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Abstract

Background: External validations and comparisons of prognostic models or scores are a prerequisite for their use
in routine clinical care but are lacking in most medical fields including chronic obstructive pulmonary disease
(COPD). Our aim was to externally validate and concurrently compare prognostic scores for 3-year all-cause
mortality in mostly multimorbid patients with COPD.

Methods: We relied on 24 cohort studies of the COPD Cohorts Collaborative International Assessment consortium,
corresponding to primary, secondary, and tertiary care in Europe, the Americas, and Japan. These studies include
globally 15,762 patients with COPD (1871 deaths and 42,203 person years of follow-up). We used network
meta-analysis adapted to multiple score comparison (MSC), following a frequentist two-stage approach; thus,
we were able to compare all scores in a single analytical framework accounting for correlations among scores
within cohorts. We assessed transitivity, heterogeneity, and inconsistency and provided a performance ranking of the
prognostic scores.

Results: Depending on data availability, between two and nine prognostic scores could be calculated for each cohort.
The BODE score (body mass index, airflow obstruction, dyspnea, and exercise capacity) had a median area under the
curve (AUC) of 0.679 [1st quartile–3rd quartile = 0.655–0.733] across cohorts. The ADO score (age, dyspnea, and airflow
obstruction) showed the best performance for predicting mortality (difference AUCADO – AUCBODE = 0.015
[95% confidence interval (CI) = −0.002 to 0.032]; p = 0.08) followed by the updated BODE (AUCBODE updated – AUCBODE
= 0.008 [95% CI = −0.005 to +0.022]; p = 0.23). The assumption of transitivity was not violated. Heterogeneity across
direct comparisons was small, and we did not identify any local or global inconsistency.
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Conclusions: Our analyses showed best discriminatory performance for the ADO and updated BODE scores in patients
with COPD. A limitation to be addressed in future studies is the extension of MSC network meta-analysis to measures
of calibration. MSC network meta-analysis can be applied to prognostic scores in any medical field to identify the best
scores, possibly paving the way for stratified medicine, public health, and research.

Keywords: COPD, Prognostic scores, Large-scale external validation, Performance comparison, Network meta-analysis

Background
Prognostic scores, commonly based on coefficients from
regression models, provide a probability of a certain ad-
verse outcome for an individual over a specified time
horizon. Prognostic scores have become increasingly
popular over the last two decades [1–5]. They serve
multiple purposes such as informing individuals and
health care providers about disease and outcome risks,
supporting risk-stratified and personalized prevention or
treatment decisions, identifying participants for research,
or adjusting for confounding [6–9].
Numerous prognostic models have been developed

in various fields of medicine [10–13]. Just for predict-
ing the risk of cardiovascular disease in the general
population, a recent review identified 363 prognostic
models or scores [14]. For patients with chronic
obstructive pulmonary disease (COPD), prognostic
scores have been developed mostly to predict the risk
of death [15–30], but scores also exist to predict
exacerbations [31] or deteriorating of health-related
quality of life [27, 32].
Major obstacles for using prognostic scores in practice

and research are, however, the frequent lack of external val-
idations, comparisons of their predictive performance, and
assessments of their applicability in practice [2, 33–38].
Practitioners and researchers are left with uncertainty
about which prognostic score to use and may be reluctant
to use them at all [39]. Ideally, prognostic scores would be
externally validated in several different populations and
their performance summarized [40, 41]. However, such ex-
ternal validations and concurrent comparisons are rarely
performed [42]. In addition, for even more comprehensive
comparison, the performance of prognostic scores may be
compared indirectly using common comparator scores
similar to network meta-analysis (NMA) [43–48] of
randomized trials.
Our aim was to use multiple score comparison

(MSC) in order to externally validate and concurrently
compare prognostic scores for 3-year mortality in patients
with COPD.

Methods
We followed a prespecified study protocol and described
the detailed statistical methods elsewhere [43].

Study design and participants
This study was based on 26 cohort studies of the COPD
Cohorts Collaborative International Assessment (3CIA)
consortium. Details have been reported elsewhere (and
summarized in Table 2) [49]. All cohorts were approved
by ethics committees, and participants gave written
informed consent [49]. We also included the Phenotype
and Course (PAC)-COPD and Copenhagen cohorts in
the final database, even if they were used in the large-
scale update of the ADO (age, dyspnea, and airflow
obstruction) index [15]. We considered this approach
reasonable, since they form only a small part of the final
database, but we verified in a sensitivity analysis if they
affected the results.

Prognostic scores
Starting from the literature review of two studies [32, 42]
and searching among their references, PubMed-related ar-
ticles, and through our research network, we identified 19
prognostic scores, of which we included 10 in our analysis.
The scores (see Table 1 for details) were the BODE (body
mass index, airflow obstruction, dyspnea, and severe exac-
erbations) [17], updated BODE [16], ADO ( we included
in the analysis only the updated ADO index and not the
original ADO index [16] because the updated ADO was
generated from large-scale external validation; however,
we will name it simply ADO) [15], eBODE (severe acute
exacerbation of COPD plus BODE) [18], BODEx (body
mass index, airflow obstruction, dyspnea, severe acute ex-
acerbation of COPD) [18], DOSE (dyspnea, obstruction,
smoking and exacerbation frequency) [27], SAFE (Saint
George’s Respiratory Questionnaire (SGRQ) score, air-
flow limitation and exercise capacity) [28], and B-AE-D
(body mass index, acute exacerbations, dyspnea; we used
the optimized version and not the original B-AE-D score)
[23]. The Global Initiative for Chronic Obstructive Lung
Disease (GOLD) classification [50, 51] and the 2011–2016
GOLD classification (often referred to as new GOLD in
the recent COPD literature) [51] were also used in the
analysis, even if they were not designed for prognostic
purposes. Apart from original ADO and original B-AE-D
score the other seven identified scores from the literature
were excluded from the analysis, since our database did
not include at least one of their predictors or did not in-
clude them simultaneously in at least one cohort.
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Outcome and performance measure for external
validation and comparison of prognostic scores
We evaluated a number of performance measures
commonly used to assess the prognostic properties of
prediction models and scores [43]. We deemed the area
under the curve (AUC) to be the most appropriate per-
formance measure for our purposes, mainly because its
range is independent of the data, it is easy to interpret,
and an analytic formula for its variance is available [52].

Statistical analysis
We followed a prespecified study protocol. We first per-
formed direct head-to-head comparisons using random
effects meta-analysis and then examined the network
evidence merging all available direct and indirect evi-
dence [53]. We used a novel methodology, i.e., MSC
meta-analysis, adapted from multiple treatment com-
parison network meta-analysis [54, 55]. Methodological
details are reported in the section “Detailed Methods” in
Additional file 1 and in a recent paper [43]. R codes are
available (provided in the section “R Code for MSC
meta-analysis” in Additional file 1).

Direct comparisons (random effects pairwise meta-analysis)
We directly compared prognostic scores by pairwise ran-
dom effects meta-analysis [56, 57]. We used forest plots
to visually investigate statistical heterogeneity as well as
the I2 statistic. Such standard meta-analysis has limita-
tions, since it does not take into account the correlations
among multiple scores evaluated on the same set of pa-
tients [58], and it does not give a clear indication of
which prognostic score performs best. Thus, we adopted
network meta-analysis, an approach that allowed us to
weight and then pool the results coming from different
cohorts.

MSC meta-analysis
Methodological details are reported in detail in [43]. In
brief, we used an example of implementation of network
meta-analysis for treatment effectiveness comparison
[54], adapting it to our purposes, namely to concurrently
externally validate and compare prognostic scores from
individual patient data across different cohorts [43]. We
have explicitly included correlations [58] between the
scores on a cohort level. We use a frequentist two-stage
meta-regression model, as proposed in [54]:

1. Ordinary meta-analysis (stage I) to obtain the direct
estimates for pooled differences in AUC (using the
inverse-variance weighted means of the corresponding
cohorts). The meta-analyses were done within each
group of cohorts where data for the same prognostic
scores were available.

2. In stage II, we merged the estimates for the
differences in AUC from the groups of cohorts,
looking for the weighted least squares solution to
the regression problem equation. Based on the direct
estimates and their variances from the first stage, we
estimated the pooled differences in AUC that obeyed
fundamental consistency equations. Thus in stage II,
the stage I estimates for the differences in AUC were
combined across groups of cohorts to give overall
performance estimates for the entire network.

In order to provide a ranking of the scores, we used a fre-
quentist version of the surface under the cumulative ranking
curve (SUCRA) [59, 60] score showing the likelihood of the
score to be better than any other score and summarizing
relative performances and confidence intervals.
The last steps were to ensure that the heterogeneity,

transitivity, and consistency assumptions were met [46].
Heterogeneity in the MSC analysis was evaluated by the
pooled heterogeneity variance among groups (τ2pooled). We
assessed “transitivity” through analysis of variance
(ANOVA) tests. Thus, we assessed the comparability of
the cohorts across whom the predictive performance of a
score may vary because of a “spectrum effect” [61] or
“case mix” [37, 62, 63]. We also assessed consistency [46]
between direct evidence and MSC meta-analysis estimates
using the Q likelihood-ratio test statistic to evaluate the
global consistency and analysis of residuals and leverages
to evaluate the local consistency [54]. For more details,
see “Detailed Methods” in Additional file 1 and [43].

Handling of missing data
If a variable was missing for > 30% of the patients, we
discarded the specific variable for that particular specific
cohort, since the effects of such predictors could be gen-
erally distrusted [1]. Otherwise we performed multiple
imputation with chained equations (the analysis of the
patterns of missingness allowed us to consider the miss-
ing data missing completely at random apart from the
dependence on the cohort) [4]. We combined the esti-
mates of the 30 different analyses (one for each imputed
dataset, for each of which we followed all the previously
highlighted frequentist two-stage meta-regression model
approaches) using Rubin’s rules.

Results
Cohort and participant characteristics
The cohorts varied greatly in terms of geographic loca-
tion, sample size, and number of events and included a
broad spectrum of patients with COPD from primary,
secondary, and tertiary care settings (Table 2). Mean
forced expiratory volume in 1 s percentage (FEV1) ranged
from 30 to 70% of the predicted values, mean modified
Medical Research Council (mMRC) dyspnea scores from
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1.0 to 2.8 (the scale goes from 0 to 4, with 4 being the
worst), mean number of exacerbations in the previous
year (where available) from 0.2 to 1.7, and mean 6-min
walk distance (where available) from 218 to 487 m.

Direct comparisons of prognostic scores for mortality in
patients with COPD
The direct comparisons are shown in the upper-right
triangle of Table 3, i.e., a league table (that also includes
the MSC meta-analysis in the lower-left triangle). Forty-
one direct comparisons of the AUC of prognostic scores
were possible; indeed, no direct evidence was available
for the comparison between SAFE and the eBODE,
BODEx, DOSE, and B-AE-D scores (cells D6, E6, F2,
G6, I10 in the league Table 3).
The updated BODE score performed statistically signifi-

cantly better than GOLD, new GOLD, and the B-AE-D
scores, whereas the AUC of the updated BODE score was
higher than for the other scores but not statistically signifi-
cantly so. We deemed overall statistical heterogeneity of
direct comparisons moderate. However, in our MSC meta-
analysis the direct comparisons should be interpreted with
caution, since they do not take into account that multiple
scores were evaluated on the same set of patients and are
thus likely to bias the interpretation of which prognostic
score performs best [58].

Groups of cohorts evaluating the same prognostic scores
Grouping of cohorts where the same prognostic scores
could be calculated was the first step to consider corre-
lations introduced by predictions performed on the
same sample of patients. Figure 1 shows the grouping of
cohorts. In group 1 (constituting four cohorts:
Copenhagen, HUNT, Japan, SEPOC, as shown in Fig. 1)
information on FEV1, age, and dyspnea was available to
calculate the GOLD and ADO scores for each partici-
pant. In contrast, group 6 consisted of four cohorts (La
Princesa Madrid, Requena II, Tenerife, Terrassa II)
where nine prognostic scores (all except for the SAFE
score) could be calculated for each participant. Figure 1
provides a visual representation of these groups together
with the number of events (i.e., deaths). For example,
the dark green line represents group 1 where the GOLD
and ADO scores could be compared against each other.
The closed polygons show the comparisons that are pos-
sible for each group of cohorts. Group 6 is represented by
the dark yellow polygon that includes nine scores. Thus,
unlike multiple treatment network meta-analyses, where
usually two or at most three treatments are compared in
each trial, Fig. 1 shows that in each of the cohorts of our
database we can compare between two and nine prognos-
tic scores.

MSC meta-analysis of prognostic scores to predict 3-year
mortality in patients with COPD
The lower-left part of Table 3 shows all comparisons be-
tween the AUCs of the 10 prognostic scores taking into
account the correlation among multiple comparisons for
the same patients as well as direct and indirect evidence
of the entire network (Fig. 1). The median AUC of the
GOLD classification of airflow obstruction severity was
0.613 (interquartile range 0.587 to 0.637) and is shown in
boldface in the upper-left cell as an anchor to interpret
the differences in AUC between the prognostic scores.
Compared to GOLD, all prognostic scores showed statisti-
cally significantly higher AUCs except for the B-AE-D and
GOLD 2011–2016 (cells B1-L1 in Table 3). Compared to
the BODE score (the most commonly used prognostic
score in COPD, median AUC 0.679 [interquartile
range 0.655 to 0.733]), the ADO, updated BODE, and
eBODE showed higher AUCs, whereas all other scores
performed worse.
Figure 2 shows the comparisons of all scores against the

BODE score and that the ADO score and the updated
BODE performed better than the other scores (i.e.,
AUCADO – AUCBODE = +0.015 [95% CI –0.002 to 0.032],
p = 0.08; AUCBODE updated – AUCBODE = 0.008 [95% CI =
−0.005 to +0.022]; p = 0.23). The sensitivity analysis under-
taken excluding from the database the two cohorts used in
the large-scale update of the ADO index [15] shows no
significant differences.

Heterogeneity, transitivity, and inconsistency
Global heterogeneity was relatively small (τ2pooled =
0.00011) (we did not use a τ2 for each group (τ2g) since this
is not recommended when there are groups with a single
cohort [54]). The groups of the MSC meta-analysis were
balanced with regard to characteristics of the different co-
horts that may modify the predictive performance of the
scores (all a priori defined characteristics that were gener-
ating case mix were not statistically significantly different
across groups), and we could thus assume transitivity.
The consistency analyses did not suggest local or global

inconsistency. Visual analysis of the Q-Q plot and studen-
tized residuals indicated robust local consistency. The
likelihood-ratio test statistic showed overall consistency
(Q likelihood-ratio test = 25.29 ≅ χ2(0.95, 16) = 26.30, p
value = 0.06).

Discussion
Our study has two main findings. Firstly, our results
indicate that the ADO index has the best ability to predict
3-year mortality in patients with COPD, followed by the
updated BODE and eBODE indices. Given its simplicity,
the ADO index may be the most attractive option
across care settings to inform patients and health
care professionals about prognosis and to inform
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treatment decisions whose effectiveness may depend
on life expectancy. Secondly, we presented a com-
prehensive approach for external validation and con-
current comparison of prognostic scores and its first
application. MSC meta-analysis is a method adapted
from network meta-analysis that meets the call for
new approaches for external validation and

concurrent comparison of risk prediction models and
scores that should take advantage of data sharing,
individual patient data (IPD), and advanced analytical
techniques [36, 37, 45, 64, 65].
In practice, the GOLD score using just lung function is

still used most commonly to grade disease severity, which
is traditionally related to prognosis as in other fields (e.g.,

Fig. 1 Network plot. Network representing which prognostic scores belong to the different groups. Each node represents a score and each
closed polygon represents a group of cohorts where the same prognostic scores are available. The thickness of the lines represents the total
number of deaths in the specific group

Fig. 2 Comparison of AUC of prognostic scores. Difference in AUC (shown with confidence interval with 95% confidence level) among the
different scores and the BODE index (chosen here as the reference score) in the MSC meta-analysis. As a reference we use the median of the
AUC of the BODE score 0.679 (1st Qu. 0.655, 3rd Qu. 0.733)
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cancer). FEV1% pred. (thus, GOLD classification) is an
important parameter at the population level in the predic-
tion of important clinical outcomes such as mortality and
hospitalization. The revised combined COPD assessment
and their further developments integrate the severity of
airflow limitation assessment, also providing information
regarding symptom burden and risk of exacerbation [51].
However, the results of our analysis show that, when the
aim is to predict mortality in individuals, other scores
such as ADO, updated BODE, and eBODE are substan-
tially better than the GOLD classifications (in our analysis,
GOLD and GOLD 2011–2016). We note that the AUC
for the best score (ADO) is 0.69, a moderately good dis-
criminative performance; however, we can often not ex-
pect a much higher discriminative performance in clinical
settings (for instance, see [31]).
The predictive performance of a prognostic score is im-

portant, but it is not the only criterion for choosing a
prognostic score for practice. Indeed, with an eye towards
applicability, the time, cost, and burden for patients and
practitioners to measure the predictors of a prognostic
score should be taken into consideration [66]. We deem a
prognostic score such as ADO to be easily available if it
only includes simple questions, easily available informa-
tion from medical charts, and spirometry (performed for
the diagnosis of COPD) [50, 51].
Scores to predict mortality are also useful beyond esti-

mating prognosis. Nowadays, no treatments to lower the
risk of mortality are currently available for patients with
COPD; thus, for this outcome, prediction scores cannot
provide risk-stratified treatment guidance. However, prog-
nostic scores may help to make randomized trials with all-
cause mortality as primary outcome more efficient than
previous trials by only including patients at higher risk
[67]. Also, prognostic scores for all-cause mortality are par-
ticularly attractive for multimorbid patients such as COPD
patients, where cardiovascular disease, diabetes, renal dis-
ease, and lung cancer, among other conditions, also contrib-
ute to mortality [68, 69]. Patients with COPD often receive
less than optimal prevention and treatment of cardiovascu-
lar disease, which may partly reflect a therapeutic nihilism.
Of course, there are patients who are unlikely to benefit
from long-term cardiovascular prevention because of short
life expectancy. However, a prognostic score provides a
better basis for decisions on cardiovascular prevention,
lung cancer screening, or other treatments and may limit
under- and over-treatment in COPD [1, 70, 71].
Many prognostic models and scores (as in the models’

simplified forms) are never validated in practice, and
many investigators develop a second model instead of
relying on existing scores at least as a starting point.
Such practice has led to numerous prognostic scores for
the same conditions that are left without external valid-
ation. Thus, we introduced MSC meta-analysis, which

addresses the lack of external validation and compari-
sons of prognostic scores by comparing their predictive
performance in external validation cohorts and simul-
taneously considering the entire network of direct and
indirect comparisons. Thereby, it allows for a compari-
son of predictive performance that is not limited by
non-comparable spectrum of populations, as is com-
monly the case when evaluating the results of independ-
ent validation studies. MSC meta-analysis can be applied
to any medical field, with the availability of individual
patient data being the only major limiting factor.
Strengths of our study include the careful analytical

approach to MSC meta-analysis and the availability of
the R code, which allows for widespread use and poten-
tial further development of the method. For the particu-
lar application of MSC meta-analysis here, a major
strength is the large high-quality database of the 3CIA
collaboration with the broadest possible COPD patient
spectrum. The diverse case mix and broad patient
spectrum greatly increase the probability that our results
are generalizable to all COPD patients. A limitation of
the study is that, ideally, a network meta-analysis is con-
ducted prospectively and jointly planned for all of the
cohorts involved to ensure equality of the clinical set-
tings and homogeneity of study design, conduct, and
variable definitions, though this will rarely be the case in
reality. Another limitation of our analysis is that we only
used AUC as a performance measure, which we did for
theoretical and practical reasons [43]. In general, im-
provements in AUC have to be interpreted with caution
[72]. Furthermore, we cannot exclude the possibility of
case-mix effects due to variables that were not available
in the database or unknown.
Further research needs include the extension of MSC to

include measures of calibration, which is arguably as im-
portant as discrimination. For the area of COPD, it would
be attractive to apply MSC to risk scores for exacerbations
[51, 73]. However, there are likely too few thoroughly de-
veloped and externally validated scores to predict exacer-
bations in patients with COPD [31]. Finally, given the
large number of risk scores in the medical field and the
lack of external validations and comparisons of risk scores,
there is a great need for comparative studies that may use
MSC in order to inform clinical practice and research
about the most predictive scores [31].

Conclusions
Borrowing from network meta-analysis, we presented a
comprehensive approach for external validation and
concurrent comparison of multiple prognostic scores.
While our analyses showed best performance for the
ADO and updated BODE scores to predict mortality for
patients with COPD, MSC meta-analysis can be applied
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to prognostic scores in any medical field to identify the
best scores, possibly paving the way for stratified
medicine, public health, and research.
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