
Cross-Site Scripting Protection in
Firefox

Creating a filter for Firefox protecting against
Reflected cross-site scripting attacks

Andreas Svardal Vikne

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and
Physics,

Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

June 2018

Abstract

One of the most dominant threats against web applications is the class of

script injection attacks, also called cross-site scripting. This class of attacks

affects the client-side of a web application, and is a critical vulnerability

that is difficult to both detect and remediate for websites, often leading

to insufficient server-side protection, which is why the end-users need an

extra layer of protection at the client-side, utilizing the defense in depth

strategy. In this thesis, a client-side filter for Mozilla Firefox is presented

and implemented, with the goal of protecting against Reflected cross-site

scripting attacks, while maintaining high performance. By conducting tests

on the implemented solution, the conclusion is that the filter does provide

more protection than the original Firefox version, at the same time achieving

high performance, which with only some further improvements would become

an effective option for end-users of web applications to protect themselves

against Reflected cross-site scripting attacks.

ii

Acknowledgements

I would like to thank my thesis advisor, Associate Professor P̊al Ellingsen,

for his invaluable comments and guidance he has given me during the writ-

ing of my thesis. His immerse positivity and support has also been highly

appreciated.

iii

Contents

List of Figures ix

List of Tables ix

1 Introduction 1

1.1 Background . 1

1.2 Problem Description . 2

1.3 Related Work . 2

1.3.1 Regular Expressions Considered Harmful in Client-Side

XSS Filters [1] . 3

1.3.2 Precise Client-side Protection against DOM-based Cross-

Site Scripting [2] . 3

1.3.3 Cross-Site Scripting (XSS) Attacks and Defense Mech-

anisms: Classification and State-of-the-Art [3] 3

1.3.4 Related Work Conclusion 4

1.4 Thesis Outline . 4

2 Theoretical Background 5

2.1 Web Security . 5

2.1.1 Information Security Principals 5

2.1.2 Web Security Statistics 5

2.1.3 Injection Attacks . 7

2.2 Cross-Site Scripting (XSS) . 7

2.2.1 Stored/Persistent XSS 8

2.2.2 Reflected/Non-Persistent XSS 9

2.2.3 Document Object Model (DOM) Based XSS 10

2.2.4 Other XSS Types . 12

Universal XSS . 12

Self XSS . 12

2.2.5 Cross-Site Scripting Exploits 13

Injection input sources 13

Attack vectors . 13

Example attack . 14

2.2.6 Counter-Measures . 15

iv

Validation/Sanitization 15

Output encoding . 16

Content Security Policy (CSP) 16

Same-origin policy . 17

HTTPOnly cookie flag 17

Disabling JavaScript 17

2.3 Cross-Site Scripting Filters . 18

Server-side filters . 18

Client-side filters . 18

2.3.1 Regular Expression Based Filters 19

2.3.2 XSS Auditor - A string-matching Based Filter 20

2.3.3 State of Current Browsers 21

2.4 Methodology . 22

3 Mozilla Firefox 24

3.1 Firefox Overview . 24

3.1.1 Loading of a Web Page 26

3.2 Security Mechanisms . 26

3.2.1 Same-Origin Policy . 27

3.2.2 Compartments and Principals 27

3.2.3 Content Security Policy (CSP) 29

4 Design and Implementation 30

4.1 Design Choices . 30

4.1.1 Requirements . 30

Usability . 30

Low false-positives . 30

High performance . 31

Provide protection against Reflected XSS 31

4.1.2 Browser Extension vs Internal Implementation 32

Availability . 32

Performance . 32

Security . 32

4.1.3 Blocking Technique . 33

4.1.4 Filtering Technique . 33

4.2 Design Overview . 33

v

4.2.1 Placement . 34

4.2.2 Filter Class Structure 35

4.3 Environment . 35

4.3.1 Tools . 36

Development Software 36

Mach . 36

GNU Project Debugger (GDB) 36

4.4 Implementation . 37

4.4.1 Data Flow . 37

4.4.2 Examining Input Data 37

4.4.3 Looking for Injections - Matching Algorithm 38

Basic evasion techniques 39

Different encodings . 39

Different attack vectors 39

4.4.4 Handling of Discovered Script 40

4.4.5 Firefox Integration . 40

4.4.6 Challenges . 41

4.4.7 Unit Testing . 41

5 Analysis and Assessment 43

5.1 Protection Effectiveness . 43

5.1.1 Methodology of Testing 43

5.1.2 Results . 44

Blocked scripts . 45

Injected scripts . 46

5.1.3 Limitations . 46

Limitations regarding filtering rules 46

Limitations regarding request input sources 48

5.2 Performance . 48

5.2.1 Methodology of Testing 49

5.2.2 Results . 50

5.2.3 Limitations . 50

5.3 Implementation . 52

5.3.1 Conform to Mozilla Firefox’s Internal Coding Standards 52

5.3.2 Blocking Technique . 52

Partial blocking . 52

vi

Blocking whole page 53

5.3.3 Usability . 53

Choosing blocking technique 53

Violation feedback . 54

6 Conclusion 55

7 Further Work 57

8 References 58

vii

Acronyms

ASCII American Standard Code for Information Interchange. 39

CSP Content Security Policy. v, 16, 26, 27, 29, 34, 40, 54, 55

CSS Cascading Style Sheets. 24, 32

DOM Document Object Model. iv, 3, 8, 10, 24

GDB GNU Project Debugger. vi, 36

HTML HyperText Markup Language. 11, 24, 26, 27

HTTP Hypertext Transfer Protocol. 8, 13, 48, 53, 57

IDE Integrated Development Environment. 36

OWASP Open Web Application Security Project. 1, 14

SQL Structured Query Language. 7

SQLi Structured Query Language injection. 6, 7

URL Uniform Resource Locator. 8, 9, 11, 13–15, 21, 38, 39, 41, 45, 46, 54,

55

VS Code Visual Studio Code. 36

W3C World Wide Web Consortium. 17

XML Extensible Markup Language. 24

XSS Cross-Site Scripting. iv, 1, 3, 4, 6–8, 11–15, 17–23, 27, 31, 33, 37, 43,

48, 49, 54–56

XUL XML User Interface Language. 24

viii

List of Figures

1 Web application vulnerability disclosures in 2016. Figure taken

from ”IBM X-Force Threat Intelligence Index 2017” [4] 6

2 Stored/Persistent XSS . 9

3 Reflected/Non-Persistent XSS 10

4 DOM Based XSS . 11

5 XSS Auditor design . 20

6 Simplified data flow for rendering a web page 25

7 An overview of the relationships between the different security

principals. Figure taken from Mozilla’s website, about ”Script

Security”[5] . 28

8 XSS Filter placement inside Firefox 35

9 Testing of the implemented filter 45

List of Tables

1 Top 5 Web Browsers XSS Protection Status. Data retrieved

from Mozilla [6] . 22

2 Testing of the implemented filter 47

3 Loading times results, measured in milliseconds 51

ix

Introduction 1

1 Introduction

1.1 Background

Cross-Site Scripting (XSS) has for long been among the top threats against

Internet security as defined in numerous reports containing detailed infor-

mation about the prevalence and danger regarding this class of vulnerabil-

ity. One of these reports is the ”Open Web Application Security Project

(OWASP) Top 10 - 2017” report, which contains a list of the 10 most crit-

ical web application security risks [7]. Even though cross-site scripting has

fallen to a 7th place in the ”OWASP Top 10 - 2017” report [7], cross-site

scripting still remains one of the most serious attack forms. Another report,

being published annually for the past 12 years, by WhiteHat Security, called

“2017 - WhiteHat Security Application Security Statistics Report” [8], also

identifies that cross-site scripting is among the top two most critical web

vulnerabilities. An interesting and troubling observation made in this re-

port is that even though cross-site scripting is considered one of the most

critical vulnerabilities, it is not being prioritized for remediation by most

websites. The statistics being presented suggest that the vulnerabilities re-

ceiving most attention are vulnerabilities that are easy to fix, which is not

the case for cross-site scripting. As a result of this, it is suggested that orga-

nizations must adopt a risk-based remediation process, which means that the

most critical vulnerabilities should be prioritized first, like cross-site script-

ing. A report [9] published by Bugcrowd Inc., a web-based platform that

use crowd-sourced security for companies to identify vulnerabilities in their

web applications, has analyzed the data from their platform, including in-

formation about the most common vulnerabilities found. The data in their

report is based on all BugCrowd’s collected data from January 2013 through

March 2017, which contains of over 96 000 submissions, where the by far

most reported vulnerability is cross-site scripting with a submission rate of

25%. They also have data on the most critical vulnerabilities sorted by type,

where cross-site scripting is considered the second most critical, which cor-

respond to the same result found in WhiteHat Security’s report. These are

some of the most recent numbers regarding cross-site scripting statistics, but

there have been published numerous studies on XSS vulnerabilities, attacks

and its prevalence. One study from Hydara et al. [10] from 2014 conducted a

1

Introduction 2

systematic literature review were they reviewed a total of 115 studies related

to cross-site scripting. They concluded that XSS still remains a big problem

for web applications, despite all the proposed research and solutions being

provided so far. As seen from the more recent numbers from OWASP, White-

Hat and BugCrowd, this conclusion still holds true, that XSS vulnerabilities

remains to be at large.

1.2 Problem Description

Cross-site scripting vulnerabilities are caused by insufficient validation/sanitation

of user submitted data that is used and returned by the website in the re-

sponse, which could compromise the user of the site. An attacker could

potentially use this vulnerability to steal users’ sensitive information, hijack

user sessions or rewrite whole website contents displaying fake login forms.

With the observation about how prevalent this type of attack is, and accord-

ing to the mentioned WhiteSecurity report that it is being not prioritized nor

easy for websites to fix and remediate, it becomes clear that the user needs

some means of protecting themselves at the client-side, since it is mainly

the end-users of vulnerable web applications that are affected by potential

attacks. Amongst the top 5 most used web browsers [11], Mozilla Firefox is

the only browser which does not include any kind of built-in filtering against

cross-site scripting attacks, which may compromise users in the case of a

vulnerable web application.

1.3 Related Work

This thesis is based upon existing research regarding the state of current

client-side filtering for cross-site scripting attacks, containing weaknesses and

suggestions for further improvements. Based on these existing results, a

filtering solution for Firefox was first proposed in a paper by the author of

this thesis, ”Client-Side XSS Filtering in Firefox” [12]. This thesis builds on

the same work and expands on the results given there.

2

Introduction 3

1.3.1 Regular Expressions Considered Harmful in Client-Side XSS

Filters [1]

This paper analyses existing client-side filters and techniques for cross-site

scripting, before presenting a better solution based on a different design.

The filters analyzed uses regular expressions for their filtering, which the

paper concludes being either unacceptably slow or easily circumvented. They

then present a new filter design which achieve high performance and high

precision, by implementing the filter to blocking scripts after the HTML

parser but before script execution, and by using string matching instead

of regular expressions. Their filter, XSS Auditor, was first implemented in

the WebKit rendering engine, and is now enabled by default in the Google

Chrome browser.

1.3.2 Precise Client-side Protection against DOM-based Cross-

Site Scripting [2]

This paper also discusses flaws with existing client-side filters, including the

already introduced XSS Auditor. The paper focuses most on flaws related

to DOM Based XSS vulnerabilities, which is a subtype of XSS, which is

not the primary focus of XSS Auditor, but yet relevant as XSS Auditor is

being considered as state-of-the-art in client-side Cross-Site Scripting (XSS)

mitigation. After elaborating several limitations in existing filters, the paper

presents an alternative filter design mainly focusing on DOM Based XSS,

by looking at attacker-controlled syntactic content, utilizing runtime taint

tracking and taint-aware parsers to stop attacks.

1.3.3 Cross-Site Scripting (XSS) Attacks and Defense Mechanisms:

Classification and State-of-the-Art [3]

This paper contains statistics and analysis of the current situation concern-

ing vulnerable websites with the main focus on cross-site scripting attacks.

The paper contains a thorough discussing regarding cross-site scripting the-

ory, from basic concepts, discussion of different types and their outcome,

to describing how to both perform an attack and to identify if a website is

vulnerable to XSS attacks. Then the paper analyses several existing filters

for protecting against XSS attacks, filters both placed on the client-side and

3

Introduction 4

server-side of web applications, finding different limitations contained in all

of them. The paper ends with proposing several additions and guidelines for

creating better XSS defensive techniques and filters.

1.3.4 Related Work Conclusion

All the presented papers chosen for related work contains analyses for differ-

ent existing solutions for filters protecting against cross-site scripting attacks.

All of them go into specific details regarding the flaws of different filters,

which are then used to create some requirements that needs to be addressed

when creating a new filter. Although the three chosen papers does analyze

some of the same filters, they all provide some unique evaluation of the find-

ings. The three papers also focuses on different areas concerning cross-site

scripting filters, either a specific type of XSS attack or a more general anal-

ysis regarding XSS filters and their current state. Reading and collecting all

the proposals from the different papers, comparing them and putting them

together, creates a solid understanding of the different limitations and dif-

ferences between the current state-of-the-art filters. This is knowledge that

is important when proposing a new solution based on many of these ideas

presented.

1.4 Thesis Outline

Chapter 2 will go into detail about web security and more specifically about

XSS, explaining everything from what it is to different ways of protecting

against it, focusing mainly at the client-side of web applications. This sec-

tion will also include information about the current state regarding XSS

prevalence and existing work, before ending with a detailed description of

the methodology used in this thesis work. Following, in Chapter 3, will be

describing the web browser, Mozilla Firefox, which is the application that

this thesis work are building upon. Chapter 4 will then describe all the de-

sign choices and the actual implementation of the work done, before Chapter

5 will contain an analysis of how well the work is done, in terms of protec-

tion effectiveness, performance and integration into Firefox. The chapters,

Chapter 6 and Chapter 7, contains a conclusion based on all the work done,

before ending with some suggestions for further improvement.

4

Theoretical Background 5

2 Theoretical Background

2.1 Web Security

Web applications need to be protected against malicious users who want to

steal and tamper their data. Web security is a broad concept, including many

different aspects, protection mechanisms and potential outcomes. To be able

to protect a web application, basic understanding of information security is

therefore needed, as it regards some basic principles and objectives for why

security is important and how to utilize it correctly.

2.1.1 Information Security Principals

Information security defines three important objectives of security [13], which

are maintaining confidentiality, integrity, and availability. Confidentiality is

about protection of information and data from being accessed by unautho-

rized parties. When someone gets access to data that they should not have

access to, like sensitive information about users, it is considered a breach

of confidentiality. Integrity is about the authenticity of information, ensur-

ing that it is not altered and to make sure the source of the information is

genuine. In web applications, this could be if an attacker is redirecting you

to a different site than you originally intended to visit, as the site you get

redirected to is not genuine. And lastly, availability regards that information

should be accessible for the authorized users, which of course should be done

in such a way that there is no breach in confidentiality or that someone might

alter the available data when accessing it. All these objectives of security are

important when creating secure web applications. To be able to fulfill them

all, web applications need to protect against several different attacks from

malicious parties trying to steal their and their users data. This is not an

easy task, as there exists so many different types of attacks for targeting all

kinds of vulnerabilities that are often contained in web applications.

2.1.2 Web Security Statistics

Several companies and organizations are doing annual research and assess-

ment work containing a lot of collected data from a huge number of web ap-

plications and reports regarding security breaches and vulnerabilities. One

5

Theoretical Background 6

Figure 1: Web application vulnerability disclosures in 2016.

Figure taken from ”IBM X-Force Threat Intelligence Index 2017” [4]

of these reports [8], already mentioned in the introduction, from WhiteHat

Security, goes into depth describing the current web security state. This

report does not only contain information about XSS attacks, but a whole

range of other web vulnerabilities with information of how prevalent they

are, as well as which industries and areas that are the most vulnerable to

different attacks. WhiteHat’s report also contains a list of a vast number

of web application vulnerability classes, describing 64 different web vulner-

abilities that needs to be protected against for web applications. This is

a huge number of vulnerabilities, and while not all are relevant for every

web application, many of them are critical, which needs to be addressed ac-

cordingly, where the injection attacks XSS and Structured Query Language

injection (SQLi) is considered the most critical. Another report, by IBM,

”IBM X-Force Threat Intelligence Index 2017” [4], is another comprehensive

report containing statistics from different security events including web secu-

rity, identifying what vulnerabilities are used and targeted industries. IBM

also concludes that XSS and SQLi vulnerabilities are the most critical and

prevalent, as seen in Figure 1, which need more attention by the different

industries. As a whole, containing all web vulnerabilities, both reports have

6

Theoretical Background 7

identified a small decrease in vulnerabilities in web applications, but also that

attackers are targeting the most critical vulnerabilities more, in which one of

the most critical, XSS vulnerability, is the least prioritized by applications

to fix. Another concerning factor identified by both reports is that it takes

too long to fix web vulnerabilities, which means both the application itself

as well as the end-users are at a higher risk of being affected by a security

breach.

2.1.3 Injection Attacks

The reports from WhiteHat Security and IBM, as discussed above, makes it

clear that the most prevalent attack on web applications is injection attacks,

which includes attackers trying to break the confidentiality by stealing data

from the web application itself or from the users of the web application.

Injection attacks are performed with attackers inputting untrusted input to

web applications that is executed as a command or query in such a way that

it alters the course of execution, which could result in stealing of sensitive

information or altering of data. There exists several types of injection attacks,

but the most prevalent is by far SQLi and XSS. SQLi involves unauthorized

users to inject Structured Query Language (SQL) commands that can read

or modify data from a database connected to the web application. This is

achieved through the usage of user-supplied input that gets used as part of

a SQL query without the web application validating or encoding the input

correctly. As attackers can read and modify data upon a successfully executed

SQLi attack, it is possible to steal sensitive user data such as usernames

and passwords, alter the contents of the stored information or simply delete

everything contained in a database, which would incur huge complications

for the affected web applications. The other critical vulnerability, XSS, will

be covered in more depth in the following section.

2.2 Cross-Site Scripting (XSS)

Cross-site scripting vulnerabilities are caused by insufficient validation/sanitation

of user submitted data in form of JavaScript code, that is used and returned

by the website in the response without making sure the content is safe to

use, which could compromise the users of the site. An attacker could poten-

7

Theoretical Background 8

tially use this vulnerability to rewrite the contents on the website creating

fake login forms to steal users’ sensitive information, hijack user sessions or

redirect them to other malicious websites.

There are three main types of cross-site scripting attacks, but there also

exists some other defined types:

• Stored XSS, also called Persistent XSS

• Reflected XSS, also called Non-Persistent XSS

• DOM Based XSS

• Others - Plug-in XSS, Universal XSS, Self XSS

2.2.1 Stored/Persistent XSS

Stored XSS occurs when the injected script is stored on a publicly accessible

area of a website, which means on the actual website itself. Typical places

susceptible to Stored XSS attacks are in comment sections, message board

posts or in chat rooms. Since the input data is stored in these places, if

the input data is an injected script, the injected script might get executed

upon loading of the page, if the page is vulnerable. When a user visits one

of these places, the browser will retrieve the data and render it, which in

turn will execute the Stored XSS attack in the browser’s context. Figure 2

illustrates the flow of a typical Stored XSS attack. Other places susceptible

to Stored XSS attacks might include areas of a website only accessible to

administrators, like a visitor log or other logs containing information about

the usage of the website from users, as it is possible to inject JavaScript code

into Hypertext Transfer Protocol (HTTP) headers [14] like the Referer [15]

or User-Agent [16] headers. As the data from these headers are not unlikely

to show up in some kinds of logs, a successful XSS attack here would be

performed in the context of an administrator’s browser, where it might be

possible to not only get access to sensitive information from a single victim,

but rather data from the whole web application. This type of XSS is very

difficult to protect against on the client-side, as the client has no means to

identify whether the JavaScript code coming from a website is legitimate,

or if it is malicious JavaScript code injected by an attacker. A user does

not need to visit any specific Uniform Resource Locator (URL) or include

8

Theoretical Background 9

Attacker

Vulnerable
Web Server

4. Response containing script,
executed in victim's browser

3. Visits vulnerable website

1. Exploit website, inject:
<script>...</script>

Victim

2. Stores exploit
on server

5. Steal data,
sent to attacker

Stored XSS

Figure 2: Stored/Persistent XSS

anything in the request to a website for a Stored XSS attack to be executed.

From the client’s perspective, all JavaScript code coming from a website is

legitimate and should be rendered accordingly.

2.2.2 Reflected/Non-Persistent XSS

Reflected XSS occurs when the user input data is sent in a request to a

website, which immediately returns data in the response to the browser,

without the website first making sure the data is safe. Reflected XSS attacks

are performed by entering data into search fields, creating an error message or

by other means where the response use data from the request. In a Reflected

XSS attack, the JavaScript attack code is not stored on the website itself, like

it is in a Stored XSS attack. For a Reflected XSS attack to work, the attacker

needs to somehow make the victim request a special query, containing the

malicious script. As mentioned, the search field is a typical input field that

can be attacked. When searching for a query, the website often returns

a page containing some results, which also will generate an unique URL

containing the submitted query. This is how an attacker would create a

specially crafted URL containing the exploit code, which then needs to be

9

Theoretical Background 10

Figure 3: Reflected/Non-Persistent XSS

shared with a victim. If a user visits this particular URL, the attack code

will run and execute in the user’s browser. Figure 3 illustrates the flow of a

typical Reflected XSS attack. As seen from this figure, a Reflected XSS attack

contains a request to and response from a website, where the code inserted

in the request is being used in the response. It is this particular data flow

that protection mechanisms can take advantage of, where it is possible to

compare the contents of the request with the contents of the response, to

identify a potential attack. In this thesis, this technique is utilized, which

means it focuses on primarily stopping Reflected XSS attacks.

2.2.3 DOM Based XSS

DOM Based XSS is a type of XSS attack that in contrast to the other two

types of XSS attacks only rely on JavaScript vulnerabilities on the client-side

of the website, and not the server-side. DOM Based XSS attacks exploits how

a website uses JavaScript to dynamically change the DOM of a web page.

The DOM of a web page is the structure of the page, containing information

for the browser on how to render the page, with the usage of different HTML

tags and attributes. The DOM of a page makes it possible for JavaScript

10

Theoretical Background 11

Figure 4: DOM Based XSS

code to interact with the page, making the page more dynamic. This also

makes it possible for malicious code to change the page, if JavaScript input

is not handled correctly. If a website includes some JavaScript code in the

response that directly uses input from an input source, like the URL, a DOM

Based XSS might be executed. Figure 4 illustrates the data flow of a typical

DOM Based XSS attack. These attacks can actually be performed without

even sending the attack script to the web server at all, by using a special

HyperText Markup Language (HTML) character, the fragment identifier #,

in the URL. When using the fragment identifier, everything behind it will

not be part of the request. This means that from the user inputs some data,

to the malicious code is executed in the browser, the malicious code is neither

part of the request nor the response of the website, but rather part of the

DOM of the web page, if the content after the fragment identifier is used by

client-side code in the response. DOM Based XSS is the least common type

of XSS attacks, but it is also the most difficult to find and protect against.

Since the attack only relies on flaws on the client side, by using JavaScript

code, server-side filtering can not detect this attack at all, which is a good

reason why it is necessary to have protection also on the client-side of a web

application.

11

Theoretical Background 12

2.2.4 Other XSS Types

Although there exits three main types of cross-site scripting, as these attacks

have evolved and been used in different ways, XSS types could now be cate-

gorized into some additional sub-categories, Universal XSS, Plug-in XSS and

Self XSS.

Universal XSS Universal XSS [17] is a form of XSS attack that exploits

the browser itself, browser extensions or website extensions in order to ex-

ploit a website. Universal XSS is a very dangerous type of XSS as it does

not exploit the website directly, meaning that a website does not need to

contain any vulnerabilities to be exploited. Modern web browsers support

extending their functionality by utilizing plug-ins, small programs that adds

more features to the browsers. There also exists plug-ins that are not loaded

through the browser, but by the website itself. These plug-ins often have ac-

cess to the contents of the websites, and often require input from the user for

its functionality to work. By having user input in combination with features

for displaying or editing contents on a web-page, the plug-in might create an

opening for allowing a cross-site scripting attack against the web-page it is

being used on. An example could be a plug-in that allows websites to display

pdf-files. If an attacker injects some JavaScript code in the filename of the

displayed pdf-file, this JavaScript code could be rendered in the browser, if

the plug-in does not have proper validation and encoding for the input field

used for the filename. XSS vulnerabilities introduced by insecure plug-ins are

often categorized as Plug-in XSS, which could be considered as a sub-type

of Universal XSS.

Self XSS Self XSS is when users themselves create and execute the attack

in their own browsers, which can not exploit other users, as in the case with

the three main types of XSS. Self XSS is mostly a social-engineering attack

used to trick users into executing XSS attacks on themselves, often by making

them copy and paste JavaScript code into their own browsers. Awareness

around this particular attack was gained through the popular social media

website Facebook.com, as this attack became quite widespread against the

users of their site, which led to Facebook publishing a warning [18] against

Self XSS scams. Facebook even created a warning displaying when a user

12

Theoretical Background 13

opens the developer console window in their browser while visiting their site

facebook.com, to mitigate the attack.

2.2.5 Cross-Site Scripting Exploits

As described in Chapter 2.2, XSS attacks occur because web applications are

using unsanitized input data when displaying and rendering content. For a

successful XSS injection, from the attacker’s perspective, the input containing

the malicious JavaScript content needs be entered into the web application

in a way that its somehow gets executed in the browser. The next sections

will explain how this is done, and give some examples of how typical XSS

attacks are performed.

Injection input sources When performing an XSS attack, it is possible to

inject the malicious script into the web application by using several different

input sources. An input source is considered an entry point for user input to

enter into the application. The most common input sources for XSS attacks

are from the GET- and POST- parameters, which most often comes from

HTML input elements. A typical example is the search field found on many

websites, which most often is a HTML input tag. After using the search

field, the search query is likely to be included in the URL of the returned

web page, which would consist of a GET parameter containing the query.

HTTP headers is another input source for script injections, as discussed in

Chapter 2.2.1. Injecting script content through HTTP cookies, which is a

small piece of data sent to the user’s web browser from a server, is also an

option, although this is much less common, as a potential attacker would most

likely need to get access to other users’ cookies for injecting their script. Since

the end goal of a XSS attack often includes getting access to such cookies,

using them as an input source for an attack seems less likely, although in

theory it is still a possibility.

Attack vectors For a successful XSS attack, the injected script content

needs to be entered into the web application in a way that would actually

render the script in the browser. This could be done by using a wide variety

of attack vectors, depending on how the web application uses the input when

generating the response. Attack vectors are typically a combination of HTML

13

Theoretical Background 14

tags that include the script to be injected and executed. These tags could

either embed the script content directly or reference an external resource

containing the JavaScript code. The most common attack vector is the usage

of the script tag. Another very common attack vector is the usage of the img

tag in combination with on-event handlers [19]. The on-event handlers are

properties that lets HTML elements react to events, where events are different

actions like when an element is being clicked, getting focus, or when it is

loaded. The reaction to an event can be specified to load script content, which

is why they are often used in XSS attacks. OWASP’s ”XSS Filter Evasion

Cheat Sheet” [20] is a comprehensive list of attack vectors utilizing a lot of

different techniques, including many uses of on-event handlers. Other than

the most common script and img tag, the iframe-, body-, svg-, object-

and style- tag are also HTML tags not uncommonly used in XSS attacks.

OWASP’s list [20] contains descriptions of these and many more, including

techniques to hide the injected script from being detected by potential XSS

filters.

Example attack A typical scenario for a XSS attack starts with an at-

tacker looking for input fields on a web page where the submitted data is out-

put without being encoded. As mentioned above, the search field is a common

input source. An attacker could therefore exploit a vulnerable search field,

with the intention of trying to hijack another user’s session. The search field

is often exposed for an attack, as when you input a query, the same query is

most likely being returned and rendered by the website. If this input is not

properly being encoded, it could allow the attacker to input JavaScript code

that is being executed in the browser’s context when the website returns the

query, which could be achieved using the script tag as the attack vector. For

hijacking a user’s session, the attacker would need some JavaScript code that

extracts the user’s session data, typically found in a cookie from the logged

in targeted user. The exploit code, <script>document.location=’http://

attacker/cookieStealer.js?c=document.cookie</script>, could then be

inserted into the search field. After creating this exploit, the attacker would

need to copy the URL from the result page after doing the search. Since this

is a Reflected XSS attack, the attacker would then need to share this URL to

potential users of this exploited site. If a targeted logged in user now visits

14

Theoretical Background 15

this particular URL, the user’s session cookie is being sent to the attacker.

The attacker could then use this cookie to log in onto the exploited website,

which means the attacker would be impersonating the user.

Another popular XSS attack is to rewrite the contents of a website, creating

fake forms for tricking user’s to enter sensitive data like credit-card informa-

tion or login details. The attacker would then make these forms submit the

sensitive data to themselves, rather than to the exploited website.

A typical thing that XSS attacks have in common is that they are often not

easy to detect by the end-users themselves. In case of both the cookie steal-

ing and fake forms exploits, the attacker could simulate the actual behavior

of the exploited website, making it almost impossible for users to detect that

they have been compromised. By having a client-side filter in the browser,

user could not only be notified of a potential attack, but the filter could also

completely stop it from occurring in the first place, which is the intent of the

filter.

2.2.6 Counter-Measures

There exists many counter-measures for XSS attacks, consisting of several

techniques as well as more specific policies to follow, for securing web ap-

plications. It is highly recommended to utilize a variety of many different

counter-measures, as it might be challenging to implement them being com-

pletely robust and secure from unknown attacks and not all policies is fully

supported by all web browsers.

Validation/Sanitization The first step towards protecting against XSS

attacks is to make sure that valid malicious code does not enter the web

application at all. Validation/Sanitization of all untrusted data input to

a web application makes sure that malicious input is either being rejected

or manipulated into being safe for usage in the response from the website,

used in the output in users browsers. It might be difficult to implement

this properly as it can be challenging to know what a malicious input looks

like, considering all the possible attack vectors that use advanced obscuration

techniques. A common mistake is to rely only on blacklist validation, which

is often trivial for attackers to circumvent, by utilizing alternative input

variations. White-listing is in general considered much safer, only allowing

15

Theoretical Background 16

the characters that the web application should accept, for example an integer

or a date. In case of free-form text input, white-listing becomes difficult, as

the users should be allowed to enter almost any character, hence the free-

form. Any validation technique becomes ineffective and difficult to implement

in the case of free-from text, which is why input validation should not be used

as the primary defense against cross-site scripting attacks, and why output

encoding is needed.

Output encoding Output encoding is the most effective remediation for

cross-site scripting attacks when done properly. Output encoding should be

implemented every place untrusted input is being output and rendered in the

browser, making sure the input is displayed as data and not executed as code

in the browser. It is important to implement the output encoding according

to the context it is being used in, because different encodings are needed

depending on the context used. JavaScript, HTML and URL’s all use various

encodings, which is why there are no single solution to how output encoding

should be implemented. Typical strategies are to escape unicode, a typical

character encoding, converting unwanted characters to benign equivalents,

percent encoding and escaping hex values, as described in more detail in

OWASP’s XSS (Cross Site Scripting) Prevention Cheat Sheet [21].

Content Security Policy (CSP) Another powerful counter-measure is

Content Security Policy (CSP), which is a declarative policy that let web

application owners create rules for what sources the client is expecting the

application to load resources from. To enable CSP, the web server needs

to utilize the Content-Security-Policy HTTP response header [6], where

the policy for the application is specified, including desired directives. Each

directive describes a policy for a certain resource type or policy area, for

example to prevent inline scripts from running, only allowing content to be

loaded for some trusted domains or restricting all content to only load from

the site’s own origin. CSP also have a reporting feature, which means when a

policy is being violated, it is possible to get a report sent to a desired location,

containing information about the violation. This could be helpful for web

application owners to know if their policies are too strict or needs modifica-

tions, as a policy can consist of many different directives. Even though CSP

16

Theoretical Background 17

can stop most cross-site scripting attacks by utilizing a set of well-defined

directives, it is stated in the World Wide Web Consortium (W3C) Recom-

mendation [22] that CSP is not meant as a first line of defense mechanism,

but rather an element in a defense in depth strategy, as an added layer of

security. A study by Weichselbaum et al. [23] was done in 2016, including

1,680,867 hosts with 26,011 unique CSP policies, observing that 94.68% of

all policies that attempts to limit script execution are ineffective, as well as

99.34% of the hosts have policies that offer no benefit against XSS at all.

This is a very clear indication that CSP in practice is difficult to utilize cor-

rectly and this is why it should not be used as the primary defense against

cross-site scripting attacks.

Same-origin policy Same-origin policy [24] is a policy implemented inside

web browsers that isolates potentially malicious documents by restricting how

a document or script loaded from a specific origin can interact with resources

from other origins. For two web pages to have the same origin, they need to

have the same protocol, port and host, which means they are allowed to load

resources from each other. Cross-site scripting attacks often involve the usage

of different external JavaScript files for collecting data from compromised

users, which could be blocked by utilizing the same-origin policy.

HTTPOnly cookie flag As mentioned in Chapter 2.2.5, cookies could

contain valuable information for attackers, which means they should be

protected from unauthorized access. The HTTPOnly cookie flag is an addi-

tional flag included in the Set-Cookie HTTP response header [25], preventing

JavaScript code from accessing the contents of cookies. This is not considered

a counter-measure for XSS, but rather for mitigating the risk of an attacker

accessing other users cookies in the case of an attack.

Disabling JavaScript A more drastic approach that would effectively stop

XSS is to disable JavaScript, since these attacks rely on a JavaScript environ-

ment for execution. This solution can be effective for simple static websites,

but most dynamic websites require some sort of JavaScript support for basic

functionality, which means this remediation would not be suited as a general

solution.

17

Theoretical Background 18

2.3 Cross-Site Scripting Filters

Filters try to stop cross-site scripting attacks by utilizing a set of rules to

detect potential malicious input data, before either blocking it or sanitizing

it for safe usage. There exists many XSS filter implementations, with varying

focus on the different areas such as security, performance, low false-positives

and usability. All of these areas are in focus in most filters, but it is not

common for a filter to be best in all categories, as they do not necessarily

compensate each other. There is, however, one clear way to differentiate

between filters, by dividing them into two groups, server-side and client-side

filters:

Server-side filters Server-side filters are implemented on the server side

of a website, which means it can only detect input data that are sent via the

server. The DOM Based XSS attack is possible to perform without sending

the attack code to the server at all, as discussed in Chapter 2.2.3. This

means a server-side filter would not be able to detect the attack at all, which

implies it would not be able to stop the attack. There are several existing

server-side filters, which typically needs to be integrated into the source code

of the web application. A study made by S. Gupta and B.B. Gupta [3]

has a quantitative discussion for server-side filters, discussing some of the

state-of-the art techniques they are using. The study concludes that there

are generally several flaws with server-side filters that needs to be addressed,

like too much altering of existing code-base, long learning phase, as well

as too many false-positives and false-negatives. The study also emphasizes

that server-side filters do not detect DOM-based XSS attacks. With all

the combined flaws and design limitations of server-side filters, it becomes

evident that only relying on server-side protection is not enough, and why it

is necessary with client-side filters as an extra layer of security.

Client-side filters Client-side filters are located in the client, which typi-

cally would be the web browser used to access web applications. Client-side

filtering could be able to detect DOM Based XSS attacks, providing the extra

protection server-side filters are missing. However, even though client-side

filters could possibly detect all types of XSS attacks, it should not be used

alone, without server-side filters. By placing the filter on the client-side, it

18

Theoretical Background 19

means that the user might be able to modify it to circumvent the filtering.

It is, therefore, strongly recommended to utilize both server- and client-side

filtering, to be able to protect against all attack types of XSS and achieving

good protection following the defense in depth strategy. This thesis focuses

on client-side filtering, which includes a discussion of varies existing solutions,

presented in the next sections.

2.3.1 Regular Expression Based Filters

Using regular expressions is a popular technique for client-side filters, where

the filter is typically located between the network layer and HTML parser

in the browser. Regular expressions are then used to identify potential mali-

cious code in the HTTP requests and to approximate the rules of the HTML

parser to know which content in the HTTP response that would be treated

as script content [1]. By doing these approximations, the filter do not have to

recreate the browser’s own HTML parser, which would lead to the HTTP re-

sponse being parsed twice, first for the filter to identify and remove potential

malicious code and then for the browser to parse the page as normal. These

approximations does, however, have their drawbacks, as they incur a higher

number of false-positives, due to several flaws in their design [1]. These flaws

is a consequence of attackers trying to make the content from the request, the

actual attack code, differ from the response, so that the approximation rules

would not detect it as an attack. Some common flaws are that the filters do

not correctly approximate the decoding process of different encodings or do

not take into consideration that different characters can be used to delimit

HTML attributes.

A popular client-side XSS filter using regular expressions is an extension

called NoScript [26], for the Mozilla Firefox browser, first released in 2005

and actively updated by the maker Giorgio Maone. The filter is matching

HTML code for injected JavaScript in the request by utilizing regular ex-

pression rules for simulating the HTML parser, which would potentially lead

to false-positives, as it is better to over-approximate these rules than to let

an attack bypass the filter [1]. Due to a lot of false-positives, NoScript try to

solve this by prompting the user to repeat the request with the filter disabled,

allowing the user to decide for themselves if they think it were a false-positive.

This is a decent approach for security-aware users, but in general, users do

19

Theoretical Background 20

not have the knowledge or desire to take action in the case of security-related

issues [2].

2.3.2 XSS Auditor - A string-matching Based Filter

String matching is another method for client-side XSS filtering, used by the

filter in the Google Chrome browser, called XSS Auditor. XSS Auditor works

by matching the HTML code for injected JavaScript code from the request

with the response from the website after it is been parsed by the browser’s

own HTML parser [1]. This means that XSS Auditor does not need to

approximate any of the HTML parser rules, since the parsing is already done

when the matching algorithm starts. This is achieved by the location of

XSS Auditor, which is between the HTML parser and the JavaScript engine,

as shown in Figure 5. This placement makes it possible to block scripts

after parsing, by blocking them from being sent to the JavaScript engine for

execution. The location of XSS Auditor have benefits like performance, by

not having to simulate the HTML parser, and the fact that the JavaScript

engine have a narrow interface it is reasonable to assure that all scripts are

being processed by the filter before being executed.

HTML
Parser XSS? JavaScript

Engine

Block
Script

HTTP Response

Yes

No

document.write

Figure 5: XSS Auditor design

XSS Auditor also have some limitations, some of which are discussed in

the paper from Stock et al. [2], which lists several flaws with the design and

string-matching algorithm used in XSS Auditor. As mentioned in the paper,

these are mainly flaws regarding protection of DOM-based XSS, which is not

the main type of attack that XSS Auditor is protecting against. It is, how-

20

Theoretical Background 21

ever, relevant to take notice of these limitations, as it might be desirable to

not make the same limitations when designing and implementing a new filter.

Scope issues are related to the fact that XSS Auditor does not support every

type of XSS or are neglecting functionality that enables XSS attacks. One ex-

ample being that XSS Auditor relies encountering dangerous elements during

the HTML parsing of the response, which is not always the case, for example,

when a web page is using the JavaScript function eval() [27]. eval() is a

function that evaluates the string representation of JavaScript code inserted

inside its parentheses, which means if eval() uses data from the URL of the

loaded web page, this evaluation could be done without entering the HTML

parser, which means that XSS Auditor would not detect it.

Another flaw in XSS Auditor is that some special characters needs to be

present in the request for the filter to be activated. If any of these characters

are not present, the filter deactivates. As the paper describes, it is possible

to successfully execute a XSS attack without any of these special characters

being used at all.

Double injections is another limitation that XSS Auditor does not protect

against, which is the inability to detect attacks containing concatenated val-

ues coming from more than one source of user input. An attacker could use

two different input sources due to application specific code that concatenates

two or more user inputs. When creating an attack using double injections, the

exploit code consist of two or more parts, but gets executed as one concate-

nated attack code. Since XSS Auditor’s string-matching algorithm checks

for the whole script code, the algorithm would not detect the attack, as the

whole script code does not exist from any single user input source.

2.3.3 State of Current Browsers

Regular expressions and string matching are among the techniques being

implemented in the top five most used web browsers for desktop, which ac-

cording to the desktop browser market share worldwide from StatCounter

[28] are Chrome, Firefox, Internet Explorer/Edge and Safari. Table 1 con-

tains information on the state of their XSS protection status. Both Chrome

21

Theoretical Background 22

and Safari use the mentioned string matching based XSS Auditor filter. XSS

Auditor was first build into the browser engine WebKit, which Safari uses,

before also being integrated into a fork of WebKit called Blink, which Chrome

uses. Internet Explorer and Edge both have a filter implemented based on

the regular expression technique, first introduced in Internet Explorer 8 [29].

Firefox, however, being the second most used web browser, does not have a

built-in filter, but rather relies solely on CSP support, which again relies on

websites to properly define the CSP rules. By not having a client-side filter,

the defense in depth strategy is also weakened, where a potential filter would

provide an extra layer of security for the end-users of the application.

Built-in filter

CSP

XSS
Protection

Limited support

Table 1: Top 5 Web Browsers XSS Protection Status.

Data retrieved from Mozilla [6]

2.4 Methodology

The work done in this thesis is to create a built-in filter protecting against

Reflected XSS vulnerabilities inside the Mozilla Firefox browser. The choice

of protecting against XSS for Mozilla Firefox is made for several reasons, one

being that XSS vulnerabilities are of the most critical and prevalent web vul-

nerabilities in existence today with lacking protection mechanisms on both

the server- and client-side of web applications [10] [8] [7]. This, in combina-

tion with the fact that Mozilla Firefox, which is the second most used web

browser [28], does not provide a built in filter for XSS protection, in contrast

with the other major web browsers, Chrome, Edge, Safari and Internet Ex-

plorer, which do have such a filter built-in. The work of this thesis will, there-

22

Theoretical Background 23

fore, be to create this filter built into and integrated with the existing source

code of Mozilla Firefox, which is possible due to the fact that Mozilla Firefox

is fully open source, allowing full access to the source code of the browser.

This would be a case-study/pilot-case for the effect of building, integrating

and running a filter protecting against XSS inside of Mozilla Firefox. As

this is the second most used browser, with a market share of approximately

11.7%, as of the statistics from StatCounter’s desktop browser market share

worldwide for April 2018 [28], and the fact that XSS vulnerabilities are as

prevalent as they are, it would be beneficial to look at a possible solution

for adding this extra layer, the added filter, to the defense in depth strategy

combining several XSS protection mechanisms for optimal overall protection.

For the work to be considered a possible usable solution, it needs to be eval-

uated throughly. There exists several different web browsers, all competing

to being the best one, in terms of different factors such as performance, secu-

rity, usability, customization and general look and feel. In such a competitive

industry, web browser need to make sure that every included functionality

is integrated and running as smoothly and efficient as possible, meaning an

additional feature need to be well defined and robustly integrated. In the

case of creating a filter for XSS, it needs to be secure, providing the neces-

sary protection, and at the same time be efficiently integrated so the overall

performance of the browser is not affected in any huge negatively direction.

This means that the work done needs to be evaluated in terms of at least

two different categories, how well it protects against XSS attacks and how

much it affects the performance compared to Firefox without the filter imple-

mented. The overall validation of the filter would be a qualitative research,

as of how well the filter is implemented into the existing solution, but at the

same time contain a quantitative method for measuring the performance of

the filter, which could be accurately measured and compared to the original

browser. By analyzing the performance number, however, it is not possible

to correctly classify it as either right or wrong, but rather an estimation and

analysis about if the added feature are in fact within reasonable limits to be

considered a well performing solution.

23

Mozilla Firefox 24

3 Mozilla Firefox

Mozilla Firefox is a free and open-source web browser developed by Mozilla,

with it’s first major release in 2002 [30]. Firefox’s source code has a layered

architecture where the code is organized as separate modular components.

Firefox is multi-threaded and follows the rules of object oriented program-

ming, where access to internal data is achieved through public interfaces of

the classes [31]. One of the primary requirements of Firefox is that it must

be completely cross-platform, which is why the browser consists of several

components focusing on this area, like making sure the operation system de-

pendent logic is hidden from the application logic.

This chapter will explain some of the most relevant parts of Firefox, with

regards to the filter created in this thesis work. The parts explained have

been slightly simplified, making it easier to understand the relation of how

everything is working together, again with regards to the added XSS filter.

3.1 Firefox Overview

The main components of Firefox can be divided into the user interface XML

User Interface Language (XUL) and the browser and the rendering engine

Gecko. XUL is Mozilla’s own language for building portable user interfaces,

which is an Extensible Markup Language (XML) language [32]. Gecko is

Mozilla’s browser engine built to support many different Internet standards,

including HTML 5, Cascading Style Sheets (CSS) 3, DOM, XML, JavaScript

and others. Gecko contains many different components for document pars-

ing (HTML and XML), layout engine, style system (CSS), JavaScript engine

called SpiderMonkey, image library, networking, security, as well as other

components [33].

Mozilla also have a build system [34] using the make tool [35], consuming

Makefiles. The command-line interface Mach [36] is used to help developers

perform common tasks for working with the Mozilla codebase, making it easy

to start building, debugging and testing Mozilla projects.

Firefox consists of over 36 million lines of code [37], written in several lan-

guages, which are mostly C++ and JavaScript, but also HTML, C, Rust,

XML, Python and Java, as well as other less used. The source code direc-

24

Mozilla Firefox 25

tory of Firefox [38] contains of many folders where the code is grouped based

on their functionality. Some of these groups consist of functionality related

to document parsing, JavaScript execution, image loading, extensions and

networking, just to mention a few. Mozilla also have strict rules about how

the code should be implemented, not just how it is structured into directo-

ries. As mentioned above, Firefox is object-oriented, using a lot of public

interfaces. They have also implemented several utility- and helper-classes

for writing specific functionality inside their code-base. Although the source

code is mostly written in the C++ language, which provides this function-

ality built-in, Mozilla uses many of their own methods for these functions.

This means that it is necessary to acquire specific knowledge regarding these

coding rules before attempting to make changes to the Mozilla codebase, as

it is a complex piece of software.

Network nsDocument
nsHTMLDocument nsHTML5Parser

ScriptLoader EventListener
Manager

JS Engine

Security checks:

scripts on-events

DOM
changes

CSP

Figure 6: Simplified data flow for rendering a web page

25

Mozilla Firefox 26

3.1.1 Loading of a Web Page

As mentioned above, Firefox consists of several components, include its ren-

dering engine Gecko, which is the most relevant part for the implementation

of this filter, as it contains everything related to document parsing and han-

dling of JavaScript execution. Figure 6 is a simplified description of the

loading of a document in Firefox, containing only the relevant parts which

are important regarding the XSS filter. When a typical HTML web page

is loaded through Firefox, two internal document classes, nsDocument and

nsHTMLDocument, are created, controlling the creation and representation of

the web page to be loaded. These documents are responsible for creating and

calling all the relevant parsers, like the HTML parser [39], nsHtml5Parser,

as well as initializing the script executioner class, ScriptLoader, which

is responsible for handling script content coming from script tags. The

HTML parser receives data from the network that needs to be parsed. Every

time the parser encounters some script content, the relevant parts of Firefox

that handle this content is invoked. In the case of on-event handlers, the

EventListenerManager class is invoked. A common source for script con-

tent is the script tag, where the script loader class, ScriptLoader, would

be invoked with the discovered script. The script loader class will then try to

extract the script and either execute it as an inline or external script. Before

the script is passed to the JavaScript engine for execution, a security check is

performed for finding out if the script is allowed to run. This security check

involves checking with the CSP rules if it is allowed to load, if these rules

are specified by the loaded website. If the script pass this check, it will be

handed over to the JavaScript engine which will execute the script in the

browser. The HTML parser will continue parsing the data entering through

the network, repeating the steps when new script content is discovered.

3.2 Security Mechanisms

Firefox includes many internal security mechanisms for making sure that

the browser itself is not being compromised by attackers, as Gecko loads

JavaScript content from untrusted and potentially malicious web pages, which

then again run on the user’s computer. These security mechanisms include

several complicated concepts regarding same-origin policy, compartments,

26

Mozilla Firefox 27

and principals, all explained in detail at Mozilla’s own website [5]. This sec-

tion will try to give a simplified explanation of why all these concepts are

important and how they are used. The reason why this is interesting to

look at is because a counter measure for XSS, CSP, is implemented inside

Firefox using the principal concept. Since CSP provide similar functionality

as the work done in this thesis are providing, the filter created should also

ideally be implemented in a way that follows the same principles, fulfilling

the necessary security requirements.

3.2.1 Same-Origin Policy

The same-origin policy is restricting how a document or script loaded from

a specific origin can interact with resources from other origins, as described

in Chapter 2.2.6. The security model for web content is based on this policy,

which is also used inside Firefox as a script security mechanism [5]. As

Firefox’s rendering engine Gecko consist of different languages, its core in

C++ and its front-end in JavaScript, these to parts needs to interact with

each other in a secure manner. The JavaScript front-end is actually running

with system privileges, meaning that if it is compromised, attackers might

get control of the user’s computer. As this JavaScript code is interacting

with web content from web applications, which again is susceptible to XSS

attacks, it is important to make sure that JavaScript code from Gecko itself

is not affected by any such attack, which is achieved by utilizing the principle

of the same-origin policy.

3.2.2 Compartments and Principals

A security measure in Gecko is that it is divided into different compartments.

Compartments could either be internal parts in Gecko or a content window,

a typical website, where different parts can only access other parts if they

are in the same compartment. The concept of compartments is, therefore,

using the same-origin policy principle. Every part inside a compartment

is, therefore, same-origin with the others and no additional security checks

are performed when parts inside the same compartment talk to each other.

If Firefox loaded the website at http://example.com/subfolder/, all the

HTML elements and script content residing on this exact address would

27

Mozilla Firefox 28

Figure 7: An overview of the relationships between the different security

principals.

Figure taken from Mozilla’s website, about ”Script Security”[5]

be inside the same compartment. There are, however, different ways for

compartments to access parts of other compartments, where the main rules

are that higher privileged compartments have access to less privileged com-

partments, but not the opposite, unless the higher privileged compartment

explicitly chooses to share its access.

To be able to determine the security relation between different compart-

ments, a concept called security principals is used, which is something

every compartment have. Figure 7 illustrates the relationship between dif-

ferent principals, as there are several different principals, each with its own

rules. System principals pass all security checks, which is what the JavaScript

code from Gecko is running with. Content principals are associated with web

content, meaning that content from a specific origin could access parts from

content inside the same origin. An expanded principal is specified as an array

of origins, meaning that it contains several content principals. The expanded

principal itself gets access to its contents, but the content principals within

28

Mozilla Firefox 29

does not get access to the expanded principal. Finally, there is the null prin-

cipal, which fails almost all security checks, meaning it has no privileges and

can only be accessed by itself and the JavaScript code from within Gecko.

3.2.3 Content Security Policy (CSP)

Content Security Policy (CSP), as described in Chapter 2.2.6, is a security

feature that is also implemented in Firefox. Since CSP is part of the script

security model, it also has a principal. This means that CSP is created

through a principal and access to it needs to be done through a principal. The

main class, the nsDocument class, is the place where the CSP is initialized,

by using a principal. As the nsDocument creates and holds a reference to

the CSP Principal, other classes can get access to the CSP through the

nsDocument class. Some noteworthy places that CSP is used inside Firefox

are the script loader class, ScriptLoader, and the EventListenerManager

class. These are locations which handle content related to script execution,

and therefore also the place where the proposed filter in this thesis should

be placed.

29

Design and Implementation 30

4 Design and Implementation

This chapter will go through everything from the development process of the

implemented filter, including the requirements, design, tools used and the

actual implementation of the solution.

4.1 Design Choices

Software development includes a lot of choices that need to be made dur-

ing the development life cycle, regarding analyzing the problem, coming up

with a solution, making the design and figuring out how it should be im-

plemented. When creating a filter for Firefox defending against cross-site

scripting attacks, it is possible to choose many different approaches towards

the same main goal, but yet achieving differently in different categories such

as performance, availability, usability, maintenance and of course security.

In this section, some of the design choices made for this thesis work will be

explained in detail.

4.1.1 Requirements

For the filter implementation presented in this thesis, there is a couple of

preferred capabilities that should be achieved. These requirements are mostly

based upon the analysis of the papers from Related Work, Chapter 1.3.

Usability The filter should be easy to use, by not requiring any user-

interaction at all. The NoScript plug-in for Firefox, mentioned in Chapter

2.3.1, is an example of something that is not wanted, as NoScript do require

a fair amount of user interaction, as the plug-in have a lot of false-positives.

In a worst case scenario, a user might accidentally allow an attack to get

executed, even though the filter did stop the attack and warned about it,

as users might not understand what it means and the risk of ignoring the

warnings.

Low false-positives It is important that the filter do not interfere with

a user’s normal browsing sessions, unless it is to protect the user from an

actual attack. To achieve this, the filter should have a low number of false-

positives, which means that the filter should minimize the number of times

30

Design and Implementation 31

where it think there is an attack when in reality it is not. The opposite of a

false-positive is a false-negative, which is when the filter thinks a script is safe

to load when in reality it is an attack and should be blocked. In practice it is

difficult to guarantee both non-existent false-positives and false-negatives in

a filter meant for defending against cross-site scripting attacks, as there are

so many different ways of using JavaScript in web applications, which again is

one of the reasons why cross-site scripting attacks are so prevalent. There is,

however, a balance to be made, to make sure that the filter do protect against

most attacks, which means it might introduce some false-positives, but at the

same time it cannot be too strict either. An example of a too strict filter is

again the NoScript plug-in for Firefox, which is really aggressive, introducing

a lot of false-positives which would interfere a lot during normal browsing

sessions, again requiring user interactions as a workaround.

High performance The filter should not incur a lot of performance over-

head, which would make the loading of web pages slower, which again would

interfere with the usage of normal web browsing. When using the filter, there

should be no noticeable delay when loading web pages in comparison with

the version of Firefox without the filter. This is an important requirement,

because of the competition between web browsers, as discussed in Chapter

2.4.

Provide protection against Reflected XSS The whole point of a fil-

ter protecting against cross-site scripting attacks is to provide this protection

properly. As there exists several different types of XSS, as discussed in Chap-

ter 2.2, it is important to clarify that the main focus of the filter is to protect

against the Reflected XSS type. This is the type of XSS that filters for the

other major web browsers also primarily focuses on, as it is very prevalent

and the easiest to discover, as described in Chapter 2.2.2. It is, however,

desirable to also protect against DOM Based XSS, which there will be some

basic protection against, as a byproduct of the Reflected XSS protection.

Complete DOM Based XSS support will, however, be lacking, as in the case

of XSS Auditor, as explained by Stock et al. [2].

31

Design and Implementation 32

4.1.2 Browser Extension vs Internal Implementation

This thesis work is to add some functionality to the Firefox browser, which

there are several ways of accomplishing. Firefox do provide support for

browser extensions [40], which can extend and modify the capabilities of

the browser. These extensions are built using JavaScript, HTML and CSS

by using the WebExtensions API, a cross-platform system for developing ex-

tensions. They can provide a lot of functionality for altering the contents of

or extracting information from a web page, either with or without required

user interaction. There are, however, some reasons why browser extensions

are not suitable for this thesis work, explained in the following paragraphs.

Availability The main reason why browser extensions are less suitable is

because they are something that users themselves need to find, install and

use. It should not be necessary for users to know about what cross-site

scripting is and why it is important to protect against it, for them to take

advantage of this filter. By making this protection a choice for the user, the

filter would most likely not be used by the majority of users. This is why an

integration with Firefox itself would be a better solution, as then all users

would take advantage of the filter without the need of any knowledge about

it or action required.

Performance Even if there are users choosing to install and use such a

security filter, there is another drawback by making it as a browser extension,

which is a performance issue. When creating a browser extension for Firefox

you can only use the API’s supported by Firefox [41], utilizing JavaScript

code that talks to the internals of the browser itself. This means there are

more layers that the data needs to go through, from getting from the filter

to the internals of Firefox, which is needed for functionality of the extension

to work. If the filter, however, is placed inside the internals of Firefox, some

redundancy will be removed, which again will lead to a better performance,

which is what is chosen for this filter design.

Security The purpose of the proposed filter is to protect against Reflected

XSS attacks, which means the injected script is contained in both the request

and response. By implementing the filter as a part of the internal implemen-

32

Design and Implementation 33

tation of Firefox, it is easier to have a more robust integration being more

secure, as Firefox have a lot of coding principals including many security

features, as described in Chapter 3.2.

4.1.3 Blocking Technique

When detecting an XSS attack, the filter needs to take action to block the

injected script. There are mainly two ways of doing this, either blocking only

the injected script or blocking the whole web page from loading. By only

blocking the injected script you interfere less with the browsing experience

of the user, as they can still use the website as normal, without the parts

potentially affected by the injected script, which is what has been chosen for

this proposed filter.

4.1.4 Filtering Technique

As discussed in Chapter 2.3, there exists XSS filters based mainly on the

two filtering techniques regular expressions and string matching. For this

thesis work, the string matching technique and design from XSS Auditor was

chosen as the main basis. XSS Auditor used in the Google Chrome browser

does achieve high performance, few false-positives and low interference with

normal web browsing, providing protection against mainly Reflected XSS

attacks, as desired from the requirements in this thesis.

4.2 Design Overview

The main design of the filter is to compare every script returned in the

response with every potential dangerous script from the request. If there

is an occurrence of a script appearing in both the request and response,

the cross-site scripting filter will block this particular script from being ex-

ecuted. The filter itself is structured as its own class inside Firefox’s source

code, which makes it easy for other components in Firefox to use the filter

when needed. The filter is placed after the HTML parser, but before script

execution, providing benefits regarding both security and performance. The

following sections will describe the design of the filter in more detail.

33

Design and Implementation 34

4.2.1 Placement

By basing the solution on the filtering principals of XSS Auditor, the place-

ment in Firefox will also be similar to how Auditor is placed inside of Google’s

Chrome browser. Auditor is placed between the HTML parser and JavaScript

execution environment, which provides several benefits, regarding high secu-

rity and performance, as explained in Chapter 2.3.2.

The filter needs to know what Firefox would intercept as script content to be

able to filter on the correct data. If the filter was placed before the HTML

parser, the filter would need to simulate the rules of the parser to try to ap-

proximate and identify what Firefox would intercept as script content. This

means that each loaded document would be parsed twice, once from the filter

and once from Firefox’s own parser, which would incur a lot of performance

overhead. Since Firefox need to parse the HTML documents regardless of the

filter’s presence, by placing the filter after the HTML parser, it can use the

results from Firefox’s own parsing when determining which content to filter

on, which again would not add any extra performance overhead regarding

the actual parsing process. Since the filter do not need to approximate the

parser rules when placed behind the HTML parser, the filter can also be sure

that it will discover, identify and act upon all the scripts entered through

Firefox, as the parser in Firefox will properly identify all script content before

they are processed further. As explained in Chapter 3, script content from

script tags and on-event handlers get sent to the classes ScriptLoader

and EventListenerManager, which will further examine the data and con-

duct the necessary security checks before they are sent to the JavaScript

engine for being executed, as shown in Figure 6. By extending on this figure,

extracting the relevant parts, Figure 8 shows the placement of the XSS filter,

residing in the same location as the CSP security feature.

34

Design and Implementation 35

ScriptLoaderScriptLoader ScriptLoader EventListener
Manager

JS Engine

Security checks
CSP

ScriptLoader EventListener
Manager

JS Engine

Security checks:
CSP

XSS Filter

Figure 8: XSS Filter placement inside Firefox

4.2.2 Filter Class Structure

The filter class contains many methods for handling the different stages

needed in the filtering process. Since the filter can be invoked from dif-

ferent locations, the filter class contains several input points that all starts

the filtering process. This process contains a series of different tasks that

are performed in a particular order, before concluding whether there exists

a cross-site scripting injection or not. This includes methods for fetching the

input from the request to different methods for comparing this data with

either inline script, external script or on-event handlers, all of which need to

be processed differently.

4.3 Environment

This section will describe the system and tools used when developing the

Firefox filter. The operating system used is Arch Linux [42], a lightweight

35

Design and Implementation 36

and flexible Linux distribution. For developing and writing the source code,

the free and open-source text editor Visual Studio Code (VS Code) [43] was

used.

4.3.1 Tools

Several different tools were utilized during the development of the proposed

filter.

Development Software When developing computer software, there exist

several Integrated Development Environment (IDE) and code editors with

a lot of added functionality for helping with software development. For the

development and writing of the source code for this thesis work, a lightweight,

free and open source text editor, VS Code [43], was used. VS Code provides

the necessary syntax highlighting and autocomplete, while also making it

easy to navigate around in the huge Firefox source code. Without adding

extra additions to VS Code, it does not handle building and debugging of the

Firefox code, which is one of the reasons it is a lightweight editor. For these

operations, however, there are more specialized tools that are better suited

for the development of Firefox, as Mozilla have their own recommendations

and tools available.

Mach As mentioned in Theoretical Background 2, the tool mach [36] is

a command-line interface used to start the building, debugging and testing

of Mozilla projects, which also was used in the development of this modified

version of Firefox. mach makes it possible to configure Firefox builds through

the usage of a mozconfig configuration file [44].

GNU Project Debugger (GDB) For debugging, GNU Project Debug-

ger (GDB) [45] was used, a tool that can start programs, make it stop on

specified conditions, examine what is happening at runtime and change things

in the program as it runs. GDB is a tool that can be invoked using the gdb

command, but when debugging Firefox it is possible to start GDB through

the usage of the mach command. After starting the debugging mode, GDB

makes it possible to create breakpoints in the code, which lets the debugger

inspect the state of the application as it is running.

36

Design and Implementation 37

4.4 Implementation

This section will describe the implementation of the filter, how it is imple-

mented and integrated into Firefox, also containing details about every part

of the filtering process.

4.4.1 Data Flow

The data flow in Firefox is illustrated in Figure 6, found in Chapter 3.1. This

figure is then being expanded in Chapter 4.2.1, Figure 8, where it is shown

that the classes ScriptLoader and EventListenerManager perform several

security checks, including using the XSS filter. When the XSSFilter class

is being invoked from these classes, it first need to get all the input data

from the request. This data is retrieved through the nsDocument class. The

relevant input data fetched are all the GET- and POST-parameters contained

in the request. These parameters are saved in a list, which is then examined

further. Every parameter is checked if it contains any potential malicious

content, which in the case of a cross-site scripting attack would be any input

that contains some form of script content. This examination is explained

further below, in the next section. If the filter identifies any parameters as

potentially unsafe, it will compare them to every script entered into the filter

class, from the ScriptLoader and EventListenerManager classes. If any of

these scripts are also found in the request, the filter will mark the script as

unsafe, which will again notify these classes to not send the detected script

to the JavaScript engine for execution. All the other scripts will be executed

as normal.

4.4.2 Examining Input Data

After fetching all the GET- and POST-parameters from the request, these

needs to be analyzed for potential malicious content, which as mentioned

above, would consist of any type of script content. It is not a simple task to

identify whether or not these parameters contain any actual script content,

as there exists many different ways for creating and trying to hide the mali-

cious content of a parameter. A good source of many such attack payloads

is OWASP’s guidelines “XSS Filter Evasion Cheat Sheet” [20], which con-

tains many examples of injections trying to circumvent typical XSS filtering

37

Design and Implementation 38

techniques, including variations of using the script tag, on-event handlers,

as well as other, less used attack vectors. This is why the filter does not ac-

tually identify any script content in the parameters before marking them as

potentially unsafe, but rather make an assumption based on their contents.

If a parameter only contains alphanumeric characters, [a-z] [A-Z] [0-9],

or the underline character, , the parameter is considered safe, and should

not be processed further by the filter. These are very common characters

that can not be used to execute any scripts, making them safe to include in

the response. The reason why the underline character is included is that it is

often used in the case of a space in a parameter, which should be considered

safe. If there any other characters than the one specified, the filter would

include the parameter in further processing, which will be described in more

depth in the next section.

4.4.3 Looking for Injections - Matching Algorithm

If there are any potentially harmful content in the request parameters, for

every script received in the response, the filter is running a matching algo-

rithm which tries to identify whether any of these scripts are also contained

in any of the parameters. Depending on the type of script received from the

response, the filter handles the matching a bit differently. With inline scripts,

a comparison of the string representation of the actual script content is done

with each and everyone of the script content from all the inline scripts en-

tered through the ScriptLoader class. ScriptLoader also handles external

scripts, in which case it first gets the information about the external URL

where the actual script is located, before it executes the content inside the

script. For the filter, in the case of an external script, it does not do a com-

parison between the contents of the external script with the parameters, but

rather a comparison between the string representation of the external URL

and the parameters. As for other attack vectors, like the on-event handlers,

the same approach as the inline script matching is done. A similarity between

the inline and external script matching, however, is that before the actual

matching takes place, the content from the scripts and the parameters need

to be normalized. This means that these contents might differ slightly, as

the parameters content might have changed after going through the HTML

parser in Firefox, which again means that some of the same changes need to

38

Design and Implementation 39

be done by the filter for it to detect all injections properly. Several possible

factors that need to be addressed when normalizing the contents are listed

below, with basis in the rules from OWASP’s filter evasion cheat sheet [20].

Basic evasion techniques A basic normalization technique is to not dif-

ferentiate between upper- and lower-case characters. The script injection

<script src="http://xss.rocks/xss.js"></script>, which try to load

an external script through a different domain, and the slightly different

<script src="http://xss.ROCKS/xss.js"></script> would thus both be

treated as the same injection, as the uppercase characters in the second ex-

ample would be converted to lowercase. Another basic technique is to use

added whitespace or other characters that does not change the behavior

of the injected script, but that tries to hide the script from being recog-

nized by filters. An example attack could be the injection <script>alert

(1)</script>, where additional spaces is included, but where the injection

could successfully execute the script content, alert(1). This is related to us-

ing different encodings in the injections, which could include more advanced

attack payloads.

Different encodings It is common for attackers to use different encod-

ings in their attack payloads, by for example using URL encoding [46] for

the injected script, which again is a means of hiding the injected string. URL

encoding is something that needs to be used in URL’s when the URL contains

characters outside the American Standard Code for Information Interchange

(ASCII) character encoding set, which is why the URL has to be converted

into supported ASCII format. This is done by replacing unsafe ASCII char-

acters with a percent sign, %, followed by two hexadecimal characters. It is

also possible to use this encoding for any input for a website, which means

the filter needs to properly decode and identify the encoded data. In this fil-

ter’s implementation, it is supported by using Mozilla Firefox’s own internal

class for handling URL’s, which also handles decoding of URL encoded data.

Different attack vectors The attack vector for injecting XSS attacks

used in most examples in this thesis, utilize the script tag, <script>. It is,

however, possible to perform XSS injections by using many other different

39

Design and Implementation 40

attack vectors, as explained in Chapter 2.2.5. The filter does currently sup-

port the script tag and every usage of the on-event handler, which may

be used in combination with many different attack vectors.

4.4.4 Handling of Discovered Script

If the filter does find a match between a script from the response with a

script from the request, it marks that particular script as unsafe and notify

the class that invoked the filter, telling the class that it should not execute

this particular script. Even if a script is detected and blocked, the filter

do continue to check all other script from the response with the request

parameters, as there might be more than one injected script. This is an

important aspect of the filter, as it only blocks the actual injected script and

not the whole page from loading. By choosing a different solution where the

filter is blocking the whole page when an attack is detected, the filter does

not need to do any further checking, as you can not execute any more scripts

as the page is not being loaded.

4.4.5 Firefox Integration

This section will briefly describe how the filter class is integrated and how it

connects to other parts of Firefox. The filter is implemented as its own

class inside Firefox’s source code, called XSSFilter, making it easy for

other components to use the filter when needed. The class is located in

the mozilla/dom/security folder, which is the same location as where all

the Content Security Policy (CSP) related classes resides. The filter is cur-

rently being created in places where the filtering functionality is needed, by

supplying it with the owning document class, nsDocument, in its constructor.

As discussed in Chapter 3, ScriptLoader is one of the primary classes that

uses the filter. Upon creation of the ScriptLoader class, it also creates a fil-

ter instance with the main document in its constructor. Every time the main

document are loading new data, like updated GET- and POST-parameters,

the XSSFilter instance located in ScriptLoader also gets updated, fetch-

ing the new request data, before using it in the filtering process every time

ScriptLoader encounters a script, either inline or external. Another inter-

nal class in Firefox, EventListenerManager, do also use the XSSFilter in

40

Design and Implementation 41

a similar manner, but rather than inline and external scripts it takes care of

scripts from on-event handlers.

The XSSFilter class itself is also accessing other components inside Firefox.

To retrieve the GET parameters it has to access the URL from the main doc-

ument class before using the URLParams class for parsing it correctly, making

sure the content is properly URL-decoded. As for the POST parameters, the

filter gets access to the nsIHttpChannel class through the main document,

which contains the necessary data for retrieving the parameters, by utilizing

different helper classes in Firefox. It also uses several helper classes for a lot

of string manipulation, operations like searching for whole strings or single

characters, or converting between different types of strings and encodings.

4.4.6 Challenges

There have been some challenges with the implementation of the filter. Since

the filter is being implemented inside an already built software, the Mozilla

Firefox web browser, the filter needs to be integrated in a way so that it can

cooperate with existing code, data flow and different ways of doing things.

Mozilla Firefox is a very huge piece of software, containing many different

classes spread across separated modules that talk to each other by using dif-

ferent means. To properly understand this whole structure and following the

data flow proved to be a challenging task, as there were used a lot of differ-

ent coding principles and internal code for different tasks. String-handling is

a good example of how complex the code is, as there exists many different

types of strings and as many ways of converting between them and utilizing

them correctly.

4.4.7 Unit Testing

Unit testing is a good way of assuring that separate parts of the code is work-

ing as desired. In the case of the filter implementation, the parts containing

the examination of input data and the matching algorithms are the most im-

portant to test, as these are the parts dealing with the actual filtering process.

Several unit tests have been implemented to verify this process, by supplying

some sample injected data. As the filter require some special characters to

41

Design and Implementation 42

be included in the parameter for it to be checked for in the matching process,

several tests have been implemented confirming these character checks. The

matching algorithm also have several tests with different injection inputs,

verifying that the string matching works correctly. As for testing other parts

of the filter, which relies on many different parts of other functions in Firefox,

a more complete testing is done in Chapter 5.

42

Analysis and Assessment 43

5 Analysis and Assessment

The filter needs to be evaluated, as explained in Chapter 2.4, in terms of

several different categories. The filter should be tested for how well it protects

against XSS attacks and how much it affects the performance of Firefox .

An analysis of the filter’s implementation, some of the design choices and

different limitations are also an important part of the evaluation, as it will

highlight what is good and what needs to be improved.

5.1 Protection Effectiveness

Protection effectiveness is about how well the filter is able to protect against

XSS attacks, in particular Reflected XSS attacks.

5.1.1 Methodology of Testing

To be able to measure the effectiveness of the filter, it is necessary to con-

duct testing by doing an examination of a known vulnerable website, as it

is not the website’s own security features that need to be tested, but the

filter’s capabilities. One way of making sure this is the case is to implement

a sample website, used for the sole purpose of testing the filter. The created

website should try to mimic some of the functionality found on other typical

websites, as this would provide a better generalization of the filter’s overall

effectiveness. A common functionality found on a majority of websites is the

search field, which is also susceptible to Reflected XSS attacks. The website

should therefore consist of a search field, which would send the query to a web

server, where the response should be a page containing the input query from

the search field. Since the website has no built in security features, inputting

a script into this search field would effectively execute it upon receiving the

response. By visiting this vulnerable website through the modified version

of Firefox, containing the XSS filter, the filter should be able to both detect

and stop the injected script from being executed. This is being tested by

conducting an automated test consisting of several different script injections,

to see if the filter detects all of the attacks, or just a subset of them. The

automated test is made possible by the usage of Selenium WebDriver [47],

which makes it possible to do direct calls to a specific web browser instance,

43

Analysis and Assessment 44

by using its native support for automation. A simple script will be created

that uses Selenium, which takes a list of injections as input, which then will

test each of them against the sample vulnerable website. The outcome of

this script will be a list of both the successfully injected scripts and the ones

that did not get injected.

The script injections that are to be tested, are collected from a variety of

sources. An extensive list found on the website gbhackers.com [48], and

three different collections gathered from github.com [49] [50] [51]. In total, a

list containing 920 unique script injections where created from these sources.

This list consist of many different attack vectors targeted at very specific

functionality of common websites. Since the sample vulnerable website cre-

ated is a very simple website, not containing a complex usage of different

HTML tags, it is assumed that most of the injections would not be success-

fully injected. This is why several hundred injections was collected, to make

sure that a big enough subset would actually be successfully injected, which

could be used in the analysis. For achieving accurate results, the automa-

tion testing script would actually need to be executed twice. This process is

shown in Figure 9. First, all the injections had to be tested against the vul-

nerable website without the filter enabled. This way, all the injections that

are actually working on the vulnerable site, would be recorded in a list cre-

ated by the testing script. Next, the list of injected scripts would be used to

run the testing script another time, this time using a version of Firefox that

has the filter enabled. The script would once again create a list containing

both the successful injections and the injections stopped by the filter, which

then would be used for further analysis. This is done to make sure that the

analyzed results are containing actually injectable script content, so that it is

known that it is the filter that stop the injections, and not something wrong

with the injections themselves.

5.1.2 Results

When running the automated test as described above, the website without

the filter was successfully injected with a total of 138 different script injec-

tions. Although many of the injections used similar attack vectors, there

were still a good mixture of different attack vectors and encodings used, typ-

44

Analysis and Assessment 45

Vulnerable

https://www.example.com

<script>alert(1)</script> Go!

Only keep successful injections

Use as new input

Injected Not injectedInjections list

Vulnerable

https://www.example.com

<script>alert(1)</script> Go!

Injected Not injectedInjections list

Original Firefox - Without filter

Modified Firefox - With filter

XSS

Alert

OK

920 entries

138 entries 29 entries

138 entries

109 entries

782 entries

Figure 9: Testing of the implemented filter

ically trying to circumvent filtering mechanisms. When using these injections

in the version of Firefox containing the XSS filter, only 29 were successfully

injected. The filter did, therefore, block 109 of 138 injections. By examin-

ing the results further, it is possible to pinpoint the weaknesses of the filter,

which again could be used to improve it.

Blocked scripts Most of the script injections were both detected and

blocked by the filter. This included the usage of many different variations of

the script tag, were the injections were adding other unnecessary charac-

ters or using URL encoding trying to circumvent the filter. Because of the

filter’s location, behind the HTML parser, and the fact that all parameters

gets URL-decoded, all of these injections were blocked. There were also a lot

of usage of on-event handlers, utilizing similar circumvention techniques.

Most of the on-event handlers were also blocked, used in combination with

different attack vectors like the img tag, svg tag and body tag, since all

of these on-event handlers had to go through the EventListenerManager

45

Analysis and Assessment 46

class, were the filter was invoked from.

Injected scripts As there were a total of 29 successful injections, it is in-

teresting to analyze why the filter did not detect them. Table 2 contains an

overview of the injections, which will be further analyzed here. 16 of 29 of the

successful injections used the HTML tag iframe, in different forms, utilizing

upper/lower capitals, URL encoding and otherwise including different char-

acters to confuse the filter. The iframe tag allows web pages to load other

web pages inside itself, where the tag also support the usage of on-event

handlers. Even though 16 of 138 of the iframe-injections got successfully

executed, the filter did actually block the instances utilizing on-event han-

dlers, as this is well supported by the filter. The filter does not, however,

detect iframe’s using the src attribute, as it is not being invoked in the

parts of Firefox that handles the script content inside these tags. 7 other

injections were also cases were the attack vectors are not supported, which

used the embed tag, svg tag and the object tag. The last 6 cases, however,

used either the script tag or on-event handlers, but did not get detected.

This is because they used varies encodings, like HTML entity encoding and

base64 encoding, which are not supported by the filter. This is a good exam-

ple showing that only dealing with the most common URL encoding is not

enough, as there exists several other encodings that might be interpreted as

script content by the website, that also needs to be considered.

5.1.3 Limitations

There are several limitations regarding the capabilities of the filter, which

could be categorized into several categories. Some limitations were related

to the actual filtering rules, which means the capability of the filter to detect

different types of script injections, using different methods for trying to cir-

cumvent the filter. The other types of limitations is related to the different

input and output sources supported by the filter, as there are more ways

than using script tags and on-event handlers to inject script content into

websites.

Limitations regarding filtering rules As described in Chapter 4.4.3, the

filter did support URL encoded data, which turned out to work really well,

46

Analysis and Assessment 47

Attack vector Number Not supported Difficulty to fix

iframe 16 attack vector easy

embed 3 attack vector easy

object 3 attack vector easy

svg 1 attack vector easy

script 2 encoding moderate

on-event 4 encoding moderate

Table 2: Testing of the implemented filter

stopping several injections. It did not, however, support HTML entity and

base64 encoding, which led to script injections being executed in the browser.

Support for more different encodings should therefor be implemented.

As seen from the results, every injection utilizing the iframe tag were success-

fully injected and executed in the browser, as this was one amongst several

injections in which the injected attack vector was not accounted for by the

filter. This is a general limitation that the filter simply supports too few

attack vectors utilizing different HTML tags. Although the filter supports

on-event handlers, which is used by a vast amount of HTML tags, these

on-event handlers are not always necessary to trigger a script for execution,

which is why this support needs to be improved.

In Chapter 2.3.2, some limitations of the XSS Auditor filter were discussed,

which are tightly related to the limitations of this filter implementation, as

they are based on the same string matching design. Not all of the limitations

from Auditor applies though, as this filter does not require the same strict

subset of special characters to be present, as Auditor requires. However, the

limitations regarding partial string injections is something that has not been

addressed in this filter either. If a website have several input fields were its

content gets concatenated without proper validation, an attacker might take

advantage of this to create a complete injection by splitting the injection into

47

Analysis and Assessment 48

two or more fields. It is worth mentioning that this is a rather special case,

as the website need to have some very specific functionality for this attack to

work, but it is still a possibility that should be considered to be addressed.

Limitations regarding request input sources Another type of limita-

tion is regarding every input source from the request, which means every

source of user modified fields that might enter into a web application. The

absolutely most used input sources are the GET- and POST parameters,

which are currently the only sources supported by the filter. There are, how-

ever, other possible input sources where users could inject malicious content,

like for example HTTP headers and cookies. Although these are more spe-

cial cases, were the web applications need some more specific use-cases, they

might still occur, which is why they should be considered to be supported.

5.2 Performance

The performance of the implemented filter is an important factor for its

usefulness. For measuring the performance, Mozilla’s own methodology for

comparing page load times across browsers [52] was used. This methodology

consists of choosing a set of websites that are loaded in Firefox, repeated

several times, while measuring the loading time for each page load. This

is a process that is automated with the help of Selenium WebDriver [47],

which makes it possible to make direct calls to specified browsers using their

native support for automation. For this implemented filter, it would be

interesting to compare the performance of the modified Firefox instance with

the original Firefox instance, which does not include a built-in XSS filter. By

using the Selenium WebDriver it is possible to supply both of these instances

as options, which means that the testing would be fully automated. As

mentioned, it is necessary to have a set of websites to be used for testing. In

the case for Firefox’s own testing, they chose to pick the 200 most popular

websites from the Alexa page rank site [11], because news sites typically

contain a lot of trackers.

48

Analysis and Assessment 49

5.2.1 Methodology of Testing

For the testing of this filter, news site are also well suited, as they contain a

lot of script content and most often also contains a search field for looking

up articles, which is something that is useful for invoking the filter mech-

anism. For the testing, only a subset of the most popular news sites from

the Alexa page rank site where chosen, as not every news site had a working

search field. A total of 20 news sites where selected for the testing. It is

assumed that most of the top news sites can be considered to be relatively

safe, not containing any easy to exploit cross-site scripting vulnerabilities.

This does not, however, hinder the filtering mechanism to activate, since the

filter would still search the request parameters for potential dangerous con-

tents, and do the comparison between them and the scripts contained in the

response. This is done regardless of the existence of any actual vulnerabil-

ities or not, since that is the whole point of the filter, to act as an added

layer in the defense in depth strategy trying to stop attacks from potential

vulnerabilities.

To make sure the modified browser actually runs the code for the imple-

mented filter, each website was given some input data by using their search

fields. The testing was done with two different input data, with the first one

simulating a totally legit request that does not contain any script content

at all, inputting the query article, and the second one containing a simple

script, <script>alert(1)</script>, simulating a very simple XSS attack.

In the first case, by inputting a safe query, the filter would inspect this query

and not find any potentially dangerous characters, which means the filter

would not need to do any additional processing. In the second case, the

same inspection of the query would be done, which would mark the injection

as unsafe. After marking it as unsafe, every time a filer would get a script

from the response, this script would be matched against the unsafe parame-

ter, trying to identify if the parameter is contained in any of the scripts. The

performance difference between the original and modified browser should be

expected to be lower from the first case than the second case, as the filter

is doing more work the second query. One thing to notice here is that the

filter would most likely not detect an actual attack, as previously assumed

that popular news websites are probably protected against simple injection

49

Analysis and Assessment 50

attacks.

5.2.2 Results

After running the automated test, the result does not suggest any added

performance overhead by including the filter. The measured load times were

actually so similar that an accurate estimate of how much the filter affected

the performance is not possible to measure. Table 3 illustrates the results,

where the unit of the load times are milliseconds. The columns marked

”Invalid” means that a web page did not load correctly, which means it got

removed when calculating the average load time. In the case of loading web

pages with the query article, the version containing the filter did actually

perform approximately 3.2% faster on average, than Firefox without the

filter. In the case of using the query <script>alert(1)</script>, the

original Firefox version performed approximately 1.7% faster on average.

It is worth noting that the results did not contain any huge fluctuations

when performing the test, and the biggest difference after calculating the

average for each test run was about 362 ms, which was the difference between

Run 1a of the original version and Run 2s of the original version. The

difference between the different runs of the modified filter were really small,

as seen in the figure. As the total difference between the original and modified

versions are also relatively small, the conclusion is that the filter did not

add any measurable performance overhead, meaning it achieves very high

performance. There are, however, several factors that might have affected

the testing, as described in the next section, 5.2.3. Although, since there

were so few fluctuations between the calculated averages, it is assumed that

the results reflect the reality fairly well.

5.2.3 Limitations

There are several factors that might have affected the performance testing,

which could mean the result are misleading. When Mozilla did their own

performance testing, they used a total of 200 different websites, a number

much higher that what was used when testing this filter. Choosing a larger

subset of websites for the testing could have given some results reflecting a

more average loading time, but the 20 selected websites did achieve a very

50

Analysis and Assessment 51

Table 3: Loading times results, measured in milliseconds

small variance in the calculated average, so it should not be of much difference

if choosing to include any more than this. Some other factors that might have

had more impact on the results are fluctuations in the local Internet speed

of the testing machine and the fluctuations in the web traffic received by the

tested websites at the time of the testing. It is typical that these factors

varies throughout the day, depending on the time. The test of the original

and modified browser were done consecutively, where each test, where one

test contains loading of 1000 websites, took approximately 80 minutes to

perform. This is not a very huge time span, meaning these fluctuations

should not be considered to be of any huge significance. Another factor

that is less likely to have affected the performance is the processing power of

the testing machine itself, meaning the CPU of the machine might have been

running different tasks when conducting the testing of the different browsers.

The testing machine was, however, left alone during the actual testing period,

which should result in minimal affection from other tasks running.

These are all limitations that somehow might have affected the testing results,

some easier than others to control and minify, which was done to the best

of ability. Each of them should not be of any significance, and the results

are considered to be very accurate, but it is still worth mentioning these

limitations, as is is often small variances in the results which should be tried

to be explained.

51

Analysis and Assessment 52

5.3 Implementation

It is also interesting to analyze how well the filter itself is implemented, in

terms of how well it is integrated into Firefox, and how it affects the usage

of Firefox other than the already measured performance.

5.3.1 Conform to Mozilla Firefox’s Internal Coding Standards

Mozilla Firefox have strict guidelines for how things should be integrated

into the browser, a coding standard for everything from simple formatting

to the usage of different parts from the code. The implemented filter has

tried to comply to these rules, by following the general coding standards,

particularly regarding handling of strings [53], as string matching have been a

major part of the filter mechanism. Getting access to other parts of the code,

parsing data correctly, exception handling and testing is other examples good

implementation regarding Mozilla’s coding principles. There is, however, one

aspect of the implementation that is not being integrated well enough for

being part of a release version of Firefox. This is the fact that the filter is

not utilizing the concept of script security and the usage of principals, as

explained in Chapter 3.2.

5.3.2 Blocking Technique

When detecting a potential XSS attack, the filter should be able to act upon it

and block the script injection. There are several ways of doing this blocking,

as mentioned in Chapter 4.1.3, it is possible to only block the injected script,

or the whole web page. Both of these techniques have their advantages and

disadvantages, which are being discussed here.

Partial blocking One of the reasons for blocking only the injected script

is that it would interfere less with a user’s normal browsing of web pages,

as the user could still use the other parts of the web page, which are not

affected by the injected script. This is also a huge advantage in the case of

a false-positive, again as the user gets less interrupted, as only a subpart of

the page gets blocked.

52

Analysis and Assessment 53

Blocking whole page There are, however, some disadvantages when choos-

ing to only block parts of the page. When the filter detects an attack, it is

not unexpected that an attacker might have combined several techniques and

parts when injecting the script into the website, hoping that one of the in-

cluded parts of the script would be able to circumvent the filter. Hopefully,

the filter would be advanced enough to properly detect and block all the

parts of the injection, but it might be some special conditions that the filter

does not account for, leading to a successful attack. This is one of the rea-

sons why it might be a better approach, when only concerned with security,

to block the whole web page from loading when an attack is detected, as

the detected attack might just be part of a bigger attack. Another possibil-

ity for an attacker is to trick the filter to not block an injected script, but

to block some important security feature that are actually needed by the at-

tacked website itself. An example is a website that requires the JavaScript file

security.js for its security features to work, which which will be included

in the response when requesting the website. Since the filter compares script

content from the request with script from the response, an attacker might

inject a script containing the same filename, security.js, which would then

be detected by the filter as an attack, as the file is both in the request and

the response of the website. This would then disable the websites security

features, which means the attacker could create an injection that combines

the file security.js with some other malicious script executing an attack.

Since the filter actually detected an attack, it would be better to block the

entire web page from loading, as this would prevent this issue altogether.

5.3.3 Usability

The implemented filter does not currently support any interaction from or

with the user of Firefox, which is something that should be considered, as

more control of and information about the filter’s behavior could be beneficial

to websites and Firefox’s users.

Choosing blocking technique As there are clearly advantages and dis-

advantages with both the blocking techniques, it is possible to make this

a decision for websites to take, by utilizing the X-XSS-Protection HTTP

response header [54]. This is a header currently supported by most of the ma-

53

Analysis and Assessment 54

jor web browsers, Chrome, Safari, Internet Explorer and Edge, and makes it

possible to decide how the browser should act when they detect XSS attacks.

There are four possible values for the X-XSS-Protection header. Setting it

to 0 will disable the filter and 1 will enable it and only remove the dangerous

parts. By using 1; mode=block, the filter will be enabled and the whole web

page will be blocked. A last option is using 1; report=<reporting-uri>,

which will only remove the dangerous parts and use a feature from CSP

where the violation is reported and sent to the specified URL.

Violation feedback Another functionality missing from the implementa-

tion, something the implemented CSP feature already has, is the ability to

properly notify users of a violation. In the case of a XSS violation, this would

be when the filter detects and/or blocks the attack, depending on what the

previous mentioned X-XSS-Protection header is set to. This header, did as

mentioned above, support a reporting feature, where a details of the violation

would get sent to a specified URL. However, a violation notice should also

be indicated to the users of Firefox, regardless of the reporting feature of the

X-XSS-Protection header. In the filter’s current state, these violation details

are only shown in a special console meant for the developers of Firefox itself,

and not in the developer console accessible to normal users of Firefox. The

details shown to the users does not have to contain every detail about the

violation, but an indication of what has happened should be displayed.

54

Conclusion 55

6 Conclusion

Cross-Site Scripting (XSS) vulnerabilities continues to be one of the most

critical web security threats among todays web applications, despite of the

large quantity of research, proposals and solutions being published and im-

plemented [10]. This is a type of vulnerability that mainly and directly

compromise the end-users of web applications, which means they need addi-

tional protection. All of the major web browsers have taken action by imple-

menting several protection mechanisms defending against these XSS attacks.

Since XSS is such a complex vulnerability, there is not a single protection

mechanism that will stop all of the attacks, but rather a strategy of having

several mechanisms that together provide the best protection, utilizing the

defense-in-depth strategy. All of the major web browsers have included a

built-in filter for XSS protection as one of these counter measures, except

the second most used, Mozilla Firefox, which have neglected to include such

feature. As seen from the lacking of effectiveness of the most comprehensive

protection mechanism in Firefox, CSP, as discussed Chapter 2.2.6, the need

for a built-in XSS filter in Firefox is evident, considering the prevalence and

consequence of these attacks.

This thesis has made a proposal and implementation for such a filter, which

is built-in and integrated into Firefox. The filtering principles for the fil-

ter was based on the filter used in Google’s Chrome browser, XSS Auditor,

which utilizes an advantageous placement inside the web browser, achiev-

ing both good protection and high performance. After doing several tests

of the implemented filter, findings suggest that the filter did perform very

well in protecting against a wide variety of script injections, which contained

different attack vectors utilizing several methods trying to circumvent the

filtering mechanism. Adding and removing characters, using URL encodings

and different on-event handlers were efficiently blocked by the filter. There

were, however, some limitations regarding different types of encodings and

a lack of support for some attack vectors, which are something that needs

to be added before the filter could be considered sufficient for every-day us-

age. Performance-wise, the filter did not show any measurable difference

compared to the version of Firefox without the filter. By not having any

huge performance overhead means that adding small additions for fixing the

55

Conclusion 56

limitations mentioned should not incur significantly more overhead, as the

most demanding filtering mechanisms are already implemented.

The modified version of Firefox containing the filter do, therefore, already

provide much better protection than the original version of Firefox. Even

though there are limitations that needs to be addressed for it to be a con-

sidered a fully fledged solution, it already serves as an important layer in

the defense-in-depth strategy, providing a little extra to the much desired

protection that is needed for XSS vulnerabilities.

56

Further Work 57

7 Further Work

As discussed in Chapter 5, the implemented filter still has room for improve-

ments considering its protection effectiveness. The areas for improvements

are regarding input sources, attack vectors, support for more encodings and

integration with existing Firefox code. Most of these improvements should

be rather trivial to implement. Firefox’s internal code has easy access to

other input sources data, like the most relevant, which are HTTP headers.

In the case of attack vector support, the already supported attack vectors

only needed about two lines of code for them to be covered, so it should

be as trivial to add support to other vectors, like the iframe, embed, svg

and object tags, as mentioned in Chapter 5.1.2. The only challenge with

these is to identify the location inside the Firefox code where they are being

processed, as they might be handled in vastly different areas in the code.

Support for more encodings should also not be too difficult to achieve, as

there exist good documentation covering how different encodings work, and

the fact that the filter class is structured in such a way that it is easy to add

more advanced filtering rules. The most challenging task would be to bet-

ter integrate the filter into the existing Firefox code, to comply with all the

security principals and coding standards that are required by Mozilla. An-

other improvement could be to implement support for the X-XSS-Protection

header, which would let websites themselves decide if they want to use it or

not.

57

8 References

[1] D. Bates, A. Barth, and C. Jackson, “Regular expressions considered

harmful in client-side xss filters,” in Proceedings of the 19th interna-

tional conference on World wide web. ACM, 2010, pp. 91–100.

[2] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, “Precise client-

side protection against dom-based cross-site scripting.” in USENIX Se-

curity Symposium, 2014, pp. 655–670.

[3] S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS) attacks and

defense mechanisms: classification and state-of-the-art,” International

Journal of System Assurance Engineering and Management, vol. 8, no. 1,

pp. 512–530, 2017.

[4] M. Alvarez, N. Bradley, P. Cobb, S. Craig, R. Iffert, L. Kessem,

J. Kravitz, D. McMillen, and S. Moore, “IBM X-Force Threat Intelli-

gence Index 2017 The Year of the Mega Breach,” IBM Security,(March),

pp. 1–30, 2017.

[5] Mozilla Developer Network, “Script Security,” Aug 2016, accessed

2018-05-24. [Online]. Available: https://developer.mozilla.org/en-US/

docs/Mozilla/Gecko/Script security

[6] ——, “Content security policy (csp),” January 2018, accessed: 2018-

01-24. [Online]. Available: https://developer.mozilla.org/en-US/docs/

Web/HTTP/CSP

[7] OWASP Foundation, “Owasp top 10 - 2017 the ten most

critical web application security risks,” accessed: 2017-12-27.

[Online]. Available: https://www.owasp.org/images/7/72/OWASP

Top 10-2017 %28en%29.pdf.pdf

[8] WhiteHat Security, Inc., “2017 whitehat security application security

statistics report,” 2017, accessed: 2017-12-21. [Online]. Avail-

able: https://info.whitehatsec.com/rs/675-YBI-674/images/WHS%

202017%20Application%20Security%20Report%20FINAL.pdf

58

https://developer.mozilla.org/en-US/docs/Mozilla/Gecko/Script_security
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko/Script_security
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://info.whitehatsec.com/rs/675-YBI-674/images/WHS%202017%20Application%20Security%20Report%20FINAL.pdf
https://info.whitehatsec.com/rs/675-YBI-674/images/WHS%202017%20Application%20Security%20Report%20FINAL.pdf

[9] Bugcrowd Inc., “2017 state of bug bounty report,” 2017, accessed:

2018-01-09. [Online]. Available: https://pages.bugcrowd.com/hubfs/

Bugcrowd-2017-State-of-Bug-Bounty-Report.pdf

[10] I. Hydara, A. B. M. Sultan, H. Zulzalil, and N. Admodisastro, “Current

state of research on cross-site scripting (XSS)–A systematic literature

review,” Information and Software Technology, vol. 58, pp. 170–186,

2015.

[11] Alexa Internet, Inc., “The top 500 sites on the web,” January 2018,

accessed: 2018-01-15. [Online]. Available: https://www.alexa.com/

topsites

[12] A. Vikne and P. Ellingsen, “Client-Side XSS Filtering in Firefox,” in

SOFTENG 2018, The Fourth International Conference on Advances and

Trends in Software Engineering, April 2018, pp. 24–29.

[13] Mozilla Developer Network, “Confidentiality, Integrity, and

Availability,” April 2018, accessed: 2018-04-19. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/Security/Information

Security Basics/Confidentiality, Integrity, and Availability

[14] ——, “HTTP headers,” April 2018, accessed 2018-05-13. [Online]. Avail-

able: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

[15] ——, “Referer,” June 2017, accessed 2018-05-13. [Online]. Avail-

able: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/

Referer

[16] ——, “User-Agent,” June 2017, accessed 2018-05-13. [Online]. Avail-

able: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/

User-Agent

[17] S. Di Paola and G. Fedon, “Subverting ajax,” 2006.

[18] Facebook Inc., “Httponly,” August 2017, accessed: 2018-03-23.

[Online]. Available: https://www.facebook.com/help/246962205475854

59

https://pages.bugcrowd.com/hubfs/Bugcrowd-2017-State-of-Bug-Bounty-Report.pdf
https://pages.bugcrowd.com/hubfs/Bugcrowd-2017-State-of-Bug-Bounty-Report.pdf
https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://developer.mozilla.org/en-US/docs/Web/Security/Information_Security_Basics/Confidentiality,_Integrity,_and_Availability
https://developer.mozilla.org/en-US/docs/Web/Security/Information_Security_Basics/Confidentiality,_Integrity,_and_Availability
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://www.facebook.com/help/246962205475854

[19] Mozilla Developer Network, “DOM on-event handlers,” Jan 2018,

accessed 2018-05-24. [Online]. Available: https://developer.mozilla.org/

en-US/docs/Web/Guide/Events/Event handlers

[20] OWASP Foundation, “Xss filter evasion cheat sheet,” October 2017,

accessed: 2017-12-27. [Online]. Available: https://www.owasp.org/

index.php/XSS Filter Evasion Cheat Sheet

[21] ——, “Xss (cross site scripting) prevention cheat sheet,” October

2017, accessed: 2018-01-24. [Online]. Available: https://www.owasp.

org/index.php/XSS (Cross Site Scripting) Prevention Cheat Sheet

[22] The World Wide Web Consortium, W3C, “Content security policy

level 2,” December 2016, accessed: 2018-01-11. [Online]. Available:

https://www.w3.org/TR/2016/REC-CSP2-20161215/

[23] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “Csp is dead,

long live csp! on the insecurity of whitelists and the future of content

security policy,” in Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security. ACM, 2016, pp. 1376–

1387.

[24] Mozilla Developer Network, “Same-origin policy,” March 2018,

accessed: 2018-03-21. [Online]. Available: https://developer.mozilla.

org/en-US/docs/Web/Security/Same-origin policy

[25] OWASP Foundation, “Httponly,” August 2017, accessed: 2018-03-21.

[Online]. Available: https://www.owasp.org/index.php/HttpOnly

[26] G. Maone, “NoScript - JavaScript/Java/Flash blocker for a safer

Firefox experience! - features - InformAction,” accessed: 2017-12-28.

[Online]. Available: https://noscript.net/features

[27] Mozilla Developer Network, “eval,” April 2018, accessed 2018-05-29.

[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global Objects/eval

[28] StatCounter, “Desktop browser market share worldwide,” May 2018,

accessed: 2018-05-09. [Online]. Available: http://gs.statcounter.com/

browser-market-share/desktop/worldwide

60

https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Event_handlers
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Event_handlers
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.w3.org/TR/2016/REC-CSP2-20161215/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.owasp.org/index.php/HttpOnly
https://noscript.net/features
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/eval
http://gs.statcounter.com/browser-market-share/desktop/worldwide
http://gs.statcounter.com/browser-market-share/desktop/worldwide

[29] D. Ross, “Ie8 security part iv: The xss filter,” July 2008, accessed:

2018-01-11. [Online]. Available: https://blogs.msdn.microsoft.com/ie/

2008/07/02/ie8-security-part-iv-the-xss-filter/

[30] Mozilla Developer Network, “History of the Mozilla Project,”

April 2018, accessed: 2018-04-04. [Online]. Available: https:

//www.mozilla.org/en-US/about/history/details

[31] ——, “An introduction to hacking mozilla,” March 2017, accessed:

2017-12-28. [Online]. Available: https://developer.mozilla.org/en-US/

docs/Mozilla/An introduction to hacking Mozilla

[32] ——, “Introduction,” September 2014, accessed: 2017-12-28. [Online].

Available: https://developer.mozilla.org/en-US/docs/Mozilla/Tech/

XUL/Tutorial/Introduction

[33] ——, “Gecko faq,” September 2015, accessed: 2017-12-28. [Online].

Available: https://developer.mozilla.org/en-US/docs/Gecko/FAQ

[34] ——, “How mozilla’s build system works,” De-

cember 2017, accessed: 2018-02-14. [Online]. Avail-

able: https://developer.mozilla.org/en-US/docs/Mozilla/Developer

guide/Build Instructions/How Mozilla s build system works

[35] GNU/Free Software Foundation, “Gnu make,” May 2016, accessed:

2018-02-14. [Online]. Available: https://www.gnu.org/software/make/

[36] Mozilla Developer Network, “mach,” December 2017, accessed: 2018-

02-14. [Online]. Available: https://developer.mozilla.org/en-US/docs/

Mozilla/Developer guide/mach

[37] I. Black Duck Software, “The Mozilla Firefox Open Source Project

on Open Hub: Languages Page,” April 2018, accessed 2018-05-

22. [Online]. Available: https://www.openhub.net/p/firefox/analyses/

latest/languages summary

[38] Mozilla Developer Network, “Mozilla Source Code Di-

rectory Structure,” Jan 2018, accessed 2018-05-22. [On-

line]. Available: https://developer.mozilla.org/en-US/docs/Mozilla/

Developer guide/Source Code/Directory structure

61

https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-iv-the-xss-filter/
https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-iv-the-xss-filter/
https://www.mozilla.org/en-US/about/history/details
https://www.mozilla.org/en-US/about/history/details
https://developer.mozilla.org/en-US/docs/Mozilla/An_introduction_to_hacking_Mozilla
https://developer.mozilla.org/en-US/docs/Mozilla/An_introduction_to_hacking_Mozilla
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Tutorial/Introduction
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/Tutorial/Introduction
https://developer.mozilla.org/en-US/docs/Gecko/FAQ
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/How_Mozilla_s_build_system_works
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/How_Mozilla_s_build_system_works
https://www.gnu.org/software/make/
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/mach
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/mach
https://www.openhub.net/p/firefox/analyses/latest/languages_summary
https://www.openhub.net/p/firefox/analyses/latest/languages_summary
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Source_Code/Directory_structure
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Source_Code/Directory_structure

[39] ——, “HTML parser threading,” March 2013, accessed 2018-05-

30. [Online]. Available: https://developer.mozilla.org/en-US/docs/

Mozilla/Gecko/HTML parser threading

[40] ——, “Browser Extensions,” March 2018, accessed 2018-05-27.

[Online]. Available: https://developer.mozilla.org/en-US/Add-ons/

WebExtensions

[41] ——, “Browser support for JavaScript APIs,” May 2018, accessed

2018-05-27. [Online]. Available: https://developer.mozilla.org/en-US/

Add-ons/WebExtensions/Browser support for JavaScript APIs

[42] “Arch Linux,” Jan 2018, accessed 2018-05-30. [Online]. Available:

https://wiki.archlinux.org/index.php/Arch Linux

[43] Microsoft, “Visual Studio Code - Code Editing. Redefined,” accessed

2018-05-30. [Online]. Available: https://code.visualstudio.com/

[44] Mozilla Developer Network, “Configuring Build Op-

tions,” March 2018, accessed 2018-05-30. [Online]. Avail-

able: https://developer.mozilla.org/en-US/docs/Mozilla/Developer

guide/Build Instructions/Configuring Build Options

[45] GNU/Free Software Foundation, “Gdb: The gnu project debugger,”

February 2018, accessed: 2018-03-02. [Online]. Available: https:

//www.gnu.org/software/gdb/

[46] R. D. W3Schools, “HTML URL Encoding Reference,” May 2018,

accessed: 2018-05-02]. [Online]. Available: https://www.w3schools.

com/tags/ref urlencode.asp

[47] S. Project, “Selenium WebDriver - Selenium Documentation,”

April 2018, accessed 2018-05-02. [Online]. Available: https://www.

seleniumhq.org/docs/03 webdriver.jsp

[48] Balaji N., “Top 500 most important xss script cheat sheet for web ap-

plication penetration testing,” May 2018, accessed 2018-05-30. [Online].

Available: https://gbhackers.com/top-500-important-xss-cheat-sheet/

62

https://developer.mozilla.org/en-US/docs/Mozilla/Gecko/HTML_parser_threading
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko/HTML_parser_threading
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Browser_support_for_JavaScript_APIs
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/Browser_support_for_JavaScript_APIs
https://wiki.archlinux.org/index.php/Arch_Linux
https://code.visualstudio.com/
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Configuring_Build_Options
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Configuring_Build_Options
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://www.w3schools.com/tags/ref_urlencode.asp
https://www.w3schools.com/tags/ref_urlencode.asp
https://www.seleniumhq.org/docs/03_webdriver.jsp
https://www.seleniumhq.org/docs/03_webdriver.jsp
https://gbhackers.com/top-500-important-xss-cheat-sheet/

[49] Thapa, Prabesh, “Xss-payloads,” Aug 2016, accessed 2018-05-

30. [Online]. Available: https://github.com/Pgaijin66/XSS-Payloads/

blob/master/payload.txt

[50] FuzzDB Project, “xss-other.txt,” Oct 2016, accessed 2018-05-30.

[Online]. Available: https://github.com/fuzzdb-project/fuzzdb/blob/

master/attack/xss/xss-other.txt

[51] ——, “xss-rsnake.txt,” May 2016, accessed 2018-05-30. [Online]. Avail-

able: https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/

xss/xss-rsnake.txt

[52] D. Strohmeier, P. Dolanjski, “Comparing browser page load

time: An introduction to methodology,” November 2017, accessed:

2018-01-15. [Online]. Available: https://hacks.mozilla.org/2017/11/

comparing-browser-page-load-time-an-introduction-to-methodology/

[53] Mozilla Developer Network, “Mozilla internal string guide,” April 2018,

accessed 2018-05-25. [Online]. Available: https://developer.mozilla.org/

en-US/docs/Mozilla/Tech/XPCOM/Guide/Internal strings

[54] ——, “X-XSS-Protection,” Feb 2018, accessed 2018-05-28. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/

Headers/X-XSS-Protection

63

https://github.com/Pgaijin66/XSS-Payloads/blob/master/payload.txt
https://github.com/Pgaijin66/XSS-Payloads/blob/master/payload.txt
https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/xss/xss-other.txt
https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/xss/xss-other.txt
https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/xss/xss-rsnake.txt
https://github.com/fuzzdb-project/fuzzdb/blob/master/attack/xss/xss-rsnake.txt
https://hacks.mozilla.org/2017/11/comparing-browser-page-load-time-an-introduction-to-methodology/
https://hacks.mozilla.org/2017/11/comparing-browser-page-load-time-an-introduction-to-methodology/
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Guide/Internal_strings
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Guide/Internal_strings
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Description
	Related Work
	Regular Expressions Considered Harmful in Client-Side XSS Filters auditor
	Precise Client-side Protection against DOM-based Cross-Site Scripting domProtection
	Cross-Site Scripting (XSS) Attacks and Defense Mechanisms: Classification and State-of-the-Art xssClassification
	Related Work Conclusion

	Thesis Outline

	Theoretical Background
	Web Security
	Information Security Principals
	Web Security Statistics
	Injection Attacks

	xss
	Stored/Persistent XSS
	Reflected/Non-Persistent XSS
	dom Based XSS
	Other XSS Types
	Universal XSS
	Self XSS

	Cross-Site Scripting Exploits
	Injection input sources
	Attack vectors
	Example attack

	Counter-Measures
	Validation/Sanitization
	Output encoding
	csp
	Same-origin policy
	HTTPOnly cookie flag
	Disabling JavaScript

	Cross-Site Scripting Filters
	Server-side filters
	Client-side filters

	Regular Expression Based Filters
	XSS Auditor - A string-matching Based Filter
	State of Current Browsers

	Methodology

	Mozilla Firefox
	Firefox Overview
	Loading of a Web Page

	Security Mechanisms
	Same-Origin Policy
	Compartments and Principals
	csp

	Design and Implementation
	Design Choices
	Requirements
	Usability
	Low false-positives
	High performance
	Provide protection against Reflected XSS

	Browser Extension vs Internal Implementation
	Availability
	Performance
	Security

	Blocking Technique
	Filtering Technique

	Design Overview
	Placement
	Filter Class Structure

	Environment
	Tools
	Development Software
	Mach
	gdb

	Implementation
	Data Flow
	Examining Input Data
	Looking for Injections - Matching Algorithm
	Basic evasion techniques
	Different encodings
	Different attack vectors

	Handling of Discovered Script
	Firefox Integration
	Challenges
	Unit Testing

	Analysis and Assessment
	Protection Effectiveness
	Methodology of Testing
	Results
	Blocked scripts
	Injected scripts

	Limitations
	Limitations regarding filtering rules
	Limitations regarding request input sources

	Performance
	Methodology of Testing
	Results
	Limitations

	Implementation
	Conform to Mozilla Firefox's Internal Coding Standards
	Blocking Technique
	Partial blocking
	Blocking whole page

	Usability
	Choosing blocking technique
	Violation feedback

	Conclusion
	Further Work
	References

