
Multi-GPU Rendering
with Vulkan API

Lars Olav Tolo

Master’s thesis in Software Engineering at

Department of Computing, Mathematics and
Physics,

Western Norway University of Applied Science

Department of Informatics,
University of Bergen

June 2018

Abstract

Vulkan API provides a low level interface to modern Graphics Processing
Units (GPUs). With this thesis, we demonstrate how to use Vulkan to send
commands explicitly to separate GPUs for implementing platform- and ven-
dor independent multi-GPU rendering. We describe how to implement the
sort-�rst and sort-last approaches to perform parallel rendering with Vulkan.
We introduce an abstraction library which we have made available, and an
application for multi-GPU rendering of meshes. The introduced solution is
the �rst publicly available implementation of heterogeneous multi-GPU ren-
dering with Vulkan API. The introduced abstraction library supports creat-
ing partial renderers for the sort-�rst and sort-last approaches to multi-GPU
rendering, and takes care of the details of multi-GPU synchronization and
compositing. Performance benchmarks have been performed in order to eval-
uate the implementation. The sort-last implementation has been tested to
render geometry with high-resolution textures, which would otherwise not �t
in the memory of a single GPU.

Acknowledgements

I would like to thank my supervisors at Western Norway University of Applied
Sciences (HVL), Daniel Patel, Harald Soleim and Atle Geitung, for providing
feedback and guidance, motivating me to do my best. We had frequent
meetings, where we discussed my progress. I would also like to thank my co-
supervisor Ivan Viola, who is a professor at Vienna University of Technology
(TU Wien). In conversation with Patel, Viola formulated the thesis topic.
Viola and I had regular conversations, from which I got useful advice.

I had the opportunity to go to Vienna for a study trip, where I got introduced
to the vis-group at TU Wien, who performs research on visualization. I want
to thank HVL and TU Wien for providing funds for my trip to Vienna. I
want to thank the vis-group for making me feel welcome, and including me in
social activities. Viola provided supervision and guidance during my stay, for
which I am grateful. I had the opportunity to talk to Henry Fuchs, one of the
authors of the cited paper �A Sorting Classi�cation of Parallel Rendering�.
Fuchs and I had conversations about multi-GPU rendering, from which I got
a better understanding of the topic.

I have submitted a paper about multi-GPU rendering with Vulkan, co-
authored by my supervisors Patel, Soleim, Geitung and Viola. The paper
is accepted for presentation at the Norwegian Informatics Conference (NIK)
2018.

Contents

Contents 1

List of Figures 3

Listings 4

Glossary 5

1 Introduction 7
1.1 Motivation . 8
1.2 Goal . 9
1.3 Research Questions . 10
1.4 Research Method . 10
1.5 Related Work . 11

2 Background 13
2.1 The Graphics Pipeline . 13

2.1.1 Pipeline Stages . 14
2.2 Multi-GPU Con�gurations . 16

2.2.1 Linked Implicit Multi-GPU 18
2.2.2 Linked Explicit Multi-GPU 18
2.2.3 Unlinked Explicit Multi-GPU 19

2.3 Parallel Rendering Approaches 19
2.3.1 Sort-�rst . 20
2.3.2 Sort-last . 20
2.3.3 Other Approaches . 21

2.4 Compositing . 22
2.4.1 Compositing into Framebu�er 22
2.4.2 Using Multiple Windows or Monitors 22

2.5 Vulkan API . 23
2.5.1 Instance and Physical Devices 23

1

2.5.2 Logical Devices, Queues and Commands 24
2.5.3 Memory and Resources 25
2.5.4 Shaders and Pipelines 27
2.5.5 Rendering to Framebu�ers with Render Passes 27
2.5.6 Binding Resources to Shaders 28
2.5.7 Synchronization . 28

3 Design and Solution 30
3.1 Technologies . 30
3.2 A Vulkan Abstraction Library 31

3.2.1 Instance and Device 32
3.2.2 Implementing a Qt Window 34
3.2.3 Rendering with BP . 35
3.2.4 Scene Module . 38

3.3 Multi-GPU Implementation 40
3.3.1 Multi-GPU Abstraction 42
3.3.2 Sort-�rst Implementation 43
3.3.3 Sort-last Implementation 45
3.3.4 Copying Contributing Textures 47
3.3.5 Prototype Application 48

4 Results 50
4.1 Sort-�rst Benchmark . 51
4.2 Sort-last Benchmark . 54
4.3 Rendering Geometry with High-resolution Textures 58

5 Discussion 61
5.1 Sort-�rst Screen Partitioning 61
5.2 Sort-last Alpha Blending . 62
5.3 Post-processing . 63
5.4 Copying between GPUs . 63
5.5 Attempt at Integrating into Existing Framework 64

6 Conclusion 66

7 Further Work 68

2

List of Figures

2.1 Illustration of the rendering process 14
2.2 Illustration of the graphics pipeline stages 14
2.3 Illustration of a con�guration with dedicated GPUs. 17
2.4 Illustration of a GPU integrated in the same package as the

CPU. 18
2.5 Illustration of the sort-�rst parallel rendering approach. 20
2.6 Illustration of the sort-last parallel rendering approach. 21
2.7 Illustration of Vulkan objects and how they relate 24

3.1 Timeline of the multi-GPU rendering steps 40
3.2 Multi-GPU abstraction architecture. 42
3.3 Screenshot illustrating the sort-�rst implementation 43
3.4 Screenshot illustrating the sort-last implementation 46

4.1 Graph of the sort-�rst performance for TC1. 52
4.2 Graph of the performance of di�erent sort-�rst compositing

methods for TC2. 53
4.3 Screnshot from rendering the statue of Lucy. 55
4.4 Screenshots from rendering the Boeing airplane. 56
4.5 Graph of the sort-last performance for TC1, rendering the

Lucy statue. 57
4.6 Graph of the sort-last performance for TC2, rendering the

Lucy statue. 57
4.7 Graph of the sort-last performance for TC1, rendering the

Boeing airplane. 58
4.8 Screenshot from rendering 9 sections of the Beckwith Plateau,

Book Cli�s, UT, USA. 60
4.9 Closer screenshots from rendering the Beckwith Plateau, Book

Cli�s, UT, USA. 60

5.1 Illustration of di�erent ways to partition the screen for sort-
�rst compositing . 62

3

Listings

2.1 Available memory property �ags 26
3.1 Create instance with validation layers enabled 32
3.2 Create logical device . 33
3.3 Implement a Qt window . 34
3.4 Setup QInstance and create window 35
3.5 Implement a simple subpass 36
3.6 Execute rendering to an o�screen framebu�er 37
3.7 Calculate transformation matrix for partial sort-�rst rendering 44
3.8 Implement a sort-�rst renderer 44
3.9 Initialize a sort-�rst compositor 44
3.10 Implement a sort-last renderer 45
3.11 Initialize a sort-last compositor 46
4.1 Sort-�rst benchmark fragment shader code 51

4

Glossary

AFR Alternate Frame Rendering. 9, 18, 19

API Application Programming Interface. 7�9, 12, 14, 19, 23, 26, 30�32, 34,
64, 66

BP Boilerplate. 31, 34, 35, 40, 42, 45, 48, 64, 65

CAD Computer-Aided Design. 7

CPU Central Processing Unit. 5, 11, 16, 17, 22, 26, 28, 40, 41, 47, 64, 68

culling is the process of skipping objects, or primitives that will not be
visible in the �nal render. 15

fragment is a candidate for becoming a pixel and is the result from raster-
ization. 13, 15, 16, 21, 29, 44, 45, 51, 52, 62

framebu�er is a region of memory holding the resulting bitmap image from
rendering. 15, 20�23, 27, 32, 36�38, 42�44, 46, 51, 61, 64, 65

GPGPU General-purpose computing on GPUs. 7, 8

GPU Graphics Processing Unit. 1, 5�13, 16�26, 28, 30, 32, 33, 37�55, 58,
59, 61�64, 66�69

HEDT High-End Desktop. 16

host the Central Processing Unit (CPU) and main memory. 26, 28, 40, 41,
64

motherboard is a circuit board connecting the components of a computer
together. 16, 17

OS Operating System. 8, 22, 23, 31

PCI-E Peripheral Component Interconnect Express. 16, 17, 47

5

pipeline is a model describing the steps necessary to render 3D graphics on
a GPU. 6�8, 13�15, 20, 21, 25, 27�29, 36, 37, 39

primitive is the representation of what gets rendered from a list of vertices,
for instance points, lines, triangles. 6, 7, 13�15, 20�22, 27

rasterization is the process of converting primitives into fragments/pixels.
5, 13, 15, 27

rendering is the process of generating an image from 2D or 3D models. 3,
6�8, 10, 11, 14, 18�26, 30, 32, 36�42, 44�48, 50�58, 60, 61, 63, 64, 66�69

SFR Split-Frame Rendering. 9, 11, 18�20

shader is a program that runs for each primitive in one of the programmable
rendering pipeline stages. 7, 8, 14, 15, 21, 25, 27, 28, 31, 36, 44, 45, 49,
51, 52

SLI Scalable Link Interface. 8, 9, 16

SLI, 3dfx Scan-Line Interleave. 8

sort-�rst is a sorting class describing an approach to implement parallel
rendering by distributing primitives early in the rendering pipeline. 3,
18�20, 22, 32, 40, 42�45, 48, 50�53, 55, 61�63, 66�69

sort-last is a sorting class describing an approach to implement parallel
rendering by distributing primitives at the end of the rendering pipeline.
3, 19�22, 32, 40, 42, 45�48, 50�52, 54�58, 61, 62, 66, 67, 69

sort-middle is a sorting class describing an approach to implement paral-
lel rendering by distributing primitives in the middle of the rendering
pipeline. 21

SPIR-V Standard Portable Intermediate Representation. 27, 31

TCS Tesselation Control Shader. 15

TES Tesselation Evaluation Shader. 15

vertex is a 3D point represented as a vector. 13�15, 21, 29, 36, 39, 43, 49,
52

XDMA AMD CrossFire Direct Memory Access. 17

6

Chapter 1

Introduction

Computer graphics is everywhere. It provides immersive video games, smooth
animations in graphical user interfaces, and visualizations of 3D Computer-
Aided Design (CAD). With ever increasing screen resolutions and complexity
of visualizations, there is always demand for more computing power to pro-
vide a seamless experience. This is why modern computers have dedicated
hardware to implement accelerated computer graphics. This is called the
Graphics Processing Unit (GPU). GPUs implement functional parallelism
(pipelining) to distribute the rendering workload among hundreds, or even
thousands of computational units, for accelerated performance in graphics
intensive tasks.

The graphics pipeline consists of a series of steps which transforms the prim-
itives of a 3D mesh (points, lines, triangles), to the pixels you see on the
screen. Some steps can be customized with shader programs. Modern GPUs
also provide compute shaders, which operate outside of the pipeline, to im-
plement General-purpose computing on GPUs (GPGPU).

A graphics Application Programming Interface (API) is a uni�ed interface
to GPUs from di�erent vendors, and possibly di�erent operating systems.
OpenGL [1] and Vulkan [2] are examples of such graphics APIs. They pro-
vide the functionality of transferring data and commands to the GPU for
implementing the rendering and compute operations. Graphics APIs can be
extended with additional functionality with extensions. Extensions can pro-
vide general functionality available for all GPUs, but GPU vendors can also
create extensions speci�c to their hardware.

As the graphics hardware has rapidly been changing, adding new features,
the graphics APIs have had to adapt. Programmable graphics pipeline stages

7

using shaders is one of the most signi�cant changes in modern graphics.
Modern OpenGL (version 3.0 and up) have shifted away from a �xed func-
tion pipeline, towards a shader based graphics pipeline. Recent versions of
OpenGL now support GPGPU using compute shaders.

In 2016, Khronos Group (developers of OpenGL) launched version 1.0 of
Vulkan API [2]. Vulkan API is a graphics and compute API, promising low
overhead and ability to operate in parallel. The API provides a lower level
access to the GPU than OpenGL.

For demanding graphics rendering on a computer, it is possible that multiple
GPUs can improve performance. In 1998, 3dfx introduced their multi-GPU
technology Scan-Line Interleave (SLI, 3dfx), which brought multi-GPU ren-
dering power to the consumer. More recent multi-GPU implementations are
NVIDIA's Scalable Link Interface (SLI) [3] and AMD's Cross�re [4]. How-
ever these technologies require hardware support, and only works with GPUs
from the same vendor. Being able to use GPUs from di�erent vendors in par-
allel requires the developer to manually divide and distribute the rendering
workload. Not all graphics APIs have the features necessary to implement
such a general solution to multi-GPU rendering. With recent graphics APIs
providing a lower level interface than before, developers have more freedom
to manage details of the rendering process. Vulkan API require the developer
to select GPUs to perform rendering explicitly.

1.1 Motivation

Being able to select explicitly which GPU to assign rendering work to, is im-
portant for implementing a solution for multi-GPU rendering. We will refer
to this ability as explicit selection or explicit rendering. Core OpenGL does
not support explicit selection of GPUs on the Windows Operating System
(OS). To be able to assign work to each GPU explicitly with OpenGL onWin-
dows, we have to rely on extensions speci�c to GPU vendors. AMD's GPU
association extension [5] and NVIDIA's GPU a�nity extension [6] provide
the functionality of creating OpenGL contexts associated with speci�c GPUs.
An OpenGL context represent the state of OpenGL, and must be bound to
the thread that should call OpenGL commands using the context [7]. Though
AMD's extension target both consumer and professional GPUs [8], NVIDIA's
extension is limited to their professional lineup (Quadro) [9]. Hence, these
extensions can not be considered a general solution to implement explicit
multi-GPU rendering on consumer GPUs, as it requires a con�guration of

8

either multiple NVIDIA Quadro GPUs, or multiple AMD GPUs.

Explicit selection of GPUs is possible with Direct3D. Direct3D is however
designed for the Windows operating system and is not an open API. Vulkan
API is an open API, which most likely will be supported by drivers and most
operating systems for the foreseeable future. Vulkan provides the �exibility to
implement multi-GPU rendering in a general solution working on all Vulkan-
capable GPUs, as Vulkan supports explicit selection.

NVIDIA's SLI [3] and AMD's Cross�re [4] o�er automatic, but limited uti-
lization of several graphics cards residing in one computer. This is handled
by the graphics drivers and does not require a change in the application
itself. Both vendors o�er two types of parallelization, Alternate Frame Ren-
dering (AFR) where alternate frames are rendered by alternate GPUs, and
Split-Frame Rendering (SFR) where the rendering window is split and each
GPU renders a part of it. SLI only works with identical NVIDIA cards while
Cross�re can work with di�erent AMD cards. However, if the user wants to
utilize di�erent shaders and/or geometry on di�erent GPUs, these technolo-
gies are not su�cient. We show in this thesis that we can implement such
setups with Vulkan API.

1.2 Goal

The goal of this thesis is to explore the use of multiple GPUs on a single
computer with Vulkan API, and implement an e�cient solution to multi-
GPU rendering. Di�erent approaches to dividing and distributing rendering
workload among multiple GPUs should be researched, for instance sort-�rst
and sort-last. The sort-�rst approach allow us to divide and distribute the
screen area to multiple GPUs. The sort-last approach allow us to divide and
distribute the geometry to the GPUs. I want to show scenarios where the
proposed solution is more performant than a single-GPU con�guration. I
also want to show that we can utilize the additional memory available with
multiple GPUs, which is not possible with SLI or Cross�re.

9

1.3 Research Questions

1. How can we implement e�cient multi-GPU rendering with Vulkan
API?

2. How can we divide and distribute rendering workload among multiple
GPUs in di�erent ways, and what performance improvement can be
expected for the di�erent approaches compared to a single GPU?

1.4 Research Method

In order to answer the research questions, I intend to implement a prototype
that support di�erent approaches to multi-GPU rendering, and I will test
performance across di�erent hardware con�gurations, and input. The results
of these tests will be compared to each other and to baseline performance tests
on a single GPU, for quantifying the improved performance when employing
additional GPUs for rendering.

Di�erent approaches to multi-GPU rendering might respond better with dif-
ferent workloads. A performance test that shows increase in framerate for one
approach, might not improve performance in a di�erent scenario. In order
to answer the second research question, benchmarks tailored for speci�c ap-
proaches will be implemented. These di�erent benchmarks may not be com-
parable to each other, but they provide information about how performance
scales from a single GPU to multiple GPUs with speci�c approaches.

An example where di�erent workloads are necessary, is with the sort-�rst and
sort-last approaches. With the sort-�rst approach, we divide the screen area,
but each GPU must usually render all the geometry. The sort-last approach
divides the geometry, but each GPU renders to the entire screen area. So the
sort-�rst approach can improve performance in scenarios where the framer-
ate increases with smaller screen areas, and the sort-last approach improves
performance when the amount of geometry is the bottleneck. There might
be scenarios where both approaches could improve performance, but tailored
benchmarks allow us to demonstrate the implementation at its best.

10

1.5 Related Work

Di�erent ways to distribute rendering workload to multiple processors has
been described by Molnar et al., 1994. �A Sorting Classi�cation of Paral-
lel Rendering� [10] described parallel rendering as a sorting problem, and
introduced the sort-�rst, sort-middle and sort-last approaches. These ap-
proaches di�er by the location in the graphics pipeline where redistribution
of primitives happen. For the sort-�rst approach (also known as Split-Frame
Rendering (SFR)), redistribution happen during geometry processing, by di-
viding workload with screen regions. The sort-middle approach is similar to
the sort-�rst approach, but redistribution of primitives happen after screen-
space transformation. The sort-last approach defers redistribution until the
end of the graphics pipeline, after rasterization, such that pixel fragments
are the primitives to redistribute. This can be achieved by dividing and
distributing the geometry to the GPUs.

There are existing solutions to multi-GPU rendering, which utilize vendor
and hardware speci�c technologies that link GPUs together. Examples of
such technologies are NVIDIA NVLink [11] and AMD XDMA [12]. In 2017,
Kim et al. introduced a multi-GPU implementation for SFR rendering [13].
They claim that their multi-GPU architecture, which implements SFR, is
fast, sustainable and scalable. However, the focus of this thesis is the use of
unlinked GPUs to implement explicit multi-GPU rendering.

A lot of work have been done for multi-GPU volume rendering, since volume
rendering is a compute intensive task, and is useful for scienti�c research and
medical screenings. Marchesin et al. proposed a study on multi-GPU sort-
last volume visualization in 2008 [14], where they utilized a con�guration with
single Central Processing Unit (CPU) and multiple GPUs. In 2010, Fogal
et al. introduced an implementation of volume rendering with distributed
memory multi-GPU clusters, in order to visualize large volumetric datasets.
This thesis di�er from previous research of multi-GPU volume rendering,
because the introduced sort-last implementation will be based on surface
rendering, rather than volume rendering.

An implementation utilizing a hybrid approach of sort-�rst and sort-last to
perform rendering with a cluster of computers, was introduced by Samanta et
al., 2000 [15]. They achieved e�ciency of 70.5% with a cluster of 64 comput-
ers. A hybrid sort-�rst and sort-last implementation for a single computer
with multiple GPUs, was introduced in �Multi-GPU Compositeless Paral-
lel Rendering Algorithm� by Wang et al., 2011 [16]. They utilize Direct
Memory Access (DMA) asynchronous transfer for image read back from the

11

GPUs and implicit image compositing. The multi-GPU implementation in-
troduced with this thesis di�er in that the image transfers and compositing
is implemented explicitly with Vulkan API.

Khronos Group has provided documentation of the Vulkan API with the
Vulkan speci�cation [17]. The speci�cation has been a great source when
implementing the introduced multi-GPU solution with Vulkan.

12

Chapter 2

Background

2.1 The Graphics Pipeline

3D graphics allow us to produce a 2D image from 3D meshes. The process of
producing pixels from 3D meshes is accelerated on the GPU. This is achieved
with a graphics pipeline that consists of stages where the output from one is
the input to the next. The graphics pipeline allows us to draw polygons and
apply shading and textures.

3D meshes consists of vertices that represents 3D points, and additional
attributes like normal vectors, color values, and texture coordinates. The
graphics pipeline processes vertices, before combining them into primitives,
like points, lines and triangles. In order to represent a point, one vertex is
needed. To represent a triangle, three vertices are needed. After the �nal
primitives are produced, the next stage performs rasterization that produces
fragments, which are candidates for becoming a pixel. This stage interpo-
lates the vertex attributes to produce fragments between the vertices in a
primitive.

Figure 2.1 illustrates how the graphics pipeline produces pixels from three
vertices representing a triangle primitive. After vertex processing, the primi-
tives to render resides inside a clip space cube. primitives outside of this cube
will not be rendered, and primitives that overlap the cube will be clipped.
All primitives inside the clip space will be rasterized into fragments. Unless
there is fragment overlap, all fragments will become pixels.

13

Vertices

Processed vertices in clip space
Rasterization

Figure 2.1: Illustration of the rendering process, from the unprocessed ver-
tices to the �nal pixels on the screen.

2.1.1 Pipeline Stages

The graphics pipeline consists of stages where the output from one is input
to the next. Some pipeline stages are customizable by implementing shader
programs. Figure 2.2 illustrates the pipeline stages available for modern
graphics APIs like OpenGL 4.0 and up, Vulkan API, and Direct3D 11 and
up. The yellow stages are customizable with shader programs, while the blue
stages are �xed-function.

Vertex Tesselation Geometry Primitive assembly

Raserization Fragment

Figure 2.2: Illustration of the graphics pipeline stages, of which the yellow
stages are programmable.

The �rst stage in the graphics pipeline is the programmable vertex shader.
This shader processes the vertices before they are combined into primitives.
While programming a vertex shader, one can set up vertex attributes. These
attributes are scalars, points or vectors that can be used to calculate the �nal
vertex position, and additional output. Examples of additional attributes to

14

a vertex shader is color values, normal vectors for calculating shading, and
texture coordinates used to map a 2D texture image to the polygon.

The next stage in the pipeline is the optional tessellation stage [18]. Tessella-
tion allows us to divide the primitives into smaller primitives, to smooth out
hard edges of the mesh. To use tessellation one must implement a Tesselation
Evaluation Shader (TES), which is responsible for computing the values for
the tessellated vertices. Optionally, a Tesselation Control Shader (TCS) can
be implemented, to determine how much tessellation to apply, and transform
the input data.

After the vertex shader (and tessellation if implemented), we have the op-
tion to implement a geometry shader. The geometry shader takes as input
primitives from the previous pipeline stages. We can use these primitives as
well as user de�ned attributes to create the �nal primitives. The geometry
shader can add additional vertices, for instance generating a geometry for
each point in a vertex bu�er. In theory, it is possible to implement tessella-
tion in a geometry shader, though it would not be as e�cient as doing it in
the tessellation stage.

The next two stages are non-programmable, �xed-function stages. First
comes primitive assembly, which takes care of clipping, backface culling and
viewport transform of the primitives from the previous stage(s). Clipping re-
moves any primitives that fall outside of the clip space cube, backface culling
removes primitives that face away from the user. The viewport transform,
transforms the primitives to screen coordinates. These screen coordinate
primitives will then be sent to the rasterization stage. This stage produces
the fragments, which are candidates for becoming pixels, by interpolating
positions and user provided attributes for the primitives, which will be the
input of the fragment shader.

The �nal pipeline stage operates on fragments. The fragment shader is a
programmable stage, which allows the programmer to set the �nal color of
the fragment, based on the position and user provided attributes. Examples
of additional input to the fragment shader is normal vectors and texture
coordinates. The input to a fragment shader has been interpolated in the
rasterization stage. This allows gradual change in normal vectors, which can
be used for calculating shading. It is also useful for sampling a color value
from a texture, with texture coordinates interpolated for each fragment.

After fragment processing with the fragment shader, alpha blending and
depth testing is performed to produce the �nal pixels of the framebu�er.
Alpha blending merges fragments on the same screen coordinate based upon

15

the alpha components from the fragments. This can be used to implement
transparency. An alpha component of 1 is considered 100% opaque, while 0
is considered invisible. The depth test selects the fragments with the closest
depth value as candidate for the �nal pixel.

2.2 Multi-GPU Con�gurations

There are multiple ways to con�gure a multi-GPU system. In this thesis, we
only consider con�gurations of a single computer with a single CPU and mul-
tiple dedicated GPUs. The GPUs are connected to Peripheral Component
Interconnect Express (PCI-E) slots on the motherboard of the computer. In
some con�gurations, the GPUs can be linked together with an additional
cable, or through the PCI-E bus, such that they can share resources like
bu�ers and textures directly with each other. Generally, we can categorize
multi-GPU con�gurations by whether or not the GPUs are linked together,
and if they are handled implicitly by the graphics driver with multi-GPU
pro�les for SLI or Cross�re, or explicitly by the programmer.

Dedicated GPUs are connected to the CPU through PCI-E (see Figure 2.3).
The CPU has a �xed number of PCI-E lanes to distribute. With PCI-E
version 3.0, each lane has a bandwidth of 985 MB/s. GPUs are connected
to 16-lane slots, though in some con�gurations, less lanes are available from
the slot. Most GPUs can utilize 16 lanes, but some low-end GPUs utilize
less lanes than available. When multiple GPUs are connected, there might
be less lanes available for each GPU, depending on how many lanes the CPU
supports.

High-End Desktop (HEDT) CPUs usually have more PCI-E lanes than mid-
range products. An example of a desktop processor is Intels Core i7-8700K
[19], a 6-core CPU which supports a total of 16 PCI-E lanes. Examples of
HEDT CPUs are AMDs Ryzen Threadripper processors [20], which supports
a total of 64 PCI-E lanes. 64 PCI-E lanes is enough to provide full bandwidth
to four GPUs, while 16 lanes is enough to provide full bandwidth to a single
GPU. When connecting a second GPU in such a setup, each GPU will get 8
PCI-E lanes.

Some con�gurations support linking multiple GPUs together, to be able to
share resources directly rather than �rst having to copy the resources to
main memory. SLI [3] is an interface used to link NVIDIA GPUs together
with a separate cable. AMD GPUs can also be linked together, using their

16

CPU

Main memory

GPU

Video memory

GPU

Video memory

Multiple dedicated GPUs

Figure 2.3: Illustration of a con�guration with dedicated GPUs.

Cross�re technology [4]. AMD CrossFire Direct Memory Access (XDMA),
is a more recent Cross�re implementation for AMD GPUs, where the GPUs
are linked together through the PCI-E bus, rather than a separate link cable
[12]. The XDMA data channel scales dynamically on demand, to provide
enough communication bandwidth between the GPUs.

Con�gurations with linked GPUs require hardware support on the mother-
board. Usually it is also required that the GPUs connected together must be
very similar or the same model. Linked GPU con�gurations usually mirror
the memory across the GPUs, such that the amount of available GPU mem-
ory doesn't increase when adding more GPUs. However with an unlinked
explicit approach, as implemented in this thesis, it is possible to utilize all of
the memory available for multiple GPUs.

Many modern CPUs also contain an integrated GPU (see Figure 2.4). Some
con�gurations may allow this integrated GPU to be linked to an additional
dedicated GPUs, for example some AMD con�gurations can utilize XDMA
for multi-GPU with an integrated- and a dedicated GPU.

17

CPU GPU

Main memory

Integrated GPU

Figure 2.4: Illustration of a GPU integrated in the same package as the CPU.

2.2.1 Linked Implicit Multi-GPU

With OpenGL and Direct3D 11 or older, multi-GPU con�gurations with
linked GPUs need support in the driver software for the GPUs. In this
case the driver takes care of distributing the rendering workload among the
GPUs implicitly. Linked implicit multi-GPU con�gurations appear to the
programmer as a single GPU. The GPU drivers must provide pro�les, which
usually are application speci�c, to optimize the distribution of rendering
workload.

Linked implicit multi-GPU con�gurations provide two approaches to divide
the rendering workload, SFR and AFR. The SFR (also known as sort-�rst)
approach subdivides the screen such that each GPU renders its partition of
the screen. This reduces the time it takes to render a frame, which also lead
to an increase of framerate. With the AFR approach, the GPUs renders
alternate frames. While the time it takes to render a frame is not reduced
with AFR, the framerate is increased, as the GPUs can render multiple
frames in parallel.

2.2.2 Linked Explicit Multi-GPU

Modern lower level graphics API's, like Vulkan and Direct3D 12, do not
support implicit handling of multiple GPUs. However they have introduced

18

support for linked explicit multi-GPU con�gurations. These con�gurations
support the same approaches as implicit con�gurations, SFR and AFR, but
the programmer must explicitly distribute the rendering workload to the
GPUs.

In Direct3D 12 linked explicit multi-GPU is known as explicit multi-adapter
[21]. Vulkan 1.0 has experimental support through an extension (VK_KHX_-
device_group) [17, p. 1216]. As of Vulkan version 1.1, this extension is
o�cially supported [22], with the name VK_KHR_device_group.

2.2.3 Unlinked Explicit Multi-GPU

The multi-GPU solution introduced with this thesis utilize unlinked explicit
multi-GPU con�gurations. This approach can be implemented with graphics
APIs that support explicit selection of GPUs, such as Vulkan or Direct3D
12. In this case, the programmer must manage the GPUs separately and
explicitly, as they are not linked together. Unlinked explicit multi-GPU
con�gurations can be heterogeneous such that GPUs of di�erent models and
from di�erent vendors can be utilized.

When implementing a multi-GPU application with an unlinked explicit con-
�guration, the programmer must implement the subdivision and distribution
of the rendering workload, as well as combining the results from the GPUs
into the �nal image. In order to copy resources like bu�ers and textures be-
tween unlinked GPUs, the resources must �rst be copied to the main memory,
before they can be copied to the destination GPU.

2.3 Parallel Rendering Approaches

There are multiple possible approaches to implementing parallel rendering
utilizing an unlinked explicit multi-GPU con�guration. The approaches di�er
by how the rendering workload is divided and distributed among the GPUs.
The introduced multi-GPU implementation can perform rendering with the
sort-�rst and sort-last approaches.

19

2.3.1 Sort-�rst

Sort-�rst is de�ned as an approach where you redistribute primitives early in
the graphics pipeline, during geometry processing [10]. This can be done by
dividing the screen such that each GPU renders their own region (see Figure
2.5). When all GPUs are done rendering the frame, the �nal image would
be composited from the contributing regions. SFR is a form of sort-�rst
rendering. Sort-�rst is also referred to as image-based partitioning.

Figure 2.5: Illustration of the sort-�rst parallel rendering approach.

2.3.2 Sort-last

Sort-last is de�ned as deferring primitive redistribution until the end of the
graphics pipeline [10]. An implementation of sort-last could be dividing the
primitives such that the GPUs render their own portion into framebu�ers.
Then these framebu�ers can be composited into the �nal image by merging
them together while applying a depth test (see Figure 2.6). This is known

20

as sort-last-full or sort-last-image, as all the pixels in the contributing frame-
bu�ers are tested upon compositing. The depth test makes sure that closer
fragments are rendered in front of fragments with depth further away. This
approach does not support transparency with alpha blending, as only the
depth information for the frontmost fragment is stored in the depth bu�er of
the framebu�er. Sort-last is also referred to as object-based partitioning as
the triangles (objects) are divided and distributed among the GPUs.

Depth test

Figure 2.6: Illustration of the sort-last parallel rendering approach.

An implementation where only the drawn pixels are redistributed and tested,
is known as sort-last-sparse [10]. However since we are rendering to a frame-
bu�er, a sparse approach is not viable for our multi-GPU implementation,
as only transferring the drawn pixels from a GPU is not a trivial task. To
do this, we would need to know which pixels to copy up front.

2.3.3 Other Approaches

Another approach to implement parallel rendering is sort-middle [10], which
implements redistribution of primitives in the middle of the graphics pipeline.
The sort-middle approach could be implemented by extracting screen-space
primitives from the graphics pipeline after vertex processing, for instance
with transform feedback on OpenGL [23]. Vulkan does not support transform
feedback, however, the same functionality could be achieved by writing the
primitives to a bu�er from a geometry shader. This approach has not been

21

implemented in the solution for this thesis, due to the complexity of the
primitive redistribution.

Other approaches could be scheduling di�erent tasks of the rendering pro-
cess to di�erent GPUs, like rendering shadow maps, or computing physics
calculations. Hybrid approaches can also be implemented. For instance, a
hybrid of the sort-�rst and sort-last approaches could be to apply sort-last
to partitions of the screen before merging.

2.4 Compositing

When implementing the sort-�rst and sort-last approaches, with an unlinked,
explicit multi-GPU con�guration, one signi�cant di�culty is the lack of
shared memory between the GPUs. The framebu�er that is presented to
the user resides locally in the memory of a single GPU. We will refer to this
GPU as the primary GPU. The other GPUs, referred to as secondary GPUs,
do not have direct access to the �nal framebu�er. Each GPU has to render
to its own framebu�er. After rendering has completed, these contributing
framebu�ers then needs to be combined into the �nal image, a step called
compositing.

2.4.1 Compositing into Framebu�er

One way to combine the result is to copy the contributing image from each
GPU into the �nal image. The image can be combined either on the CPU,
or on the GPU that holds the �nal framebu�er. For the latter approach, the
contributing images must be copied from the secondary GPUs to the primary
GPU before the compositing step can be executed.

2.4.2 Using Multiple Windows or Monitors

Borderless windows are windows without titlebars or edges that surround
the content. For this thesis, we had an idea that for the sort-�rst approach,
it is possible to use multiple borderless windows carefully positioned next to
each other, in order to combine the results from di�erent GPUs. This way,
compositing is handled by the window compositor implemented by the OS.
This approach is not always supported, as there is no guarantee that all GPUs
can present its result to an OS window. Our experience is that this approach

22

will work for the Windows OS on a locally accessed computer, though we
were unable to use this method on a computer accessed through external
desktop. The experience we had with Linux (GNOME desktop environment),
was that there was visible fading e�ects at the edge of windows. This e�ect
could possibly be disabled in order to utilize this approach without visible
edges.

For multi-monitor con�gurations, it is possible to assign one GPU for each
monitor. This approach is compositeless, as at no point is the results com-
bined into a single framebu�er. The result appear to the user as a single
image as the monitors are placed next to each other.

2.5 Vulkan API

The Vulkan API provides low-level explicit access to GPUs allowing the de-
veloper to allocate resources, and perform rendering and compute operations.
The low-level nature of the API reduces graphics driver overhead, as the API
represents a closer mapping to the actual hardware. However, a lower level
API expects the programmer to explicitly set up the state needed for ren-
dering, which means more upfront work for the programmer. This is why
abstractions of Vulkan objects are necessary. This thesis introduces a library
that provides abstractions to the Vulkan details explained in this section,
and utilizes explicit selection for implementing multi-GPU rendering.

Vulkan has no global state, as all state is represented by objects, as opposed
to OpenGL that depends on a global context, which must be bound to the
thread using the API [7]. Having all state stored in objects provides the op-
portunity to implement multi-threading without context switches, as there is
no global thread-bound context to take into account. Vulkan supports record-
ing GPU commands from multiple threads, which can be utilized to speed
up the rendering process of a large amount of objects. With OpenGL, com-
mands must be called sequentially on the thread responsible for the OpenGL
context.

2.5.1 Instance and Physical Devices

When implementing an application utilizing Vulkan, we �rst create a VkIn-

stance [17, p. 38], from which we can enumerate VkPhysicalDevice han-
dles [17, p. 44] (see Figure 2.7). These handles represents the Vulkan capa-

23

ble GPUs in our system. The introduced multi-GPU solution implements
explicit selection of which GPU to use for rendering, by selecting physical
devices from this enumerated list.

VkInstance

vkEnumeratePhysicalDevices

VkPhysicalDevice VkPhysicalDevice ...

VkDevice ...

VkCommandPool VkQueue VkRenderPass

VkCommandBuffer Render pass instance

Draw commands

Figure 2.7: Illustration of Vulkan objects and how they relate. Draw com-
mands and the render pass instance they belong to are recorded into a com-
mand bu�er. Command bu�ers are submitted to queues.

2.5.2 Logical Devices, Queues and Commands

All interaction with a GPU happens through a logical device, represented
by a VkDevice handle [17, p. 56]. The logical device represents a subset
of the functionality available for a physical device. By specifying only the
functionality in use, the GPU driver software can optimize the usage for min-
imal overhead and best performance. After we have selected which GPUs
(VkPhysicalDevice handles) to use for rendering, we have to create one

24

logical device for each of them, from which we can execute rendering com-
mands.

From a logical device we can create resources like bu�ers and images, allocate
device memory, execute commands and bind resources to pipelines. We can
perform rendering with graphics pipelines, and execute compute shaders with
compute pipelines. Drawing with graphics pipelines must happen inside a
render pass instance (discussed in section 2.5.5).

To execute commands on a GPU, such as drawing triangles, they must �rst
be recorded into a command bu�er. A command bu�er, represented by Vk-

CommandBuffer handles, are batches of commands, which can be executed
on a GPU. Command bu�ers must be allocated from command pools, rep-
resented by VkCommandPool [17, p. 70] handles, which must be created from
the logical device. In order to �ll a command bu�er with commands, the
command bu�er must be switched to the recording state with vkBeginCom-

mandBuffer, before recording the commands to it. Before we can submit the
command bu�er for execution it must be switched to the executable state by
calling vkEndCommandBuffer.

In order to execute the commands in a command bu�er, it must be sub-
mitted to a queue, represented by a VkQueue handle. We have to specify
which queues to create upon creation of the logical device. Queues belong
to queue families that describe the capabilities of the queue, for instance
graphics-, compute- and transfer capabilities [17, p. 63]. Information about
available queue families can be queried from the physical device. When mul-
tiple queues are created, we can specify queue priority in order to hint to the
GPU which queues to prioritize more, when command bu�ers are submitted
to multiple queues. Many GPUs supports creating a dedicated queue for
transfer operations, which can be used for transferring data to and from the
GPU in parallel with rendering or compute tasks.

2.5.3 Memory and Resources

There are two types of resources in Vulkan, bu�ers, represented by VkBuffer

handles [17, p. 335], and images, represented by VkImage handles [17, p. 345].
The resources and the GPU memory are separated in Vulkan, which is why
resources must be bound to memory objects before use. These memory
objects, represented by VkDeviceMemory handles [17, p. 293], are allocated
from the logical device.

The memory available for a GPU in Vulkan is represented by heaps and

25

memory types. This information can be queried from a VkPhysicalDevice

into a VkPhysicalDeviceMemoryProperties struct [17, p. 293]. A memory
type refers to a speci�c memory heap, and contain �ags which describes
properties of the memory. Available memory properties are [17, p. 298]:

typedef enum VkMemoryPropertyFlagBits {

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT = 0x00000001 ,

VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT = 0x00000002 ,

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT = 0x00000004 ,

VK_MEMORY_PROPERTY_HOST_CACHED_BIT = 0x00000008 ,

VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT = 0x00000010 ,

} VkMemoryPropertyFlagBits;

Listing 2.1: Available memory property �ags

If the VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT �ag is set, the memory type
in question represents GPU memory (device local). Otherwise, the memory
type represents host local memory, which resides in main memory. The
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT �ag represents whether or not the
memory type is visible to the host (CPU).

Memory Transfers

Device local memory is usually not visible to the host, so in order to transfer
data to GPU memory, it must �rst be loaded into a host local staging bu�er,
which can then be copied to the device local memory through the API. The
reverse process must be done in order to transfer data from the GPU to the
host, for instance the results from rendering. A host visible bu�er can be
mapped to a pointer, which the CPU can read from and write to.

Data transfers between Vulkan resources like images and bu�ers, must be
executed with copy commands submitted to a queue. These commands does
not support transferring data between resources from di�erent logical devices,
so in order to copy data from one GPU to another, we need to copy the
data between host visible staging bu�ers. However, for supported GPUs it
is possible to use an extension for sharing memory between logical devices.
The extension VK_EXT_external_memory_host [17, p. 1247] provides this
functionality, but it is not guaranteed to be supported by all GPUs.

26

2.5.4 Shaders and Pipelines

Vulkan only supports shaders in the open byte code format: Standard Portable
Intermediate Representation (SPIR-V) [24]. To use shaders, we must create
shader modules represented by VkShaderModule handles [17, p. 229]. The
shader modules are combined in pipelines, represented by VkPipeline han-
dles [17, p. 247]. We must bind a graphics pipeline in a render pass instance
before our draw commands. We can dispatch compute shaders with compute
pipelines.

In addition to combining the shader modules, the pipeline objects also encap-
sulate information about the �xed function stages of the graphics pipeline.
How primitives should be assembled, how rasterization should happen, and
information about blending are all represented by the pipeline objects.

Upon creation of a pipeline we must provide a pipeline layout object. A
pipeline layout, represented by VkPipelineLayout handles [17, p. 442], holds
information about what kind of resources that can be accessed in a shader.
A small amount of data to pass to a shader can be represented by push
constants. Push constants are data that are added directly to the command
bu�er for usage within a shader. A push constant range must be passed
when creating a pipeline layout, to be able to use push constants for pipelines
using this layout. Other resources like images and bu�ers, must be described
by descriptors. Descriptor set layouts, which hold information about what
resources can be bound to a pipeline, are passed upon creation of the pipeline
layout.

2.5.5 Rendering to Framebu�ers with Render Passes

Render passes, represented by VkRenderPass handles [17, p. 187], encapsu-
lates attachments, subpasses and subpass dependencies. Drawing commands
can only be recorded within a subpass of a render pass instance. Multi-
ple of these subpasses can be executed in parallel, but they are recorded
one at a time in a command bu�er. Commands to be executed within a
render pass instance must be recorded between vkCmdBeginRenderPass and
vkCmdEndRenderPass. Subpasses are separated with vkCmdNextSubpass [17,
p. 217-228]. When beginning the render pass, we must pass a framebu�er ob-
ject, represented by a VkFramebuffer handle. This framebu�er encapsulates
information about the speci�c attachments that will be used in the render
pass.

27

2.5.6 Binding Resources to Shaders

When we create a pipeline layout, we can specify descriptor set layouts that
describes what kind of resources that can be bound. Descriptor set lay-
outs are represented by VkDescriptorSetLayout handles [17, p. 434]. A
descriptor set layout encapsulate a set of bindings that describe what types
of descriptors can be bound, and to which shader stages they can be bound
to.

When recording the draw commands, we must bind descriptor sets for each
of the descriptor set layouts that were speci�ed upon creation of the pipeline
layout for the bound pipeline. Descriptor sets are represented by VkDe-

scriptorSet handles and must be allocated from descriptor pools, which
are represented by VkDescriptorPool handles [17, p. 455-458]. Descriptors
representing the speci�c resources to use in a shader, must be written to the
descriptor set before use with descriptor updates [17, p. 459-467].

2.5.7 Synchronization

Commands recorded into a command bu�er are not necessarily executed
sequentially on the GPU. Commands not dependent on one another may be
executed in parallel, depending on the GPU and driver software. To ensure
the order of execution is correct, we must be able to synchronize between
commands, queues, submissions, and between host (CPU) and device.

Synchronization between host and device can be done with fences and events.
A fence is a synchronization object that can have two possible states, signaled
or unsignaled. Fences are represented by VkFence handles [17, p. 118-140],
and provide us the ability to query the state, reset the fence to the unsignaled
state, or wait for the fence to be signaled on the host. Upon submitting
commands to a queue, we can pass a fence to be signaled when execution of
the commands have �nished. The function vkQueueWaitIdle [17, p. 184] also
allows us to wait for the commands executing on a queue to �nish. Waiting
for a queue is equivalent to passing a fence upon submission and waiting for
the fence to be signaled on the host.

Events, represented by VkEvent handles [17, p. 158-170], can be used to
synchronize host and device, but also synchronize between commands on the
same queue. Similarly to fences, events can be either signaled or unsignaled.
On the host, we can query the state, signal and unsignal an event. On the

28

device (command bu�ers submitted to a queue), we can signal and unsignal
an event, as well as waiting for an event to be signaled.

Semaphores, represented by VkSemaphore handles [17, p. 141-158], provides
synchronization between queue submissions. Upon submitting command
bu�ers to the queue, we can specify semaphores that should be waited upon
before execution. Each semaphore can be waited upon in di�erent pipeline
stages. One semaphore can for instance be waited upon at the vertex pipeline
stage, while another semaphore can be waited upon at the fragment stage.
As well as specifying wait semaphores, we can also specify semaphores to
signal once execution of the submission is done.

In order to insert dependencies between commands we can use pipeline bar-
riers [17, p. 170-176]. Pipeline barries provide dependencies between com-
mands submitted on the same queue, or in the case of a render pass instance,
commands in the same subpass. Memory barriers provide the ability to syn-
chronize the use of speci�c memory between queues, or to change image lay-
outs [17, p. 176-184]. Memory barriers can be submitted as part of a pipeline
barrier [17, p. 171], or when waiting upon an event [17, p. 167].

29

Chapter 3

Design and Solution

The implemented solution to multi-GPU rendering with Vulkan consists of an
abstraction library, and a prototype application using the multi-GPU func-
tionality of the library. The library provides abstractions of low-level Vulkan
details, which is useful, as implementing an application utilizing Vulkan re-
quires much upfront work to setup the objects needed to perform rendering.
The library also contain a module for taking care of multi-GPU details. The
prototype application supports loading 3D models from �les, and specifying
multi-GPU approach and how many GPUs to use.

3.1 Technologies

The solution is implemented in the C++ programming language. C++ sup-
ports using C APIs and libraries, while having a rich standard library and
support for classes. The solution depends on the following APIs, libraries
and frameworks:

• Vulkan API [2] - The C graphics- and compute API used to implement
the multi-GPU solution.

• Qt [25] - A C++ GUI framework, used to represent a window in the
application.

• GLFW [26] - A C library that can provide a window, used as an alter-
native to Qt for window representation. It provides a simpler way to
manage windows, without depending on the large Qt framework.

30

• GLM [27] - A C++ math library used to implement the scene and mesh
support for the solution.

• Vulkan Memory Allocator [28] - A C/C++ library for managing Vulkan
memory.

• LunarG Vulkan SDK [29] - A software development kit for Vulkan API,
providing function loading and debugging layers.

• stb_image [30] - A C library for loading images from �les.

• tiny_obj_loader [31] - A C++ library for loading 3D models in the
Wavefront obj format.

• boost [32] - A collection of portable C++ libraries. The �lesystem
library was used for creating a list of �les to load, and the program_-
options library was used for parsing command line options.

In order to build the project from source, the following tools have been
used:

• CMake [33] - Cross platform build system used to describe the build
process and generate platform speci�c build �les.

• glslang [34] - Reference compiler for the GLSL shader programming
language, used to validate shader source and compile to SPIR-V byte-
code.

3.2 A Vulkan Abstraction Library

To take care of the low-level Vulkan details, we have made publicly available
the library Boilerplate (BP) [35], a cross platform abstraction library imple-
mented along with the multi-GPU application. BP consists of C++ wrappers
of Vulkan objects, and abstractions hiding complexity of the API.

The core module bp provides the wrappers and abstractions of Vulkan, and
additional modules can be added for creating e.g. windows and scenes. The
module bpView provides a window wrapper class based upon the library
GLFW [26], while the bpQt module provides an abstract window class im-
plemented with the Qt framework [25]. It is possible to use BP with other
window libraries, for instance SDL [36], or OS speci�c APIs.

A basic scene graph implementation with mesh support is implemented in
the bpScene module. The scene graph is represented by nodes that provide

31

transformations relative to parent nodes. The scene module also provide
classes used to render the scene in the prototype application.

Another module called bpMulti, implements abstractions for multi-GPU ren-
dering with the sort-�rst and sort-last approaches. This abstraction allows
passing renderers to a compositor, that takes care of the multi-threading and
synchronization details of rendering with multiple GPUs, as well as combin-
ing the result and presenting it to a framebu�er.

While many of the classes implemented with bp are simple wrappers of Vulkan
objects, some of the classes provide a higher level abstraction that hides com-
plexitites of Vulkan. Examples of the latter are devices, memory allocators,
attachments, subpasses and render passes.

3.2.1 Instance and Device

The �rst step when implementing an application utilizing Vulkan API, is to
create an instance object, representing per-application state, as explained in
section 2.5.1. If the intention is to use the bpQt module for creating a Qt
window, a QVulkanInstance object must be created, to represent the Vulkan
instance. Otherwise, we can use the abstraction bp::Instance together
with the bpView module, which is a wrapper of the library GLFW [26].
We can also use other window libraries that can provide a VkSurfaceKHR

representation of the window.

The following code will enable validation layers for debug builds and disable
it for release builds. NDEBUG is only de�ned for release builds. In order for
the debugging layers to be of any use, we must provide a delegate for printing
errors, and connect it to the error event:

#include <bp/Instance.h>

#include <iostream >

void printErr(const std:: string& s) {

std::cerr << s << std::endl;

}

int main(int argc , char** argv) {

#ifdef NDEBUG

bool enableDebug = false;

#else

bool enableDebug = true;

#endif

32

bp:: Instance instance;

instance.init(enableDebug);

bpUtil :: connect(instance.errorEvent , printErr);

}

Listing 3.1: Create instance with validation layers enabled

The error event provided by the instance is a bpUtil::Event object that
provide a simple event-delegate implementation. It is implemented with the
C++ parameter pack feature [37], that allows using varying numbers of tem-
plate parameters. The event behaves as a function that calls all connected
delegates and the template parameters de�nes what kind of arguments can
be passed when calling the event. This event-delegate implementation be-
haves very similar to the well known Qt signals and slots [38]. It allows the
bp library to have less dependencies, however Qt is necessary if it is desired
to implement a window with bpQt.

After creating the instance object, we can query for available GPUs from the
instance. To do this, we must specify what queues should be available, what
features to use, and whether or not the GPU should be capable of presenting
its result to a speci�c window surface. This information is encapsulated in a
bp::DeviceRequirements struct. The function bp::queryDevices returns
a list of the VkPhysicalDevice handles that represents the available GPUs.
It will �lter out unsuitable devices that does not support the required features
or cannot present to the given window surface.

The next step is to create a logical device, represented by bp::Device for
each of the GPUs that should be used. We can either select a physical device
from the list return by bp::queryDevices, or pass the instance directly into
the constructor of bp::Device, which queries for suitable devices and uses
the �rst device from the list. After including the header bp/Device.h, we
can create a logical device:

bp:: DeviceRequirements requirements;

requirements.queues = VK_QUEUE_GRAPHICS_BIT

| VK_QUEUE_TRANSFER_BIT;

requirements.features.samplerAnisotropy = VK_TRUE;

bp:: Device logicalDevice{instance , requirements };

Listing 3.2: Create logical device

We create a logical device that provides both a queue for graphics- and
for transfer operations. Though graphics- and compute capable queues will
always be able to perform transfer commands, by specifying the transfer

33

queue �ag, the library will try to create a separate transfer queue if possible.
If a separate transfer queue is available, we can execute transfer commands
in parallel with graphics commands. The device also enables the anisotropic
�ltering feature, used when sampling textures.

The created bp::Device can be used as an in-place replacement for both
VkPhysicalDevice handles and VkDevice handles, as it will be implicitly
casted to the proper handle. The device can be used directly in Vulkan API
functions. Implicit casting to Vulkan handles has been implemented for all
the wrapper classes provided by BP, for instance, a bp::Image object can
be implicitly casted to a VkImage handle.

A bp::MemoryAllocator object is provided by the device, which is used
to allocate memory for bu�ers or images. This abstraction is a wrapper of
Vulkan Memory Allocator [28], an open source library from the GPUOpen
initiative by AMD. The memory allocator allocates memory optimally in
large chunks, rather than using small allocations for each resource.

3.2.2 Implementing a Qt Window

We can implement window creation and handle system events with Qt, by
using the module bpQt. We can render to a Vulkan window by inheriting
bpQt::Window:

// MyWindow.h

#ifndef MYWINDOW_H

#define MYWINDOW_H

#include <bpQt/Window.h>

class MyWindow : public bpQt:: Window {

void initRenderResources(uint32_t width , uint32_t height)

{

// Initialize vulkan resources

}

void render(VkCommandBuffer cmdBuffer) {

// Record rendering operations into

// command buffer

}

};

#endif

Listing 3.3: Implement a Qt window

34

We can also override methods to select which physical device to create a
logical device from, as well as a method for resizing resources. When using
bpQt we must create a QVulkanInstance and pass it to the window:

#include <QGuiApplication >

#include <QLoggingCategory >

#include "MyWindow.h"

int main(int argc , char** argv) {

QGuiApplication app(argc , argv);

QVulkanInstance instance;

#ifndef NDEBUG

// Enable logging and validation layers for debug builds

auto filterRules = QStringLiteral("qt.vulkan=true");

QLoggingCategory :: setFilterRules(filterRules);

auto layers = QByteArrayList ();

layers << "VK_LAYER_LUNARG_standard_validation";

instance.setLayers(layers);

#endif

if (! instance.create ()) {

qFatal("Failed to create instance.");

}

MyWindow window;

window.setVulkanInstance (& instance);

window.resize (1024 , 768);

window.show();

return app.exec();

}

Listing 3.4: Setup QInstance and create window

3.2.3 Rendering with BP

The render pass abstraction provided by BP, bp::RenderPass, takes care
of recording the commands for a render pass instance, and the subpasses
within that render pass instance. Subpasses, represented by an abstract class
bp::Subpass, must be added to the render pass before initialization.

Draw commands can only be executed inside a subpass of a render pass in-
stance. To implement a subpass, we must inherit bp::Subpass and override
the render method. Subpass dependencies can be added to a subpass with
the addDependencymethod. Attachments to use in a subpass are represented

35

by bp::AttachmentSlot objects. Subpass dependencies, as well as attach-
ment slots must be set before adding the subpasses to a render pass.

#include <bp/Subpass >

#include <bp/GraphicsPipeline >

class SimpleSubpass : public bp:: Subpass {

bp:: GraphicsPipeline& graphicsPipeline;

public:

SimpleSubpass(bp:: GraphicsPipeline& pipeline) :

graphicsPipeline{pipeline} {}

void render(const VkRect2D& area ,

VkCommandBuffer cmdBuffer) {

VkViewport viewport = {

static_cast <float >(area.offset.x),

static_cast <float >(area.offset.y),

static_cast <float >(area.extent.width),

static_cast <float >(area.extent.height),

0.f, 1.f

};

vkCmdBindPipeline(cmdBuffer ,

VK_PIPELINE_BIND_POINT_GRAPHICS ,

graphicsPipeline);

vkCmdSetViewport(cmdBuffer , 0, 1, &viewport);

vkCmdSetScissor(cmdBuffer , 0, 1, &area);

vkCmdDraw(cmdBuffer , 3, 1, 0, 0);

}

}

Listing 3.5: Implement a simple subpass

The above code implements a simple subpass example, for executing a single
draw command. Note that this subpass does not bind any resources to the
pipeline. It simply executes a draw command for drawing three vertices
with the graphics pipeline passed to the constructor. This would work for
an example where the vertices are provided by, or calculated in the vertex
shader. For rendering a mesh, the subpass would need to bind vertex bu�ers,
and possibly an index bu�er to the pipeline. A small amount of data, for
instance a few matrices can be passed to the pipeline with push constants.
Other resources, like textures or uniform bu�ers, can be bound to the pipeline
with descriptor sets.

The graphics pipeline wrapper bp::GraphicsPipeline uses dynamic view-
port and scissor, which allows reusing the pipeline for di�erent framebu�er
sizes. The viewport and the corresponding scissor rectangle determines the

36

viewport transformation, and region of the framebu�er to render to. In this
case we �ll the entire render area passed from the render pass.

When executing a render pass instance, we must provide a framebu�er, rep-
resented by bp::Framebuffer, that holds attachments for each of the at-
tachment slots in use by the subpasses. The abstract class bp::Attachment
represents a framebu�er attachment, and is inherited by bp::Texture and
bp::Swapchain. A bp::Texture object encapsulates a single o�screen im-
age, and a bp::Swapchain represents a series of images used to render to a
window or display. A simple renderer would usually implement a swapchain
as color attachment, and a texture as depth attachment.

To execute the commands on the GPU we must submit the recorded com-
mand bu�er to a graphics-capable queue. When the commands have �nished
executing, our attachments will contain the rendering result.

To set up a render pass, we must �rst create a subpass and set up the
attachment slots that represents the attachments to use in the subpass. To
render we must �rst create a command bu�er to record the draw commands
to, as well as creating a framebu�er we can use as a render target. Given
that we have already created a graphics pipeline, the following code will set
up a render pass and execute the rendering commands on the GPU:

#include <bp/RenderPass.h>

#include <bp/OffscreenFramebuffer.h>

#include <bp/CommandPool.h>

...

SimpleSubpass subpass{graphicsPipeline };

// Create attachment slot for RGBA texture with clear enabled

bp:: AttachmentSlot colorAttachmentSlot{

VK_FORMAT_R8G8B8A8_UNORM ,

VK_SAMPLE_COUNT_1_BIT ,

VK_ATTACHMENT_LOAD_OP_CLEAR ,

VK_ATTACHMENT_STORE_OP_STORE ,

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL ,

VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };

// Create attachment slot for depth texture

bp:: AttachmentSlot depthAttachmentSlot{

VK_FORMAT_D16_UNORM ,

VK_SAMPLE_COUNT_1_BIT ,

VK_ATTACHMENT_LOAD_OP_CLEAR ,

VK_ATTACHMENT_STORE_OP_STORE ,

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ,

37

VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL };

subpass.addColorAttachment(colorAttachmentSlot);

subpass.setDepthAttachment(depthAttachmentSlot);

// Setup render pass

bp:: RenderPass renderPass;

renderPass.addSubpassGraph(subpass);

renderPass.init(device);

renderPass.setRenderArea ({{}, {WIDTH , HEIGHT }});

// Setup offscreen framebuffer

bp:: OffscreenFramebuffer framebuffer;

framebuffer.init(renderPass , WIDTH , HEIGHT ,

colorAttachmentSlot , depthAttachmentSlot);

// Create command pool and allocate command buffer

bp:: Queue& graphicsQueue = device.getGraphicsQueue ();

bp:: CommandPool commandPool{graphicsQueue };

VkCommandBuffer commandBuffer =

commandPool.allocateCommandBuffer ();

// Record rendering commands

renderPass.render(framebuffer , commandBuffer);

// Execute rendering commands on GPU

graphicsQueue.submit ({}, {commandBuffer}, {});

graphicsQueue.waitIdle ();

Listing 3.6: Execute rendering to an o�screen framebu�er

After executing the code above, the o�screen framebu�er will hold the re-
sult from rendering. The bp::OffscreenFramebuffer object that represents
the framebu�er, provides two textures, one color attachment and one depth
attachment. We can implement a renderer that takes care of setting up
color- and depth attachment slots, as well as the render pass, by inheriting
bp::Renderer.

3.2.4 Scene Module

To represent the scene to be rendered, and provide classes to represent the
GPU resources in use for rendering the scene, the module bpScene was im-
plemented. The scene module provide a basic scene graph implementation
represented by nodes. These nodes can be used to represent the position and
rotation of objects and the camera.

38

The bpScene module provides the ability to load 3D models from �les stored
in the Wavefront obj format. This is achieved with the library tiny_obj_-
loader [31]. Some models in this format also speci�es material �les that
contain information about colors and textures the 3D model uses. The class
bpScene::Mesh allows us to load an obj �le into a single 3D mesh, without
considering the materials. The class bpScene::Model can load a 3D model
from an obj �le, taking into consideration how di�erent parts of the model can
use di�erent materials. A model holds meshes, and materials, represented by
bpScene::Material, as well as information about which material is applied
to each mesh.

While the mesh, material and model classes represent the 3D geometry we
want to render, they must be loaded onto a GPU before they can be ren-
dered. To represent the GPU resources used for rendering the 3D geometry,
resource classes have been implemented for meshes, materials and models.
The class bpScene::MeshResources provide the GPU bu�ers used for vertex
data and indexing. The class bpScene::MaterialResources hold the tex-
ture and color data for a material, as well as a descriptor set used to bind the
color data to the graphics pipeline. The class bpScene::ModelResources

represents mesh resources for all the partial meshes the model consists of,
material resources for all the materials in use by the model, as well as a
uniform bu�er holding all the color values for the materials. The class bp-
Scene::PushConstantResource allow us to bind matrices used for vertex
calculation to the pipeline, based on a scene graph node.

In order to render the loaded 3D models, a subpass for rendering multi-
ple objects referred to as drawables, has been implemented. This subpass,
represented by bpScene::DrawableSubpass, will draw a list of drawables,
represented by the abstract class bpScene::Drawable. Two classes deriving
the drawable class have been implemented: bpScene::MeshDrawable, used
for rendering a single mesh, and bpScene::ModelDrawable, for rendering a
model with materials.

39

3.3 Multi-GPU Implementation

We have made available the source code [39] of an application supporting
loading a 3D meshes from �le, and rendering with either the sort-�rst or
sort-last multi-GPU approaches. The source code builds on the abstraction
library BP. Each GPU renders its contribution to a texture. The textures
are composited to the �nal frame by one of the GPUs, before it is presented
to the screen.

The current implementation of sort-�rst and sort-last multi-GPU rendering
executes �ve steps in order to render a frame (see Figure 3.1):

1. Rendering the contributions for each GPU into textures.

2. Copy the contributing textures from the secondary GPUs to the host
(CPU and main memory).

3. Redundant memory to memory copying step (discussed later) of the
contributing textures.

4. Copying the textures from host to the primary GPU.

5. Combining the contributions into the �nal image in a compositing step.

AH A

B H A

1. Rendering

2. GPU B to host 3. Host to host 4. Host to GPU A

Time

Frame 1

Frame 2

Frame 3

Latency ΔtΔt

...

B B

A

AH AB

AH AB

B

A

B

A

2, 3, 4. Copying 5. Compositing

Figure 3.1: Timeline of the multi-GPU rendering steps for two GPUs A and
B, and host CPU and main memory, H.

40

Figure 3.1 illustrates a timeline of the rendering process across a few frames.
Tasks are distributed onto two GPUs, A and B, and host CPU and main
memory H. GPU A is responsible of compositing the result into the �nal
image. We refer to this GPU as the primary GPU. The other GPUs, which
are only responsible for their partial rendering, are referred to as secondary
GPUs.

If the 5 steps are executed sequentially every frame, the overhead from the
three copying steps would be a bottleneck for performance. In order to
increase the frame rate, functional parallelism (pipelining) is introduced, such
that some stages can execute in parallel. This approach increases frame rate,
however the latency from starting rendering a frame until presenting it on
the screen is not improved.

It is possible to parallelize stages executing on a single GPU, by submitting
commands to di�erent queues. This would require the GPU to support mul-
tiple queues that can operate in parallel. When executing commands on mul-
tiple queues in parallel, the graphics driver software takes care of scheduling
the tasks submitted to the queues. Many dedicated GPUs supports sepa-
rate transfer queues, such that transferring data between the host and GPU
can execute in parallel with rendering. This has been utilized to allow the
primary GPU to perform rendering in parallel with the third copying step,
when supported.

The GPUs render their contributions into textures. Each GPU needs two
textures: the color attachment, and the depth attachment. In our code, the
color attachment is implemented as a 32-bit RGBA texture and the depth
attachment as a 16-bit depth texture. Both are represented by bp::Texture

objects. These textures are provided by bp::OffscreenFramebuffer ob-
jects, which usage was described in section 3.2.3.

The application uses the bpScene module for rendering a list of 3D meshes
or models loaded by the application. A bpScene::DrawableSubpass records
the draw commands to execute in a render pass instance by each of the
partial renderers. After the partial rendering has been executed, the result
from rendering must be copied from the secondary GPUs into textures on
the primary GPU. At this point, the compositing step can be executed on
the primary GPU to produce the �nal image.

41

3.3.1 Multi-GPU Abstraction

To be able to implement an application utilizing the multi-GPU implemen-
tation quickly, the BP module bpMulti has been implemented. This mod-
ule provides the ability to implement partial renderers for the sort-�rst and
sort-last multi-GPU approaches. These renderers can then be passed to a
compositor that takes care of the multi-GPU details of parallelization and
synchronization, as well as combining the result into the �nal image.

Figure 3.2 illustrates the architecture of the bpMulti abstraction. The ab-
stract class bpMulti::Compositor inherits from bp::Renderer, which al-
lows us to specify a framebu�er to hold the result. The sort-�rst and sort-
last compositor classes hold renderers that can be implemented by inheriting
the sort-�rst and sort-last renderers respectively. The sort-�rst and sort-last
renderers also inherits from bp::Renderer, but their intended use is for per-
forming the per-GPU rendering into textures (partial rendering), that the
compositor should combine into the �nal image.

Compositor

SortFirstCompositor

SortLastCompositor

Renderer FramebufferRenders to

SortFirstRenderer

SortLastRenderer

*

*

Figure 3.2: Multi-GPU abstraction architecture.

Each partial renderer is paired with a bp::Device object that represent the
GPU that should perform rendering. Upon creation of the compositor, we
have to specify the GPUs to use and pair them with a renderer. The �rst
speci�ed GPU is considered the primary GPU, while the remaining ones are
considered secondary GPUs. The compositor will take care of partial ren-
dering, copying contributing textures to the primary GPU, and compositing
the result.

42

3.3.2 Sort-�rst Implementation

The sort-�rst approach is implemented by partitioning the screen into hori-
zontal tiles of �xed height (see Figure 3.3). Each GPU renders its tile to the
framebu�er consisting of the color- and depth attachment textures. Then the
color textures rendered on the secondary GPUs are copied into the primary
GPU before composition.

Figure 3.3: Screenshot illustrating the sort-�rst implementation. We render
with two GPUs where the result from one GPU is shown in green and the
other shown in blue.

In order to split the screen into tiles, each GPU must also transform the
vertices such that the result is projected correctly, rather than having each
GPU render the same result. This is done by multiplying the model-view-
projection matrix with a matrix that translates and scales the clip space,
such that the partition of the screen is stretched to �t the entire clip space.
The following code calculates this clip space transform matrix:

43

float xTranslate = (2.f * x + w - 1.f) / w;

float yTranslate = (2.f * y + h - 1.f) / h;

mat4 translation = translate(mat4{},

{xTranslate , yTranslate , 0.f});

clipTransform = scale(translation , {1.f / w, 1.f / h, 1.f});

Listing 3.7: Calculate transformation matrix for partial sort-�rst rendering

The screen partition rectangle is represented by x and y o�set coordinates,
width w and height h. These values are normalized between 0 and 1.

After the secondary GPUs have performed the partial rendering, each texture
contains the �nished rendering for each tile. To combine the result, these
textures must be copied into the primary GPU before compositing. The
compositing step is implemented by drawing a rectangle for each of the partial
render results, while sampling the color from the contributing texture in the
fragment shader.

Using the abstraction implemented in bpMulti, we can implement a sort-�rst
renderer by inheriting bpMulti::SortFirstRenderer:

class MySortFirstRenderer : public bpMulti :: SortFirstRenderer

{

void render(Framebuffer& fbo , VkCommandBuffer cmdBuffer)

{

glm::mat4 clipTransform =

getContributionClipTransform ();

// Record rendering commands into cmdBuffer

}

};

Listing 3.8: Implement a sort-�rst renderer

After implementing a sort-�rst renderer, we can create a renderer for each
GPU and setup a compositor to combine the results. Given that we have two
device objects available, we can setup sort-�rst rendering with two GPUs as
follows:

MySortFirstRenderer renderer1 , renderer2;

bpMulti :: SortFirstCompositor compositor;

compositor.init ({{& device1 , &renderer1},

{&device2 , &renderer2 }},

FORMAT , WIDTH , HEIGHT);

Listing 3.9: Initialize a sort-�rst compositor

To execute, we must create a suitable framebu�er and a command bu�er,
which we pass to the render method of the compositor. Then we can execute

44

the commands for compositing by submitting the command bu�er to a queue
as explained in section 3.2.3.

A di�erent way to composite the result for the sort-�rst approach is to create
a borderless window for each GPU. These windows can then be resized and
positioned next to each other to represent the �nal image. This approach will
only work if all the GPUs supports presenting directly to a window. Then it is
possible to skip the explicit copying steps, as it will be handled automatically
by the operating systems window compositor. The BP abstraction library
does not support this compositing approach currently, but a prototype has
been implemented.

3.3.3 Sort-last Implementation

Sort-last parallelization is implemented by partitioning the geometry (see
Figure 3.4). Each GPU renders its portion of the geomerty into textures of
the same size as the render window. The contributing textures are copied
from the secondary GPUs to the primary GPU. For sort-last, both the color-
and depth textures must be copied, and the compositing must compare the
fragment depths to decide from which texture to sample the color.

In order to composite the partial rendering results into the �nal image, we
draw a full screen quad for each contribution. In the fragment shader we
sample the color from the color texture, and set the fragment depth to the
value sampled from the depth texture. Then the depth test takes care of
selecting the closest fragment.

As with the sort-�rst implementation, we can use the abstraction imple-
mented in bpMulti to implement renderers and handle compositing. By
inheriting bpMulti::SortLastRenderer, we can create a sort-last renderer
for partial rendering:

class MySortLastRenderer : public bpMulti :: SortLastRenderer {

void render(Framebuffer& fbo , VkCommandBuffer cmdBuffer)

{

...

}

};

Listing 3.10: Implement a sort-last renderer

45

Figure 3.4: Screenshot illustrating the sort-last implementation. We render
with two GPUs where the result from one GPU is shown in green and the
other shown in blue.

We can set up a sort-last compositor for handling the multi-GPU details as
follows:

MySortLastRenderer renderer1 , renderer2;

bpMulti :: SortLastCompositor compositor;

compositor.init ({{& device1 , &renderer1},

{&device2 , &renderer2 }},

FORMAT , WIDTH , HEIGHT);

Listing 3.11: Initialize a sort-last compositor

Before we can execute sort-last rendering, an appropriate framebu�er must
be provided, as well as a command bu�er to record the composition com-
mands into. In order to execute the commands, the command bu�er must be
submitted to a graphics capable queue, as described in section 3.2.3.

46

3.3.4 Copying Contributing Textures

The time it takes to copy a texture from one GPU to another increases with
screen resolution, as more data must be transferred over the PCI-E connec-
tion. For the sort-last approach, the amount of data to copy between GPUs
increases as more GPUs are used for rendering. The three steps implemented
to copy the contributing textures from the secondary GPUs to the primary
GPU can quickly become a bottleneck.

Naively Copying Through Staging Bu�ers

The current solution to copy data between GPUs is to have a host-allocated
staging bu�er for each of the GPUs, then map these bu�ers and copy between
them. The process of copying data between GPUs is to �rst copy from
GPU memory to a staging bu�er, then copy between the two staging bu�ers,
before �nally copying from the second staging bu�er to the destination GPU.
Both of the staging bu�ers are located in main memory. Therefore, copying
between them is in theory a redundant step.

In order to speed up the copying process for the redundant step, the memory
is copied chunk-wise on multiple threads as a single thread is not able to
utilize the entire memory bandwidth available. The tradeo� is high CPU
usage.

Using External Memory Extensions

To avoid the redundant copying step would mean one less step to execute,
increased frame rate and reduced CPU usage. To be able to do this, we would
need a staging bu�er shared between the source and destination GPUs. This
could be possible using the Vulkan device extension VK_EXT_external_-

memory_host [17, p. 1247]. However, the extension requires graphics driver
support which is currently limited. AMD and NVIDIA have contributed in
developing the extension [40]. Therefore it may be supported in future driver
releases.

47

3.3.5 Prototype Application

The implemented prototype application [39], allows us to load 3D models
from �le to render with a single GPU or multiple GPUs using either the
sort-�rst or the sort-last approaches. It has been used to perform the sort-
last benchmarks, and a modi�ed version was used to perform the sort-�rst
benchmarks. The application utilizes BP for implementing rendering and
multi-GPU compositing. The bpScene module is used to represent and ren-
der the scene, and the bpMulti module is used to implement the multi-GPU
details of rendering with multiple threads and combining the results.

Application Usage

The prototype application provides a simple command line interface to select
3D models to load, multi-GPU strategy, GPU count, initial screen resolution,
and �ags for changing how models should be loaded and rendered. This
interface has been implemented with the �program_options� boost library
[32]. By executing the application with the --help �ag, the application will
print a summary of available options and �ags.

In order to specify to the application which 3D models to load, we use the
--path option. By default this loads a single Wavefront obj model, however
it is possible to load multiple models in to ways. The --list �ag speci�es
that the path is a �le that lists paths to the obj �les that should be loaded.
The format of this �le is �le paths separated by newlines. The second way
to load �les is to specify a folder to load obj �les from recursively, with the
--directory �ag. The recursive �le loading has been implemented with the
boost library ��lesystem�. In order to limit the amount of loaded �les, it is
possible to use the --max �ag set a maximum number of �les to load.

The default approach to rendering is to use a single GPU. In order to use one
of the multi-GPU approaches, we must specify the --strategy option, which
supports specifying a single GPU (default), sort-�rst or sort-last. The de-
fault number of GPUs used for rendering with the sort-�rst and sort-last ap-
proaches is two. To specify GPU count we can use the --count option.

Though the window used for presenting the result is resizable, being able to
specify an exact window resolution is necessary to achieve consistent bench-
mark results. The default resolution is 1024× 768, but a di�erent resolution
can be speci�ed with the --resolution option. During development, some-
times a multi-GPU setup is not available. To be able to test the multi-GPU

48

implementation on a single-GPU system, the �ag --simulate-mgpu will tell
the application to simulate multiple GPUs by creating multiple logical de-
vices for a single GPU.

The default behavior of the application is to load 3D models with materials.
In order to support loading models without materials, the prototype appli-
cation accepts a command line �ag, --basic, to specify to the application
not to load materials. To be able to render meshes that does not provide
vertex normals, we can specify the --generate-normals �ag, which uses a
geometry shader to generate normals which can be used for shading. The
application interprets the Y-axis as pointing upwards. However some 3D
models interpret the Z-axis as pointing upwards instead. To support such
models, the --z-up �ag speci�es to the application to rotate the model such
that the correct axis points up in the scene.

49

Chapter 4

Results

In order to evaulate the implementation, performance has been measured
for benchmarks tailored speci�c to the sort-�rst and sort-last approaches.
Two di�erent hardware con�gurations have been tested, both utilizing only
dedicated GPUs. The �rst testing computer, referred to as TC1, has three
relatively powerful GPUs (see Table 4.1). The second testing computer,
referred to as TC2, has two weaker GPUs from di�erent vendors (see Table
4.2), which shows that the implementation is vendor agnostic and can work
with any Vulkan capable GPUs.

CPU Intel Core i7-6850K
RAM 64GB
GPU 1 Nvidia GeForce GTX 1080 8GB
GPU 2 Nvidia GeForce GTX 1080 8GB
GPU 3 Nvidia GeForce GTX 1080 8GB

Table 4.1: Speci�cation of testing computer 1 (TC1)

CPU Intel Core i7-7700K
RAM 32GB
GPU 1 Nvidia GeForce GTX 760 2GB
GPU 2 AMD Radeon RX 460 2GB

Table 4.2: Speci�cation of testing computer 2 (TC2)

An ideal multi-GPU implementation would be able to utilize all GPUs 100%
for rendering. However, due to the overhead from copying contributing tex-
tures from secondary GPUs to the primary GPU, as well as the compositing

50

step, it is to be expected that the utilization decreases when executing one
of the implemented multi-GPU approaches. The GPU utilization for the
performance results is calculated from the measured framerates of the multi-
GPU results, compared to what an ideal framerate would be based upon
the results from rendering with each GPU individually. We assume that the
GPUs are fully utilized when rendering individually without the multi-GPU
overhead.

For both the sort-�rst and sort-last approaches, each GPU renders to o�-
screen framebu�ers. The pixels from these framebu�ers are combined to
produce the �nal image. The di�erence between them is that the sort-�rst
approach distributes the pixels to the GPUs, while the sort-last approach
distributes geometry. So a benchmark that scales well the sort-�rst approach
might not scale well for the sort-last approach. This is why two di�erent
benchmarks have been implemented. Both benchmarks were executed with
a screen resolution of 1024× 768.

4.1 Sort-�rst Benchmark

A rendering workload that would scale well for the sort-�rst algorithm is one
that has high computational load per fragment. Examples of such workloads
are complex triangle shading, or ray tracing, where the computation load is
high per pixel. To simulate this situation, the sort-�rst benchmark draws
a rectangle �lling the framebu�er for each GPU, and performs demanding
calculations in the fragment shader. This approach implements a high per-
pixel computational workload, which allow us to evaluate the performance
of the implemented multi-GPU compositing. The following fragment shader
code was used in a modi�ed version of the prototype application [41], to
benchmark the sort-�rst implementation:

#version 450 core

layout (location = 0) in vec2 uv;

layout (location = 0) out vec3 color;

void main() {

vec2 uv2 = uv;

for (int i = 0; i < 10000; i++) {

uv2 *= 1.00001;

uv2 *= 0.999998;

}

color = vec3(uv2 , 0.0);

}

Listing 4.1: Sort-�rst benchmark fragment shader code

51

The input variable uv is passed from the vertex shader and behaves like a
texture coordinate to apply a texture to the entire screen. In this case it is
used to produce a gradient. As this program executes once per fragment, the
loop will provide a high computational load. The calculations performed in
the loop needed to change the result somewhat, otherwise, the loop would
automatically be removed by the shader compiler as a performance optimiza-
tion. When running the benchmark, we changed the number of iterations to
increase or decrease the rendering workload.

Figure 4.1 shows the results for the sort-�rst implementation on TC1. Two
GPUs yielded a 58% increase of frame rate compared to a single GPU. Adding
a third GPU further increased the frame rate 22%, or an increase of 94%
compared to a single GPU. Compared to an ideal implementation, the GPU
utilization is 79% and 65% for two and three GPUs respectively.

Figure 4.1: Graph of the sort-�rst performance for TC1.

On TC2, the sort-�rst results did not improve performance, as the di�erence
in performance of the GTX 760 and the RX 460 was too large to get perfor-
mance improvement in this benchmark. This is perhaps due to the di�erence
in Raster Operations Pipeline (ROP) count, of which the GTX 760 has 32,
and the RX 460 has 16. However for the demanding geometry implemented
in the sort-last benchmark, the two GPUs performed similarly, as the GPUs
have similar compute performance.

The prototype implementing the compositing method using borderless win-
dows was not able to run on TC1. We suspect that this is because the
computer was accessed through external desktop. The con�guration was
only able to present its result to a window from one of the GPUs, but the

52

approach using borderless windows require all GPUs to be able to do so.
We were able to run the borderless window prototype on TC2, but we still
had issues with the performance di�erence between the two GPUs. However,
we can evaluate the borderless window compositing method by comparing
it against the implementation that composites the result on a single win-
dow.

By rendering a small mesh, the compositing method became the bottleneck
for framerate, and we can compare the maximum framerate for the two meth-
ods at di�erent screen resolutions. Figure 4.2 shows the measured framerates
for the two compositing approaches on TC2. When running this we noticed
that the borderless window approach achieved higher framerates at �rst, but
settled at a lower framerate when the application had run for a few seconds.
At the lowest resolution of 1024× 768 the framerate started above 300FPS,
but after a few seconds it got reduced to 207FPS. However, this was not
the case when run at a screen resolution of 3840 × 1080. In this case, the
framerate was measured to be faster than when run at a screen resolution of
1920× 1080. We don't know the reason for this behavior. It could be caused
by throttling of resources, for instance a framerate limit. However, for the im-
plementation rendering into a single window, the framerate is reduced when
screen resolution increases.

Figure 4.2: Graph of the performance of di�erent sort-�rst compositing meth-
ods for TC2.

53

Mesh Triangle count
Statue of Lucy 28 055 742
Boeing Airplane 282 871 419

Table 4.3: Table of the meshes used to test the sort-last performance.

4.2 Sort-last Benchmark

A rendering workload that would scale well for the sort-last algorithm is one
that has a large amount of geometry. The benchmark used to evaluate the
sort-last implementation draws large meshes, such that a single GPU is not
powerful enough to achieve good performance. Then the geometry can be
distributed between the GPUs to improve performance.

Two meshes have been used for executing the performance benchmarks (see
Table 4.3). One of these meshes is a reconstructed mesh of a statue of
Lucy (see Figure 4.3), with more than 28 million triangles, provided by the
Stanford 3D Scanning Repository [42]. The second mesh is a large mesh
of a Boeing airplane (see Figure 4.4), with more than 280 million triangles.
This mesh was used with permission by the Boeing company. The Boeing
airplane mesh does not contain all geometry for the entire airplane, but it
provided a large enough geometry to be a demanding benchmark for the
sort-last implementation.

54

Figure 4.3: Screnshot from rendering the statue of Lucy.

Since TC1 has signi�cantly more powerful GPUs than TC2, the benchmark
was run with di�erent amount of geometry for each of the computers. For
TC1, the Lucy mesh was rendered 8 times at di�erent positions, for a total of
more than 224 million triangles. This allowed us to demonstrate a scenario
where the performance could increase with three GPUs, as the amount of
geometry was too large to achieve good performance with a single GPU.
TC2 rendered the mesh twice, for about 56 million triangles. TC1 was also
tested with the the Boeing airplane mesh. Once loaded into a single GPU,
the Boeing mesh has a memory usage of about 6GiB, so TC2 does not have
enough GPU memory to render this mesh.

The sort-last benchmark results shows similar increases in performance as the
sort-�rst benchmark for TC1 (see Figure 4.5). We got a 69% improvement

55

Figure 4.4: Screenshots from rendering the Boeing airplane.

from one to two GPUs, and a 16% improvement from two to three GPUs,
which is a 97% improvement from one to three GPUs. The GPU utilization
compared to an ideal multi-GPU implementation is in this case 85% and 66%
for two and three GPUs respectively.

The results from the sort-last benchmarks on TC2 (see Figure 4.6) yielded
a performance increase of 52% when utilizing both GPUs, compared to the
GTX 760 GPU alone, or 71% compared to the RX 460 GPU on its own. The
GPU utilization is 80% compared to an ideal implementation.

56

Figure 4.5: Graph of the sort-last performance for TC1, rendering the Lucy
statue.

Figure 4.6: Graph of the sort-last performance for TC2, rendering the Lucy
statue.

57

When tested with the larger Boeing airplane mesh, we achieved better scaling
than with the Lucy statue mesh (see Figure 4.7). This is perhaps because
the amount of geometry rendered was larger, such that the overhead from
compositing was smaller compared to the rendering workload. The sort-last
implementation achieved a 76% increase in framerate from one to two GPUs,
27% increase from two to three, which is an improvement of 124% from a
single GPU to three GPUs. The GPU utilization was 88% and 75% for two
and three GPUs respectively, compared to an ideal implementation.

Figure 4.7: Graph of the sort-last performance for TC1, rendering the Boeing
airplane.

4.3 Rendering Geometry with High-resolution

Textures

One way to utilize multiple GPUs is to speed up the rendering process,
increasing framerate. Another use case for multiple GPUs is to utilize the
available GPU memory to render geometry with high-resolution textures,
which would not �t in the memory on a single GPU. This can be done with
the sort-last approach, by distributing the geometry and textures to multiple
GPUs.

The data set we used in order to perform rendering of geometry with high-
resolution textures, consists of 3D models of the Beckwith Plateau (Book
Cli�s, UT, USA) mountain side. The Virtual Outcrop Geology group, Uni

58

Research, Bergen is acknowledged for access to the 3D models used within
this work. The data was acquired with the support of the Research Council
of Norway and FORCE Sed/Strat group through the EUSA/SAFARI project
(grant number 193059). This model is part of a data set acquired with light
detection and ranging (LIDAR) scanning from a helicopter, as described by
Eide et al., 2014 [43].

The model of Beckwith Plateau consist of 12 sections of the mountain side,
two of which are split into two sections, and high resolution textures (see
Table 4.4). With TC1, we were able to render 9 of these sections (see Figure
4.8 and 4.9) with three GPUs, at a framerate of 50FPS. If we had access to
one, or two more GPUs, we could render all 12 sections. With a single GPU
we were only able to render 3 sections.

Section Triangle count Textures (compressed JPG �les)
1 2 005 007 300MB
2 1 918 131 308MB
3 1 838 960 304MB
4 1 798 272 290MB
5 1 520 325 233MB
6 1 716 656 288MB
7a 1 404 145 253MB
7b 1 819 675 335MB
8a 1 241 730 242MB
8b 1 057 564 192MB
9 2 152 939 422MB
10 2 074 731 324MB
11 1 952 748 380MB
12 1 871 221 430MB
Total 24 372 104 4.3GB

Table 4.4: Triangle counts and amount of textures for the Beckwith Plateau
model sections. The textures are compressed JPG �les, that takes more
memory when uncompressed and loaded on a GPU.

59

Figure 4.8: Screenshot from rendering 9 sections of the Beckwith Plateau,
Book Cli�s, UT, USA.

Figure 4.9: Closer screenshots from rendering the Beckwith Plateau, Book
Cli�s, UT, USA.

60

Chapter 5

Discussion

The measured framerates for the sort-�rst and sort-last implementations
show that performance can be improved when adding a second and third
GPU. However, GPU utilization is reduced when adding more GPUs, due
to overhead from copying contributing textures and compositing the result.
Improvements are also limited when the resolution is increased. Though it is
worth noting that for the sort-�rst approach, the amount of data that needs
to be copied between GPUs stays the same when GPU count increases, as
the screen is divided into smaller partitions when more GPUs are used for
rendering. For the sort-last approach, the amount of data that needs to
be copied increases with GPU count, as the contributing textures from the
secondary GPUs are the same size as the destination framebu�er.

5.1 Sort-�rst Screen Partitioning

The sort-�rst implementation divides the screen in horizontal tiles of equal
size (see Figure 5.1a). Each GPU must render its own tile. However, the
workload of rendering each tile might di�er as the scene changes. Some
parts of the screen can potentially be much more demanding to render than
others, such that the workload distribution becomes unbalanced. The sort-
�rst benchmark does not simulate this behavior, as the workload for this
benchmark is uniform for the entire screen.

One way to mitigate unbalanced workload distribution for the sort-�rst ap-
proach, could be to partition the screen into smaller tiles which can be dis-
tributed to the GPUs randomly (see Figure 5.1b). Instead of rendering only

61

a single tile, each GPU could render multiple smaller tiles. With this ap-
proach, load balancing could be introduced by changing the number of tiles
each GPU renders, based upon measurements of the time it takes to render
for each GPU. It would also be wise to take into consideration the amount
of time spent copying the data between the secondary and primary GPUs
when implementing this load balancing. It is possible to implement load
balancing for the current screen partitioning strategy, by resizing the tiles.
However, using randomly distributed, smaller tiles, we can distribute the
workload more evenly, for instance if the top half of the screen contain all
the geometry.

(a) The current screen partitioning strat-

egy. Each GPU renders one horizontal

tile.

(b) Possible screen partitioning strat-

egy where each GPU renders multiple

smaller tiles.

Figure 5.1: Illustration of di�erent ways to partition the screen for sort-�rst
compositing with two GPUs. One GPU renders the green tiles, while the
other renders the blue tiles.

5.2 Sort-last Alpha Blending

The current implementation of the sort-last approach does not support cor-
rect compositing of transparent geometry with alpha blending. Alpha blend-
ing uses an additional pixel component known as the alpha component. This
component represents the opacity of the pixel, which allows us to blend colors
of fragments that fall within the same pixel.

Alpha blending could be performed on the geometry distributed to each of
the GPUs, however the necessary depth information required to merge the
alpha blended geometry is not available. The depth component of the sort-
last contribution only contains depth information about the closest rendered

62

geometry. For transparent geometry to be rendered correctly, all opaque
geometry must be rendered �rst, but each GPU renders only part of the
geometry.

One way to solve this issue could be to render all transparent geometry on
the primary GPU responsible for compositing. All opaque geometry must
be rendered and composited before drawing the transparent geometry. This
approach will become ine�cient if the scene mostly consists of transparent
geometry, for instance if a con�guration of two identical GPUs should render
a scene where more than half of the geometry is transparent. In this case,
the secondary GPU would not be fully utilized, as the primary GPU has to
render most of the geometry.

5.3 Post-processing

Utilization of post-processing e�ects like motion blur, bloom, depth of �eld,
and so forth, has not been implemented for the multi-GPU solution intro-
duced with this thesis. Post-processing requires all the geometry to be ren-
dered, so post-processing must happen after compositing the �nal image on
the primary GPU. If the rendering workload is evenly distributed among the
GPUs, the additional overhead from post-processing on the primary GPU
can cause idle time on the secondary GPUs. This issue can be mitigated by
implementing load balancing.

Having each GPU execute post-processing for its own screen region could
be possible for the sort-�rst approach. However this approach can produce
sligthly di�erent results on the borders of the screen partitions, causing the
partitioning to be visible.

5.4 Copying between GPUs

The implemented compositing requires contributing textures from secondary
GPUs to be copied to the primary GPU responsible for combining the result.
The optimal way to do this would be to copy the textures directly from
one GPU to the other. However this is not possible for an unlinked explicit
con�guration. The contributions must be copied into main memory, before
copying it back to the second GPU.

63

Due to a limitation with core Vulkan API, where the memory objects are
bound to speci�c device objects, an additional redundant CPU to CPU copy-
ing step has been added. The process of copying a texture from one GPU
to another is implemented with three steps. First, we copy the texture from
the source GPU to a host staging bu�er. Then we copy the texture from this
host staging bu�er to another staging bu�er bound to the destination GPU.
The last step is to copy the texture from the staging bu�er to the destination
GPU.

The redundant copying step is accelerated by copying blocks of memory in
parallel. This speeds up the copying process, as a single thread is not capable
of utilizing the entire available memory bandwidth. When the amount of
data to copy increases, the amount of CPU time spent on copying increases
as well. So if screen resolution increases, or more GPUs are used, CPU
utilization can increase signi�cantly. This limits the available CPU time
for other tasks like physics calculations. It also limits the performance as
screen resolution increases, which is the reason the benchmarks were run at
a relatively low resolution (1024× 768).

Eliminating this redundant copying step will improve performance, e�ciency,
as well as latency. It is possible to implement shared host-allocated memory
between GPUs with the Vulkan extension VK_EXT_external_memory_host

[17, p. 1247]. This shared staging bu�er would enable us to eliminate the
redundant copying step.

5.5 Attempt at Integrating into Existing Frame-

work

During my study trip in Vienna, I attempted to integrate the multi-GPU
solution into an existing rendering framework. This framework, used by the
vis-group at TU Wien, was implemented with OpenGL. In order to integrate
my solution, I would need to port the framework to support Vulkan API, as
well as implement the ability to divide the rendering workload for distributing
onto multiple GPUs.

The framework relies on being able to render to render to di�erent frame-
bu�ers. At the time, my abstraction library, BP, automatically created
framebu�ers as part of the render pass abstraction. Instead of assigning
attachments to framebu�ers, the attachments were assigned directly to the
render pass, which made the library in�exible for integrating into the frame-

64

work at the time. Due to this limitation, I was not able to integrate the
multi-GPU solution into the existing framework. However, with a more re-
cent implementation of BP, it could be possible to implement, as the library
was refactored to support framebu�ers when the bpMulti module was im-
plemented.

65

Chapter 6

Conclusion

With this thesis we have introduced a solution to multi-GPU rendering with
Vulkan API. This is the �rst publicly available solution implementing hetero-
geneous multi-GPU rendering, using explicit selection of the Vulkan capable
GPUs in a single computer. Both the Linux and Windows operating systems
are supported, and the solution can use GPUs of di�erent models, from dif-
ferent vendors. We have shown that performance can be improved compared
to a single GPU, using the sort-�rst and sort-last approaches to multi-GPU
rendering. Using the sort-last approach, we have also shown that we can
utilize the additional GPU memory from multiple GPUs, to render larger
data sets than possible with a single GPU.

With the �rst research question, we wanted to know how we can implement
e�cient multi-GPU rendering with Vulkan API. This thesis describes how the
introduced multi-GPU solution has been implemented. In terms of e�ciency,
there is still some room for improvement, due to the redundant step for
copying data between GPUs. However, the performance tests have shown
that it is possible to achieve higher framerates using the introduced multi-
GPU solution, compared to using a single GPU.

With the second research question, we wanted to know how we can divide and
distribute rendering workload among multiple GPUs in di�erent ways, and
what performance improvement can be expected for the di�erent approaches
compared to a single GPU. The two approaches to dividing and distributing
rendering workload implemented for the solution, are sort-�rst and sort-last.
The solution shows increase in performance compared to a single GPU, with
benchmarks tailored to utilize the speci�c approaches. The performance will
only increase when the rendering workload is su�ciently demanding for a

66

single GPU, and that the multi-GPU approach reduces the amount of work
for each GPU. For small workloads, a single GPU is faster than multiple
GPUs because of the additional overhead from copying data between GPUs,
and compositing of the result.

The sort-�rst approach improved framerates with a workload demanding
per pixel. This could be useful for accelerating a ray tracer. The sort-last
approach improved framerates when rendering large amounts of geometry.
The results from rendering the Boeing airplane achieved good scaling, with
GPU utilization of 88% and 75% for two and three GPUs respectively.

Another way to utilize multiple GPUs other than for increased graphics pro-
cessing power, is to get access to a larger amount of GPU memory. The
results from rendering the Beckwith Plateau mountain side, shows that with
the sort-last implementation, it is possible to utilize the extra GPU memory
to render larger data sets than possible with a single GPU.

67

Chapter 7

Further Work

There is room for improvement for the introduced multi-GPU implementa-
tion, both in terms of performance, and in terms of support for di�erent
rendering techniques. Performance can be improved by implementing opti-
mizations for increasing the GPU utilization.

To reduce latency, CPU usage, and improve performance, one could utilize
the VK_EXT_external_memory_host extension [17, p. 1247] to investigate
CPU allocated memory shared between GPUs, or host-mapped memory for
a secondary GPU, imported for the primary GPU to read. The last approach
only require the primary GPU to support the extension. Another extension,
VK_EXT_external_memory_dma_buf [17, p. 1245] might also be suitable for
linux systems, but would require all GPUs to support the extension. If imple-
mented successfully, shared host memory between GPUs would allow us to
eliminate the redundant copying step for copying data between GPUs.

In order to optimize the performance, dynamic load balancing could be im-
plemented. This load balancing would redistribute rendering workload for
the GPUs based on the amount of time spent rendering, copying and com-
positing per GPU. The purpose of balancing the workload is to reduce the
amount of time to render a frame, by relieving rendering workload from
GPUs that becomes bottlenecks, and redistributing that workload to GPUs
that have some headroom. This decreases GPU idle time and increases GPU
utilization.

For the sort-�rst approach, one could improve distribution of uneven ren-
dering workloads, by subdividing the screen into smaller tiles. Each GPUs
would then be responsible for rendering multiple such tiles. The tiles can be
distributed dynamically with load balancing to achieve optimal performance.

68

Post-processing e�ects could be investigated for the sort-�rst approach, to see
if the result becomes a uniform image, or if the screen partitioning becomes
visible.

For the sort-last approach, one could investigate using the primary GPU
for di�erent rendering tasks than the secondary GPUs. The primary GPU
could for instance render transparent geometry, after all the opaque geometry
have been rendered by the secondary GPUs. Post-processing e�ects could
also be implemented on the primary GPU. This process would be pipelined,
such that the primary GPU performs rendering of transparent geometry and
post-processing for the previous frame, while the secondary GPUs renders
the opaque geometry for the current frame.

69

Bibliography

[1] Khronos Group. OpenGL Overview. https : / / www . opengl . org /

about/. Accessed: 2017-11-27.

[2] Khronos Group. Vulkan. https://www.khronos.org/vulkan/. Ac-
cessed: 2017-11-13.

[3] NVIDIA Corporation. Introduction to SLI Technology. https://www.
geforce.com/whats-new/guides/introduction-to-sli-technology-

guide. Accessed: 2017-11-15.

[4] Advanced Micro Devices Inc. AMD Cross�re Technology. https://
www.amd.com/en/technologies/crossfire. Accessed: 2017-11-15.

[5] N. Haemel. AMD_gpu_association. https : / / www . khronos . org /
registry/OpenGL/extensions/AMD/WGL_AMD_gpu_association.

txt. Accessed: 2017-11-24. Mar. 2009.

[6] B. Lichtenbelt. WGL_NV_gpu_a�nity. https://www.khronos.org/
registry/OpenGL/extensions/NV/WGL_NV_gpu_affinity.txt.
Accessed: 2017-11-24. Nov. 2006.

[7] Khronos Group. OpenGL Context. https : / / www . khronos . org /

opengl/wiki/OpenGL_Context. Accessed:2018-05-20.

[8] Advanced Micro Devices Inc. AMD - GPU Association - Targeting
GPUs for Load Balancing in OpenGL. 2010.

[9] Derivative.ca. Using Multiple Graphic Cards. https://www.derivative.
ca/wiki088/index.php?title=Using_Multiple_Graphic_Cards#

Quadro_Cards_and_GPU_Affinity. Accessed: 2017-11-24.

[10] S. Molnar et al. �A sorting classi�cation of parallel rendering�. In: IEEE
computer graphics and applications 14.4 (1994), pp. 23�32.

[11] NVIDIA Corporation. NVLink Fabric. https://www.nvidia.com/en-
us/data-center/nvlink/. Accessed: 2018-04-30x.

70

https://www.opengl.org/about/
https://www.opengl.org/about/
https://www.khronos.org/vulkan/
https://www.geforce.com/whats-new/guides/introduction-to-sli-technology-guide
https://www.geforce.com/whats-new/guides/introduction-to-sli-technology-guide
https://www.geforce.com/whats-new/guides/introduction-to-sli-technology-guide
https://www.amd.com/en/technologies/crossfire
https://www.amd.com/en/technologies/crossfire
https://www.khronos.org/registry/OpenGL/extensions/AMD/WGL_AMD_gpu_association.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/WGL_AMD_gpu_association.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/WGL_AMD_gpu_association.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/WGL_NV_gpu_affinity.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/WGL_NV_gpu_affinity.txt
https://www.khronos.org/opengl/wiki/OpenGL_Context
https://www.khronos.org/opengl/wiki/OpenGL_Context
https://www.derivative.ca/wiki088/index.php?title=Using_Multiple_Graphic_Cards#Quadro_Cards_and_GPU_Affinity
https://www.derivative.ca/wiki088/index.php?title=Using_Multiple_Graphic_Cards#Quadro_Cards_and_GPU_Affinity
https://www.derivative.ca/wiki088/index.php?title=Using_Multiple_Graphic_Cards#Quadro_Cards_and_GPU_Affinity
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/

[12] R. Hallock. Modernizing multi-GPU gaming with XDMA. https://
community.amd.com/community/gaming/blog/2015/05/11/modernizing-

multi-gpu-gaming-with-xdma. Accessed: 2018-04-30.

[13] Y. Kim et al. �GPUpd: A Fast and Scalable multi-GPU Architecture
Using Cooperative Projection and Distribution�. In: Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitec-
ture. MICRO-50 '17. Cambridge, Massachusetts: ACM, 2017, pp. 574�
586. isbn: 978-1-4503-4952-9. doi: 10.1145/3123939.3123968. url:
http://doi.acm.org/10.1145/3123939.3123968.

[14] S. Marchesin, C. Mongenet, and J.-M. Dischler. �Multi-GPU sort-last
volume visualization.� In: EGPGV. 2008, pp. 1�8.

[15] R. Samanta et al. �Hybrid Sort-�rst and Sort-last Parallel Rendering
with a Cluster of PCs�. In: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS Workshop on Graphics Hardware. HWWS '00. Inter-
laken, Switzerland: ACM, 2000, pp. 97�108. isbn: 1-58113-257-3. doi:
10.1145/346876.348237. url: http://doi.acm.org/10.1145/
346876.348237.

[16] P. Wang et al. �Multi-GPU Compositeless parallel rendering algorithm�.
In: Computer-Aided Design and Computer Graphics (CAD/Graphics),
2011 12th International Conference on. IEEE. 2011, pp. 103�107.

[17] Khronos Vulkan Working Group. Vulkan 1.0.66 - A Speci�cation (with
all registered Vulkan extensions). 1.0.66. Nov. 2017.

[18] Khronos Group. Tesselation. https://www.khronos.org/opengl/
wiki/Tessellation. Accessed: 2018-01-15.

[19] Intel Corporation. Intel Core i7-8700K Processor. https : / / ark .

intel.com/products/126684/Intel-Core-i7-8700K-Processor-

12M-Cache-up-to-4_70-GHz. Accessed:2018-05-15.

[20] Advanced Micro Devices Inc. AMD RyzenTM ThreadripperTM Proces-
sors. https://www.amd.com/en/products/ryzen-threadripper.
Accessed:2018-05-15.

[21] Microsoft Corporation. Multi-Adapter. https://msdn.microsoft.
com/en-us/library/windows/desktop/dn933253(v=vs.85).aspx.
Accessed: 2017-11-27.

[22] P. Bright. Vulkan 1.1 out today with multi-GPU support, better Di-
rectX compatibility. https : / / arstechnica . com / gadgets / 2018 /

03/vulkan-1-1-adds-multi-gpu-directx-compatibility-as-

khronos-looks-to-the-future. Accessed:2018-05-08.

71

https://community.amd.com/community/gaming/blog/2015/05/11/modernizing-multi-gpu-gaming-with-xdma
https://community.amd.com/community/gaming/blog/2015/05/11/modernizing-multi-gpu-gaming-with-xdma
https://community.amd.com/community/gaming/blog/2015/05/11/modernizing-multi-gpu-gaming-with-xdma
https://doi.org/10.1145/3123939.3123968
http://doi.acm.org/10.1145/3123939.3123968
https://doi.org/10.1145/346876.348237
http://doi.acm.org/10.1145/346876.348237
http://doi.acm.org/10.1145/346876.348237
https://www.khronos.org/opengl/wiki/Tessellation
https://www.khronos.org/opengl/wiki/Tessellation
https://ark.intel.com/products/126684/Intel-Core-i7-8700K-Processor-12M-Cache-up-to-4_70-GHz
https://ark.intel.com/products/126684/Intel-Core-i7-8700K-Processor-12M-Cache-up-to-4_70-GHz
https://ark.intel.com/products/126684/Intel-Core-i7-8700K-Processor-12M-Cache-up-to-4_70-GHz
https://www.amd.com/en/products/ryzen-threadripper
https://msdn.microsoft.com/en-us/library/windows/desktop/dn933253(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn933253(v=vs.85).aspx
https://arstechnica.com/gadgets/2018/03/vulkan-1-1-adds-multi-gpu-directx-compatibility-as-khronos-looks-to-the-future
https://arstechnica.com/gadgets/2018/03/vulkan-1-1-adds-multi-gpu-directx-compatibility-as-khronos-looks-to-the-future
https://arstechnica.com/gadgets/2018/03/vulkan-1-1-adds-multi-gpu-directx-compatibility-as-khronos-looks-to-the-future

[23] Khronos Group. Transform Feedback. https://www.khronos.org/
opengl/wiki/Transform_Feedback. Accessed:2018-05-25.

[24] Khronos Group. SPIR Overview. https://www.khronos.org/spir/.
Accessed: 2018-03-03.

[25] Qt. About Qt. https://wiki.qt.io/About_Qt. Accessed:2018-03-06.

[26] GLFW. GLFW. http://www.glfw.org/. Accessed:2018-03-06.

[27] G-Truc Creation. OpenGL Mathematics. https://glm.g-truc.net/
0.9.8/index.html. Accessed:2018-05-21.

[28] Advanced Micro Devices Inc. Vulkan Memory Allocator. https : / /
github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator.
Accessed: 2018-02-26.

[29] LunarG. LunarG Vulkan SDK. https://www.lunarg.com/vulkan-
sdk. Accessed:2018-05-21.

[30] S. Barrett. stb. https://github.com/nothings/stb. Accessed:2018-
05-21.

[31] S. Fujita. tinyobjloader. https://github.com/syoyo/tinyobjloader.
Accessed:2018-05-21.

[32] D. A. Beman Dawes and R. Rivera. Welcome to Boost.org! https:

//www.boost.org. Accessed:2018-05-28.

[33] Kitware. Build, Test and Package Your Software With CMake. https:
//cmake.org. Accessed:2018-05-21.

[34] Khronos Group. OpenGL / OpenGL ES Reference Compiler. https:
//www.khronos.org/opengles/sdk/tools/Reference-Compiler.
Accessed:2018-05-21.

[35] L. O. Tolo. C++ Abstraction library for Vulkan API. https://github.
com/larso0/bp. Accessed: 2018-03-03.

[36] SDL. About SDL. https://www.libsdl.org/. Accessed:2018-03-06.

[37] cppreference.com. Parameter pack. http://en.cppreference.com/w/
cpp/language/parameter_pack. Accessed:2018-05-30.

[38] Qt. Signals & Slots. http://doc.qt.io/qt-5/signalsandslots.
html. Accessed:2018-05-30.

[39] L. O. Tolo. Vulkan Multi-GPU Application. https://github.com/
larso0/vmgpu. Accessed: 2018-03-03.

[40] M. Larabel. Vulkan 1.0.66 Introduces Three New Extensions. https:
//www.phoronix.com/scan.php?page=news_item&px=Vulkan-

1.0.66-Released. Accessed: 2018-02-25.

72

https://www.khronos.org/opengl/wiki/Transform_Feedback
https://www.khronos.org/opengl/wiki/Transform_Feedback
https://www.khronos.org/spir/
https://wiki.qt.io/About_Qt
http://www.glfw.org/
https://glm.g-truc.net/0.9.8/index.html
https://glm.g-truc.net/0.9.8/index.html
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://www.lunarg.com/vulkan-sdk
https://www.lunarg.com/vulkan-sdk
https://github.com/nothings/stb
https://github.com/syoyo/tinyobjloader
https://www.boost.org
https://www.boost.org
https://cmake.org
https://cmake.org
https://www.khronos.org/opengles/sdk/tools/Reference-Compiler
https://www.khronos.org/opengles/sdk/tools/Reference-Compiler
https://github.com/larso0/bp
https://github.com/larso0/bp
https://www.libsdl.org/
http://en.cppreference.com/w/cpp/language/parameter_pack
http://en.cppreference.com/w/cpp/language/parameter_pack
http://doc.qt.io/qt-5/signalsandslots.html
http://doc.qt.io/qt-5/signalsandslots.html
https://github.com/larso0/vmgpu
https://github.com/larso0/vmgpu
https://www.phoronix.com/scan.php?page=news_item&px=Vulkan-1.0.66-Released
https://www.phoronix.com/scan.php?page=news_item&px=Vulkan-1.0.66-Released
https://www.phoronix.com/scan.php?page=news_item&px=Vulkan-1.0.66-Released

[41] L. O. Tolo. Vulkan Multi-GPU Application. https://github.com/
larso0/vmgpu/tree/sfbench. Accessed: 2018-05-30.

[42] Stanford University. The Stanford 3D Scanning Repository. http://
graphics.stanford.edu/data/3Dscanrep/. Accessed: 2018-03-01.

[43] C. Eide, J. Howell, and S. Buckley. �Distribution of discontinuous mud-
stone beds within wave-dominated shallow-marine deposits: Star Point
Sandstone and Blackhawk Formation, Eastern Utah�. In: AAPG Bul-
letin 98.7 (July 2014), pp. 1401�1429. issn: 0149-1423. doi: 10.1306/
01201413106.

73

https://github.com/larso0/vmgpu/tree/sfbench
https://github.com/larso0/vmgpu/tree/sfbench
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://doi.org/10.1306/01201413106
https://doi.org/10.1306/01201413106

	Contents
	List of Figures
	Listings
	Glossary
	Introduction
	Motivation
	Goal
	Research Questions
	Research Method
	Related Work

	Background
	The Graphics Pipeline
	Pipeline Stages

	Multi-GPU Configurations
	Linked Implicit Multi-GPU
	Linked Explicit Multi-GPU
	Unlinked Explicit Multi-GPU

	Parallel Rendering Approaches
	Sort-first
	Sort-last
	Other Approaches

	Compositing
	Compositing into Framebuffer
	Using Multiple Windows or Monitors

	Vulkan API
	Instance and Physical Devices
	Logical Devices, Queues and Commands
	Memory and Resources
	Shaders and Pipelines
	Rendering to Framebuffers with Render Passes
	Binding Resources to Shaders
	Synchronization

	Design and Solution
	Technologies
	A Vulkan Abstraction Library
	Instance and Device
	Implementing a Qt Window
	Rendering with BP
	Scene Module

	Multi-GPU Implementation
	Multi-GPU Abstraction
	Sort-first Implementation
	Sort-last Implementation
	Copying Contributing Textures
	Prototype Application

	Results
	Sort-first Benchmark
	Sort-last Benchmark
	Rendering Geometry with High-resolution Textures

	Discussion
	Sort-first Screen Partitioning
	Sort-last Alpha Blending
	Post-processing
	Copying between GPUs
	Attempt at Integrating into Existing Framework

	Conclusion
	Further Work

