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Abstract 
 

The interest in cultivating sugar kelp, Saccharina latissima in Norway is increasing and 

therefore knowledge about the population genetics of this species is important. A total of 345 

samples were genotyped from sixteen sampling locations along the Norwegian coast, and with 

special emphasis on Norway’s two biggest fjord systems; Hardangerfjord and Sognefjord. 

Microsatellite- and statistical analyses of sampled S. latissima populations demonstrated some 

genetic differentiation, and the result of population structure analyses suggested that the 

material could be separated into three different genetic groups. The overall pattern of the 

genetic structure indicated some restrictions on geneflow inward the fjords, while the gene 

flow along the coast is quite good. This was supported by the pair-wise FST values and a 

significant isolation-by-distance pattern. The result from the present study intended to give 

important knowledge about sugar kelp population genetics in Norway and be valuable for 

implementation of coastal regulations for kelp cultivation activity.  
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1 Introduction 

1.1 Ecological and economical importance 

Kelp forests dominate shallow subtidal rocky coastlines in most temperate and cold-water 

marine environments worldwide (Dayton, 1985; Lüning, 1990; Steneck et al., 2002), 

including the coastline of Norway. Their high productivity, biomass and community structure 

role make kelps especially important (Dayton, 1985), and they considered to be both 

ecologically and economically important (Guzinski et al., 2016). They create habitat, shelter 

and nursery for many organisms living in lower intertidal and shallow subtidal environments 

such as marine mammals, fish, and invertebrates, as well as other algae and support therefore 

high biodiversity (Dayton, 1985; Bertness & Bruno, 2001; Lippert et al., 2001; Møller 

Nielsen et al., 2016). This underpins one important ecosystem function of kelps: providing a 

suitable habitat for a great variety of species. Species associated with kelp forests either serve 

as food for higher trophic levels or are consumers of their host or the associated assemblage 

(Bartsch et al., 2008). With this high biodiversity kelp forests concentrate a source of nutrition 

for coastal marine ecosystems via food webs based on particulate organic matter (detritus) 

(Steneck et al., 2002). The trophic connections suggest a complex and finely triggered 

interaction web among kelps and their associated fauna, flora and microorganisms (Bartsch et 

al., 2008). 

 

In addition to providing ecosystem services and being important as ecosystem species, kelps 

are also utilized by humans and are of great economic importance many places of the world. 

The major part of kelp is cultured, while harvesting from natural kelp populations constitute a 

minor fraction. The total world production (cultivation) of kelp in 2016 was just over 30 

million tonnes fresh weight (FAO, 2018). In Europe and America, the most interesting kelp 

for cultivation have been sugar kelp, Saccharina latissima (Linnaeus) C. E. Lane, C. Mayes, 

Druehl & G. W. Saunders for human consumption, fish feed and potential biofuel (Paulino et 

al., 2016), which gives this species an economic value. 

 

Norway has a long and complex coastline extending over 100 000 km and has a well-

established aquaculture sector offering suitable preconditions for developing large-scale 

cultivation of macroalgae biomass (Stévant et al., 2017).The prerequisites for industrializing 

cultivation of macroalgae are therefore very good in Norway (Skjermo et al., 2014). Industrial 

cultivation of kelp provides opportunities to produce a biomass which can be the basis for 
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many various products, and which can help Norway to become more self-sufficient to food, 

feed ingredients, and bioenergy. Kelps are primary producers that can be cultivated without 

the use of soil, fertilizer, fresh water, pesticides or antibiotics, and Norway has vast coastal 

areas that can be used (Skjermo, 2019). Saccharina latissima is one of the promising species 

for industrial cultivation in Norway (Handå, 2019) because of its potential for high biomass 

yields and valuable nutritional content (Stévant, Rebours and Chapman, 2017). In Norway 

there are have several companies that focus on commercial cultivation of Saccharina 

latissima. The Norwegian Directorate of fisheries keeps a register over all companies engaged 

in aquaculture.  This register is continuously updated every week, and as of January 21st, 

2019, there were 44 companies with a total of 83 concessions to cultivate Saccharina 

latissima in Norway. 

 

1.2 Distribution of Saccharina latissima 

Saccharina latissima is a perennial brown macroalgae formerly known as Laminaria 

saccharina, that belongs to the class Phaeophyceae, order Laminariales and family 

Laminariaceae.  S. latissima has a circumpolar distribution (Bolton et al., 1983) and is native 

to the coastal regions of the Northern Hemisphere (Figure 1: Lüning, 1990). Kelps are cold-

water organisms (Steneck et al., 2002) and are generally found in areas where the summer 

temperature does not exceed 20˚C in the water and where there is sufficient nutrition present, 

at least in parts of the year. According to Lüning 1990, gametophytes of S. latissima have an 

upper survival limit at 22-23 ˚C, but for the kelp to be able to reproduce (produce gametes) 

the temperature should be below 18 ˚C. Optimum temperature for young sporophyte growth 

in sugar kelp is set to be around 10-15 ˚C (Lüning, 1990).   

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1:  A map representing the coastal regions of the Northern Hemisphere native to Saccharina 

latissima. The map is slightly modified from Lüning (1990).   
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 1.3 Life cycle of kelp 

Saccharina latissima has, like all species in the order Laminariales, a complex heteromorphic 

diplohaplontic life cycle. The complete life cycle involves several steps; maturation, release 

of propagules, dispersal, arrival at the substrate, attachment and germination of the 

propagules, fertilization and development of new sporophytes. The mature diploid sporophyte 

releases haploid zoospores (propagules) into the water column most commonly during autumn 

and winter (Bartsch et al., 2008). The proliferation stage for all kelp species is when the 

spores are released from the mature sporophyte. Once the spores are released, their dispersal 

is influenced by physical processes such as currents and water motion, and by survivorship in 

the water column and availability of suitable substrata (Dayton, 1985). The haploid spores are 

tiny and there are several variables that affect the dispersal range e.g. the dispersibility of the 

propagules, the concentration of propagules released, and most important the currents and 

water motion at the dispersal site (Dayton, 1985; Stévant et al., 2017). In seaweed biology, 

dispersal refers to the spreading of propagules in all directions from the mature diploid 

sporophyte (Fredriksen et al., 1995), and is a mechanism that promotes genetic diversity 

within populations and decreases it between them (Reed et al., 1992). The spreading range for 

the spores is generally no more than some tens of meters from the parental thalli, and their 

numbers fall exponentially with distance from the source (Reed et al., 1992; Fredriksen et al, 

1995). The mortality of these spores is enormous, as sugar kelp only grows on a narrow belt 

along the rocky shores at certain depths and the chance for a spore to arrive in a suitable 

habitat is relatively small. If the zoospores eventually reach the bottom substrate, preferably 

rocky bottom, they will germinate and develop into microscopic male and female 

gametophytes only if the conditions allow them to. If the spores end up too deep, they will not 

be able to develop any further. Saccharina latissima has dioecious gametophytes meaning the 

zoospores of opposite sex must settle within a certain range of each other to fertilize. The egg 

produces an attractant (the pheromone lamoxirene) that guides the spermatozoids to the egg 

and make them emerge from their antheridia (Bartsch et al., 2008). However, the range of the 

attraction of the egg does not exceed 1 mm, meaning the egg and the spermatozoids need to 

be very close to one another for a successful fertilization (Reed, 1990; Fredriksen et al., 

1995). If the fertilization is successful, the male gametophyte and the female gametophyte 

will give rise to a new macroscopic diploid sporophyte generation. Sporophytes reach 

maturity when they are from 8 to 12 months old (Parke, 1948).  
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Figure 2: The drawing represents 
the life cycle of Saccharina 

latissima where the mature 
diploid sporophyte (2n) release 
haploid zoospores (n) which will 
eventually germinate into 
dioecious gametophytes when 
they reach a decent spot on the 
bottom substrate. The female 
gametophyte produces eggs (n) 
while the male gametophyte 
produces spermatozoids (n) 
which will through fertilization 
give rise to a diploid zygote (2n), 
which will germinate into a new 
diploid sporophyte (2n). 
 
 
 
 
 
 

 

1.4 Gene flow and population genetics of Saccharina latissima in Norway 

In population biology, dispersal refers to the general phenomenon of propagule displacements 

from one area to another regardless of scale (Valero et al., 2001). For kelps, in this case, 

Saccharina latissima, gene flow will be strongly influenced by spore dispersal. While the vast 

majority of spores are predicted to settle close to parental thalli, results from Brennan et al. 

(2014) revealed that there is potential for long-distance dispersal, although the general pattern 

is one of isolation-by-distance. As mentioned earlier, dispersal of haploid spores of S. 

latissima is affected by the currents and water motion at the dispersal site. In Norway one 

would assume that The Norwegian Coastal Current (NCC) can play an important role in 

geneflow of S. latissima, as this current flows northwards along the Norwegian coast (Sætre, 

2007). Hardangerfjord and Sognefjord are the biggest fjord systems in Norway, and along 

with the rest of the fjords these are the main source of freshwater to the NCC (Aure et al., 

2007).  
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The freshwater is forced by pressure out towards the coast, flowing in a brackish upper layer 

and can take spores from S. latissima from one area to another. Water exchange between fjord 

and coast is the sum of different components, such as tides, winds and atmospheric pressure. 

Tidal variations have a great influence on the coast/fjord water exchange due to rapid 

fluctuations and relatively large tidal differences. Fluctuations in density in the coastal water 

generate horizontal coast/fjord pressure differences, which induce in- or outflowing currents 

(Aure et al., 2007).  

 

Studies on population genetics focus on the organization of genetic variability within and 

between populations of a species and can say something about the proliferation of genes or a 

degree of isolation of populations. The advances of molecular biology today offer a selection 

of several polymorphic DNA genetic markers where microsatellites are one of them (Valero 

et al., 2001). Microsatellites or SSRs short for Simple Sequence Repeats, are widely used in 

plant genetics studies (Vieira et al., 2016) and are genetic markers that can be used to locate a 

specific segment of genetic material that has a known location on a chromosome. They 

represent a cost efficient and quick method of analysing gene exchange between populations, 

provided that polymorphic microsatellites in sufficient numbers have been developed for the 

species in question.  

 

Cultivation of sugar kelp in Norway is in the initial phase, and little is known about the 

genetic variation along the Norwegian coast, except the recently published paper by Evankow 

et al. (2019). There are a few issues that needs to be addressed before scaling up the 

macroalgal production. One issue is the question about the risk of genetic interactions 

between cultivated crops and wild populations (Stévant, Rebours and Chapman, 2017). There 

is a risk for spreading of spores from fertile cultivated sporophytes if these get mature before 

the biomass is harvested. Also, there is a risk that the thallus or parts of the thallus of small 

sporophytes can be lost and continue to grow and get fertile outside the cultivated areas. 

Genetic interactions can thus be expected. Cross breeding between cultivated and wild kelp 

can be regarded as a possible negative interaction with the ecosystem and cultivation through 

breeding of strains for certain traits can thus represent a threat against the wild populations 

(Skjermo et al., 2014). 

 

The genetic structure and degrees of isolation between populations of species that are relevant 

for aquaculture in Norway needs to be researched more.  
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A recent article by Mooney et al. (2018) studied the pattern of gene flow in Saccharina 

latissima across the northern part of the Irish Sea, by combining population genetics 

(microsatellites) and hydrodynamic modelling approach.  It was concluded by suggesting that 

geographical distance and proximity need to be taken into account when planning the siting of 

kelp farms with the aim of minimizing gene flow to and from natural populations (Mooney et 

al., 2018).  Information about the genetic diversity within the different species to be cultivated 

is vital to establish a knowledge base for guidance of the authorities in development of the 

regulations for kelp cultivation (Skjermo et al., 2014).  

 

Evankow et al. (2019) provided an assessment of the genetic heterogeneity of two 

bioeconomically important kelp species, Laminaria hyperborea and Saccharina latissima, 

across the Norwegian coast, by applying microsatellite genotyping. The study was based on a 

master study done in 2015 (Evankow, 2015). The sampling sites took place from the 

Skagerrak region up to Greenland Sea, and suggested that there was significant genetic 

structure, differentiation and varying genetic diversity of S. latissima along the Norwegian 

coast. An IBD pattern was found and S. latissima was separated into three geographical 

clusters along the Norwegian coast. 

 

Guzinski et al. (2016) did a genetic diversity study between European S. latissima populations 

in 2016. The chosen localities were distributed along the European Atlantic coast from 

Southern Brittany (France) to Spitzbergen (Norway). The study revealed low genetic diversity 

within and low connectivity between the populations.  

 

Paulino et al. (2016) described and published 12 polymorphic microsatellites in 2016; 

SLN319, SLN32, SLN320, SLN34, SLN35, SLN36, SLN314, SLN510, SLN511, SLN54, 

SLN58 and SLN62. These microsatellite markers have been used in later studies focusing on 

genetic diversity and structure in different areas in the world. For example, a study of the 

genetic structure of S. latissima was done in eastern Maine, USA in 2017. This was done 

because of an interest to develop sugar kelp cultivation in this area. The purpose was to 

characterize the genetic structure by using the 12 microsatellite loci. Overall, S. latissima 

exhibited relatively low genetic diversity in this study area. It was detected that sugar kelp 

populations can be finely structured across small spatial scales, and that future management 

and cultivation efforts should aim to maintain genetic diversity and assess the culture potential 

of local populations (Breton et al., 2017). 
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Another genetic diversity study was done on S. latissima along a salinity gradient in the North 

Sea – Baltic Sea transition zone in 2016. Patterns of genetic diversity of S. latissima 

populations were evaluated along the salinity gradient area of Danish waters which were 

designated brackish and were compared to marine reference sites outside the gradient area, 

using the same 12 microsatellite markers. Results showed that the brackish populations were 

less diverse, more related, and showed increased differentiation over distance compared to the 

marine populations (Møller Nielsen et al., 2016). 

 

This thesis will focus on the population genetics of Saccharina latissima in Norway, and 

especially Hardangerfjord and Sognefjord, Norway’s two biggest fjord systems. To get a few 

more components in this study samples from a site in Oslofjord (East), Hafrsfjord (Southern 

Norway), Runde (Mid-Norway, West) and Sommarøy (Northern Norway) are included as 

well. The samples will be used in a study of degree of local population connection and gene 

flow in a fjord seascape. The reason for looking at the population genetics in these two fjord 

systems is because the populations here is potentially isolated, and the environment is 

different from the coastal environment.  

 

 1.5 Aim of the study 

This Master thesis will focus on the kelp Saccharina latissima, where the main aim is to 

describe the population genetics of this kelp between and within two large fjord systems in 

Norway, and to identify possible genetically separated groups in the material. The large fjord 

systems in focus are Hardangerfjord and Sognefjord on the South-West coast of Norway. Two 

sub aims will also be included, where the first sub aim is to discuss the genetic structure and 

distribution of haplotypes in relation to the general coastal current patterns. The second sub 

aim is to find results which are useful for coastal management. The results will give an 

indication of degree of gene flow in S. latissima along the coast, and if isolated populations 

exist. Microsatellite DNA markers will be used to investigate patterns of genetic diversity, 

differentiation and structure, testing the null hypothesis (H0): There are no genetic differences 

between or among sites, such that all sampled individuals are part of a single panmictic 

population unit, which implies there are no significant differences in allele frequencies or 

differences in heterozygote frequencies (FST=0) between sites.  

 

 



12 
 

1.5.1 Study questions 

 
- Will the genetic structure gradually change along the coast (South to North)? 

- Will the genetic structure gradually change from the outer to the innermost parts of the 

fjords? 

- Will the result show greater isolation between the sites along the coast, or between 

sites located in the fjord and along the coast? 

- How is the genetic structure in Hardangerfjord (HA) relative to Sognefjord (SO)? 
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 2 Material and Methods 
 

2.1 Study area 

Samples of Saccharina latissima for this master thesis were collected from 16 sites along the 

Norwegian west coast from south to north, with special emphasis on two large fjord systems; 

Hardangerfjord and Sognefjord (Figure 4 and Table 1). 

 

 

 
¨ 

 

 

 

 

Figure 3: Map showing the locations of the 16 sampling sites of Saccharina latissima. For detailed 
information, see Table 1. 
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Samples from Hardangerfjord and Sognefjord were collected in a gradient from the innermost 

parts of the fjord (or the innermost site where S. latissima was found) to the outer coastal 

parts. Some extra samples were collected from Oslofjord (East), Hafrsfjord (Southern 

Norway), Runde (Mid-Norway, West) and Sommarøy (Northern Norway) as well. Initially 

samples were collected from 21 sites, but due to problems with DNA extractions and 

microsatellite analyses, some were omitted from further analyses. All samples were collected 

during 2016-2018 (Dates shown in Table 1). 

 

Table 1: Overview of the 16 sites used in this study with coordinates, sampling date, how 
many samples of Saccharina latissima were collected at each site and who the samples were 
collected by. Localization of the sites is shown in Figure 3.  
Site Position Date Sample 

Site-ID 

No. 

Samples 

Collected by 

Outer Oslofjord 58°59'19.46''N 10°55'25.8''E 20.08.17 L 30 Dalen, Fredriksen 

Hafrsfjord 58°57'36.5"N 5°36'35.9"E 01.06.18 RO 30 Næss 

Klosterfjord 59°46'53.0"N 5°40'13.4"E 10.11.17 HA5 29 Sjøtun, Næss 

Solesnes, Jondal 60°18'19.6"N 6°16'49.5"E 08.11.17 HA2 27 Sjøtun 

Skjerring 60°13'48.6"N 6°00'12.2"E 09.11.17 HA3 33 Sjøtun, Næss 

Gjermundshamn 60°03'34.0"N 5°55'24.0"E 09.11.17 HA4 27 Sjøtun, Næss 

Bårdholmen 59°53'45.6"N 5°12'09.6"E 08.08.17 HA1 28 Sjøtun 

Kilstraumen 60°48'00.4"N 4°56'25.0"E 28.04.17 SO10 21 Sjøtun 

Nyhamnarsundet 61°00'19.1"N 5°00'45.9"E 28.04.17 SO9 19 Sjøtun 

Oppedalsvika 61°03'33.7"N 5°30'44.5"E 27.04.17 SO7 17 Sjøtun 

Fuglsetfjorden 61°06'13.4"N 5°52'12.4"E 27.04.17 SO6 21 Sjøtun 

Leikanger 61°10'55.9"N 6°47'05.3"E 25.04.17 SO1 23 Sjøtun 

Lånefjorden 61°09'53.0"N 6°11'15.1"E 26.04.17 SO4 19 Sjøtun 

Risnesstraumen 61°08'49.6"N 5°10'09.6"E 27.04.17 SO8 21 Sjøtun 

Runde 62°23'52.9"N 5°39'42.3"E 21.03.18 M 24 Fredriksen 

Sommarøy 69°38'21.2''N 18°01'4.5''E 13.08.16 F 12 Fredriksen 
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2.2 Collection of samples and preservation 

The sampling was conducted in different ways, depending on the depth range of S. latissima 

at the site, local topography, and what equipment was available for sampling. The sampling 

method that was most commonly used was to drag a triangular formed scrape along the sea 

floor where the sugar kelp most likely would grow. Most of the fjord sites were very steep 

and S. latissima was most common shallower than 5 metres. At these stations the sampling 

was done from a small motorboat, using a small triangular scrape dragged along the sea 

bottom by hand. At some sites, samples were collected by hand or with a rake during low tide. 

When the samples were collected by hand it was done in a semi-random manner to avoid 

collection of adjacent individuals that might originate from the same gametophyte. When 

using a scrape this was difficult to control, but several dredgings were done at each site and 

kelp individuals picked randomly from the catch for sampling. The overall sampling depth 

was between 0 and 10 m with some sites sampled in the shallow part and some in the deeper 

part of this range, and samples were collected from a stretch along the shore for at least 30-50 

minutes for most of the sites. 

 

Clean pieces of blade tissue of 1-2 cm2 were cut from the meristematic region of the blade on 

each kelp sample, added to screw-capped tubes and then covered with silica gel beads, to 

preserve and desiccate the S. latissima samples until DNA extractions were performed. See 

Appendix 1 to see how sampling was conducted in Hafrsfjord in June 2018.   

 

2.3 Genetic analysis procedure 

The DNA extractions, PCR (polymerase chain reactions) and dilutions were performed at the 

DNA laboratory at the Department of Biology, University of Bergen. The microsatellite 

analyses were performed at the IMR’s (Institute of Marine Research) DNA-laboratory in 

Bergen (Nordnesgaten 50). Twelve polymorphic microsatellite markers have been 

characterized in the sugar kelp Saccharina latissima, and are listed in Table 2 (Paulino et al., 

2016). Locus SLN 511 was omitted because of low success rate (no PCR fragments were 

detected after two rounds), and consequently 11 out of 12 microsatellite loci were used in this 

study.  
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Table 2: Characterization of 12 microsatellite loci in Saccharina latissima (Paulino et al., 
2016), including locus name, GenBank accession number, primer sequences, repeat motif, 
annealing temperature (Ta) and magnesium concentration (MgCl2) used in PCR, and size 
range (bp) of the alleles. Locus SLN511 (shown in italics) did not amplify for the samples and 
was omitted.  

Locus 

name 

Genebank 

accession 

Primer sequences (5′-3′) Repeat motif Ta 

(°C) 

MgCl2 

(mM) 

Size range 

(bp) 

SLN314 KT723013 F: CTGTGTGTGTTGTCGTACATCG 
R: GGATTTCTTATTTGAGGGAGGG 

(TAC)11 58 2.0 235–302  

SLN319 KT723014 F: CGAAGGAAGTGAATGACAACAA 
R: GGTAGTTACGGATTGCGACAAG 

(ACA)10 56 2.0 378–433  

SLN32 KT723015 F: GAGAAAACATGCCCAGGTCTA R: 
GTATCGCTGTACCCTCCTCCT 

(CAG)11 57 2.0 222–280  

SLN320 KT723016 F: TACGATGGTTTATGGGTTAGGG 
R: AGCGAACAACGAAGCAACTAAT 

(TGT)13 56 2.0 210–241  

SLN34 KT723017 F: ACGAAGTGCTAATAATGTGCCG 
R: GAGATAGCCCGACCACTGC 

(AGC)10 56 2.0 183–319 

SLN35 KT723018 F: GCGTATGAACAAAATGACCGTA 
R: TGTGAGTTCCTTTCTTGTGAGC 

(CTG)11 56 2.0 343–372 

SLN36 KT723019 F: CGAGACTTTTGGGTAGATTTCG 
R: CGCCTGCCTCTTGTCTAAGTA 

(AGT)19 57 2.0 264–315 

SLN510 KT723020 F: CCGTCTATGGCGAGAAAGAGAT 
R: ATCTTACCTGGGCACTTGCTTT 

(ACACA)13 58 2.0 242–339 

SLN511 KT723021 F: ATGTCCTGACCTGACCTACAGC R: 

AATTCTGTGAACATTCGGGAGT 

(ACCTT)19 54 2.5 366–400 

SLN54 KT723022 F: GTGGTTGCTGTTGTTGCTGT 
R: CGAATAAAGACAAATCGGCTG 

(ATATC)11 54.5 1.5 298–337 

SLN58 KT723023 F: GCGAAGAAACGAGGGTTACAT R: 
CTGGGTTTGTCGAGTGTTGAT 

(GCAAG)8 55 2.0 153–173 

SLN62 KT723024 
 

F: ACAAAGCGTTCTCAACCGAT 
R: CGACACCCTACACAATACGAAA 

(TATACA)6 
 

55 2.0 164–281 

 

 

2.3.1 DNA extraction 

Genomic DNA was extracted from a small piece of plant tissue, around 4 mm2. The tissue 

was subsampled from the silica gel dried meristem blade fragments. Due to the high number 

of samples initially collected for this project it was decided that DNA ought to be extracted by 

using the Qiagen DNeasy® 96 Plant Kit. After a lot of trial and error the Macherey Nagel 

NucleoMag® Plant kit was eventually tested on the “problem samples” and others, and this kit 

proved to give clean DNA for most of the remaining samples.  
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Preparation before DNA extraction  

When working with desiccated kelp tissue, the samples needed to be broken down to smaller 

pieces to prepare the tissue for DNA extraction, and this was done by using the Qiagen 

TissueLyser II. Use of the TissueLyser, for rapid and convenient disruption of plant tissue 

samples, was recommended for the most efficient processing in both DNeasy Plant 

procedures and NucleoMag Plant procedures. Complete and quick disruption of starting 

material was essential to ensure high DNA yields and to avoid DNA degradation. Saccharina 

latissima samples were placed into collection microtube racks, one sample in each tube along 

with a 3 mm tungsten carbide bead (Qiagen). This was done before using either the DNeasy® 

96 Plant Kit or the NucleoMag® Plant Kit. The preparation of the kelp tissue varied a bit 

depending on what kit was used. When using the DNeasy® 96 Plant Kit, and before placing 

the collection microtube racks in the TissueLyser II, a working lysis solution was added to all 

the tubes. For 2 x 96 samples was 90 ml Buffer AP1 (preheated to 65˚C), 225µl RNase A and 

225µl Reagent DX (anti foaming component) mixed to make a fresh working lysis solution. 

400µl of working lysis solution was pipetted into each collection microtube along with the 

plant material. When using the NucleoMag® Plant Kit, the only components in the collection 

microtube racks were the plant tissue and the tungsten carbide bead. Also, only one 96 plate 

was extracted at a time, so an extra collection microtube rack was made to balance the 

TissueLyser, and later the centrifuge steps for optimal operation. The collection microtube 

racks were placed into adaptor sets, which were fixed into the clamps of the TissueLyser II 

and shaken vigorously for 1,5 minutes at 30 Hz (DNeasy® 96 Plant Kit) and 20 seconds at 20 

Hz (NucleoMag® Plant Kit). This was done in two rounds, where the racks were reassembled 

so that the collection microtubes nearest the TissueLyser in round one was furthest from the 

TissueLyser II in round two. Rotating the racks of collection microtubes in this way ensured 

that all samples was thoroughly disrupted. 

 

DNeasy® 96 Plant Kit 

The DNeasy® 96 Plant Kit provided a fast and easy way to purify genomic DNA from plant 

tissue. DNA purification followed the description in DNeasy Plant procedures, where plant 

material was first mechanically disrupted (Qiagen TissueLyser II) and then lysed by addition 

of lysis buffer and incubation. RNase A in the lysis buffer digests the RNA in the sample. 

After lysis, proteins and polysaccharides were salt-precipitated. Cell debris and precipitates 

were removed by centrifugation. Binding buffer and ethanol were added to the cleared lysate 
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to promote binding of the DNA to the DNeasy membrane. The sample was thereafter applied 

to a DNeasy 96 plate and centrifuged. DNA bound to the membrane while contaminants such 

as proteins and polysaccharides were efficiently removed by two wash steps. Pure DNA was 

eluted in a small volume of water.  

 

When using the DNeasy® 96 Plant Kit, the basic protocol was followed (See Appendix 2) 

with a few minor modifications. The protocol was for purifying DNA from 2 x 96 samples of 

dried plant tissue. The procedure included 22 steps, from desiccated plant tissue to purified 

genomic DNA. The first 8 steps are described above as a preparation for the DNA extraction 

itself. All the steps were followed thoroughly, but the centrifugation steps, especially step 12 

and 20 had to be prolonged. In step 12 the protocol states 5 minutes at 6000 rpm, but as the 

centrifuge that was used (Thermo Scientific Heraeus® Multifuge® 3S-R Plus Centrifuge) had a 

maximum speed of 5650 rpm, the centrifugation was set to 10 minutes in the first round, and 

if needed, a second round of 10 minutes. According to the protocol step 20 included 

centrifuging for 15 minutes, but this did not dry the membranes properly, so 5 more minutes 

were added.  

 

NucleoMag® Plant Kit 

The procedure of the NucleoMag® 96 Plant Kit is based on reversible adsorption of nucleic 

acids to paramagnetic beads under appropriate buffer conditions. The DNA of Saccharina 

latissima was extracted with CTAB-Lysis Buffer MC1. The binding conditions to bind DNA 

to NucleoMag® C-Beads was made by mixing MC2 buffer and NucleoMag® C-Beads, 

which were paramagnetic beads. For 96 samples, 2880 µL of NucleoMag® C-Beads was 

mixed with 38,4 mL of MC2 buffer by vortexing. The premixing step allowed an easier 

homogenous distribution of the beads to the individual wells of the separation plate, which 

was recommended to keep the beads resuspended. The NucleoMag® C-Beads sank to the 

bottom so it was important to keep the mixture in motion while pipetting. The kit was 

designed for use with NucleoMag® SEP magnetic separator plate. This type of separator is 

recommended in combination with a suitable microplate shaker for optimal resuspension of 

the beads during the washing and elution steps, but the beads got easily resuspended in the 

buffer by pipetting up and down several times, so there was no need for the microplate shaker. 

After magnetic separation, which was carried out in a square-well block, and removal of 

supernatant, the paramagnetic beads were washed with wash buffers MC3, MC4, and 80 % 

ethanol to remove contaminants and salt.  
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There was no need for a drying step as ethanol from previous wash steps was removed by 

wash buffer MC5. Finally, highly purified DNA was eluted with low-salt elution buffer MC6 

and was ready to be used for further analysis. 

 

When using the NucleoMag® Plant Kit the manufacturer’s instructions were followed (See 

Appendix 3), with modifications from Fort et al. (2018). A master mix for 100 samples (1 

plate: 96 samples) comprised 50 ml MC1, 100 µl Proteinase K solution, 300 µl RNase A and 

1,9 ml ddH2O (double distilled water). 523 µl of the master mix were added into each sample. 

 

Post DNA extraction  

DNA extracts from both DNeasy® 96 Plant Kit and NucleoMag® Plant kit was diluted 1:10 (2 

µl DNA + 18 µl ddH2O) and stored in the dark in a 4˚C refrigerator.  

 

2.3.2 Pre-PCR 

Four loci were grouped together (multiplex); SLN 319, SLN 320, SLN 34 and SLN 32, and 

amplified in a single reaction. SLN 54, SLN 58 and SLN 62 could not be multiplexed, so each 

locus got its own PCR cocktail and was amplified individually (singleplex), before reactions 

for the three loci were combined into one plate after PCR. The last group, SLN 35, SLN 36, 

SLN 314 and SLN 510 was multiplexed and amplified in one single reaction. All eleven 

primers were available and at the DNA-laboratory at BIO. Stock solutions were prepared by 

diluting the primers to 100 µmol in TE (Tris-EDTA) buffer and stored in a -18˚C freezer. 

 

Table 3: Reaction cocktail for one multiplex (4 primers) sample. 

Reagents Volume 

ddH2O 1.26 µl 

Forward primer (x4) * 0.03 µl 

Reverse primer (x4) *  0.03 µl  

AmpliTaq 360 mix  2.5 µl  

TOT  4 µl 

 
* Multiplex SLN 319: Primers (forward and reverse): SLN319, SLN320, SLN34 and SLN32. 
* Multiplex SLN 35: Primers (forward and reverse): SLN35, SLN36, SLN314 and SLN510. 
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When making a reaction cocktail for two plates (192 samples) the recipe was multiplied with 

210 just to make sure that there was enough reaction cocktail for all the samples (See 

Appendix 4). 

 

Table 4: Reaction cocktail for one single plex (1 primer) sample. 

Reagents Volume 

ddH2O 1.44 µl 

Forward primer  0.03 µl 

Reverse primer  0.03 µl  

AmpliTaq 360 mix  2.5 µl  

TOT  4 µl 

 

When making a reaction cocktail for a single plex sample 0.03 µl of each forward and reverse 

primer was needed. The difference in multiplex and single plex was the number of primers 

used. In a multiplex there was 4 primers that equal a volume of 0.03×8 µl. In a single plex 

there was only one primer, forward and reverse, giving a volume of 0.03×2 µl. To get the total 

volume of the reaction cocktail to 4 µl in a single plex sample, the volume of water (ddH2O) 

was increased accordingly.  

 

Five reaction cocktails were used in this study based on the basic recipes described above. 

The exact recipes of these cocktails can be found in Appendix 4. 4 µl of reaction cocktail was 

pipetted into each tube using the Repet-Man, then 1 µl of 1:10 DNA added to the strips. After 

this was done the plate containing the DNA extracts was ready for PCR performed in Bio-Rad 

S1000TM and C1000TM Thermal Cyclers. 

 

2.3.3 PCR (Polymerase Chain Reaction) 

PCR amplifications were performed in Bio-Rad S1000TM and C1000TM Thermal Cyclers. The 

different multiplex had different programs where the basic setting was the same, but the 

annealing temperature varied. PCR amplifications were performed in 5 µl reaction mixtures 

containing 1 µl of 1:10 template DNA and 4 µl of reaction cocktail. The PCR programs used 

in this study can be found in Appendix 5 and 6.  
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The single plex SLN 54, SLN 62 and SLN 58 were combined into a new plate post-PCR. 2 µl 

SLN 54, 2 µl SLN 62 and 2 µl SLN 58 was added into each well of the 96 plate. Then all the 

PCR products were diluted prior to microsatellite analyses at IMR, by adding 20 µl H2O. The 

diluted PCR products was stored in a 4˚C refrigerator for no longer than two days. If they 

needed to be stored longer, they needed to be frozen at -18˚C.  

 

2.4 Microsatellite Analyses 

Genetic variation was assessed at 11 polymorphic microsatellite loci as previously described 

(Paulino et al., 2016) and are listed in Table 2. The microsatellite reactions were analysed in 

ABI 3730 DNA Analyzer (Applied Biosystems) at IMR’s DNA-laboratory in Bergen. This 

device uses capillary electrophoresis of fluorescent-labelled DNA-fragments and are therefore 

suitable for microsatellite analysis. Before the PCR products were analysed in the ABI 

machine, a mixture comprising of 8 µl volume of GeneScanTM 500 LIZTM size standard and 

800 µl of Formamide was prepared at IMR, and 8 µl of this mixture was transferred into ABI 

plates with 2 µl of the diluted PCR products.  

 

Binning and allele scoring were performed manually using GeneMapperTM Software 5 

(Applied Biosystems). The GeneScanTM 500 LIZTM size standard contained 16 DNA 

fragments with known sizes (35-500 bp) where all of them were marked with LIZ 

fluorophore, which have another colour than the microsatellite fragments that were being 

studied. The standard appeared as orange fragments, while the microsatellites appeared as red, 

blue, green or yellow (VIC, NED, PET, FAM). GeneMapper used the standard curve to 

calculate the size of all the fragments in each well. For those samples that showed weak or no 

peaks, high background noise or were scored with uncertainty in GeneMapper, the PCR 

process were repeated. For individuals with low scoring success across all loci, the entire 

process was re-run using new DNA extracts from the new magnetic method, using the 

NucleoMag® Plant kit.   

 

 2.5 Statistical Analyses 

2.5.1 Genetic diversity and Hardy-Weinberg Equilibrium 

Genetic diversity estimates such as allele frequencies, observed number of alleles (Na), 

observed (HO) and expected heterozygosity (HE) and inbreeding coefficient (FIS) were 

computed per sampling site and locus using GENEPOP 4.2 (web version) (Rousset, 2008). 
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Allelic richness had to be standardized to cope with uneven sample sizes and was therefore 

estimated by rarefaction to the smallest sample size (Petit et al., 1998) using FSTAT 2.9.3.2. 

(Goudet, 1995). Allelic richness, also referred to as allelic diversity or mean number of alleles 

per locus, is one of the most commonly reported measures of genetic variation (Leberg, 

2002).   

 
Significant deviations from Hardy-Weinberg equilibrium (HWE) and genotypic linkage 

disequilibrium (LD) between pairs of loci were tested by measuring their inbreeding 

coefficients (FIS) and associated P-values using a Hardy-Weinberg exact test implemented 

GENEPOP 4.2 (web version), using the default settings (Rousset, 2008). GENEPOP 4.2 (web 

version) was also used to perform exact tests for HWE by microsatellite loci (test multi-

population) and by population (test multi-locus) and considered a heterozygote deficit as the 

alternative hypothesis. This global exact test was performed by the Markov Chain Algorithm 

(Guo and Thompson, 1992), and the default settings of the Markov Chain parameters were 

1000 dememorizations, 100 batches with 1000 iterations per batch. To correct for type I errors 

that may arise from multiple comparisons, significance values were adjusted using the 

sequential Bonferroni correction procedure with α = 0.05 (Rice, 1989).  

 

Evidence for null alleles and scoring errors caused by large allele dropout and stuttering was 

studied with MICROCHECKER 2.2.3 (Van Oosterhout et al., 2004), a software for identifying 

and correcting genotyping errors in microsatellite data. LOSITAN-selection workbench 

(Beaumont & Nichols, 1996; Antao et al., 2008) was used to test the presence of candidate 

loci under positive or balancing selection, with the default parameters and 50.000 simulations. 

To test whether potentially problematic loci may influence the results, FST analyses and 

STRUCTURE analyses were performed with all eleven loci, and after removing two loci. 

 

2.5.2 Population structure and genetic differentiation 

The software program STRUCTURE version 2.3.4 (Pritchard et al., 2000) was used to 

investigate population structure and is one of the most widely used population analysis tools 

that allows researchers to assess patterns of genetic structure in a set of samples (Porras-

Hurtado et al., 2013). A structure analysis is a way of showing potential genetic homogenic 

clusters and is a decent way to visually display any structure that might appear in the material 

(Evanno et al., 2005).  



23 
 

It can identify subsets of the whole sample by distinguishing allele frequency differences 

within the data and can assign individuals to those sub-populations based on analysis of 

likelihoods (Porras-Hurtado et al., 2013)The program was run using a Markov chain Monte 

Carlo length of 1,000,000 steps after a burn-in of 200,000. The best number of clusters (K, set 

from 2-6) was determined over 20 independent runs using the web-based program Structure 

Selector (Li and Liu, 2018) a web server to select and visualize genetic clusters based on 

Evanno method also known as ∆K method (Evanno, Regnaut and Goudet, 2005).  

 

To test for population differentiation among all samples, an exact G-test was conducted with 

the software GENEPOP 4.2 (web version). First genic differentiation for all populations (G-test 

and default settings), then the test was applied for all pairs of populations. Population 

differentiation was also estimated by calculating FST for each population and locus, and pair-

wise FST (Weir and Cockerham) between sites in GENEPOP 4.2 (web version). Genetic 

differentiation among sampling sites was tested using the Analysis of Molecular Variance 

(AMOVA) implemented in GenAlEx (Genetic Analysis in Excel version 6.5) (Peakall & 

Smouse, 2006; Peakall & Smouse, 2012).  

 

Isolation-by-distance (IBD) was tested in GENEPOP 4.2 (web version) using a Mantel test 

(1000 permutations), which tests for a correlation between pair-wise genetic distance and 

geographic distance matrices between sites. To do an IBD analysis by populations, a semi 

matrix of FST estimates had to be made, as well as a semi matrix of geographical distances 

measured in kilometres. IBD was tested by correlating these matrices of geographical distance 

measured along the coast line in kilometres, and FST values using GENEPOP 4.2 (web 

version). The distances were measured directly in the map (www.norgeskart.no), and the 

shortest sea distance between the sites were noted in the matrix. The program ISOLDE in 

GENEPOP was run, and this program computed a regression of FST/(1-FST) estimates to the 

natural logarithm of the geographic distances. The results from this test was used as input file 

in Excel to plot the result of the analyses. 
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3 Results 

The final dataset included 345 individuals from 16 sites genotyped at 11 out of 12 

microsatellite markers (loci) (Appendix 7). One microsatellite locus, SLN511 were omitted 

before analyses due to problems with amplification of the locus.  

 

3.1 Testing for linkage disequilibrium, null alleles and candidate loci under 

selection 

When allele frequency for alleles of two or more loci are linked the loci are in a state of 

linkage disequilibrium (LD) (Selkoe and Toonen, 2006). A linkage disequilibrium analysis 

was used to test each pair loci in each population, looking at 55 pair-wise comparisons within 

samples. Looking at the P-value for each locus pair across all populations (Fisher's method), 

linkage disequilibrium was not detected after applying the sequential Bonferroni corrections 

(P ≤ 0.0009) and all loci were treated as independent variables (See Appendix 10 for the P-

values).  

 

Another problem which may occur in microsatellite analyses is the presence of null alleles, 

which may be evident as an excess of homozygotes across several sampling sites. The 

occurrence of null alleles can have different origins, for example lack of amplification of 

certain alleles (Selkoe and Toonen, 2006). Analysis of null alleles was done by 

MICROCHECKER, and the result showed potential null alleles at two loci, SLN34 and SLN54. 

A Hardy-Weinberg test implemented in GENEPOP 4.2 (web-version) strengthened the result 

from MICROCHECKER by testing for heterozygote deficit, as heterozygote deficiency (also 

called homozygote excess) can result from the presence of null alleles. Results by each 

population indicated that SLN34 and SLN54 showed highly significant deviations from HWE 

in form of heterozygote deficiency in most of the populations. Statistical analyses were 

therefore done both including and excluding these two alleles, in order to test if they had any 

effect on the results.  

 

One prerequisite for using microsatellites in population genetic studies is that they should be 

neutral (Vieira et al., 2016), e.g. not under selection or associated with parts of the genome 

which are under selection. The presence of candidate loci under positive or balancing 



25 
 

selection was detected. The assessment was a function of the relationship between 

heterozygosity and the fixation index (FST) at each locus across all individuals.  

Two loci, SLN35 and SLN54 (SLN54 was also identified with null alleles) were found to be 

candidates for positive selection, and one locus, SLN314, was found to be a candidate under 

balancing selection. Outliers are tagged with labels (Figure 4). SLN314 is very close to being 

neutral (Figure 4) and is for that reason not considered further. 

 

Figure 4. Two loci, SLN35 and SLN54 were candidates for positive selection (red area), and SLN314 
were candidate for balancing selection (yellow area). Outliers are tagged with labels. 
 

After detecting loci with null alleles and candidate loci under positive selection is was decided 

to make three different datasets: one including all eleven loci, one excluding the null alleles 

(SLN54 and SLN34), and one excluding all “problematic” loci (SLN54, SLN34 and SLN35) 

to run all the statistical analyses to compare with each other.  

In addition, it was decided to examine pair-wise FST, isolation-by-distance and to do a 

STRUCTURE analysis on the neutral loci (excluding SLN54, SLN34 and SLN35) after 

excluding the populations sampled in Hardangerfjord and Sognefjord. This was done in order 

to see if there was any difference in the genetic structure revealed by the analysis when only 

the coastal populations (L, RO, HA1, SO10, SO9, M and F) were included.   
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3.2 Statistical Analyses  

3.2.1 Genetic diversity and Hardy-Weinberg Equilibrium 

Estimates of genetic diversity for the eleven microsatellite loci screened in the sugar kelp, 

Saccharina latissima can be found in Appendix 8, and summaries of this is listed in Table 6 

and 7. The eleven microsatellite loci exhibited variable levels of polymorphism, as the total 

number of alleles observed across populations ranged from 5 at locus SLN62 to 26 at locus 

SLN36 with an average of 12.73 (Table 6). A measure to illustrate locus variability is allelic 

richness (A). Allelic richness across populations ranged from 1.226 at SLN58 to 5.156 at 

SLN36 and was based on the minimum sample size of 4 diploid individuals (or 8 genes). It 

had the highest mean value in the northernmost population at site F (3.434) and lowest at the 

innermost site in Sognefjord, SO1 (2.437). When looking at each locus allele richness was 

highest at SLN36 at site F (6.151) and lowest at SLN58 in population HA2, SO1, SO4 and 

SO8 (1.000) (Figure 5). The overall pattern shows a drop of allelic richness in the fjord 

populations, Hardangerfjord (HA) and Sognefjord (SO), which is most pronounced at the 

innermost site of Sognefjord (SO1) (Figure 5 and 6). 

 

 

Figure 5: Allelic richness (A) at each locus at every population site. 
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Figure 6: Mean allelic richness (A) at 11 loci per population. 

 

Observed (HO) and expected heterozygosity (HE) across populations ranged from 0.036-0.800 

and 0.053-0.854, respectively (Table 7). The number of observed heterozygotes was generally 

lower than expected number of heterozygotes across all populations. HO had the lowest value 

across all populations at locus SLN58 (0.036) and the highest at SLN32 (0.800), while HE had 

the lowest value across all populations at locus SLN58 (0.053) and the highest value at locus 

SLN36 (0.854) (Appendix 8 and Table 6). Average HO and HE value for all loci was 0.487 

and 0.566, respectively.  

 

Significant deviations from Hardy-Weinberg equilibrium indicated by FIS (inbreeding 

coefficient) values were detected by 24 of the 176 exact tests across loci and samples after 

sequential Bonferroni correction (P ≤ 0.0045) (Appendix 8) When testing for each locus 

across all populations, significant FIS values were found for the loci SLN34, SLN54 and 

SLN314 (Table 6). Results of the exact test for HWE across loci and populations, considering 

a heterozygote deficit as the alternative hypothesis, are shown in Table 5. Populations SO10, 

SO9, M and F had non-significant p-values for the statistical test, while the rest of the 

populations showed heterozygote deficit from HWE. Heterozygote deficiencies occurs when 

there are more homozygotes than expected under Hardy-Weinberg equilibrium (Selkoe and 

Toonen, 2006). Multi-locus test across populations to assess deviations from HWE showed no 

significant p-values for the SLN319, SLN32, SLN62 and SLN510 markers.  

 

0,000

0,500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

L RO HA5 HA2 HA3 HA4 HA1 SO10 SO9 SO7 SO6 SO1 SO4 SO8 M F

A
ll

el
ic

 r
ic

hn
es

s 
(A

)

Stations



28 
 

 
Table 5. Exact test for Hardy-Weinberg Equilibrium across populations and loci. P-value for 
each population across all loci (P ≤ 0.0045) and for each locus across all populations (P ≤ 
0.0031); significant values after Bonferroni correction are shown in bold. 

Population P-Value S.E. Locus P-Value S.E. 

L 0.0000 0 SLN319 0.9492 0.0038 

RO 0.0000 0 SLN32 0.2916 0.0210 

HA5 0.0000 0 SLN320 0.0964 0.0025 

HA2 0.0000 0 SLN34 0.0000 0 

HA3 0.0000 0 SLN54 0.0000 0 

HA4 0.0003 0.0001 SLN58 0.0009 0.0002 

HA1 0.0001 0.0001 SLN62 0.5728 0.0052 

SO10 0.1317 0.0105 SLN314 0.0003 0.0003 

SO9 0.0284 0.0051 SLN35 0.0017 0.0003 

SO7 0.0000 0 SLN36 0.0000 0 

SO6 0.0000 0 SLN510 0.4886 0.0110 

SO1 0.0002 0.0001    

SO4 0.0000 0    

SO8 0.0000 0    

M 0.0060 0.0029    

F 0.2759 0.0165    

 

 

Table 6: Summary statistics for each microsatellite locus across all populations for 
Saccharina latissima, indicating the number of alleles (Na), allelic richness (A), observed 
(HO) and expected (HE) heterozygosity, inbreeding coefficient (FIS) and associated P-values, 
and genetic differentiation among samples (FST). Significant values after Bonferroni 
correction are depicted in bold type (P ≤ 0.0031). 

Locus Na A HO HE FIS P-Value FST 

SLN319 8 2.798 0.641 0.593 -0.081 0.027 0.062 

SLN32 20 4.470 0.800 0.789 -0.014 0.098 0.046 

SLN320 6 2.090 0.435 0.472 0.078 0.739 0.056 

SLN34 17 3.698 0.305 0.686 0.555 
Highly sign. 0.055 

SLN54 15 3.214 0.292 0.669 0.563 
Highly sign. 0.155 

SLN58 6 1.226 0.036 0.053 0.327 0.021 0.003 

SLN62 5 1.948 0.399 0.357 -0.117 0.682 0.076 

SLN314 15 4.251 0.650 0.740 0.121 0 0.035 

SLN35 9 2.530 0.432 0.493 0.123 0.096 0.160 

SLN36 26 5.156 0.773 0.854 0.095 0.004 0.016 

SLN510 13 2.607 0.589 0.522 -0.129 0.745 0.091 
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Table 7: Summary statistics for 16 sampling sites of Saccharina latissima, showing the 
number of alleles (Na), allelic richness (A), observed (HO) and expected (HE) heterozygosity 
and inbreeding coefficient (FIS) across all loci.  

Population Na A HO HE FIS 

L (Oslofjorden) 4.545 2.891 0.461 0.516 0.107 
RO (Hafrsfjorden) 7.545 3.274 0.485 0.588 0.175 
HA5 (Klosterfjorden) 6.091 3.258 0.472 0.604 0.219 
HA2 (Solesnes, Jondal) 4.000 2.885 0.443 0.585 0.242 
HA3 (Skjerring) 4.818 2.781 0.425 0.496 0.142 
HA4 (Gjermundshamn) 4.545 2.933 0.525 0.577 0.090 
HA1 (Bårdholmen) 5.909 3.176 0.502 0.575 0.126 
SO10 (Kilstraumen) 5.727 3.388 0.599 0.602 0.005 
SO9 (Nyhamnarsundet) 5.091 3.194 0.537 0.603 0.111 
SO7 (Oppedalsvika) 4.909 3.188 0.460 0.574 0.199 
SO6 (Fuglesetfjorden) 4.818 2.947 0.496 0.544 0.089 
SO1 (Leikanger) 3.818 2.437 0.390 0.445 0.125 
SO4 (Lånefjorden) 5.000 3.219 0.503 0.599 0.161 
SO8 (Risnestraumen) 5.273 3.271 0.476 0.614 0.226 
M (Runde) 5.455 3.163 0.518 0.568 0.088 
F (Sommarøy) 5.182 3.434 0.614 0.635 0.033 

 

3.2.2 Population structure and genetic differentiation 

3.2.2.1 FST analyses  

FST (fixation index) is commonly used as a measure of population differentiation due to 

genetic structure and describes the decrease in heterozygosity of sub-populations relative to 

the total heterozygosity across sites, or across both sites in pair-wise comparisons. In 

undifferentiated populations FST equals zero whereas in strongly differentiated populations 

FST tends to one. Pair-wise exact tests of genic differentiation revealed significant population 

structuring across all loci and populations. Pair-wise estimates of FST values between all 

populations showed significant genetic differentiation between most sites (103 of 120 pair-

wise FST values; Table 9).  In total all pair-wise comparisons of genic differentiation revealed 

significant differences between all but 19 pairs of sites, even after Bonferroni correction (P ≤ 

0.00042, Table 9). P-value for each population pair across all loci (Fisher’s method) can be 

found in Appendix 9. To test whether null alleles or loci under selection may influence the 

results, FST analyses were performed several times, where three of the analyses are shown 

below: once with all eleven loci (Table 9),  once after removing loci with potential null 

alleles, SLN34 and SLN54 (Table 10), and once after excluding all “problematic” loci, 

SLN54, SLN34 and SLN35 (Table 11).  
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The purpose was to test if large deviations from the pattern shown in Table 9 occurred. The 

results showed in general minor changes, but some more FST comparisons changed from 

significant to non-significant. 

Table 9: Matrix of pair-wise FST values over all 11 loci for the 16 populations of Saccharina 

latissima. Significant values after Bonferroni correction are depicted with green background 
(P-values for the significance test can be found in Appendix 9). 

  L RO HA5 HA2 HA3 HA4 HA1 SO10 SO9 SO7 SO6 SO1 SO4 SO8 M 

RO 0.130               
HA5 0.087 0.029              
HA2 0.139 0.087 0.067             
HA3 0.218 0.090 0.073 0.091            
HA4 0.149 0.070 0.040  0.049  0.033           
HA1 0.121 0.043  0.005  0.069 0.079 0.052          
SO10 0.105 0.027  0.004  0.049  0.063 0.038  0.002         
SO9 0.101 0.014 0 0.046  0.067 0.036 0 0        
SO7 0.147 0.014  0.017  0.084 0.089 0.073 0.012  0.017 0       
SO6 0.157 0.046  0.045  0.083 0.085 0.085 0.061  0.038  0.029  0.046      
SO1 0.247 0.070 0.112 0.131 0.087 0.116 0.116 0.078 0.100  0.089 0.077     
SO4 0.132 0.029  0.018  0.053 0.058 0.036  0.033  0.012  0.016  0.034  0.038  0.069    
SO8 0.120 0.026  0.003  0.042  0.044  0.027  0.022  0.010 0 0.0002  0.059 0.088  0.016   
M 0.099 0.057 0.022  0.119 0.111 0.087 0.070 0.049  0.042  0.074 0.075  0.162 0.047  0.056  
F 0.139 0.103  0.051 0.095  0.139 0.094  0.072 0.084  0.059 0.080  0.108  0.215  0.106 0.065  0.104 

 

Table 10: Matrix of pair-wise FST values over 9 loci (SLN54 and SLN34 removed, potential 
null alleles) for the 16 populations of Saccharina latissima. Significant values after 
Bonferroni correction are depicted with green background. 

 L RO HA5 HA2 HA3 HA4 HA1 SO10 SO9 SO7 SO6 SO1 SO4 SO8 M 

RO 0.147               
HA5 0.093 0.022              
HA2 0.144 0.081 0.072             
HA3 0.201 0.049 0.063 0.099            
HA4 0.134 0.042 0.040 0.053 0.036           
HA1 0.118 0.022 0.006 0.084 0.091 0.066          
SO10 0.099 0.006 0.000 0.061 0.063 0.042 0.000         
SO9 0.113 0.003 0.000 0.052 0.058 0.039 0.000 0.000        
SO7 0.164 0.008 0.027 0.085 0.079 0.074 0.014 0.048 0.000       
SO6 0.176 0.017 0.023 0.069 0.037 0.046 0.032 0.013 0.006 0.024      
SO1 0.257 0.026 0.088 0.138 0.064 0.097 0.097 0.078 0.071 0.053 0.051     
SO4 0.148 0.019 0.016 0.058 0.044 0.027 0.033 0.016 0.170 0.036 0.031 0.056    
SO8 0.116 0.007 0.006 0.042 0.034 0.025 0.029 0.000 0.000 0.007 0.018 0.051 0.004   
M 0.111 0.068 0.010 0.113 0.064 0.058 0.052 0.024 0.038 0.078 0.057 0.134 0.038 0.038  
F 0.121 0.087 0.053 0.080 0.131 0.096 0.070 0.057 0.058 0.081 0.060 0.181 0.092 0.068 0.088 



31 
 

Table 11: Matrix of pair-wise FST values over 8 loci (SLN54, SLN34 and SLN35 removed) 
for the 16 populations of Saccharina latissima. Significant values after Bonferroni correction 
are depicted with green background. 

 L RO HA5 HA2 HA3 HA4 HA1 SO10 SO9 SO7 SO6 SO1 SO4 SO8 M 

RO 0.070               
HA5 0.055 0.033              
HA2 0.113 0.068 0.068             
HA3 0.156 0.080 0.064 0.103            
HA4 0.122 0.061 0.045 0.063 0.029           
HA1 0.075 0.052 0.008 0.071 0.087 0.061          
SO10 0.061 0.027 0.008 0.045 0.067 0.045 0.008         
SO9 0.044 0.016 0.000 0.047 0.068 0.044 0.000 0.000        
SO7 0.051 0.021 0.016 0.052 0.077 0.061 0.012 0.008 0.000       
SO6 0.062 0.028 0.029 0.08 0.112 0.095 0.065 0.038 0.017 0.026      
SO1 0.158 0.068 0.108 0.096 0.082 0.108 0.133 0.081 0.100 0.092 0.079     
SO4 0.100 0.033 0.027 0.048 0.061 0.039 0.048 0.027 0.025 0.038 0.040 0.071    
SO8 0.076 0.038 0.009 0.032 0.029 0.019 0.029 0.011 0.000 0.001 0.056 0.082 0.022   
M 0.088 0.055 0.028 0.142 0.11 0.101 0.078 0.055 0.048 0.068 0.059 0.152 0.057 0.072  
F 0.119 0.081 0.044 0.108 0.132 0.105 0.048 0.072 0.044 0.032 0.093 0.189 0.103 0.053 0.128 

 

Overall, when excluding the loci with null alleles, ten comparisons went from significant to 

non-significant compared to Table 9 where all the 11 loci are considered. When excluding all 

both candidate loci under positive selection and loci with null alleles the pattern did not 

change much from when these were included. Only three comparisons went from significant 

to non-significant in addition to those that already was non-significant (Table 9 and 11). 

 

With all 11 loci included there was one pair-wise FST comparison (RO-SO7) with a non-

significant value (Figure 7, left), and when excluding all the “problematic” loci (SLN34, 

SLN54 and SLN35) one more comparison (RO-SO9) became non-significant (Figure 7, 

middle). When removing loci with null alleles (SLN34 and SLN54), comparisons between 

RO and two sites in Hardangerfjord (HA5 and HA1) and three sites in Sognefjord (SO10, 

SO9 and SO7) became non-significant in addition. These five sites, HA5, HA1, SO10, SO9 

and SO7 are in the outer parts of both fjords (Figure 7, right).  
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Figure 7: Non-significant FST values shown between site RO and tagged fjord sites when including all 
11 loci (left), after removing SLN54, SLN34 and SLN35 (“Problematic” loci) (middle) and after 
removing loci with null alleles (SLN54 and SLN34) (right). 

 

Site-wise FST comparisons with all loci showed insignificant values when comparing HA5 

with the outermost site in Hardangerfjord HA1, and with the outer sites in Sognefjord, SO10, 

SO9, SO8 and SO7. Removing the “problematic” loci (SLN54, SLN34 and SLN35) showed 

the same outcome (Figure 8, left). After removing loci with null alleles, these comparisons 

were still non-significant. In addition, two more comparisons (between HA5 and SO4 and 

between HA5 and the coastal site north from Sognefjord, M) became non-significant (Figure 

8, right).   
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Figure 8: Non-significant FST values shown between site HA5 and tagged fjord sites when including 
all 11 loci and after removing all “problematic” loci (SLN54, SLN34 and SLN35) (left), and after only 
removing loci with null alleles (SLN54 and SLN34) (right). 

 

The outermost site in Hardangerfjord HA1 compared to three sites in Sognefjord, SO10, SO9 

and SO7 gave non-significant pair-wise FST values (Table 9), and the outcome was the same 

for all 11 loci, 8 loci (excluded SLN54, SLN34 and SLN35) and 9 loci (Excluding null alleles 

SLN54 and SLN34). When comparing the outermost site in Sognefjord SO10 with four sites 

further in in Sognefjord the FST analysis gave non-significant comparisons between SO10 and 

SO9, SO8, SO7 and SO4. The same outcome showed when excluding SLN54, SLN34 and 

SLN35 (“problematic” loci) (Figure 9, left). After removing loci with null alleles these pair-

wise comparisons were still non-significant plus two more comparisons between SO10 and 

SO6, and SO10 and M. (Figure 9, right).   
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Figure 9: Non-significant FST values shown between site SO10 and tagged sites when including all 11 
loci and after removing all “problematic” loci (SLN54, SLN34 and SLN35) (left), and after only 
removing loci with null alleles (SLN54 and SLN34) (right).  

 

One of the outer sites in Sognefjord SO9 compared to SO8, SO7 and SO4 had a non-

significant outcome after an FST analysis including all 11 loci (Figure 10, left). When 

removing the “problematic” loci and when removing the loci with null alleles four 

comparisons were non-significant, and all of them were in Sognefjord, SO8, SO7, SO6 and 

SO4 (Figure 10, right). 

Figure 10: Non-significant FST values shown between site SO9 and tagged sites when including all 11 
loci (left), and after removing all “problematic” loci (SLN54, SLN34 and SLN35), or only loci with 
null alleles (SLN54 and SLN34) (right). 
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When comparing SO7 to two other sites in Sognefjord, SO8 and SO4, this gave non-

significant pair-wise FST values when all loci were included. The outcome was the same for 

all 11 loci, and after removing loci with potential null alleles. By removing all of the 

“problematic” loci (SLN54, SLN34 and SLN35) one comparison between SO7 and the 

northernmost site F became non-significant in addition.  

Also, when comparing SO4 to SO8 this gave a non-significant pair-wise FST value, and the 

outcome was the same for all 11 loci, 8 loci (excluding SLN54, SLN34 and SLN35) and 9 

loci (Excluding null alleles SLN54 and SLN34) (Table 9, 10 and11). 

 

3.2.2.2 Analysis of molecular variance 

An analysis of molecular variance (AMOVA) was conducted in GenAlEx three times: first for 

all populations in one region, thereafter for two and three regions. The analysis grouping all 

stations in one region showed that the molecular variance was highest within individuals 

(88%), then among individuals (7%) and small among populations (5%) (Figure 11). An 

attempt to seperate the sites into 2 and 3 regions (Coastal populations and fjord populations or 

coastal populations, Hardangerfjord and Sognefjord), could not detect any variation between 

the regions (Data not shown).  

 

 

Figure 11: Pie chart summarizing the outcome of AMOVA, showing the partitioning of molecular 
variance within and among individuals and populations. “Problematic” loci were removed (SLN54, 
SLN34 and SLN35).  
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3.2.2.3 Isolation-by-distance 

Isolation-by-distance (IBD) was tested using a Mantel test, which tests for a correlation 

between pair-wise genetic distance and geographic distance matrices between sites. Although 

there was a great spread in the plot, making the IBD unclear, results of the Mantel test showed 

a significant positive correlation between genetic differentiation (FST/(1-FST)) and geographic 

distance between sites (P ≤ 0.001, R2 = 0.24, Figure 12).  

 

Table 12: Matrix of pair-wise FST values over 8 loci (SLN54, SLN34 and SLN35 removed) 
for the 16 populations of Saccharina latissima (lower half) and geographic distances in km 
(upper half) between the 16 sites included in the study. Significant values after Bonferroni 
correction are depicted with grey background. 

  L RO HA5 HA2 HA3 HA4 HA1 SO10 SO9 SO7 SO6 SO1 SO4 SO8 M F 

L - 410 520 592 574 554 524 625 661 696 717 773 734 680 817 1832 
RO 0.070 - 110 182 164 144 116 217 247 282 303 359 320 266 407 1422 
HA5 0.055 0.033 - 72 54 34 30 125 155 190 211 267 228 175 328 1343 
HA2 0.113 0.068 0.068 - 21 39 95 170 200 235 256 312 273 220 373 1388 
HA3 0.156 0.080 0.064 0.103 - 18 77 148 178 213 234 290 251 198 343 1353 
HA4 0.122 0.061 0.045 0.063 0.029 - 60 129 159 194 215 271 232 179 332 1347 
HA1 0.075 0.052 0.008 0.071 0.087 0.061 - 101 131 166 187 243 204 151 304 1319 
SO10 0.061 0.027 0.008 0.045 0.067 0.045 0.008 - 30 65 86 142 103 50 195 1210 
SO9 0.044 0.016 0.000 0.047 0.068 0.044 0.000 0.000 - 35 56 112 73 19 173 1188 
SO7 0.051 0.021 0.016 0.052 0.077 0.061 0.012 0.008 0.000 - 21 78 39 24 185 1200 
SO6 0.062 0.028 0.029 0.08 0.112 0.095 0.065 0.038 0.017 0.026 - 61 22 44 205 1220 
SO1 0.158 0.068 0.108 0.096 0.082 0.108 0.133 0.081 0.100 0.092 0.079 - 43 101 262 1277 
SO4 0.100 0.033 0.027 0.048 0.061 0.039 0.048 0.027 0.025 0.038 0.040 0.071 - 63 224 1239 
SO8 0.076 0.038 0.009 0.032 0.029 0.019 0.029 0.011 0.000 0.001 0.056 0.082 0.022 - 161 1176 
M 0.088 0.055 0.028 0.142 0.11 0.101 0.078 0.055 0.048 0.068 0.059 0.152 0.057 0.072 - 1015 

F 0.119 0.081 0.044 0.108 0.132 0.105 0.048 0.072 0.044 0.032 0.093 0.189 0.103 0.053 0.128 - 
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Figure 12: Isolation-by-distance correlation of genetic differentiation (FST / (1-FST)) and log 
transformed geographic distances between 16 sites of Saccharina latissima based on allele frequency 
data from 8 microsatellite markers. “Problematic” loci were removed (SLN54, SLN34 and SLN35). 

 

As mentioned earlier isolation-by-distance was also tested on just the open coastal 

populations (L, RO, HA1, SO10, SO9, M and F). The fjord populations HA5, HA2, HA3, 

HA4, SO7, SO6, SO1, SO4 and SO8 were excluded from the analysis. The results of the 

Mantel test showed a significant positive correlation between genetic differentiation (FST/(1-

FST)) and geographic distance between sites (P ≤ 0.001, R2 = 0.51, Figure 13).  

 

Figure 13: Isolation-by-distance correlation of genetic differentiation (FST / (1-FST)) and log 

transformed geographic distances between 7 sites of Saccharina latissima based on allele frequency 

data from 8 microsatellite markers. “Problematic” loci were removed (SLN54, SLN34 and SLN35). 
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3.2.2.4 Structure analyses 

The software program STRUCTURE version 2.3.4 (Pritchard, Stephens and Donnelly, 2000) was 

used to investigate population structure, and the web-based program Structure Selector 

determined the best number of clusters (K, set from 2-6) over 20 independent runs based on 

Evanno method (Evanno et al., 2005). STRUCTURE was run using a Markov chain Monte 

Carlo length of 1 000 000 steps after a burn-in of 500 000. Structure selector determined that 

five clusters (K=5) and three (K=3) would be best to show the structure in the material 

depending on what loci are included and excluded.  

Figure 14 displays the estimated result both when including all eleven loci (A) and when 

omitting the two loci with null alleles (B). Structure selector determined that five genetic 

groups would be best to display the structure in the material for both of these analyses. When 

including all loci one can see that there is a genetic group that are most pronounced in the 

Oslofjord population, L. The rest of the coastal populations (RO, M and F) including the 

outermost populations in the fjord systems (HA5, HA1, SO10, SO9 and SO8), are quite 

similar, i.e. show little structure meaning there are little geographical separation of these 5 

genetic groups. In Hardangerfjord (HA populations) there is one genetic group (blue) that 

dominates, while sites in Sognefjord (SO populations) show to some extent similarities with 

the coastal populations, except for the innermost population SO1. Here there is a genetic 

group (violet) that take up most of the genetic clustering.   

When excluding the loci with null alleles (SLN54 and SLN34), one can see that the genetic 

group which dominated in Oslofjord when including all loci, is still present, but to a smaller 

degree. Overall the structure is quite homogenous throughout the whole material.  
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Figure 14: A: 11 loci  and B: 9 loci (null alleles removed, SLN54 and SLN54). 
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Figure 15 displays the estimated result when all “problemtatic” loci such as null alleles and 

candidate loci under positive selection (SLN54, SLN34 and SLN 35) were excluded from the 

STRUCTURE analyses. These STRUCTURE graphs display the genetic structure most 

correctly, as they only include neutral loci. Figure 15 (left) display the overall results along 

the Norwegian coast and the two large fjord systems Hardangerfjord and Sognefjord. 

Structure selector determined that K= 3 would be best to display the structure in the material. 

 

Figure 15 (B) shows the result with all the sites situated inside the fjords excluded (HA5, 

HA2, HA3, HA4, SO7, SO6, SO1, SO4, SO8). The purpose of this analysis was to show if 

there was a different structure when only coastal populations were considered. Seven 

populations are considered as coastal populations here, L, RO, HA1 (Outermost site 

belonging to Hardangerfjord), SO10, SO9 (Two of the outermost sites in Sognefjord), M and 

F. Also here Structure selector determined that three genetic groups would be best to display 

the structure in the material. The results of this analysis suggested that the geneticstructure 

along the coast is clearly homogenous. 

 

The results also show that the genetic groupings shown in STRUCTURE are to some extent 

dependent on the populations included. Looking at figure 15 the only difference between A 

and B are the number of populations included in the analysis. Both have the same three 

genetic groups, but the proportion of the genetic groups shift. STRUCTURE is based on 

permutations and will make an estimate of the material, and will not represent the true reality. 
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Figure 15: A: 8 loci (SLN54, SLN34 and SLN 35 excluded) and B: 8 loci tested on the coastal 
populations.  
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4 Discussion 

The interest in cultivating sugar kelp, Saccharina latissima in Norway is increasing and 

therefore knowledge about the population genetics of this species is important. Except from 

the work of Evankow et al. (2019), little has been done on the population genetics of S. 

latissima in Norway. Consequently, this study was done to get a better understanding and to 

describe the population genetics of S. latissima along the Norwegian coast, especially outside 

and within two large fjord systems in Norway, Hardangerfjord and Sognefjord, and to identify 

possible genetically separated groups in the material.  

 
 

4.1 Discussion of the material  

Working with desiccated S. latissima tissue proved to be quite difficult when using a DNA 

extracting kit that did not seem to give clean DNA. This was the case when working with 

Qiagen DNeasy® 96 Plant Kit, which caused trouble when working with microsatellites. 

After a lot of trial and error the Macherey Nagel NucleoMag® Plant Kit was eventually tested 

on the “problem samples” and others, and this kit proved to give clean DNA for most of the 

remaining samples.  

 

Initially, twelve polymorphic microsatellites markers were described by Paulino et al. (2016) 

in sugar kelp. Eleven of these was used in the present study. One loci (SLN511) had to be 

discarded because of amplification problems. This can be one drawback when using 

microsatellite markers (Selkoe and Toonen, 2006). 

 

Two loci with null alleles and two candidate loci for positive selection were detected in the 

material. One locus, SLN54 proved to be a locus with both null alleles as well as a candidate 

locus for positive selection. The other locus with identified null alleles was SLN34, which 

also was detected in three other publications who used the same microsatellites, Paulino et al. 

(2016) who characterized the microsatellites, Møller Nielsen et al. (2016) and Breton et al. 

(2017). All of these studies kept this locus in the analyses because it did not influence the 

result. In present study however, this locus had, along with SLN54 and SLN35 (candidate for 

positive selection) an effect on the results.   
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It was decided that the focus would be on the analyses where the candidate loci for positive 

selection and loci with null alleles were removed. When removing these loci, the “correct” 

dataset comprised eight neutral loci, SLN314, SLN319, SLN32, SLN320, SLN36, SLN510, 

SLN58 and SLN62. The reason for that is because according to Selkoe & Toonen (2006), any 

locus that can be a candidate for selection should be excluded from analyses based on neutral 

assumptions, in this case, analyses based on FST. Also, any loci with strong evidence of null 

alleles should be excluded, which in present study have this kind of strong evidence from two 

different analyses done with MICROCHECKER 2.2.3 and an exact HWE test implemented in 

GENEPOP 4.2 (web version). 

 

4.2 Discussion of the result 

4.2.1 Genetic diversity  

Paulino et al. (2016) characterized 12 polymorphic microsatellites markers in sugar kelp, and 

11 of these was used in present study. Other studies done with the same microsatellite 

markers are along a salinity gradient in the North Sea – Baltic Sea transition zone (Møller 

Nielsen et al., 2016) and in Eastern Maine, USA (Breton et al., 2017). The studies from 

European waters (Møller Nielsen et al., 2016; Paulino et al., 2016) and on the eastern coast of 

Maine, USA (Breton et al., 2017), had similar expected heterozygosity (HE) as in the present 

study. The two studies from Europe showed higher genetic diversity than the populations 

along the coast of Maine. The overall low diversity in the populations along the eastern coast 

of Maine could be explained by a relatively recent colonization event in the northwest 

Atlantic after the Last Glacial Maximum (Breton et al., 2017). Also, populations of S. 

latissima in western Greenland waters exhibited lower diversity than European populations 

(Paulino et al., 2016). In this study however, there is no sign of decrease in allelic richness 

and expected heterozygosity northwards, on the contrary the northern-most population (F) 

showed the highest value of allelic richness and expected heterozygosity. This may possibly 

be due to a northern transport of alleles along the coast by the unidirectional Norwegian 

Coastal Current. 

 

Møller Nielsen et al. (2016) evaluated patterns of genetic diversity of S. latissima along the 

salinity gradient area of Danish waters and compared designated brackish and marine sites. 

The results showed that the populations located in the brackish environment were less diverse, 
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more related, and showed increased differentiation over distance compared to the marine 

populations.  

The present study focused on the Norwegian coast with emphasis on Hardangerfjord and 

Sognefjord. The fjord systems have a brackish surface layer in an increasing gradient from the 

outermost to the innermost parts of fjords, and with a strong seasonal variation (Sætre, 2007). 

Møller Nielsen et al. (2016) found lower allelic richness and high degree of differentiation of 

the populations in the most brackish part of their investigation area. In the present study sites 

from Hardangerfjord and Sognefjord showed a local drop in allelic richness, and some degree 

of separation into genetic groups. This may suggest limited dispersal and reduced flow of 

alleles into the fjords, possibly in combination with some degree of local adaptation. 

Removing a candidate locus for selection (SLN35) had a large impact on the results of the 

STRUCTURE analysis, and especially in the fjords. However, the fjord populations from 

Hardangerfjord and Sognefjord did not give a clear indication on being less diverse than the 

coastal populations in this study, except the local drop in allelic richness.  

 

4.2.2 Population structure and genetic differentiation 

To answer the first study question, if the genetic structure gradually will change along the 

coast from south to north, the results of the STRUCTURE analyses suggest that there is not a 

gradually changing genetic gradient along the coast. The structure graphs suggest high degree 

of admixture and little genetic structure apart from the fjord areas. With that being said, the 

distance between the site north of Sognefjord, M, and the northern most sampled site F, is 

1015 km. Ideally one would have sampled sites more evenly along the coast the get a more 

thoroughly estimate of the structure.  

 

Regarding the fjord systems (Hardangerfjord and Sognefjord) some localities/populations 

show, at least to some extent, genetic groupings. One genetic group appear to be more 

dominant in Hardangerfjord, and another group in Sognefjord, but overall a gradually change 

in structure is not detected within the fjord systems. By looking at the overall structure pattern 

it may seem like there are some restrictions on gene flow inward in the fjords, while the gene 

flow along the coast is quite good. Low levels of structuring can be an indication of high 

levels of gene flow (Brennan et al., 2014). The Norwegian shoreline offers quite good 

conditions for S. latissima from South to North, with no obvious large barriers for gene flow, 

so a fairly extensive gene flow along the coast can thus be expected. This can also be 

supported by the pair-wise FST values. It is known that water movement and currents play an 
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important role in the dispersal range for kelps, and that gene flow is in turn strongly 

influenced by spore dispersal (Brennan et al., 2014).  

The Norwegian Coastal Current is a unidirectional current that flows northwards along the 

Norwegian coast and can function as a “highway” for spores when they are released from the 

sporophyte.  

 

Freshwater in Hardangerfjord and Sognefjord mixes to a brackish layer, flowing out towards 

the coast specially during early summer – autumn, and can by that cause some level of 

restriction to gene flow. Gene flow is further influenced by topography and landscape quality 

between populations in addition to geographical distance (Kloareg et al., 2007; Brennan et al., 

2014).  Guzinski et al. (2017) discovered low genetic diversity within and low connectivity 

between European Saccharina latissima populations. This low connectivity might be because 

of gene flow barriers, for example large sand beaches along the coast from Belgium to 

Denmark. Such barriers would lead to differentiated populations.  

 

The STRUCTURE analysis done on only the seven coastal populations revealed a genetic 

structure that was clearly homogenous i.e. little genetic structure. This indicates good gene 

flow between the coastal populations, which is strengthened by a significant IBD pattern. 

When comparing the graph that include all populations with the one excluding the fjord 

populations (both done when all “problematic” loci were removed), one can see that both are 

separated into three genetic groups, but how the different groups appear in the different 

populations varies. When excluding the “fjord effect” there are fewer interactions and the 

proportions of the genetic groups shift. The only possible explanation to this is that the 

STRUCTURE software only gives an estimate of the material and will “force” separation of 

the data into genetic clusters based on permutations and will not represent the true reality. The 

STRUCTURE analysis done on all sites along the coast showed that there is a genetic group in 

Oslofjord (L), but that is not very pronounced compared to the other coastal populations. This 

is thus difficult to evaluate if the genetic grouping displayed in Oslofjord represents a clear 

and separate group from the rest of the coastal stations. Between Oslofjord (L) and Rogaland 

(RO) there is however a long coastline of sand (Jæren) which is not a suitable habitat for 

sugar kelp. These populations were also quite differentiated (FST 0.070), indicating that this 

sandy coastline could to some degree serve as a barrier to gene flow.  
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The data suggest isolation by geographical distance to a certain extent. The genetic 

relationship among sampling sites as a function of geographic distance (i.e. isolation-by-

distance) was statistically significant, which suggest that gene flow for sugar kelp along the 

Norwegian coast is, at least to some degree, related to geographic separation of populations. 

Generally, marine coastal ecosystems are assumed to be structured following an isolation-by-

distance pattern, meaning the genetic differentiation between sites will increase as a function 

of distance (Wright, 1943; Evankow et al., 2019). This is, however, not always the case. Due 

to the overall stochastic nature of coastal marine currents and potential long-range dispersal, 

this IBD pattern is not always clear (Breton et al., 2017).  Isolation-by-distance based on 

FST/(1-FST) has been found for S. latissima in the Irish Sea when looking at it in larger scales, 

but when dividing the populations into groups the evidence for an IBD pattern disappeared 

(Mooney et al., 2018). Studies of sugar kelp in European water have not found a clear IBD 

pattern based on FST/(1-FST) (Guzinzki et al., 2016), which is also true for a study done along 

the coast of Maine, USA (Breton et al., 2018). Evankow et al. (2019) did not identify IBD 

when using the traditional regression of FST/(1-FST) but showed strong signatures of IBD 

along the Norwegian coast when using chords distance DCE. Breton et al. (2017) found that 

kelp populations within the study area exhibited significant differentiation. However, the 

greatest level of differentiation was detected between two populations which were 

geographically closer to each other than several other comparisons, thus contributed to an 

overall lack of evidence for a significant IBD model to the population structure. This implied 

that other geographical features such as local ocean currents also influence the population 

structure.  

 

The pair-wise FST analysis was done to see if the populations included in present study 

differentiated from each other. Most of the 120 comparisons between all 16 populations was 

found to be significant, meaning that differentiation between the populations were detected. 

The overall pattern displays little to great genetic differentiation between the populations in 

present study, according to Hartl and Clark (1997). When looking at the two populations that 

are without a doubt furthest apart from each other (L (Outer Oslo fjord) and F (Sommarøy)) 

one would think, when having the isolation-by-distance in mind, that the FST value would be 

the highest in the pair-wise FST-matrices, but it is not. Comparisons between population L and 

one population/site in Sognefjord, SO1 and two populations/sites in Hardangerfjord, HA3 and 
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HA4 gives an indication of being more differentiated due to higher FST values. All these three 

sites are located well inside both fjords.  

This suggest that there is reduced gene exchange between some fjord sites and coastal sites. 

This is also suggested by the drop in allelic richness in some of the fjord sites. To answer 

another study question, the results show greater isolation between sites located in the fjords 

compared to sites located in the coastal area, than between sites located along the coast. For 

example, comparing the FST values between the site south of Hardangerfjord (RO) compared 

to the two outermost sites in Hardangerfjord, HA1 (116 km) and HA5 (110 km), these are 

0.052 and 0.033, respectively. Then by comparing the same two outermost sites in 

Hardangerfjord with the innermost sampled site, HA2 which is almost the same distance, one 

can see that the FST values are higher, 0.068 and 0.071, respectively. The same pattern can be 

seen when comparing the outermost site in Hardangerfjord (HA1) with the two outermost 

sites in Sognefjord (SO10 and SO9) which again is compared to the innermost site in 

Sognefjord. The FST values are lower and less differentiated between coastal sites, and higher 

and more differentiated when comparing a coastal site to a site located further in the fjords.  

 

The genetic differentiation in Hardangerfjord lies between little and moderate, while in 

Sognefjord the FST values are smaller, which indicates that the populations are more 

genetically similar to each other (except for the innermost site, SO1). Also, the genetic 

structure in Hardangerfjord (HA) differ from the structure to Sognefjord (SO).  

 

4.3 Implications for S. latissima cultivation in Norway 

Breton et al. (2017) studied fine-scale population genetic structure of sugar kelp in eastern 

Maine, USA, and conveys that future management and cultivation efforts should aim to 

maintain genetic diversity and says it is crucial to assess the culture potential of local 

populations before choosing to start kelp cultivation.  

 

Risks associated with kelp farming include the introduction of alien species, risk of genetic 

interactions between cultivated crops and wild populations, and thus the loss of natural 

genetic variation. The first task to protect natural variation is to document it (Luttikhuizen et 

al., 2018). Mooney et al. (2018) concluded after studying the pattern of gene flow in 

Saccharina latissima across the northern part of the Irish Sea, that geographical distance and 
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proximity need to be considered when planning the siting of kelp farms with the aim of 

minimizing gene flow to and from natural populations.  

 

The result from the present study are intended give important knowledge about sugar kelp 

population genetics in Norway and be valuable for implementation of coastal regulations for 

kelp cultivation activity. When deciding sites that may be suitable for cultivation of sugar 

kelp, one must understand the distance over which gene flow can occur. In present study it 

has been suggested that there are quite good conditions for extensive gene flow along the 

Norwegian coast. This is also reflected in the pair-wise FST analyses, where the FST values 

between southern Norway (RO) up to the west coast SO10 and SO9 etc. seem to be non-

significant, meaning little differentiation of the genetic variation in these populations, even 

though they are distributed far from each other. When looking at the populations in the fjord 

systems one can notice that there is more differentiation, meaning that the populations could 

be more isolated and not so receptive to connectivity and gene flow. This seems to be the case 

in Hardangerfjord, and not so much in Sognefjord, except the innermost site, SO1. With this 

information in mind, one could assume that sites along the coast can possible be suitable for 

kelp farms, without influencing or risking loss of natural genetic variation.  

 

For future studies of population genetics of S. latissima in Norway additional samples should 

be genotyped from more sampling locations, and with higher genome coverage (i.e. more 

microsatellites) to identify areas of special concern for the development of kelp farms, 

minimizing gene flow to and from natural populations. Adding more material in the study is 

needed to obtain a full understanding of the genetic diversity of S. latissima along the 

Norwegian coast and to suggest and devise appropriate management strategies for future 

large-scale cultivation of this species.  

 

 

 

 

 

 

  



49 
 

References 
 

Aure, J., Asplin J., Sætre R. (2007). Coast/fjord water exchange. In: The Norwegian coastal 

current. Sætre, R (Ed.), Tapir Academic Press, Trondheim, Norway, p.115-124. 

Bartsch, I. et al. (2008) ‘The genus Laminaria sensu lato: Recent insights and developments’, 
European Journal of Phycology, 43(1), pp. 1–86. doi: 10.1080/09670260701711376. 

Beaumont, M. A. and Nichols, R. A. (1996) ‘Evaluating loci for use in the genetic analysis of 
population structure’, Proceedings of the Royal Society B: Biological Sciences, 263(1377), pp. 
1619–1626. doi: 10.1098/rspb.1996.0237. 

Bertness, M. D. and Bruno, J. F. (2001) ‘Habitat modification and facilitation in benthic 
narine communities’, Marine community ecology, 413(October), pp. 201–218. 

Bolton, J. J., Germann, I. and Luning, K. (1983) ‘Hybridization between Atlantic and Pacific 
representatives of the Simplices section of Laminaria (Phaeophyta)’, Phycologia, 22(2), pp. 
133–140. doi: 10.2216/i0031-8884-22-2-133.1. 

Brennan, G. et al. (2014) ‘Understanding macroalgal dispersal in a complex hydrodynamic 
environment : a combined population genetic and physical modelling approach’. J. R. Soc. 
Interface 11: 20140197 

Breton, T. S. et al. (2017) ‘Fine-scale population genetic structure of sugar kelp, Saccharina 
latissima (Laminariales, Phaeophyceae), in eastern Maine, USA’. doi: 10.2216/17-72.1. 

Carracedo, Á. et al. (2013) ‘An overview of STRUCTURE: applications, parameter settings, 
and supporting software’, Frontiers in Genetics, 4(May). doi: 10.3389/fgene.2013.00098. 

Dayton, P. K. (1985) Ecology of Kelp Communities, Source: Annual Review of Ecology and 

Systematics. 

Evankow, A. M. (2015) ‘Genetics of Norwegian kelp forests’, (June) Master thesis, 
University of Oslo. 

Evanno, G., Regnaut, S. and Goudet, J. (2005) ‘Detecting the number of clusters of 
individuals using the software STRUCTURE: A simulation study’, Molecular Ecology, 14(8), 
pp. 2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. 

FAO (2018) World Fisheries and Aquaculture, Aquaculture. doi: issn 10. 

Fredriksen, S. and Rueness, J. (1995) ‘Spore dispersal in Laminaria hyperborea 
(Laminariales, Phaeophyceae)’, (July). doi: 10.1080/00364827.1995.10413579. 

Goudet, J. (1995) ‘Computer Note’, Journal of Heredity, 88(4), pp. 1997–1997. 

Guo, S. W. and Thompson, E. A. (1992) ‘Performing the Exact Test of Hardy-Weinberg 
Proportion for Multiple Alleles Author ( s ): Sun Wei Guo and Elizabeth A . Thompson 
Published by : International Biometric Society Stable URL : 
http://www.jstor.org/stable/2532296 Accessed : 25-06-2016 14 : 06’, Biometrics, 48(2), pp. 
361–372. 

Guzinski, J. et al. (2016) ‘Characterization of newly developed expressed sequence tag-
derived microsatellite markers revealed low genetic diversity within and low connectivity 
between European Saccharina latissima populations’, Journal of Applied Phycology. Springer 



50 
 

Netherlands, 28(5), pp. 3057–3070. doi: 10.1007/s10811-016-0806-7. 

Handå, A. (2019). MACROSEA - SINTEF. [online] SINTEF. Available at: 

https://www.sintef.no/en/projects/macrosea/ [Accessed 28 Jan. 2019]. 

Kloareg, B. et al. (2007) ‘Current patterns, habitat discontinuities and population genetic 
structure: the case of the kelp Laminaria digitata in the English Channel’, Marine Ecology 

Progress Series, 253(May), pp. 111–121. doi: 10.3354/meps253111. 

Leberg, P. L. (2002) ‘Estimating allelic richness: Effects of sample size and bottlenecks’, 
Molecular Ecology, pp. 2445–2449. doi: 10.1046/j.1365-294X.2002.01612.x. 

Li, Y. L. and Liu, J. X. (2018) ‘StructureSelector: A web-based software to select and 
visualize the optimal number of clusters using multiple methods’, Molecular Ecology 

Resources, 18(1), pp. 176–177. doi: 10.1111/1755-0998.12719. 

Lippert, H. et al. (2001) ‘Macrofauna associated with macroalgae in the Kongsfjord 
(Spitsbergen)’, Polar Biology, 24(7), pp. 512–522. doi: 10.1007/s003000100250. 

Lopes, R. J. et al. (2008) ‘LOSITAN: A workbench to detect molecular adaptation based on a 
F st -outlier method’, BMC Bioinformatics, 9(1), pp. 1–5. doi: 10.1186/1471-2105-9-323. 

Lüning, K. (1990). Seaweed Vegetation of the Cold and Warm Temperate Regions of the 
Northern Hemisphere. In: Seaweeds. Yarish, C., Kirkman, H. (Ed.), John Wiley & Sons, New 
York, USA, p.22-163 
 
Lüning, K. (1990). Temperature, Salinity, and Other Abiotic Factors. In: Seaweeds. Yarish, 
C., Kirkman, H. (Ed.), John Wiley & Sons, New York, USA, p.321-346 
 

Luttikhuizen PC, van den Heuvel FHM, Rebours C, Witte HJ, van Bleijswijk JDL, 
Timmermans K (2018) Strong population structure but no equilibrium yet: Genetic 
connectivity and phylogeography in the kelp Saccharina latissima (Laminariales, 
Phaeophyta), Ecology and Evolution, 8(8), pp. 4265–4277. doi: 10.1002/ece3.3968. 

 
Mooney, K. M., Kregting, L., Elsäßer, B., Beatty, G. E., Follis, E. S., Provan, J., Riddell, G. E.  
(2018). Hierarchical structuring of genetic variation at differing geographic scales in the  
cultivated sugar kelp Saccharina latissima. Marine Environmental Research, 142(October),  
108–115. https://doi.org/10.1016/j.marenvres.2018.09.029 
 

Møller Nielsen, M. et al. (2016) ‘Genetic diversity of Saccharina latissima (Phaeophyceae) 
along a salinity gradient in the North Sea-Baltic Sea transition zone’, Journal of phycology, 
52(4), pp. 523–531. doi: 10.1111/jpy.12428. 

Van Oosterhout, C. et al. (2004) ‘MICRO-CHECKER: Software for identifying and 
correcting genotyping errors in microsatellite data’, Molecular Ecology Notes, 4(3), pp. 535–
538. doi: 10.1111/j.1471-8286.2004.00684.x. 

Parke, M. (1948) ‘Studies on british Laminariaceae’, Marine biological association, XXVII, 
pp. 651–709. 

Paulino, C. et al. (2016) ‘Characterization of 12 polymorphic microsatellite markers in the 



51 
 

sugar kelp Saccharina latissima’, Journal of Applied Phycology. Journal of Applied 
Phycology, 28(5), pp. 3071–3074. doi: 10.1007/s10811-016-0811-x. 

Paulino, C., Krause-jensen, D. and Bruhn, A. (2016) ‘Genetic diversity of Saccharina 
latissima ( Phaeophyceae ) along a salinity gradient in the North Sea-Baltic transition zone’, 
(June). doi: 10.1111/jpy.12428. 

Peakall, R. and Smouse, P. E. (2006) ‘GenALEx 6.5: Genetic analysis in Excel. Population 
genetic software for teaching and research-an update’, Bioinformatics, 28(19), pp. 2537–2539. 
doi: 10.1093/bioinformatics/bts460. 

Peakall, R. and Smouse, P. E. (2012) ‘GenALEx 6.5: Genetic analysis in Excel. Population 
genetic software for teaching and research-an update’, Bioinformatics, 28(19), pp. 2537–2539. 
doi: 10.1093/bioinformatics/bts460. 

Petit, R., Mousadik, A. El and Pons, O. (1998) ‘Identifying Basis of Populations Markers for 
Consevation on the Genetic’, Conservation Biology, 12(4), pp. 844–855. 

Pritchard, J. K., Stephens, M. and Donnelly, P. (2000) ‘In f e r e n c e o f Po p u l a t i on S t r 
u c t u r e U s i n g M u l t il o c u s G e no t y pe D a t a’. doi: 10.1111/j.1471-
8286.2007.01758.x. 

Reed, D. C. (1990) ‘The Effects of Variable Settlement and Early Competition on Patterns of 
Kelp Recruitment Author ( s ): Daniel C . Reed Published by : Wiley on behalf of the 
Ecological Society of America Stable URL : https://www.jstor.org/stable/1940329 Wiley , 
Ecological’, 71(2), pp. 776–787. 

Reed, D. C., Amsler, C. D. and Ebeling, A. W. (1992) ‘Dispersal in Kelps : Factors Affecting 
Spore Swimming and Competency’, Ecological Society of America, 73(5), pp. 1577–1585. 

Rice, W. R. (1989) ‘Analyzing Tables of Statistical Tests Author ( s ): William R . Rice 
Published by : Society for the Study of Evolution Stable URL : 
http://www.jstor.org/stable/2409177 . Your use of the JSTOR archive indicates your 
acceptance of the Terms & Conditions of’, 43(1), pp. 223–225. 

Rousset, F. (2008) ‘GENEPOP’007: A complete re-implementation of the GENEPOP 
software for Windows and Linux’, Molecular Ecology Resources, 8(1), pp. 103–106. doi: 
10.1111/j.1471-8286.2007.01931.x. 

Selkoe, K. A. and Toonen, R. J. (2006) ‘Microsatellites for ecologists: A practical guide to 
using and evaluating microsatellite markers’, Ecology Letters, 9(5), pp. 615–629. doi: 
10.1111/j.1461-0248.2006.00889.x. 

Skjermo, J. et al. (2014) ‘A new Norwegian bioeconomy based on cultivation and processing 
of seaweeds: Opportunities and R&amp;D needs’. Available at: 
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2447684/A25981-
++A+new+Norwegian+bioeconomy+based+on+cultivation+and+processing+of+seaweeds+
%28ver.2%29-Jorunn+Skjermo.pdf?sequence=1. 

Skjermo, J. (2019). Taredyrking - SINTEF. [online] SINTEF. Available at: 

https://www.sintef.no/taredyrking/ [Accessed 28 Jan. 2019]. 

Steneck, R. S. et al. (2002) ‘Kelp forest ecosystems: Biodiversity, stability, resilience and 
future’, Environmental Conservation, 29(4), pp. 436–459. doi: 10.1017/S0376892902000322. 

Stévant, P., Rebours, C. and Chapman, A. (2017) ‘Seaweed aquaculture in Norway: recent 



52 
 

industrial developments and future perspectives’, Aquaculture International. Aquaculture 
International, 25(4), pp. 1373–1390. doi: 10.1007/s10499-017-0120-7. 

Sætre R. (2007). Introduction. In: The Norwegian coastal current. Sætre, R (Ed.), Tapir 

Academic Press, Trondheim, Norway, p.9-18. 

Valero, M. et al. (2001) ‘Concepts and issues of population genetics in seaweeds’, Cahiers de 

Biologie Marine, 42(1–2), pp. 53–62. 

Vieira, M. L. C. et al. (2016) ‘Microsatellite markers: What they mean and why they are so 
useful’, Genetics and Molecular Biology, 39(3), pp. 312–328. doi: 10.1590/1678-4685-GMB-
2016-0027. 

  



53 
 

Appendices 
 

Appendix 1 
 
How sampling was conducted in Hafrsfjord in June 2018. 
 

 
1: Saccharina latissima collected by hand in Hafrsfjord in June 2018. 2: 1-2 cm2 meristem 
blade fragments were cut from each macroalgae. 3: The blade fragment was rolled together 
and put into tubes mixed with silica gel beads. 4: The tube was shaken until the silica beads 
covered the whole blade fragment.  
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Appendix 2 

DNeasy® 96 Plant Kit, Quick-Start Protocol  
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Appendix 3 

NucleoMag® Plant Kit, Protocol-at-a-glance 
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Appendix 4 

Five reaction cocktails used in this study. Four loci were grouped together (multiplex); 
SLN319 (name of the multiplex 1), SLN320, SLN34 and SLN32, and amplified in a single 
reaction. The same goes for SLN35 (name of the multiplex 2), SLN36, SLN314 and SLN510. 
SLN54, SLN58 and SLN62 could not be multiplexed, so each locus got its own PCR cocktail 
and was amplified individually, before the three loci were combined into one plate after PCR. 
When single plex 1, 2 and 3 were combined the plate was named SLN54. 
  

  RECIPE OF REAGENTS PRIMERS 
(microsatellite loci) 

 
 Multiplex 1 
SLN 319 

 
ddH2O    264.6 µl 
Forward primer (x4)  6.3 µl 
Reverse primer (x4)  6.3 µl 
AmpliTaq 360 mix  525 µl 
DNA    1 µl per sample 
TOT    840 µl 
  
 

 
SLN 319 (VIC) 
SLN 320 (PET) 
SLN 34 (NED) 
SLN 32 (FAM) 

Multiplex 2 
SLN 35 

ddH2O    264.6 µl 
Forward primer (x4)  6.3 µl 
Reverse primer (x4)  6.3 µl 
AmpliTaq 360 mix  525 µl 
DNA    1 µl per sample 
TOT    840 µl 
 

SLN 35 (VIC) 
SLN 36 (FAM) 
SLN 314 (NED) 
SLN 510 (PET) 

Single plex 1 
SLN 54 

ddH2O    302,4 µl 
Forward primer  6.3 µl 
Reverse primer  6.3 µl 
AmpliTaq 360 mix  525 µl 
DNA 1:10   1 µl per sample  
TOT    840 µl 
 

SLN 54 (VIC) 

Single plex 2 
SLN 62 

ddH2O    302,4 µl 
Forward primer  6.3 µl 
Reverse primer  6.3 µl 
AmpliTaq 360 mix  525 µl 
DNA 1:10   1 µl per sample  
TOT    840 µl 
 

SLN 62 (FAM) 

Single plex 3 
SLN 58 

ddH2O    302,4 µl 
forward primer   6.3 µl 
reverse primer               6.3 µl 
AmpliTaq 360 mix  525 µl 
DNA 1:10   1 µl per sample  
TOT    840 µl 
 

SLN 58 (PET) 
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Appendix 5 

5 PCR programs used in this study, corresponding to master mixes 1-5 in Appendix 2. SA 
Saccharina latissima, first number is the annealing temperature and the second number is the 
number of cycles.  
 
 PCR PROGRAMME 

Multiplex SLN 319 [SA 57 35] 
Multiplex SLN 35 [SA 58 35] 
Single plex SLN 54 [SA 545 35] 
Single plex SLN 62 [SA 55 35] 
Single plex SLN 58 [SA 55 35] 

 
 

Appendix 6 

5 PCR programmes used in this study, corresponding to master mixes 1-5 in Appendix 2. 
Repeats refer to number of times to repeat steps 2-4 (number of cycles). Forever refers to a 
setting that remain until the samples are removed from the PCR machine. 
 
[SA 57 35] 
Step 1 2 3 4 Repeats 6 7 
Temperature (˚C) 95 95 57 72  72 12 
Time (Seconds) 300 30 30 40  20 Forever 
     ←34   

[SA 58 35] 
Step 1 2 3 4 Repeats 6 7 
Temperature (˚C) 95 95 58 72  72 12 
Time (Seconds) 300 30 30 40  20 Forever 
     ←34   

[SA 545 35] 
Step 1 2 3 4 Repeats 6 7 
Temperature (˚C) 95 95 55.5 72  72 12 
Time (Seconds) 300 30 30 40  20 Forever 
     ←34   

[SA 55 35] 
Step 1 2 3 4 Repeats 6 7 
Temperature (˚C) 95 95 55 72  72 12 
Time (Seconds) 300 30 30 40  20 Forever 
     ←34   
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Appendix 7 

Raw data file for this master thesis 

 SLN319 SLN32 SLN320 SLN34 SLN54 SLN58 SLN62 SLN314 SLN35 SLN36 SLN510 

L-02 422431 250258 210212 000000 316316 169169 000000 293296 360360 288294 266271 
L-03 422422 247250 210210 203212 310310 169169 158158 278278 360360 288291 271271 
L-04 422431 247253 210210 197200 316316 169169 153158 278278 360360 285297 266271 
L-05 422431 261270 210212 200200 316316 169169 158158 278296 360360 294294 266271 
L-06 422431 261261 210210 194200 316316 169169 153158 278278 360360 288300 266271 
L-07 419434 247247 210210 200209 000000 169169 158158 278278 357360 288291 271271 
L-08 422431 247253 210210 197203 316316 169169 158158 275278 360360 288303 266271 
L-09 428434 258267 210210 200206 000000 169169 153158 278278 360360 291294 271271 
L-10 422431 253261 210210 200200 310310 169169 153158 275278 360360 291297 266266 
L-11 419422 247247 210210 209209 316316 169169 158158 000000 360360 288297 271271 
L-12 431431 247261 210212 203203 310310 157157 158158 278296 360360 294297 266271 
L-13 000000 247264 210210 203203 000000 169169 153158 278278 360360 288288 271271 
L-14 431431 247250 210212 197197 310310 169169 153158 280293 360360 288297 271271 
L-15 422431 247250 210210 200203 316316 157169 158163 275278 360360 294303 266271 
L-16 422431 247253 210210 203203 316316 169169 153158 278293 354354 291297 266266 
L-17 428428 247258 210210 203206 318348 169169 153158 278296 360360 291294 266271 
L-18 419422 247247 210212 230230 348348 169169 153158 293296 360360 285291 266271 
L-19 431431 247253 210212 200209 316316 169169 158158 278296 357360 294300 266266 
L-20 419431 258261 210210 200200 316316 169169 158158 278278 360360 291300 271271 
L-22 422431 250250 210210 200200 000000 169169 153158 278278 360360 285294 266266 
L-23 419422 247261 210210 200209 316316 169169 158158 278278 360360 291294 266271 
L-25 431431 247253 210210 197212 310310 169169 158158 278290 360360 300303 271271 
L-26 422431 253261 210210 206209 316316 169169 153158 275278 360360 294297 266271 
L-27 422431 250250 210210 197197 000000 000000 153158 278278 360360 291303 266271 
RO-01 419419 250250 210210 206218 318348 169169 158158 269293 357357 294294 266271 
RO-02 419422 250250 210210 200200 316316 169169 158158 278278 357357 288294 266266 
RO-03 422434 250261 000000 200200 316344 169169 153158 269280 357357 285294 266266 
RO-04 422422 247247 210210 209209 316344 169169 153158 272279 357360 288297 246266 
RO-05 422422 244250 212212 212215 316348 169169 000000 278284 357357 282294 266266 
RO-06 422422 247250 210212 197200 344352 169169 153158 269269 357357 297297 266271 
RO-07 422434 250253 210212 200200 348352 169169 158158 278278 360360 285294 246266 
RO-08 422425 241250 210212 197209 344348 169169 153158 269287 357360 294297 266271 
RO-09 422422 244247 210212 000000 348348 169169 158158 281287 359360 288297 266271 
RO-10 419422 247253 210212 197197 344344 169169 158158 278278 357360 288291 271271 
RO-11 419422 219247 210210 200212 348348 169169 153158 281290 357357 294296 261271 
RO-12 422422 253261 212212 215215 324324 169169 153158 293293 357357 300300 266266 
RO-13 419422 250250 210212 191212 318318 169169 163163 269278 357357 264291 271276 
RO-14 419431 250250 210210 209209 344344 169169 158158 287293 357360 288291 271271 
RO-15 419422 250253 210212 197197 316318 169169 158158 290293 357357 291297 246271 
RO-16 419419 232250 210212 200209 316316 169169 158158 266278 357357 297300 266266 
RO-17 419419 244250 210210 209209 316316 169169 158158 278278 357357 294297 266266 
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RO-18 422431 250250 210210 209209 316344 169175 158158 278293 357360 287287 266271 
RO-19 419431 247247 210210 209209 318344 169169 158158 278281 357357 288302 266266 
RO-20 422431 250264 210212 200209 316348 169169 153153 278281 357357 291303 266271 
RO-21 422422 250258 210210 212212 318348 169169 158158 278284 357357 288288 266266 
RO-22 419434 253264 210210 197209 316344 169169 153158 278278 357357 291294 266266 
RO-23 422422 247264 210210 200200 316316 169169 158158 293293 357360 293293 266271 
RO-24 422422 250250 212212 200203 348348 169169 153158 281299 354357 300303 266266 
RO-25 422422 247250 210210 200200 316344 169169 153158 281287 360360 294297 246266 
RO-26 419422 250258 210212 224224 322348 169169 158158 279293 357357 297303 266271 
RO-27 422422 258264 210212 197197 316348 169169 153158 281293 357360 291291 266271 
RO-28 419419 250250 210212 200200 316344 169169 153158 278278 357357 291297 266266 
RO-29 419431 247250 210210 000000 316344 169169 158158 279293 357357 288294 266266 
RO-30 422431 227250 210210 200200 348348 169169 153158 278278 357357 291294 266271 
HA5-01 431431 244256 210210 200200 316318 169169 158158 275278 357363 264297 271271 
HA5-02 419431 250258 210210 200203 316348 169169 000000 000000 357357 293297 266271 
HA5-03 431434 241253 210210 203203 316318 169169 158158 281290 357360 288300 266271 
HA5-04 419422 247247 212212 000000 318318 169169 158158 000000 360360 300300 266271 
HA5-05 422422 247250 212212 200209 310310 169175 153158 281287 357360 291300 266266 
HA5-07 419422 253261 210210 200200 324348 169169 158158 278293 357360 308315 271271 
HA5-08 419419 247250 210212 206209 344344 000000 158158 266281 360360 291305 266271 
HA5-09 419422 247261 212212 203203 318318 169169 153158 293293 357357 294294 271271 
HA5-10 419425 244261 210210 203203 318318 169169 158158 275296 360360 294294 266271 
HA5-11 419419 244247 210210 206209 316316 169169 153158 278293 357360 288288 266276 
HA5-12 422431 244250 210212 000000 316316 169169 158158 281281 357357 281291 266266 
HA5-13 419422 247261 212212 197206 316318 169169 153158 278287 357360 294297 271271 
HA5-14 419419 261267 210210 203203 316324 169169 158158 278281 340357 294300 266266 
HA5-15 419422 232247 210210 200200 318324 169169 153158 281296 357357 279299 266271 
HA5-16 422422 247250 212212 200200 316316 000000 158158 281296 360363 291306 271291 
HA5-17 419419 247253 210210 000000 316318 169169 158158 281293 357357 294294 266271 
HA5-18 419422 253258 212212 209209 318318 169169 158158 293296 360360 297297 266271 
HA5-19 419419 247250 210210 200200 318318 169169 158158 278278 357360 291291 246266 
HA5-21 422431 247261 210212 206206 000000 169169 158158 281281 357357 294303 266271 
HA5-22 419422 253253 210212 200200 318318 169169 158158 278278 357357 297300 266271 
HA5-23 419422 247247 210210 215215 316318 169169 158158 278278 357360 288315 266266 
HA5-24 419422 247247 210212 209209 324324 169169 158158 278280 360360 294297 246266 
HA5-25 419419 247250 210210 209212 316316 169169 158158 278278 357357 291291 246271 
HA5-28 419422 244250 210210 209209 316318 000000 153158 278281 357360 291306 271271 
HA5-29 422431 250256 210210 200200 310310 169169 153158 278287 357357 300305 266266 
HA2-02 422422 250261 210210 209209 310310 169169 153158 278278 360360 294297 266271 
HA2-03 419419 250261 212212 200200 318324 169169 153158 296296 340360 291294 266266 
HA2-04 419422 258267 210212 000000 310310 169169 158158 281281 357360 294297 271271 
HA2-06 422422 261267 210212 200200 318326 169169 153153 281293 357357 285303 266266 
HA2-08 419422 261267 210212 200200 000000 169169 153158 280284 357360 294297 266271 
HA2-09 419419 258261 210210 191191 310310 169169 153153 281281 360360 285288 266266 
HA2-10 422422 250261 212212 191191 316324 169169 153158 000000 340360 294294 271271 
HA2-11 419434 258261 212212 200200 318318 169169 153158 296296 357357 285297 271271 
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HA2-12 422422 250250 210212 191191 316316 169169 153158 278296 360360 285285 266271 
HA2-13 419419 250250 210212 200200 324324 169169 000000 293296 357360 291291 266271 
HA2-14 422422 250261 210212 203203 310310 169169 153153 275281 360360 291297 266271 
HA2-16 422422 253258 210210 203203 324324 169169 158158 278293 340357 285288 271271 
HA2-17 419419 247261 212212 191191 324324 169169 153153 281293 357360 285288 266271 
HA2-18 422422 261267 210210 200200 316316 169169 158158 278281 340357 297297 266271 
HA2-19 419419 250250 212212 191191 318318 169169 153158 278278 360360 285294 266271 
HA2-21 422422 250261 212212 000000 324324 169169 153158 279281 357360 288294 271271 
HA2-23 422431 253261 210212 200200 000000 169169 153153 281284 360360 291297 266266 
HA2-24 419422 000000 210212 200200 318324 169169 153153 293296 340357 285294 266266 
HA2-25 422422 261261 210212 200200 000000 169169 153153 281281 340360 288300 266271 
HA2-26 419422 250261 212212 000000 318318 169169 153158 278281 357360 285288 266266 
HA2-27 419422 258261 210212 000000 316316 169169 153158 278278 340357 294297 266266 
HA3-1 419422 247261 212212 191191 318318 169169 158158 278293 357357 294297 266266 
HA3-2 419419 250258 210212 200200 322322 169169 153158 279281 340360 297300 266271 
HA3-3 419437 250250 212212 000000 318318 169169 153158 278278 360360 294294 266271 
HA3-4 431437 250253 210210 000000 318318 169169 158158 278293 357357 288297 266266 
HA3-5 419422 250250 212212 200200 310310 169169 158158 278278 357360 288303 266266 
HA3-6 422422 247253 212212 000000 318318 169169 153158 278278 357360 297303 266266 
HA3-7 419422 250256 212212 000000 318318 169169 158158 278278 357360 288294 266266 
HA3-8 419422 247250 210212 200200 310318 169169 158158 278278 357360 294297 266266 
HA3-9 419422 261267 212212 203203 318318 169169 158158 278278 357360 297302 266266 
HA3-10 422422 244247 212212 200200 318318 169169 158158 278278 357357 291297 266266 
HA3-11 419422 264264 212212 200200 324324 169169 158158 278290 357357 288300 266266 
HA3-12 419422 250253 210212 200200 318318 169169 158158 278281 357357 294300 266266 
HA3-13 419419 250253 210212 000000 310310 169169 153158 278284 357360 285302 266266 
HA3-14 419437 250256 210212 000000 310310 169175 153158 278281 357357 291291 266266 
HA3-15 419422 256261 212212 200200 316324 169169 158158 278278 357357 297303 266271 
HA3-16 419419 250250 212212 200200 318318 169169 153158 278293 357357 290294 266271 
HA3-17 419431 247253 212212 197200 318324 169169 158158 278278 357357 291291 266266 
HA3-18 419419 250256 210212 191191 318318 000000 158158 278284 360360 291291 266266 
HA3-19 419422 261267 210212 200200 318318 169169 158158 278278 357357 303308 266266 
HA3-20 419422 247261 210210 203203 318324 169169 158158 278278 357360 288300 266271 
HA3-21 419419 261261 210212 000000 318318 169169 153158 278293 357360 288300 266266 
HA3-23 419422 250253 212212 200200 324324 169169 153158 278281 357357 285297 266266 
HA3-24 419422 247253 210212 200200 318318 169169 158158 290293 357357 291302 266266 
HA3-25 419422 250256 210210 000000 318318 169169 153158 293293 357360 294302 266266 
HA3-26 419422 250250 210210 200200 310310 169169 158158 281290 339357 294303 266266 
HA3-27 419419 250261 210212 191200 324324 169169 158158 278278 354354 288306 266266 
HA3-28 419419 250253 210212 200200 318318 169169 158158 278278 357357 300303 266271 
HA3-29 419422 250250 210212 000000 324324 169169 153158 278278 354357 288303 266266 
HA3-30 419437 250261 210212 000000 318318 169169 153153 278284 340357 285294 266266 
HA3-31 419419 250256 210210 200200 324324 169169 153158 281290 354360 291294 266266 
HA3-32 422422 261267 212212 200200 318324 169169 158158 278278 357360 303303 266271 
HA3-33 419422 261267 210212 200200 324324 169169 153158 278284 357357 291314 266266 
HA4-01 419422 244250 210212 206206 318318 169169 153158 278284 340357 291299 266266 
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HA4-02 419422 247247 210210 203203 318318 169169 158158 000000 000000 291294 266266 
HA4-03 419422 253264 210212 200200 324324 163169 153158 278278 357357 297299 266266 
HA4-04 419419 244264 212212 200200 316324 169169 153158 278296 357360 288294 266266 
HA4-05 422422 247261 210212 200203 318318 169169 153158 278293 357357 288291 266271 
HA4-06 419437 244250 210210 000000 316318 169169 158158 278293 340357 291291 266266 
HA4-07 419422 250250 210212 200200 318318 157169 158158 278293 340357 288303 266271 
HA4-08 419422 250250 210212 191191 318318 169169 158158 278296 357359 288291 271271 
HA4-09 419419 247247 210212 200200 318324 169169 153158 278293 360360 288299 266266 
HA4-10 419422 247250 210210 200200 324324 169169 153158 278284 340360 291291 266271 
HA4-11 419431 247253 210212 200200 316316 163169 153158 278296 340357 291294 266271 
HA4-12 419422 247261 210212 200203 324324 169169 153158 293296 357357 291291 266266 
HA4-13 419419 247264 210210 000000 318318 169169 153153 278278 340357 291291 266266 
HA4-14 419422 247258 210212 200200 318324 169169 153153 278290 357360 291302 266266 
HA4-15 419422 253258 210212 200200 318318 169169 153158 296296 357360 288297 266266 
HA4-16 422422 250250 210212 200200 318324 169169 158158 293293 340360 294297 266271 
HA4-17 419422 250250 210212 203203 318318 169169 153158 278293 357360 285309 266271 
HA4-18 419419 258261 210212 000000 324324 169169 153158 278296 340357 291309 271271 
HA4-19 431437 247261 210210 203203 324324 169169 000000 278278 357360 303309 266266 
HA4-20 419437 247261 210212 200200 324324 169169 158158 281281 357360 291303 266266 
HA4-21 419431 250253 212212 212212 310316 169169 153158 278293 360360 288288 266271 
HA4-22 422419 250250 210212 200200 318322 169169 158158 293293 340340 288291 266266 
HA4-23 419431 244261 212212 203203 316324 169169 153158 278296 340357 291291 266266 
HA4-24 419419 250250 210212 000000 318318 169169 153158 000000 357360 291294 266266 
HA4-25 419422 247264 210212 206206 318324 169169 153158 293296 360360 285291 266271 
HA4-27 422422 247250 212212 206206 318318 169169 153158 290293 340360 297305 266266 
HA1-02 422431 224261 210212 200200 316318 169169 158158 000000 000000 291291 266271 
HA1-03 431431 247270 210210 200203 316316 169169 158158 269293 340357 288288 266271 
HA1-04 422431 250261 212212 191200 324324 169169 153158 281293 357357 285288 246266 
HA1-07 419422 250261 210210 200200 318318 169169 158158 000000 360360 294294 266271 
HA1-08 422422 247261 210212 191209 318318 169169 158158 278293 357357 291294 271271 
HA1-09 419431 244247 212212 200203 318324 169169 153158 290290 357360 291294 266271 
HA1-11 419422 250250 210210 200200 318318 169169 158158 278281 357357 294314 246266 
HA1-12 419419 250261 210212 200200 318318 169169 158158 000000 000000 291294 271271 
HA1-14 419422 261267 210212 197200 318318 169169 158158 281281 357357 291294 246272 
HA1-15 419431 261264 210210 203203 318318 169169 158158 275278 357357 288291 266271 
HA1-16 419422 244250 210212 203203 324324 169169 158158 278290 357357 294306 246261 
HA1-17 422431 216250 210210 209209 324324 169169 158158 278299 357357 288288 266266 
HA1-18 422422 250253 210212 194200 318324 169169 158158 278293 357360 000000 266271 
HA1-19 419422 250261 210212 209245 316328 169169 158158 281281 357357 288288 246271 
HA1-20 422422 253261 210210 200245 316316 169169 158158 000000 357357 288291 271271 
HA1-21 422422 247261 210210 200215 310310 169169 153158 278281 340357 291300 271271 
HA1-22 422431 247261 212212 191191 316318 169169 158158 284296 360360 285291 271271 
HA1-23 419431 247250 210212 200203 316316 169169 158158 269280 360360 297297 266271 
HA1-25 419431 247256 210212 200200 324324 169169 158158 287296 357360 288288 266271 
HA1-26 419422 250261 210212 200209 318318 169169 000000 278293 357357 288297 266271 
HA1-27 422422 235250 210210 200200 318318 169169 153158 278278 354360 291300 271271 
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HA1-28 419422 238253 210210 203245 302316 157169 158158 000000 000000 288291 271281 
HA1-29 419422 247250 210210 200200 318318 169169 158158 278281 357357 294314 246266 

SO10-01 419434 247256 210212 209236 316324 169169 158158 281284 357357 285303 261271 

SO10-02 419422 250256 210212 200200 000000 169175 158158 278278 354360 294303 266271 

SO10-03 419419 247247 210212 200200 316324 169169 153158 000000 357357 288309 266271 

SO10-06 422419 247267 210212 203206 324324 169169 153158 278281 357357 300305 266266 

SO10-07 422431 250258 210212 200200 320324 169169 153158 278278 360360 285291 256271 

SO10-11 422431 250261 210210 200200 310310 169169 000000 276278 357357 294297 271271 

SO10-12 422425 247250 210210 200242 310314 169169 158158 278281 360366 288291 261266 

SO10-13 419422 247250 210212 200200 318318 169169 158158 278278 357366 300317 271271 

SO10-14 419422 253267 210210 000000 318328 169169 158158 000000 357360 285294 266271 

SO10-15 419422 247250 210212 200200 000000 169169 158158 284293 360360 297297 271271 

SO10-17 422422 247250 210212 185200 316318 169169 158158 281293 357360 288306 266271 

SO10-18 422431 250258 210210 200200 324324 169169 158158 266278 357357 288291 266266 

SO10-19 419422 250250 210212 200203 324324 169169 158158 281293 357360 291291 266271 

SO10-20 419422 250261 210210 209209 330330 169169 153158 278284 357363 285291 246271 

SO10-21 419422 250253 210212 203215 000000 000000 153158 281296 357357 300302 266271 
SO9-01 419431 247253 210212 203206 000000 169169 153158 278278 357360 291291 266271 
SO9-02 419422 250250 212212 200209 000000 169169 153158 269281 357357 294299 271271 
SO9-04 419422 250250 210210 203203 000000 169169 158158 278284 357360 297306 271271 
SO9-05 422431 241247 212212 200203 000000 169169 158158 278293 340357 296300 266271 
SO9-06 000000 247258 210210 200200 316316 169169 153158 281293 357360 291297 271276 
SO9-07 422422 250256 210210 200200 308324 000000 158158 279281 357357 297297 266271 
SO9-13 422422 250250 210210 197200 000000 169169 153158 276296 357357 291300 271291 
SO9-14 419422 253261 212212 200200 000000 169169 158158 278278 351357 288306 271271 
SO9-15 422422 247250 210212 200209 000000 169169 158158 278281 340357 297303 266271 
SO9-16 419422 250250 210210 000000 318318 169169 158158 293293 354357 291312 266271 
SO9-17 422431 253267 212212 191209 000000 169169 158158 278281 357360 285288 266266 
SO9-18 422422 261261 210212 209209 318318 169169 153158 296296 357360 285294 271291 
SO9-19 419422 250253 210212 203203 318318 169169 000000 278278 360360 291297 266291 
SO9-20 419431 247253 210212 191191 316316 169169 153158 278281 357357 282291 266271 
SO9-21 419419 247250 210210 200209 316316 157169 158158 281293 357360 297300 266266 
SO9-22 419431 250261 210210 191203 318324 169169 158158 278278 357357 288297 266271 
SO7-02 419422 253264 212212 203203 318318 169169 158158 278281 357363 285285 266266 
SO7-03 422422 250261 210212 000000 000000 169169 153158 278278 360360 288297 271271 
SO7-04 422422 258261 210212 200200 000000 169169 158158 000000 357357 291291 271271 
SO7-06 422422 247264 210210 200200 316318 169169 153158 000000 357357 297297 266271 
SO7-08 422431 229250 210212 200203 000000 169169 153158 269280 357357 291308 271271 
SO7-10 422422 250264 210210 209209 000000 169169 158158 278287 357360 294296 271296 
SO7-11 419422 241241 212212 200209 000000 169169 153158 278278 357357 288288 256296 
SO7-12 419422 250258 210210 200200 000000 169169 158158 284299 357357 285299 261266 
SO7-14 419422 247256 210210 000000 000000 169169 158158 278278 357357 291294 291291 
SO7-15 422419 247253 210250 203203 000000 169169 158158 278281 357357 297303 271291 
SO7-16 422422 247250 210212 200215 318318 169169 158158 278287 357357 288300 266271 
SO7-17 419422 253258 210212 197197 000000 169169 153158 281284 357357 291294 266266 
SO7-18 422431 250261 206212 209209 316316 163169 158158 278281 357357 297303 266266 
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SO7-19 422422 247253 210210 209209 000000 169169 153158 269281 357357 296296 271271 
SO7-20 419434 258258 210210 209209 000000 169169 153158 278280 357357 288299 266266 
SO6-01 419422 253258 212212 200200 316318 169169 158158 278278 357357 294297 266271 
SO6-02 422422 250250 210210 200200 310310 169169 158158 290296 357357 288297 266271 
SO6-03 419422 244244 210212 200245 316316 169169 158158 293293 354357 294297 266271 
SO6-04 419419 250250 210210 212212 318318 169169 158158 279281 357357 300306 266271 
SO6-05 419422 253261 210212 200200 000000 169169 158158 279281 357360 300306 266271 
SO6-06 422422 250258 210212 200209 316316 169169 158158 278293 354357 297306 266266 
SO6-07 419422 247250 200212 200200 316316 157157 158158 279293 360360 294306 266271 
SO6-08 419422 247250 210212 182182 316316 169169 158158 272281 357357 291303 266271 
SO6-09 419422 258258 210212 000000 316316 169169 158158 279293 357357 291306 266296 
SO6-10 422422 250253 210212 200200 316316 169169 153158 278284 354357 294300 266271 
SO6-11 419422 250253 212212 000000 316316 169169 158158 272293 354357 291294 266271 
SO6-12 419422 250253 212212 200200 316316 169169 153158 278284 357357 294300 266271 
SO6-13 422419 250267 212248 200200 316316 169169 158158 284284 360360 288297 266266 
SO6-14 419422 247256 212212 200200 316316 169169 153158 278290 357357 285297 266266 
SO6-15 419419 247247 212212 000000 310310 169169 158158 278281 354357 291294 271276 
SO6-16 419422 247250 210210 200200 316316 169169 153158 278278 357360 288294 266271 
SO6-17 000000 253256 000000 194200 316316 169169 153158 281281 354360 291294 266271 
SO6-18 419422 247258 212212 200200 310310 169169 153158 279293 357357 291291 271271 
SO6-19 422422 250267 212212 200200 310316 169169 158158 278281 354357 291294 266266 
SO6-20 419422 250270 210212 197200 000000 169169 158158 278278 354357 306306 266271 
SO6-21 422422 247250 210210 206209 310310 169169 153158 278281 357357 285294 266266 
SO1-01 419434 250258 210212 000000 000000 169169 158158 269278 357357 294294 266266 
SO1-02 422422 250256 210210 200200 000000 169169 158158 278284 357357 291297 266266 
SO1-04 419422 250256 212212 000000 324324 169169 153158 278296 357357 294294 266291 
SO1-05 422422 247258 210210 197200 310310 169169 158158 278281 357357 294294 266266 
SO1-06 422422 250250 210210 200200 310310 169169 153158 281281 357357 294294 266271 
SO1-07 419422 250256 212212 200200 000000 169169 000000 278284 357357 294297 266266 
SO1-08 419422 250261 210210 206206 324324 169169 153158 269278 357357 294294 266291 
SO1-09 422419 250258 210212 206206 310310 169169 158158 278281 357357 291291 266266 
SO1-10 419422 250256 210212 200200 324324 169169 158158 278278 357357 291297 266271 
SO1-11 419422 250258 210212 200200 310310 169169 153158 281287 357363 291297 266271 
SO1-12 419419 241250 210212 200200 000000 169169 158168 281281 357357 294297 266266 
SO1-13 419422 250258 210210 200200 310310 169169 153158 269281 000000 000000 266271 
SO1-14 419422 258258 210210 000000 324324 169169 158158 278281 357357 297297 266266 
SO1-16 422422 250258 210212 000000 310310 169169 158158 278287 354357 291297 266266 
SO1-17 419422 244253 210210 000000 310310 169169 153158 278281 357357 291294 266266 
SO1-18 422422 250258 210212 200200 310310 169169 153158 278278 357357 291294 266266 
SO1-19 419422 247250 210212 197197 000000 169169 158158 278278 357357 297297 266291 
SO1-20 422422 250256 210210 200200 000000 169169 158158 281284 357357 294294 266276 
SO1-21 422422 250258 210210 200200 000000 169169 158158 269269 354357 288288 266266 
SO1-22 419422 250250 212212 200200 000000 169169 158158 278278 357357 291294 266266 
SO1-23 419419 250250 210210 197197 000000 169169 153158 278287 357357 294297 266266 
SO1-24 419419 250256 210212 200200 316316 169169 153158 278284 354357 294294 266266 
SO1-25 422422 250250 210212 200200 310320 169169 153158 278281 357357 297303 266266 
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SO4-01 419422 258261 210210 200200 316316 169169 158158 278287 357357 288303 266306 
SO4-02 419419 250256 210212 200200 316316 169169 153158 278278 357360 288303 266266 
SO4-03 419422 253256 210212 200200 316316 169169 153158 278278 357360 291303 266271 
SO4-04 422419 250250 212212 197197 318324 169169 158158 278281 357357 288294 271271 
SO4-05 419422 250250 210212 197209 324324 169169 153158 281281 357363 291291 271291 
SO4-06 419422 247250 210212 209209 316316 169169 153158 281296 357357 291297 266291 
SO4-07 419422 221244 210210 200200 000000 169169 158158 275278 357357 291297 266266 
SO4-08 419434 247256 210212 200200 318318 169169 000000 281293 354357 285297 266271 
SO4-09 419419 244256 212212 200200 318318 169169 153158 278281 357360 294294 266301 
SO4-10 419422 229247 210210 203203 000000 169169 158158 269293 354357 285297 266266 
SO4-11 419422 250261 210210 000000 320320 169169 153158 280280 360360 291291 266286 
SO4-12 419422 250261 210210 000000 320320 169169 148148 280280 360360 291291 266286 
SO4-13 419422 250261 210212 200200 000000 169169 158158 279281 357360 291294 266271 
SO4-14 419419 253264 210212 200200 000000 169169 158158 278281 357360 294300 266271 
SO4-15 419422 250258 210210 200200 324324 169169 153158 278278 357357 297300 266271 
SO4-16 419422 250261 210210 000000 320320 169169 153158 280280 360360 291291 266286 
SO4-17 419422 250256 210212 000000 310310 169169 000000 287293 357363 288294 266266 
SO4-18 419419 250261 210210 209209 316316 169169 000000 280280 357357 288297 286291 
SO4-19 419431 250256 210212 203203 320320 169169 000000 275280 354357 288291 266266 
SO8-01 419422 250256 210210 000000 318318 169169 153153 278278 360363 300300 271271 
SO8-02 419422 247250 210212 215215 318318 169169 153158 293293 357357 297297 266291 
SO8-03 419431 241250 210212 209209 318318 169169 158158 278278 357360 288305 266271 
SO8-04 419419 261264 210210 212212 316316 169169 158168 293296 357360 288291 271271 
SO8-05 419422 247258 210210 191197 310310 169169 158158 278278 357363 294294 266266 
SO8-06 422422 247258 210210 203203 310310 169169 153158 281284 357360 288291 266271 
SO8-07 000000 247250 210210 197197 316318 169169 158158 281281 357360 285294 266291 
SO8-08 000000 250253 000000 200200 318318 169169 153158 278278 357357 285288 266271 
SO8-09 419422 247261 210212 209209 318324 169169 153153 278281 357360 297303 266291 
SO8-10 419419 258258 212212 200200 324324 169169 158158 278281 357360 288306 266266 
SO8-11 425422 253258 212212 200209 318318 169169 153153 281293 357357 270294 291291 
SO8-12 422425 244256 212212 200200 316318 169169 158158 278278 357357 291303 266266 
SO8-13 419431 250267 210210 209209 318318 169169 000000 278278 357360 279297 266271 
SO8-14 422422 250256 210210 000000 318318 169169 153153 278278 360363 300300 271271 
SO8-15 419422 247250 210210 200212 316316 169169 158158 281281 357359 294303 271271 
SO8-16 419422 247250 210212 215215 324324 169169 153158 293293 357357 297297 266291 
SO8-17 419422 247247 210210 191209 318324 169169 153158 278293 357359 297300 266281 
SO8-18 419419 250261 212212 200200 324324 169169 153158 275280 357360 294297 266271 
SO8-19 422422 250261 210212 209209 318318 169169 153158 278278 357357 279297 266271 
SO8-20 422431 250256 210212 200206 316318 169169 158158 278280 357360 291294 266266 
SO8-21 419425 244256 212212 200203 316318 169169 158158 278278 357357 291303 266266 
M-01 419419 250253 210212 000000 316318 169169 158158 278281 357363 294297 266266 
M-02 419419 244250 210210 197203 348348 169169 158158 278278 357363 291305 266266 
M-03 419419 247250 210212 200200 316348 169169 158158 293293 357357 306306 266271 
M-04 422419 247253 212212 209209 348348 169169 158158 278293 360360 297306 261271 
M-05 419422 247261 210210 000000 348348 169169 158158 266278 360360 288297 266271 
M-06 419419 247253 212212 000000 324348 169169 158158 278281 357360 294303 261261 
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M-08 419419 256264 210210 000000 348348 169169 158158 279281 357357 306306 266271 
M-09 419419 247247 210212 194200 316348 169169 153158 278284 354357 288288 266271 
M-10 416434 247261 210210 197197 316316 169169 158158 278281 360360 291303 261266 
M-11 419419 229253 210212 000000 348348 169173 153158 278278 357363 291297 271276 
M-12 419422 241247 210210 000000 318318 169169 158158 278287 357357 291297 266271 
M-13 419431 247247 210212 206209 348348 169169 158158 278281 357357 294300 261266 
M-14 419419 247261 210212 000000 316318 169169 158158 278281 357360 282300 266266 
M-15 416425 247250 206210 200209 316348 169169 158158 278281 360363 288300 266271 
M-16 419422 247261 210210 203209 316318 169169 158158 278278 360360 291312 261271 
M-17 419422 241261 210212 000000 316316 169169 158158 278281 360360 300300 261271 
M-18 419431 229250 210212 206206 316316 169169 158158 278278 357363 282288 266266 
M-19 419422 250250 210212 200209 318348 169169 158158 278281 354360 291306 266271 
M-20 419422 250261 210212 203209 316316 169169 158158 266278 360360 285297 266271 
M-21 419419 247247 212212 200200 316348 169169 158158 278284 360363 291294 266266 
M-22 419434 247261 210210 197197 316316 169169 158158 278281 360360 291303 261266 
M-23 419422 247261 210210 197197 316316 169169 158158 272272 357363 303303 266266 
M-24 431422 247250 210212 200200 316316 169169 158158 278280 360363 291306 261271 
F-12 419434 224247 210212 197206 318318 169169 158158 278281 357360 291300 266271 
F-13 428422 224253 212212 203206 318318 169169 158158 269290 354357 287293 266266 
F-14 422431 224224 206212 200203 000000 169169 000000 278280 360360 288306 266271 
F-15 422431 224229 206210 200200 318318 000000 158158 000000 360360 303309 266271 
F-16 419422 224250 212212 200209 318348 154154 153163 272293 360360 288303 266271 
F-17 419422 247247 210210 191206 318318 000000 158158 272299 360360 290297 271271 
F-18 419422 224247 206210 206212 316318 169169 153158 272287 360360 290294 271286 
F-19 422431 224224 206212 200206 316318 169169 158158 293293 357357 285294 271271 
F-20 422422 224253 212212 200206 316318 000000 158158 281293 357357 294300 266271 
F-22 422422 253258 206210 197206 316318 169169 000000 276281 357360 300300 266271 
F-23 422422 224247 210212 206206 316318 169169 153158 276278 354360 294294 266266 
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Appendix 8 

Estimates of genetic diversity for eleven microsatellite loci screened in the sugar kelp, 
Saccharina latissima. N, number of individuals; Na, number of alleles; A, allelic richness; HO, 
observed heterozygosity; HE, expected heterozygosity; FIS, inbreeding coefficient and 
associated P-values. Significant values after Bonferroni correction (P ≤ 0.0045) are depicted in 
bold type.  

Location SLN319 SLN32 SLN320 SLN34 SLN54 SLN58 SLN62 SLN314 SLN35 SLN36 SLN510 All loci 

L 
Outer Oslofjord             
N 23 24 24 23 19 23 23 23 24 24 24 30 

Na 5 8 2 8 4 2 3 6 3 7 2 4.545 

A 3.370 4.354 1.687 4.583 2.666 1.444 2.104 3.148 1.617 4.841 1.991 2.891 

HO 0.739 0.750 0.250 0.522 0.053 0.043 0.565 0.565 0.083 0.917 0.500 0.461 

HE 0.686 0.792 0.223 0.827 0.553 0.127 0.423 0.553 0.161 0.846 0.496 0.516 

P-value 0.005 0.301 1 0.008 0 0.071 0.252 0.212 0.045 0.999 1  

FIS -0.078 0.053 -0.122 0.365 0.905 0.656 -0.336 -0.021 0.483   -0.084 -0.007 0.107 

RO 
Hafrsfjord              
N 30 30 29 28 30 30 29 30 30 30 30 30 

Na 5 11 2 10 7 2 12 12 4 13 5 7.545 

A 3.034 4.281 1.960 4.435 4.020 1.133 2.166 4.881 2.119 5.327 2.655 3.274 

HO 0.533 0.700 0.414 0.357 0.600 0.033 0.414 0.667 0.300 0.767 0.533 0.485 

HE 0.625 0.743 0.436 0.806 0.778 0.033 0.424 0.826 0.379 0.874 0.544 0.588 

P-value 0.668 0.920 1 0 0.042 - 0.018 0.018 0.142 0.373 0.575  

FIS 0.146 0.058 0.051 0.557 0.228 0 0.023 0.193    0.209   0.123 0.019 0.175 

HA5 
Klosterfjord             
N 25 25 25 22 24 22 24 23 25 25 25 29 

Na 5 10 2 7 6 2 2 9 4 15 5 6.091 

A 3.021 4.809 1.974 4.098 3.724 1.182 1.747 4.448 2.442 5.664 2.724 3.258 

HO 0.640 0.840 0.200 0.273 0.417 0.046 0.292 0.696 0.440 0.680 0.600 0.472 

HE 0.647 0.825 0.463 0.788 0.733 0.046 0.254 0.798 0.553 0.897 0.603 0.604 

P-value 0.189 0.325 0.007 0 0.001 - 1 0.661 0.603 0.009 1  

FIS 0.010 -0.018 0.568 0.654 0.431 0 -0.150 0.129 0.205 0.242 0.004 0.219 

HA2 
Solesnes, Jondal             
N 21 20 21 17 18 21 20 20 21 21 21 27 

Na 4 6 2 4 5 1 2 8 3 7 2 4 

A 2.367 3.815 1.993 3.057 3.869 1.000 1.99 4.373 2.773 4.502 1.995 2.885 

HO 0.333 0.800 0.476 0 0.222 0 0.500 0.600 0.619 0.81 0.429 0.443 

HE 0.545 0.738 0.502 0.654 0.794 0 0.492 0.807 0.626 0.825 0.510 0.585 

P-value 0.061 0.275 1 0 0.000 - 1 0.103 0.758 0.244 0.662  

FIS 0.389 -0.084 0.052 1 0.720 - -0.016 0.256 0.011 0.019 0.159 0.242 
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HA3 
Skjerring 

N 32 32 32 22 32 31 32 32 32 32 32 33 

Na 4 9 2 4 5 2 2 6 5 12 2 4.818 

A 2.631 4.563 1.982 2.401 3.000 1.129 1.879 3.162 2.698 5.517 1.627 2.781 

HO 0.656 0.781 0.438 0.091 0.156 0.032 0.375 0.500 0.469 0.844 0.219 0.425 

HE 0.568 0.801 0.477 0.397 0.617 0.032 0.347 0.549 0.531 0.890 0.198 0.496 

P-value 0.150 0.004 0.713 0 0.000 - 1 0.113 0.341 0.630 1  

FIS -0.155 0.025 0.083 0.771 0.747 0 -0.081 0.091 0.118 0.052 -0.107 0.142 

HA4 
Gjermundshamn             
N 26 26 26 22 26 26 25 24 25 26 26 27 

Na 4 7 2 5 5 3 2 6 4 10 2 4.545 

A 2.874 4.453 1.996 3.289 2.935 1.44 1.989 3.692 3.027 4.674 1.898 2.933 

HO 0.692 0.692 0.654 0.091 0.326 0.115 0.640 0.708 0.720 0.769 0.308 0.525 

HE 0.612 0.804 0.506 0.656 0.634 0.112 0.487 0.728 0.676 0.795 0.363 0.577 

P-value 0.270 0.041 0.233 0 0.005 1 0.205 0.412 0.854 0.688 0.580  

FIS -0.132 0.139 -0.292 0.861 0.454 -0.027 -0.315 0.027 -0.065 0.033 0.153 0.090 

HA1 
Bårdholmen             
N 23 23 23 23 23 23 22 18 20 22 23 28 

Na 3 13 2 8 6 2 2 11 4 8 6 5.909 

A 2.841 4.846 1.978 3.958 3.434 1.174 1.566 5.053 2.488 4.408 3.185 3.176 

HO 0.696 0.957 0.435 0.522 0.261 0.044 0.182 0.778 0.300 0.682 0.696 0.502 

HE 0.644 0.827 0.464 0.714 0.699 0.044 0.169 0.846 0.496 0.806 0.652 0.575 

P-value 0.889 0.893 1 0.275 0 - 1 0.140 0.035 0.036 0.102  

FIS -0.080 -0.157 0.064 0.270 0.627 0 -0.077 0.081 0.395 0.154 -0.067 0.126 

SO10 
Kilstraumen             
N 15 15 15 14 12 14 14 13 15 15 15 21 

Na 5 7 2 8 8 2 2 7 5 12 5 5.727 

A 3.139 4.283 1.978 3.733 4.832 1.286 1.842 4.211 2.967 6.005 2.988 3.388 

HO 0.867 0.867 0.667 0.429 0.5 0.071 0.357 0.769 0.467 0.867 0.667 0.599 

HE 0.650 0.769 0.452 0.632 0.837 0.071 0.302 0.766 0.607 0.917 0.629 0.602 

P-value 0.159 0.857 0.112 0.035 0.007 - 1 0.762 0.437 0.195 1  

FIS -0.333 -0.127 -0.474 0.322 0.403 0 -0.182 -0.004 0.231 0.055 -0.061 0.005 

SO9 
Nyhamnarsundet             
N 15 16 16 15 8 15 15 16 16 16 16 19 

Na 3 8 2 6 4 2 2 8 5 12 4 5.091 

A 2.793 4.338 1.993 4.044 3.262 1.267 1.874 4.271 2.874 5.592 2.829 3.194 

HO 0.667 0.688 0.313 0.533 0.250 0.067 0.400 0.625 0.625 0.875 0.688 0.537 

HE 0.631 0.783 0.504 0.786 0.723 0.067 0.329 0.779 0.556 0.883 0.617 0.603 

P-value 0.785 0.285 0.290 0.103 0.002 - 1 0.074 1 0.887 1  

FIS -0.057 0.122 0.380 0.321 0.654 0 -0.217 0.198 -0.124 0.009 -0.115 0.111 
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SO7 
Oppedalsvika 

N 15 15 15 13 4 15 15 13 15 15 15 17 

Na 4 9 4 5 2 2 2 7 3 10 6 4.909 

A 2.652 5.482 2.512 3.676 2 1.267 1.916 4.292 1.887 5.779 3.603 3.188 

HO 0.600 0.867 0.467 0.231 0.250 0.067 0.467 0.769 0.133 0.667 0.400 0.460 

HE 0.510 0.891 0.548 0.766 0.583 0.067 0.367 0.753 0.250 0.913 0.724 0.574 

P-value 0.352 0.568 0.525 0.001 0.429 - 0.529 0.337 0.198 0.012 0.013  

FIS -0.178 0.027 0.148 0.699 0.571 0 -0.273 -0.021 0.467 0.271 0.447 0.199 

SO6 
Fuglsetfjorden             
N 20 21 20 18 19 21 21 21 21 21 21 21 

Na 2 9 4 8 3 2 2 8 3 8 4 4.818 

A 1.993 4.67 2.386 3.089 2.431 1.348 1.801 4.756 2.647 4.927 2.367 2.947 

HO 0.650 0.762 0.450 0.278 0.105 0 0.333 0.714 0.476 0.905 0.714 0.496 

HE 0.497 0.814 0.543 0.485 0.493 0.095 0.283 0.835 0.537 0.849 0.536 0.544 

P-value 0.354 0.361 0.777 0.010 0 0.026 1 0.072 0.066 0.541 0.147  

FIS -0.307 0.064 0.172 0.428 0.786 1 -0.177 0.144 0.113 -0.066 -0.333 0.089 

SO1 
Leikanger             
N 23 23 23 18 14 23 22 23 22 22 23 23 

Na 3 8 2 3 4 1 3 6 3 5 4 3.818 

A 2.162 3.604 1.978 2.392 2.742 1 2.079 3.726 1.643 3.32 2.166 2.437 

HO 0.522 0.783 0.435 0.056 0.071 0 0.500 0.696 0.182 0.500 0.348 0.390 

HE 0.513 0.672 0.465 0.428 0.582 0 0.392 0.715 0.172 0.695 0.311 0.445 

P-value 0.620 0.329 1 0 0 - 0.460 0.965 1 0.031 1  

FIS -0.017 -0.165 0.064 0.870 0.877 - -0.276 0.028 -0.057 0.280 -0.118 0.125 

SO4 
Lånefjorden             
N 19 19 19 15 15 19 15 19 19 19 19 19 

Na 4 10 2 4 5 1 3 9 4 7 6 5 

A 2.399 4.849 1.978 3.169 4.023 1 2.414 4.66 2.854 4.614 3.448 3.219 

HO 0.790 0.895 0.474 0.067 0.067 0 0.533 0.579 0.526 0.727 0.684 0.503 

HE 0.522 0.817 0.462 0.624 0.810 0 0.495 0.830 0.589 0.820 0.6477 0.599 

P-value 0.032 0.159 1 0 0 - 0.025 0.005 0.506 0.162 0.913  

FIS -0.513 -0.095 -0.025 0.893 0.918 - -0.077 0.303 0.107 0.102 -0.056 0.161 

SO8 
Risnesstraumen             
N 19 21 20 19 21 21 20 21 21 21 21 21 

Na 4 10 2 8 4 1 3 7 4 11 4 5.273 

A 3.024 5.033 1.990 4.681 3.277 1 2.186 3.566 2.76 5.556 2.906 3.271 

HO 0.684 0.905 0.300 0.316 0.286 0 0.400 0.381 0.667 0.762 0.523 0.476 

HE 0.649 0.848 0.497 0.833 0.669 0 0.515 0.681 0.551 0.893 0.636 0.614 

P-value 1 0.186 0.159 0 0 - 0.464 0 0.343 0.049 0.189  

FIS -0.054 -0.067 0.397 0.621 0.573 - 0.223 0.441 -0.210 0.147 0.176 0.226 
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M 
Runde 

N 23 23 23 15 23 23 24 23 23 23 23 24 

Na 6 9 3 6 4 2 2 9 4 11 4 5.455 

A 3.112 4.364 2.157 4.306 2.863 1.174 1.321 3.811 3.105 5.613 2.971 3.163 

HO 0.609 0.826 0.522 0.467 0.391 0.044 0.087 0.739 0.522 0.783 0.696 0.518 

HE 0.567 0.782 0.503 0.819 0.640 0.044 0.085 0.683 0.676 0.897 0.644 0.568 

P-value 0.092 0.391 1 0.001 0.053 - 1 0.104 0.059 0.220 0.254  

FIS -0.073 -0.057 -0.037 0.430 0.389 0 -0.023 -0.083 0.228 0.128 -0.080 0.088 

F 
Sommarøy             
N 11 11 11 11 10 8 9 10 11 11 11 12 

Na 5 6 3 7 3 2 3 10 3 12 3 5.182 

A 3.354 3.778 2.902 4.259 2.349 1.767 2.297 5.972 2.586 6.151 2.362 3.434 

HO 0.727 0.727 0.636 0.818 0.600 0 0.333 0.900 0.364 0.818 0.636 0.614 

HE 0.618 0.705 0.673 0.768 0.461 0.250 0.389 0.917 0.577 0.923 0.564 0.635 

P-value 0.583 0.843 0.750 0.970 1 0.066 0.362 0.827 0.297 0.475 1  

FIS -0.177 -0.032 0.054 -0.065 -0.301 1 0.143 0.018 0.370 0.113 -0.129 0.033 

All locations             
N 340 344 342 295 298 335 329 329 340 343 345 345 

Na 8 20 6 17 15 6 5 15 9 26 13 13 

A 2.798 4.470 2.090 3.698 3.214 1.226 1.948 4.251 2.530 5.156 2.607 3.090 

HO 0.641 0.800 0.435 0.305 0.292 0.036 0.399 0.650 0.432 0.773 0.589 0.487 

HE 0.593 0.789 0.472 0.686 0.668 0.053 0.357 0.740 0.493 0.854 0.522 0.566 

P-value 
0.027 0.098 0.739 

High. 
Sign. 

High. 
Sign. 

0.021 0.682 0 0.096 0.004 0.745 
 

FIS -0.081 -0.014 0.078 0.555 0.563 0.327 -0.117 0.121 0.123 0.095 -0.129 0.138 
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Appendix 9 

Genic differentiation for each population pair (Fisher's exact Probability test) 
 
Number of populations : 16 
Number of loci  : 11 
 
Markov chain parameters 
 Dememorisation  : 1000 
 Batches   : 100 
 Iterations per batch  : 1000 
 
 
P-value for each population pair across all loci (Fisher's method) 
 
Population pair Chi2 df P-Value 
 

   
L & RO Infinity 22 Highly sign. 
L & HA5 Infinity 22 Highly sign. 
RO & HA5 Infinity 22 Highly sign. 
L & HA2 Infinity 22 Highly sign. 
RO & HA2 Infinity 22 Highly sign. 
HA5 & HA2 Infinity 22 Highly sign. 
L & HA3 Infinity 22 Highly sign. 
RO & HA3 Infinity 22 Highly sign. 
HA5 & HA3 Infinity 22 Highly sign. 
HA2 & HA3 Infinity 22 Highly sign. 
L & HA4 Infinity 22 Highly sign. 
RO & HA4 Infinity 22 Highly sign. 
HA5 & HA4 95.4388 22 0.0000 
HA2 & HA4 Infinity 22 Highly sign. 
HA3 & HA4 90.7889 22 0.0000 
L & HA1 Infinity 22 Highly sign. 
RO & HA1 Infinity 22 Highly sign. 
HA5 & HA1 34.0583 22 0.0484 
HA2 & HA1 83.6327 22 0.0000 
HA3 & HA1 Infinity 22 Highly sign. 
HA4 & HA1 Infinity 22 Highly sign. 
L & SO10 Infinity 22 Highly sign. 
RO & SO10 Infinity 22 Highly sign. 
HA5 & SO10 29.4347 22 0.1329 
HA2 & SO10 73.7462 22 0.0000 
HA3 & SO10 Infinity 22 Highly sign. 
HA4 & SO10 78.8224 22 0.0000 
HA1 & SO10 29.8317 22 0.1226 
L & SO9 Infinity 22 Highly sign. 
RO & SO9 53.7768 22 0.0002 
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HA5 & SO9 18.9712 22 0.6471 
HA2 & SO9 64.3779 22 0.0000 
HA3 & SO9 Infinity 22 Highly sign. 
HA4 & SO9 66.0496 22 0.0000 
HA1 & SO9 21.7050 22 0.4776 
SO10 & SO9 18.6694 22 0.6656 
L & SO7 Infinity 22 Highly sign. 
RO & SO7 41.6449 22 0.0069 
HA5 & SO7 44.1114 22 0.0034 
HA2 & SO7 Infinity 22 Highly sign. 
HA3 & SO7 Infinity 22 Highly sign. 
HA4 & SO7 Infinity 22 Highly sign. 
HA1 & SO7 46.3394 22 0.0018 
SO10 & SO7 29.6099 22 0.1283 
SO9 & SO7 20.8493 22 0.5301 
L & SO6 Infinity 22 Highly sign. 
RO & SO6 Infinity 22 Highly sign. 
HA5 & SO6 87.8193 22 0.0000 
HA2 & SO6 Infinity 22 Highly sign. 
HA3 & SO6 Infinity 22 Highly sign. 
HA4 & SO6 Infinity 22 Highly sign. 
HA1 & SO6 Infinity 22 Highly sign. 
SO10 & SO6 Infinity 22 Highly sign. 
SO9 & SO6 59.8231 22 0.0000 
SO7 & SO6 82.5495 22 0.0000 
L & SO1 Infinity 22 Highly sign. 
RO & SO1 Infinity 22 Highly sign. 
HA5 & SO1 Infinity 22 Highly sign. 
HA2 & SO1 Infinity 20 Highly sign. 
HA3 & SO1 Infinity 22 Highly sign. 
HA4 & SO1 Infinity 22 Highly sign. 
HA1 & SO1 Infinity 22 Highly sign. 
SO10 & SO1 Infinity 22 Highly sign. 
SO9 & SO1 Infinity 22 Highly sign. 
SO7 & SO1 Infinity 22 Highly sign. 
SO6 & SO1 Infinity 22 Highly sign. 
L & SO4 Infinity 22 Highly sign. 
RO & SO4 Infinity 22 Highly sign. 
HA5 & SO4 54.5106 22 0.0001 
HA2 & SO4 96.4863 20 0.0000 
HA3 & SO4 Infinity 22 Highly sign. 
HA4 & SO4 Infinity 22 Highly sign. 
HA1 & SO4 Infinity 22 Highly sign. 
SO10 & SO4 39.9300 22 0.0110 
SO9 & SO4 43.5727 22 0.0041 
SO7 & SO4 45.2705 22 0.0025 
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SO6 & SO4 Infinity 22 Highly sign. 
SO1 & SO4 Infinity 20 Highly sign. 
L & SO8 Infinity 22 Highly sign. 
RO & SO8 Infinity 22 Highly sign. 
HA5 & SO8 30.9811 22 0.0965 
HA2 & SO8 82.4999 20 0.0000 
HA3 & SO8 Infinity 22 Highly sign. 
HA4 & SO8 Infinity 22 Highly sign. 
HA1 & SO8 59.3735 22 0.0000 
SO10 & SO8 35.9463 22 0.0308 
SO9 & SO8 24.6483 22 0.3142 
SO7 & SO8 31.1574 22 0.0929 
SO6 & SO8 Infinity 22 Highly sign. 
SO1 & SO8 Infinity 20 Highly sign. 
SO4 & SO8 44.9516 20 0.0011 
L & M Infinity 22 Highly sign. 
RO & M Infinity 22 Highly sign. 
HA5 & M Infinity 22 Highly sign. 
HA2 & M Infinity 22 Highly sign. 
HA3 & M Infinity 22 Highly sign. 
HA4 & M Infinity 22 Highly sign. 
HA1 & M Infinity 22 Highly sign. 
SO10 & M Infinity 22 Highly sign. 
SO9 & M 69.3541 22 0.0000 
SO7 & M 84.3934 22 0.0000 
SO6 & M Infinity 22 Highly sign. 
SO1 & M Infinity 22 Highly sign. 
SO4 & M Infinity 22 Highly sign. 
SO8 & M Infinity 22 Highly sign. 
L & F Infinity 22 Highly sign. 
RO & F Infinity 22 Highly sign. 
HA5 & F Infinity 22 Highly sign. 
HA2 & F Infinity 22 Highly sign. 
HA3 & F Infinity 22 Highly sign. 
HA4 & F Infinity 22 Highly sign. 
HA1 & F Infinity 22 Highly sign. 
SO10 & F Infinity 22 Highly sign. 
SO9 & F Infinity 22 Highly sign. 
SO7 & F Infinity 22 Highly sign. 
SO6 & F Infinity 22 Highly sign. 
SO1 & F Infinity 22 Highly sign. 
SO4 & F Infinity 22 Highly sign. 
SO8 & F Infinity 22 Highly sign. 
M & F Infinity 22 Highly sign. 
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Appendix 10 

 

Genotypic linkage disequilibrium 
 
Number of populations : 16 
Number of loci detected : 11 
 
Markov chain parameters 
        Dememorisation  : 10000 
        Batches   : 1000 
        Iterations per batch : 10000 
 
P-value for each locus pair across all populations (Fisher's method) 
 
Locus pair Chi2 df P-Value 

SLN319 & SLN32          33.274911 32   0.4050 
SLN319 & SLN320         32.896257 32   0.4230 
SLN32 & SLN320         37.487290 32   0.2319 
SLN319 & SLN34          25.465381 32   0.7868 
SLN32 & SLN34          28.603682 32   0.6392 
SLN320 & SLN34          36.289108 32   0.2754 
SLN319 & SLN54          41.005581 32   0.1321 
SLN32 & SLN54          27.788863 28   0.4757 
SLN320 & SLN54          23.694519 30   0.7857 
SLN34 & SLN54          29.136730 30   0.5104 
SLN319 & SLN58          16.981530 24   0.8494 
SLN32 & SLN58          11.598820 24   0.9841 
SLN320 & SLN58          12.356180 24   0.9756 
SLN34 & SLN58          6.021158  20   0.9989 
SLN54 & SLN58          17.423703 22   0.7396 
SLN319 & SLN62          19.171667 32   0.9642 
SLN32 & SLN62          25.718847 32   0.7759 
SLN320 & SLN62          22.717177 32   0.8870 
SLN34 & SLN62          17.183255 32   0.9849 
SLN54 & SLN62          28.127671 32   0.6630 
SLN58 & SLN62          20.747574 24   0.6536 
SLN319 & SLN314         23.019309 30   0.8145 
SLN32 & SLN314         24.004702 30   0.7718 
SLN320 & SLN314         52.287680 30   0.0071 
SLN34 & SLN314         33.765791 30   0.2903 
SLN54 & SLN314         22.219309 30   0.8459 
SLN58 & SLN314         8.875334  20   0.9843 
SLN62 & SLN314         29.055575 30   0.5147 
SLN319 & SLN35          29.556289 32   0.5908 
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SLN32 & SLN35          15.363968 32   0.9943 
SLN320 & SLN35          29.693152 32   0.5838 
SLN34 & SLN35          36.852762 32   0.2544 
SLN54 & SLN35          42.262519 32   0.1060 
SLN58 & SLN35          9.812133  22   0.9879 
SLN62 & SLN35          25.823932 32   0.7713 
SLN314 & SLN35          31.702808 30   0.3815 
SLN319 & SLN36          15.090796 28   0.9775 
SLN32 & SLN36          31.106638 30   0.4102 
SLN320 & SLN36          29.191426 30   0.5076 
SLN34 & SLN36          17.166314 30   0.9705 
SLN54 & SLN36          24.094151 28   0.6766 
SLN58 & SLN36          8.437757  22   0.9958 
SLN62 & SLN36          24.407962 28   0.6598 
SLN314 & SLN36          45.778223 30   0.0326 
SLN35 & SLN36          31.706857 30   0.3813 
SLN319 & SLN510         42.431714 32   0.1028 
SLN32 & SLN510         37.156264 32   0.2435 
SLN320 & SLN510         19.335435 32   0.9619 
SLN34 & SLN510         33.645611 32   0.3877 
SLN54 & SLN510         35.723693 32   0.2976 
SLN58 & SLN510         13.092129 24   0.9646 
SLN62 & SLN510         30.283459 32   0.5536 
SLN314 & SLN510         33.911182 30   0.2844 
SLN35 & SLN510         49.884755 32   0.0229 
SLN36 & SLN510         32.660848 30   0.3374 

 


