondegeneracy condition JJ a\ ds > 0 which can be relaxed to /J <j2s ds > 0
when / is concentrated at s = 1.

Xt =XQ + f ba (Xs ) ds +/' (7aXs 6W3Jo Jo

Xo = V>(*i)

Xo(w) = / g[s,(jj,X8 (u)] dl(s)JE



2 Solutions of equations with integral conditions

We will now consider existence and uniqueness of the equation

(2.1)

(2.2)

Our result is an extension of theorem 3.3 in [BN93] and we will follow their main lines
of proof. But the first parts of the proof will need several modifications, mainly in
establishing integrability for certain terms. The reader should consult [BN93] for details
when necessary.

We will in the following use the notation / = [o, l] and E a Borel subset of [e, 1] for
some e > 0. Our basic probability space will be the classical Wiener space. See [NZB6],
[NPBB] and [Nua94] for the elements of stochastic calculus necessary to formulate and
solve our problems.

Let us first list the assumptions.
1

2. 6is a measurable function on /xfi x M such that, for a.a. w, the following holds:

where 7 is a deterministic function with /J 7^ ds < T.

3. gis a measurable function on /x Q x R such that, for a.a. u>,

where k and c are deterministic functions with fE ks d\l\(s) < K, fE cs d\l\(s) < C
and |/| denotes the total variation of /.

Note that the conditions for b are as in [BN93] but for er we need to know not only
that \a\] d= Jo1 a] ds > 0 but in fact that /0£ a] ds >0.

In [BucBB] it is shown that in the case where Xo € L°°(Q) the solution Xt to the
equation 2.1 can be written in the form

(2.4)

Here, Zt (w,x) is the solution (for fixed w) to the equation

XtM = XoM+ ft ba (w,Xa (u))d3+ f as Xs {u)BWsJo Jo

with the integral condition

*oM= [ g[s,«>,X.(Lj)]dl(3)

/•C
er deterministic, a 6 L2(I) and / <j\dt > 0Jo

|&t(u>, x) - bt (u, y)\<7t\x- y\ for aIH 6/, x,y £R

\bt(u,Q)\ <rforall*€/

\g{t,u,x)-g(t,u>,y)\< kt\x-y\ for all* GE, x,y GR (2.3)

\g(t,u,O)\ <etct for all* € £

Xt = Zt (At ,Xo(At ))Lt

Zt (u>,x) = x+ f L-\TsLj)bs [Tsuj,Ls (TsLo)Zs (uj,x)]dsJo
2



and Lt = exp (/J aT SWT - \ /0* a2r dr) . Tt and At are defined as the following absolutely
continuous transformations from 0 to fi:

It is then the case that X € L2(I x fl) and l[Ott]aX € Dom 6 for all i. But as long as
g is not bounded, wc cannot assume Xq to be bounded and thus wc have to consider
solutions X € np>iLfoc (7 x0) for which aX G (Dom 8)loe (see definition 2.2 later).

Wc have the following estimates for Z and g [BN93]:

(2.5)

(2.6)

Wc are now ready to prove the existence and uniqueness of an appropriate initial
condition Xq.

Proposition 2.1 Let 6, <j and g satisfy the conditions 1-3 on page 2. Then there exists
a unique random variable Xq which solves the equation

(2.8)

Proof.
Let Vi, Y2be stochastic variables and write

if the integrals exist. Then, by using 2.3 and 2.5 wc have

(2.9)

and by 2.6 and 2.7 wc have

(2.10)

where

' <jT dr
o

ytA-
AtLJ = LJ — I <jT dr.

Jo

Zt {x) - Zt {y)\ < eTt \x - y

Zt (u>,x)\ <eTt (\x\ + r£ L:\T4j) <b)
where Tt = /0* ")a ds, and

y(t,u,x)\<kt\x\ + et. (2.7)

Xo (u>) = f g[s,Lj,Za (AsLo,X0 (Aauj))La {uj)] dl(s)JE

and for which
sup sup |Xo (v45l •• • ABk )\ <oo a.s..
k>o «i-sfe €/

WM = / g[s,Lj,Z.(A+>,Yi (A.»))L.(u>)] d\l\(s), i = 1,2

WiH - W2 (u>)\ <er f ks Ls \YX (A*>) - Y 2(Aslj)\ d\l\(s)J E

Wi(u>)\ <er f U.H|^(^)| d\l\(s) + M(u>), i = 1,2

M(u;) = rer / ksLs (u) f L~\u) du d\l\(s) +C.Je Jo
Observe that

sup sup M(ASl •• • ASk u) < M{ijj) a.e..
fc>o s\- -*fc€/
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Wc now define the sequence Xq recursively by

(2.11)

Wc must first show that Xq\lo) is well defined, i.e. that the integral on the right hand
side exists as a random variable. Clearly, the integrand is, for a.a. 10, a measurable
function of s. Assume, by induction, that

hence Xq (lo) is well defined for all n and a.a. 10.
The next step is then to establish the existence of the stochastic variable Xo as the limit
of Xq. From iterating 2.11 and using 2.9 wc can see that

Now, according to 2.12, supfc>o sup5i ...sfcG/ Xq(ASi  •  ASk ) <oo and it follows that,

aJ0)M = o

*o"+1V) = f gU,^Zs (A^,xt\A,uj))La (uj)} dl(s).%) ilt

sup sup XJin\A3l •• • Aak Lj)\ <oo

Then, from 2.10, wc see that

n+l) M| <er / k.L.(u>) Xt] (Aau;) d\l\(s) + M(u)

and from this it is clear that

sup sup xt+1) (ASl ---ASk Lj)\ < er / k.La (u>) d\l\(s)k>o si—sk ei ' Je

x sup sup xin\A«".A.ku))\ + M(u>),(2.12)k>o si—sk €l '

xt+1) -xt>\ < fjk^lxf^^-xi-Vi^dWM

< e"T i-L'h.{k'>L.AK--A.i.l )}Jbi J E •  >
x \xg\A*  • • A*.) - X^0) (A,,    A,n )\ d\l\(sn )    <fl/|(j,)
f f n rSiAsj

$   LTlik.M^v - E / °l dT <*l*l(*.)-"«fl'l(*i)
JE JE J=l l<i<j<n J 0

xenr sup sup x£) {ASl ...ASk )k>o si—sk el

Since /os' S} a^ dr > /oe a2r dr it follows that

v(n+l) v(n) nr [ n ( U ~l ) f 2J 1
A^ -Ai < enl exp —- / a;dT\I Jo

x{ / ksLs d\l\(s)Y sup sup htf^.-.yl.J

a.s.,

sup sup x(n) (ASl ---ASk )-Xo (ASl -.-ASk )\->0k>o si—sk £l
4
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as n— oo for some random variable Xo with supfc>o supJr .. Sfc€/ |Xo(A5l •• • ASk )\ < 00.
Then it should be verified that Xo really satisfies the equation 2.8. But, when letting

wc see, by using the estimate 2.9, that the right hand side converges to
fE g [a, w, Za (Asu,X0 (Asuj))Ls (u)) dl{s).

It remains to prove the uniqueness of the solution Xq. Let Yo be another solution
with supfc>0 sup51 ...Sfc€/ |lo(^ai •• • A,J| < 00. By again using 2.9 repeatedly wc have

< enr exp _^_Aj\2 dT {jE k,La d\l\(B)Y
x sup sup \X0(A8l •• • Aak ) - Y 0(Aai •• • ASk )\k>o «i-«fe€/

and the right hand side approaches zero as n —> 00.

Let us now proceed to the main result. Håving proved the existence of Xq one would
of course like to prove that Xt given by 2.4 is a solution to the equation which satisfies
the given integral condition. However, since Xo may be unbounded it is necessary
to introduce the localized domain (Dom 6)ioc for the Skorohod integral. Consider the
following conditions for a sequence of random variables Fn :

Fn e B 1' 2 for all n

{Fn =I}T fi a.s.
\Fn\ £ 1 a.s. for all n

(2.13)

Deflnition 2.2 Assume that the measurable process u verifies /q1 |tøt | p cfø < oo a.s. for
some p > 2.

If there exists a sequence Fn satisfying the conditions 2.13 with
Jo1 I DtFn \ 2 dt e L°°(n) and Fn u € LP(I x ft) for all n, wc say that u 6 L{OC(I x Q).

If there exists a sequence Fn satisfying the conditions 2.13 with

E |/0 \utDtFn \ dt\ < oo and l[o>t]Fn ii € Dom 8 for all n and t £ I , wc say that
u € (Dom S)ioc .

Theorem 2.3 Let b, a and g satisfy the assumptions 1-3 on page 2. The process Xt
defined by 2.4 is a solution to equation 2.1 with the integral condition 2.2 for which
X £ np>2jCfoc(/xQ) andcrX 6 (Dom 6)\oc , it is unique among the elements ofLioc(IxQ)
with aX £ (Dom 6)\oc provided that få < 00.

Proof. Wc can find an upper bound for Xo by

n —» oo in

X<r+1) (u>) =f g \s^Zs {As^Xin\Asuj))La {u)\ dl(s),

sup sup \X0(A3l  • • ASk ) - YO (AS 1••  ASk )\
k>o »i—sfc€/



*oi < £K+l) -4*>

Let us denote the leist sum on the right by ol\ . Wc see that

Define now the localizing sequence Fn as Fn = f(± fE ka La d\l\(s)) where / G Q°(l)
is bounded by 1, /(x) = 0 when |x| > 2 and f(x) = 1 when \x\ < 1. It is now
clear that Fn is a localizing sequence for X € np>2 Xfoc (/ x 0) if only wc can show that
fE k 9La d\l\{s) € B 1' 2 and that Dt fE kaLa d\l\(s) = <rt JE l(t < s)ka Ls d\l\(s) since the last
equality implies that $ |A^n|2 dt e L°°(ft). To this end wc approximate the integral
Se ksLs d\l\(s) by integrals of step functions and then use lemma 1.2.3 of [Nua94]:

Lemma 2.4 Assume that the sequence {Gn } C ID)1 '2 converges to Gin L2 (Q) and that

supE f \Dt Gn \ 2 dt< 00.n JO

Then G G B 1' 2 and DGn -> DG weakly in L2 (I x fi).

Define

where Bo = {o}, Bi = ((i — l)/n, i/n], i = 1, . . . , n. By the continuity of Lwe have the
convergence

ka Lsn\u;) -* Å:s Za (a;)

for all 5, a.s. and, by the dominated convergence theorem, this has the consequence that

Jfc=O

< fi^-pflfajOtøM.*))'
x sup sup \X^\ASl --'ASk )k>o ai -sker

< fyr exp(-^-il f aids] {f k.L.d\l\(>)) k *M.fc=o \ i Jo )Ub >

X^^LtJ^ + Y J*L-a l dsy

t=o

/ ksL^ d\l\(s) -+ f k.L.d\l\(s) in L2 (n).JE JE

Now, to apply lemma 2.4 wc see that fE ksL^ d\l\(s) € P 1'2 ,

Dt ( [k.LW d\l\(s)) = Dt (J2Li,n [ k.d\l\(3))

= at J2l{t < -}Li/n f k.d\l\(s)

= "•« i*. fÉi{* < rf|'l(»)L=o n
6
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which converges in L2 (I xQ) (strongly) to at fE l(t < s)k3 Ls d\l\(s) and furthermore
that

Hence wc have proved that fE ks La d\l\(s) € B 1' 2 .
The rest of the proof is identical to the proof of theorem 3.3 in [BN93] and will not

be included. D
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