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1. Introduction.

The theory of bilinear scalar time series has been considered in

a number of papers recently (cf. in particular Granger and Andersen

(1978), Subba Rao (1981) and Bhaskara Rao et al (1983) and references

therein). To our knowledge no theory, not even a definition, has been

given in the multivariate case.

In the present paper we propose a definition of a multiple bilinear

model. This definition has been motivated by three main concerns.

Firstly, the definition should contain the most general scalar models

as special cases. Secondly, one should be able to prove existence

of multiple bilinear models håving specified properties such as strict

and/or second order stationarity, and in the second order case one

would like to obtain information about the covariance structure.

Final ly, one should be able to obtain least squares or maximum likeli

hood estimates. In the following we wi11 concentrate on the first two

objectives. We plan to pursue the estimation problem in a separate
publication.

2. A multiple bilinear model.

Let (X(t) , t-0,±1,...} be a real scalar stochastic process

defined on a probability space tø.F.p) . The process (X(t)l isThe process (X(t)} is said

to be generated by a bilinear model (cf. Subba Rao 1981) if X(t)

satisfies the difference equation

(2.1)x(t) + J a 1 X(t-i) - e(t) + J b n e(t-i)+ £ £ c lj X(t-i )e(t-j)
i=l i=1 j=1

forevery t-0,±1..... Here {e(t) .t = 0,±1,...} is a sequence of





2

independent identically distributed random variables on (ft,F,p) with

E{e( t)} = 0 and E{e 2 (t)} =a2< oo s while (a 1 ,1<i < p} {b 1' ,

1 i q} and {c , 1 i< r , 1 j< s} are constants.

Now, let (X(t) [X x (t) X n (t)] T . t = 0,±1,...} be an n-dimen

sional vector process. An n-dimensional general ization of (2.1) is

obtained by requiring the kth component, 1<k<n , of {X(t)} to be

given for each t by

(2.2)

where (e(t) - [ex (t),— » e n (t)] ,t = 0,±1,...} is a sequence of

independent identically distributed vector random variables with

E(e(t)} = 0 and E{e(t) e T (t) }= G , and where {a.j } , } and
.j j k u k u

C are cons Fants, the range of indices being obvious from (2.2).

By introducing matrix notation and the tensor product denoted

by ® we can write (2.2) in vector form as

(2.3)

9re a ' a 9 ~1“ P 9 anc* ' - (bj| u ) , 1<i < q , are nx n

matrices, whereas d 1J , 1<i<r, 1<j<s, is an nx n 2 matrix,

where the kth row is obtained by vectorizing the nx n matrix

C k “ c kuv * 1 , where u is row index and v is column

index; i.e.

Xk(t)+ Ji a ku X u (t - i) = e k Ct> - ,f 1

r s n n

+ -KX 1 i c kuv X u (t ' i)ev (t -j) -1=1 j=1 u=1 v=1 Kuv u v

x(t) +l a 1 X(t-i)-e(t) + £ b n e(t-i)+ J £ d 1J {e(t-j) ø X(t-i)}
1=1 i=1 i=1 j=1
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(2.4)

where in general vec(a) is the column vector obtained by stacking

the colurnns of a matrix a one on top of another in order from left

to right.

For subsequent discussions it will also be convenient to write

(2.3) in state space form (cf. Priestley 1980). We will then assume

that r= p and s= q , and This is not an essential restriction,

since it can be ful f illed by introducing a suitable number of zero

matrices. We introduce the state vector Y(t) defined by Y T (t) =

[X (t),...,X (t-p+1),e (t),...,e (t-q+1)] . in the following the

symbol 0 will be used to denote a matrix whose elements are all zero.

The dimensions of this zero-matrix will be clear from the context. The

notation I m will be used for the identity matrix of order m.

With this notation it is not difficult to verify using (2.3) that

{Y(t)} satisfies the equation

(2.5)

Here F and A are n(p+q)x n and n(p+q) x n(p+q) matrices given by

(vec (cjJ) } T

d ij = ;

{vec (c^)} T

Y(t) - Fe(t) + fl Y(t-1) + lCj (e(t-j) ® } Y < t ' 1 )j *
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The matrices ,1< j < q have dimensions n(p+q) xn2 (p+q) and
are given by

(2.7)

(2.8)

n 2 (p+q)

n | ... C J
C. = 1 J L

J f
n(p+q-1) < 0

where , , are the nxn(p+q) matrices given by

Wlth c kv ’ 1 = k = n , being nx p matrices defined by



«
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c kuv ,^-u = n ? where uis row Index and ii$
c J -

ky

column Index.

In the sequel we wi11 make a distinction between superdiagonal models

with d 1J =0 for i>j in (2.3) and subdiagonal models with d ij’=0 for i< j.

(Note that our definitions are different from Granger and Anderson 1978.)

Subdiagonal models are easier to handle when it comes to questions of

stationary Solutions and computation of covariances, and we wi11 be able to

prove quite a general result for these models in Section 4. However, we start

out by a somewhat special model that is neither sub- nor superdiagonal.

3. A simple bil i near model

If we look at the special case of (2.5) where C =0 except for
. , JJ = k , we obtain

(3.1)

where for ease of notation we have omitted the subscript on C k _ This

corresponds to a model where d lj in (2.3) is non-zero for i = 1,...,r;

j=k only. We wi11 look at the model (3.1) under the range of k-values

Osksq , where it should be noted that k= 0 is not included in (2.5).

We use p(a) to denote the spectral radius of amatrix a and F e to

denote the cr-algebra generated by (e(s) , s<t} .

Let {e(t) . t = 0,±1....} be a sequence of independent

identically distributed vector random variables defined on the probability

space (n,F,P) such that E{e(t)}=0 and E{e(t)e T (t)} =G . Let F

Y(t) - Fe(t) +AY(t-1) + Cfe(t-k) ® I n ( p+q )}Y( t-1)

' ' ana h|e(tje (tj) = G . Let F ,

A and Cbeas in (2.6) and (2.7) and H = E[{e(t) * In(p+q) f @ {e (t) 8
J n(p+q)f] *
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Then i f

(3.2)

there exists a unique (in almost sure sense) strictly stationary -

measurable solution to (3.1). This solution is given by

(3.3)

where the expression on the right of(3.3) converges absolutely almost

surely as well as in the mean for every fixed t .

Proof; The proof is patterned after a similar proof in the scalar case

(cf. Bhaskara Rao et al 1983, pp 99-102) and therefore only the main steps

will be indicated. The crucial point is the use of a well-known result in

probability theory (Chung 1974, p.42) according to which ZX . converges
j J

absolutely almost surely if Zt(|X.()<co for a sequence of random
j 3

variables | .

We denote by the ith component of a vector a and by (b).. .

the element in row i and column j of a matrix b . Moreover we omit

the subscript n(p+q) on the identity matrix. We have, using independence

of the e(t) ‘s , that for j> k

(3,4)

p{(A øA)+ (C ø C)H} =A < 1

Y( t) Fe(t)+ [A + C{e(t-k-r+1) 0 I n ( p+q )}] F e(t-j)

E ( 1 t A + C{e(t-k-r+1) ® I}jFe(t-j)}. |j
r n(p+q) j-k

= E I I fH [ A+C{e(t-k-r+1) ø I}]). •L s=1 r=1 is

, J .
( n [A + C{e(t-k-r+1) ø I}]Fe(t-j)) |l
r=j-k+1 s J

n(p+q) f j-k
* I E |(n [ A + C{e(t-k-r+1) ø I}]] | .

s=1 L r=l is J

E {l( It [ A +C{e(t-k-r+1) ø I}]Fe(t-j)] |1
L r=j-k+1 s J
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Multiplying out in the last expectation and using the fact that

only the first and the last factor are dependent, it is seen that typi

cal ly we get terms of type

(3. 5)

Since second moments exist and since k is fixed, it follows that there

is a constant K such that

(3.6)

The first expectation in the last expression of (3.4) is treated exactly as

in the corresponding scalar case (Bhaskara Rao et al pp. 100-101) and
we obtain

(3.7)

where K 1 is a constant. Since A< 1 , the absolute almost sure con

vergence and the convergence in the mean of the infinite series in (3.3)

follows from the quoted result in Chungs book, and thus Y(t) defined

by (3.3) is well-defined. It is easy to check that (Y(t), t=0,±1 9 ...}

is strictly stationary and that it defines a solution of (3.1).

Conversely if (Y(t), t= 0 ,±1,...} isa solution of

(3.1), then by repeated application of (3.1) we have

9

r k
E | ei (t-j) n {e. (t-j + l-r) }e. (t-j)|

L i r=2 r 1 k+l J

S [max E(|e i (t)|}] k - 1 . Ef |e. (t-j)e.
1Si<n n i 1 k+l

E {l( I [ A +C{e(t-k-r+1) ® I}] Fe(t-j)] |1 < KL r=j-k+l si

E(|( n [A + C{e(t-k-r+1) 0 I}] Fe(t-j)).|^

K* n(p+q)[p{ (AøA) +(C ø k ) /2 = K'n(p+q)A^' k^2
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m-1 j
V(t) = Fe(t) + l n [ A+C{e(t-k-r+1) 8 I}1 Fe(t-j)

j=1 r=1

from which it can be shown that almost surely Y(t) must be given by (3.3)

using identical arguments to those of Bhaskara Rao et al (1983). ||

A corresponding solution to (2.3) is obtained from Y(t) of (3.3)

by taking the n first components. In the case where n = k = 1, q = o our

result degenerates to the theorem of Section 3 of Bhaskara Rao et al (1983)

4. A general subdiagonal model

Alternatively we could have started with a direct multivariate generali

zation of the equation (1.3) of Bhaskara Rao et al (1981) extended with a

linear MA component. Working with (2.5) has the advantage that the same

techmque can be used as in the preceding theorem. Moreover it enables

us to State the solution in explicit form and to prove its uniqueness.

However, the condition for existence of a stationary solution is most

easily stated in terms of a representation generalizing (1.3) of Bhaskara

Rao et al. At the end of this section we will comment more closely on the

connection between the two representations and show how the result of

Bhaskara Rao et al comes out as a special case

C kuv 0 for 1 in (2.2). This means that the block matrices C JV 5

isvsn, composing the upper block row of C 1< j < q , have thej
structure

+ I [A + C{e(t-k-r+1) ø I}] Y (t-m)r=1 '

We choose to work with the State space representation (2.5).

The model we will consider is the general subdiagonal case with
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n(j-1) n(p-j-fl) nq
f- z ''“N r ~ v

c v =n< | 0 Rj 0 ! (4.1)

is a n x matrix whose detailed structure need not

be specified. The following lemma is used in the proof of the main theorem.

Lemma 4.1: Let the matrices A and C. be as defined in (2.6) and (2.7),

and let I= I , .
n(p+q) . Then for a subdiaoonal model with c,1J =0 forkuv

1<j in (2.2) we have for arbitrary integers m and r

(4.2)

Proof: Using the definition of C. and the subdiagonali ty property

(4.1) it is not difficult to show that

(4.3)

where

n(i -1) n(p-i +1) nq

0 (4.4)

C-j {e(t-m) 0 I}A k C .{e(t-r) 01} = 0\J

for k+2< i < q , and 0 k<q - 2

n(p+q)

n l S.
C.{e(t-m) øI} = i 1

n(p+q-1)| o

n
IR! ® e (t-m) 0

v=1 v
S. = n

and it follows at once that (4.2) holds for k= 0.

Us 1ng (4.3), (4.4) and the definition of A it is not difficult to

show that A kCjje(t-r) 8 1} has non-zero elements only in its first
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7)

(k+1)n rows. On the other hand for i >k+2 , the matrix C i (e(t-r) ø1}

has zeros in its first (k+l)n columns and (4.2) follows for 1<k^q-2.

We can now state the main theorem.

—heorem * » t - 0,±1 ,...} be a sequence of independent

identically distributed random variables defined on the probability space

(S2.F.P) such that E{e(t)} = 0 and E{e(t)e T (t)} =G . Let F, A and

Cj , 1SjS q. be as in (2.6), (2.7) and (2.8) with =0 for i< j

and let H = E[(e(t) øln(p+q) } « fe(t) øln(p+q) f], Moreover, let

Fj , 1SjSq be the n'(p+q)‘ x n 2 (p+q) 2 matrices defined by

(4

where A° 1 n (p+q) ’ and let Lbe the 0 n2 {P+0) 2 x qn 2 (p+q) 2 matrix defined
by r
y r, r o r 1

l = 12 q

, J (q-1)n 2 (p+q) 2 0 _
(4

Then if p(L) = A < 1, there exists a unique (in almost sure sense) F®

measurable solution to (2.5). This solution is given by

(4.

where the expression on the right of (4.7) converges absolutely almost

surely as well as in the mean for every fixed t.

—-oof: The same basic pri nei ple is used as in the proof of Theorem 3.1.

Again we write I for I ,
n (P+q)'

10

r 2 = A® A + (C 1 0 C )H
j-1 • • .

r j = J { ( aJ 1(: i) ®C.} H (A 1 ~ 1 ø A 3'" 1 ) + (c. ®C . )H(A 3 ” 1 ø A 3 ' 1 )i _ 1 <j J
j-1 . . .

+ .^ {cj 0 (AJ ’ 1 C.)}H(AJ ' 1 ø A 1 " 1 ) 2<j < q

æ J q

V(t) - Fe(t) + + ø I n(p+q) }]Fe(t-j)
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The main task is thus to establish the convergence of

“ J q
.Z E(l( n [A + l C.{e(t-i-r+1) 0 I}]Fe(t-j)). ()J=1 r=1 i=1 1 (4.8)

for an arbitrary component k, 1 < k <n(p+q), under the stated conditions

To this end let g^ t be the n(p+q)xn tnatrix defined by

(4.9)

From this it is seen that gj>t = gj>t {e(t-1).... >e {t-j-q+l)} contains at

most first order powers of any e(t-k), 1< k< j +q-i. and due to the indepen

dence of the e(t)'s it follows that gj>(. is square integrable. Let
*^en 15 easily seen that

(4.11)

(4.12)

where we do not get dependence on t due to the strict stationarity of {e(t)}
We introduce

J q
9- t = n [A + I C.(e(t-i-r+1) ø I}]F

r=1 i=l 1

Then using Lemma 4.1 successively we have for j> q+1

9j)t = [A + 8 I}] g..^

[A - Mett-1) S + .l2 C i^« n A9j . 2jt _ 2

[A + Cj{e(t-1) 0 I}]g + j C.{e{t-i) e1}A1~ 1 g . (4.10)1-C J • 5 I

E{i(9J’ t)k|} S ( i<s<n Et{(e(t -j)^2] -J1 E[{ (9j st ) ks }2 ’) i

Since the first factor on the right hand side is bounded by a constant,

smce - (9j jt 0 ’1t suff ices to evaluate

E(gj,t 0 gjtt ) =Mj >

° 1= A + C i {e ( t ' 1 ) ® 1} 9j-1,t-1 and D i= C f fe(t-i) ø . . (4.13)J * 5  

f0r 25 i£ q> SUCh that 9j,t « 9j.t =(iV« (l V by (4.10). We cani=1 i=1
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now use the same technique as in Bhaskara Rao et al (1983, pp.108-109)

and obtain after some computation

(4.14)

h j
zj - (4.15)

and where L is defined in (4,6). Combining (4,11), (4.12), (4.14) and

(4.15), it follows that there exists a constant K such that

= , and since p(L) =A < 1 this guarantees

the convergence of the infinite series in (4.8) and it follows that the

expression on the right hand side of (4.7) is wel1-defined, the convergence

being absolute almost sure and in the mean. As for Theorem 3.1 it is easy

to check that (Y(t), t= 0, ±1,...} is strictly stationary and that it

defines a solution of (2.5), and that the first n components constitute

a solution of (2.3), both being valid under the subdiagonali ty assumption.

There is an alternative formulation of the spectral radius condition

of Theorem 4.1 which is easier to compare to the one given in the scalar

case in Bhaskara Rao et al (1983, Theorem p.106).

(4.16)

Z. = LZ. , ,J J-1 ;

where Zj is the qn 2 (p+q) 2*n 2 matrix given by

Conversely if (Y(t), t= 0, ±1,.,.} is an solution of

(2.5), then using the same technique as in the proof of Theorem 3.1, it

can be shown that almost surely Y(t) must be given by (4.7).||

Let . . x
n(p-jtl) n j-1) nq
r~~ > r- rA

B v = n{ [ K 0 0 ]

with rJ as in (4.1) and let
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(4.17)

defining equation (2.5) can be

(4.18)

whose scalar version is similar but not quite the same as equation (1.3) in

Bhaskara Rao et al (1983). We have the following lemma.

(4.19)

Proof. The lemma is trivial for i-1 since From the definition

(4.20)

C l-{e(t-k) 0 1} is depicted in

(4.3) and (4.4). Similarly we get

(4.21)

n 2 (p+q)
r A >

n {[ < gJn ]B . = 1

n(p+q-1) |l 0

In terms of the B-, 1 < j <q, theu
written as

q
Y (t) = Fe(t) + AY(t-l) + l B (e(t-j) ø Y(t-j)}

j=1 J

Lemma 4 - 2 : Let A, C. and B i be as defined in (2.6),(2.7) and (4.17) and let

! n(p+q) = I- Then for arbitrary integers t and k, and 1 < i < q

C i (e(t-k) ø I}A 1 " 1 = B i (e(t-k) 01}

of Ain (2.6) it follows that A 1 " 1 ,2<i < q, has the form

r r -i
n(i-1) | U V

A i-i = n(p" i+1) { 0 0
n(i-1) jo 0

n(q-i+1) \ 0 i , . x
1 L n(q-i+l) 0 J

where U and V are n(i-1)xnp and n(i-l)xnq matrices whose detailed

structure need not be specified. The matrix C.(eft-k) 0 1} is deoic

njp+q)

B i {e(t-k) 81}= n | Ti

n(p+q-1)j l 0
where





14

(4.22)

with as in (4.1). Combining (4,3), (4.4) and (4.20)-(4.22) yields the
conclusion of the lemma. II

—orem 4 - 2 : The s pectra1 radius condition p(L) < 1 for existence of a

solution stated in Theorem 4.1 can be rephrased in terms of the matrices

Bj» 1=j = P» defined in (4.16) and (4.17) since the matrices T., 1<j < q,vJ
given in (4.5) can be expressed as

f(noofj_ For j-1 there is nothing to prove,

of I\ as given in (4.5), namely

E[{(A J" C.) ® Cj)[{e(t) ø1} ® (e(t) ø DjfA 1 øAJ

Using well known properties of the tensor product this equals

(4.24)

(4.25)

which by Lemma 4.2 and properties of the tensor product, reduces to

E[[AJ ‘ 1 B 1 {e(t) « I}] « [ Bj {e(t) 8 I}]] = {(AJ " i B ) ® B.}H. (4.26)

This is the corresponding typical term of (4.23). The other terms are

treated similarly. ||

n (p-i+1) n(1-1) nq

r r n . X x>—

T i = n IR> e (t-k) 0 0 ]L L V=1 V V J

r l = (A 0A) t (B ] ø B j )H
j-l j_ 1

rj = tf(J/ V ® Bj> + fBj ® Bj} + {Bj ø 2SjSq (4,23)

For j=1 there is nothing to prove. For j22 we look at a typical term

{(AJ ' 1 C.) ø C.lHfA 1'' 1 ø Aj ‘ 1 )u

E[[[AJ 1 c i (e(t) ø I}] ø [Cj{e(t) ø I}]](A 1-1 ø AJ ' 1 )]

£ [ [ Aj ø DA 1* ø [C.{e(t) ø I}A J'"^]]U

In the subdiagonal case the bilinear term of (2.1) is given by

q P ij
j=1 i=j C Jx < t ' 1 ) e < t -J) and it foilows from (2.7), (2.8), (4.1) and (4.16)
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(4.27)

Bhaskara Rao et al (1983) have treated the scalar case, where there is no

We can accomodate this model into our general subdiagonal framework by

introducing a new AR order p'= p+q-l and a bilinear term
q p+q ' 1 i i ......
1 1 c X(t-i)e(t-j) where c 1 "1 =b 1 for j< i < j+p-1 and

j=1 i=1 = =

1 |"b1 J' b PJ'

p+2q-2 | L 0

(4.28)

Under the added assumption that the linear MA part is zero the Bhaskara

Rao et al (1983) scalar model can be represented in our framework (4.18)

with matrices

where A' and B' 1 jg q, correspond to the matrices A and B. defined in
J J

Bhaskara Rao et al (1983, bottom of p.96). Then it is an easy task in

linear algebra to show that the general spectral radius condition p(L)<1

given in Theorems 4.1 and 4.2 reduces to the condition given in Bhaskara

Rao et al (1983, Theorem p.106) for this particular scalar case.

that p-j+1 j-1 q

1 { f c J‘ j •** c Pj 0 0
B. = \

J p+q-1 | 0

linear MA part; i.e. b*= ••• = b q = 0 in (2.1), and where the bilinear

term is given (cf. their equation (1.3)) as f b 1J X(t-i-j+1)e(t-j).
j-1 i=1

c 1J = 0 for j+p < i p+q-1. Analogously to (4.27) we obtain

P q-j j-1 q
r r u1 j , D.1 W

2cM p 2q-1

p (r a ' ° i p i rsr^i
A = B. = j ' J

2cH [L 0 0 J J 2q-1 j 0 0 _
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5. First and second order structure.

We only treat the n-dimensional subdiagonal model of the preceding

section and we assume that the conditions of Theorems 4.1 and 4.2 are

ful filled so that a strictly stationary solution Y(t) exists as given

in (4.7). The O -convergence of the series expansion for Y(t) guarantees

the existence of p Y = E{Y(t)}.

Theorem 5.1 : Let the matrices A, B. and Fbe given by (2.6) and (4.17)J

Assume that p(A) * 1 and that the conditions of Theorems 4.1 and 4.2

are ful fil led. Then

(5.1)

(5.2)

Inserting for Y(t-1) from (2.5) and using independence of the e(t)'s it

follows that

q
= E[Cj{e(t-1) 8 I}Fe(t-1)] + £ E[C.{e(t-j) 8 I}AY(t-2)]

j=2 J
Using the same technique as when proving Lemma 4,1 it is not difficult

(5.3)

to show that in the superdiagonal case

C i {e(t-m) 0 I}A k F = 0 (5.4)

for an arbitrary integer m and for k+2 < i< q , 1 < k < q-2. Using

(5.3), (5.4), Lemma 4.1 and the independence of the e(t)'s, it is shown

by inserting successively from (2.5) that

(5.5)

yy - (I-A)' 1 £ B F.
j=1 J J

with Fj = E[{e(t-j) 0 I n(p+q) }Fe(t-o)]

Pro°f : As before we let I - I n ( p+qj- By taking expectations in (2.5)

and using E{e(t)} =0, we have that py must satisfy
q

yY = Ayy + l E[C.{e(t-j) © )]
j=1 J

q
I E[C ) ø 1} Y(t-l)]

j=1 J

1 q
I EtC.{e(t-j) ø1} Y(t-1)] = lE[C . { e (t-j )0 1} AJ ' 1 Fe(t-j)]3=] J
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From (5.2), (5.5) and Lemma 4,2 we have
q

" Ajjy + I E[{e(t-j) -0 1} Fe(t-j)]
j=1 J

and the conclusion of the theorem follows. II

(5.6)

It is easily checked using the definition of A, F and B., 1 j< q,v)

that the last nq components of p y are zero, which is consistent with

E{e(t)} = 0 , and E{X(t)}, where X(t) is given by (2.3), is obtained by

taking the first n components of (5,1). In the case where n=1 (scalar

case) q=l and with no linear HA part , the expression (5.1) degenerates

into the corresponding expression (3.3) of Subba Rao (1981).

To ensure the mean square convergence of the expansion (4.7) for

Y(t) we now assume the existence of fourth moments for (e(t)} (cf.

corresponding assumption in Bhaskara Rao et al 1983, remark 3 p.103).

and that in addition the fourth moments of (e(t)} exist. Let X(t) be as

(5.7)

i.e. (X(t)} has the same covariance structure as a vector ARMA(p,q) process.

Proof: Since our assumptions guarantee the existence of a second order

stationary solution as defined by (4.7), we can multiply (2,3) with

X(t-s) and take expectations. Using independence of the e(t)'s and

(5.8)

On the other hand, inserting from (2.3) and using stationarity and the

Theorem 5.2 : Assume that the conditions of Theorem 5.1 are fulfilled

in (2.3) (with d for i<j). Then for s>q we have
p .

Cov {X(t) , X(t-s)} = la 1 Cov (X(t-i) , X(t-s)} ;i=1

subdiaoonality we have for s>q (with I n^p+qj =I)

E{X(t) XT (t-s)} = f a J’ E{X(t-j) X T (t-s)]
j=1

q i i T
+ l dJJ E[{e(t-j) $1} X(t-j) X (t-s)]

j=l
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(5.9)

Moreover, inserting for X(t-j) from (2,3) and using independence of the

e(t)'s, it is not difficult to show that for 1 < j < q and s > q, we have

The equation (5.7) follows by combining (5.8)-(5.10).

Again this reduces to the case treated by Subba Rao (1981, formula

(3.18) for n = q = 1.

An important task is to try to fit multiple bi li near models to data.

In principle this can be done by adapting the procedure of Subba Rao (1981)

to the multivariate case. The second order structure can then be used as a

way of obtaining preliminary estimates. The estimation and fitting problem

will be the subject of a subsequent publication.

fact that E{e(t)}  = 0, we have that

TP a T
E{X(t)} E{X (t-s)} = laJ E{X( t-j)} E{x‘(t-s)}

j=1
i i T

+ l d JJ E[{e(t-j) 01} X(t-j)] E{X (t-s)}
j=1

Et(e(t-j) 0 1} X(t-j) X T (t-s)] = E[{e(t-j) ø 1} e(t-j) X T (t-s)]

= E[{e(t-j) 0 1} e(t-j)] E{XT (t-s)} = E[{e(t-j) 8 1} X(t-j)] E{XT (t-s)} (5.10)
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