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The Upper Triassic to Middle Jurassic Wilhelmøya Subgroup forms one of the more suitable reservoir units on the Norwegian Arctic archipelago 
of Svalbard. The target siliciclastic storage unit, which is encountered at approx. 670 m depth at the potential injection site in Adventdalen, central 
Spitsbergen, is a severely under-pressured (at least 35 bar), tight and compartmentalised reservoir with significant contribution of natural fractures 
to permeability. In this contribution, we characterise the 15–24 m-thick Wilhelmøya Subgroup storage unit using both borehole and outcrop data 
and present water-injection test results that indicate the presence of fluid-flow barriers and the generation of new, and propagation of pre-existing 
natural fractures during injection. Whole core samples from drillcores and outcrops were sampled for pore network characterisation and analysed 
using high-resolution X-ray computed tomography (Micro-CT). We demonstrate that heterogeneities such as structural discontinuities, igneous 
bodies and lateral facies variations, as examined in well core and equivalent outcrops, will strongly influence fluid flow in the target reservoir, 
both by steering and baffling fluid migration. Many of these heterogeneities are considered to be subseismic, and their detailed characterisation is 
important to predict subsurface CO2 storage potential and optimise injection strategy.  
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Fluid flow properties of the Wilhelmøya Subgroup,  
a potential unconventional CO2 storage unit in central 
Spitsbergen

Introduction

Longyearbyen is a small isolated community situated on 
the Arctic archipelago of Svalbard at 78° north (Fig. 1). 
The Longyearbyen CO2 Lab was established in 2007 by 
the University Centre in Svalbard (UNIS) as a pilot-scale, 
onshore carbon capture and storage (CCS) study. The 

project aim was to assess the feasibility of capturing CO2 
emitted by the local, coal-fuelled power plant (approx. 
60,000 tons of CO2 emitted annually) and storing it in a 
saline aquifer underground. 

Increase in anthropogenic emission of CO2 into the 
Earth’s atmosphere since the industrial revolution and 
its contribution to global climate change is unequivocal 
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(IPCC, 2005; IEA, 2008). The ‘450 Scenario’, aims for 
stabilisation of global atmospheric CO2 at 450 ppm 
(the Copenhagen Accord). Carbon capture and storage 
(CCS) offers one such method of emission reduction 
(contributing up to 19%; Birol, 2010) where carbon 
is captured at point sources (e.g., coal-fuelled power 
plants), transported to suitable injection sites (e.g., by 
pipelines, ships or trucks) and injected into suitable 
subsurface storage formations, e.g., saline aquifers and 
depleted hydrocarbon fields (IPCC, 2005; Bachu, 2008; 
Benson & Cole, 2008). 

The technology for injecting CO2 into the subsurface is 
reasonably well understood and has been employed by 
the hydrocarbon industry since the 1980s for increasing 
oil recovery (Beliveau et al., 1993). CCS was tested and 
applied globally in a variety of geological and top-side 

settings within the past decade, with a varying degree of 
success. The technical feasibility of CCS is currently best 
illustrated by a handful of industrial-scale projects that 
have operated in recent years, e.g., Sleipner (Eiken et al., 
2011), In Salah (Vasco et al., 2008), and the Weyburn field 
(White et al., 2004; Whittaker et al., 2004). Furthermore, 
pilot-scale projects in Japan (Xue et al., 2006), Ketzin in 
Germany (Förster et al., 2006), the Frio project in Texas 
(Daley et al., 2008; Doughty et al., 2008) and CarbFix in 
Iceland (Aradóttir et al., 2011) all confirm the feasibility 
of the storage part of CCS under various subsurface and 
top-side conditions. 

The primary focuses of the Longyearbyen CO2 Lab 
(Braathen et al., 2012) have been identification and 
appraisal of potential reservoir and caprock units. 
The best reservoir units have been identified as the 

Figure 1. Geographical and geological location of the Longyearbyen CO2 Lab study site. (A) The CO2 study is located on Spitsbergen, the largest 
island of the Svalbard archipelago, which is situated in the Arctic Ocean between 74° and 81°N and 15° and 35°E. (B) Simplified geological 
map of central Spitsbergen showing primary structural elements (modified from Ogata et al., 2012, 2014, after Dallmann et al., 2002); the 
Longyearbyen CO2 Lab field study site is highlighted by a red square. (C) Generalised cross-section of Spitsbergen showing four structural zones 
of the Western Spitsbergen fold and thrust belt (WSFTB). Abbreviations: LYB CO2 LAB – Longyearbyen CO2 Laboratory, BFZ – Billefjorden 
Fault Zone, LFZ – Lomfjorden Fault Zone, HFZ - Hornsund Fault Zone, D – Devonian, Ca – Carboniferous, Cp – Permian, Tr – Triassic, JC – 
Jurassic–Cretaceous, T – Tertiary. Cross-section modified from Ogata et al. (2014), and based on Bergh et al. (1997). 
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spans the Wilhelmøya Subgroup and the lowermost part 
of the Agardhfjellet Formation Subgroup, was possibly 
sourced from the Agardhfjellet Formation (Ohm et al., in 
prep.), analogues to the Hekkingen Formation which is a 
prolific source rock in the SW Barents Sea. 

As previously stated, a key finding from the pilot 
project is that subhydrostatic pressures are present 
in the storage formation interval. In addition, a slight 
overpressure is encountered in a shallow aquifer above 
the caprock (Braathen et al., 2012). Vertical pressure 
compartmentalisation (Braathen et al., 2012) illustrates 
the good sealing properties of the caprock, while 
lateral pressure compartmentalisation (Larsen, 2010, 
2012) indicates the presence of baffles or seals to fluid 
flow. Moreover, this observation is supported by water 
injection tests in DH7A and interference monitoring 
in DH5R (UNIS CO2 Lab AS, 2015) described herein. 
Communication between the two wells (situated 94 
metres apart) during active injection was negligible, 
further supporting the presence of lateral flow barriers. 
The abnormal pressures encountered in the storage 
formation interval attest to a tight impermeable 
underburden consistent with the Bravaisberget 
Formation which forms the uppermost part of the 
Sassendalen Group.

This contribution presents evidence of fluid flow barriers 
affecting the target reservoir unit and details structural 
heterogeneities that may compartmentalise the potential 
storage unit. 

Geological setting

The Svalbard archipelago is part of the emergent, uplifted 
northwest Barents shelf (Fig. 1), an otherwise submerged 
portion of Eurasian continental crust. The early 
development of the area is dominated by the Silurian–
Devonian Scandian phase of the Caledonian orogeny 
(McKerrow et al., 2000), as well as earlier tectonic 
events, e.g., the Svecofennian and Timanian orogenies 
(Nironen, 1997; Ritzmann & Faleide, 2007; Faleide et 
al., 2008; Marello et al., 2010; Andresen et al., 2014). 
The oldest strata preserved on Svalbard comprise the 
Precambrian to Early Palaeozoic Hecla Hoek (Harland et 
al., 1966; Ohta, 1982) and form the region’s metamorphic 
basement. 

Following the Caledonian orogeny, uplifted areas were 
subject to subaerial erosion, with deposition of Old 
Red Sandstone taking place in supradetachment basins 
throughout the Devonian to Early Carboniferous 
(Faleide et al., 1993; Osmundsen et al., 1998; Braathen et 
al., 2000, 2018; Osmundsen & Andersen, 2001; Souche et 
al., 2012). This crustal-scale extension exploited north–
south trending Caledonian lineaments and was followed 

uppermost part of the Carnian to Norian De Geerdalen 
Formation (Isfjorden Member) and the Norian to 
Bathonian Wilhelmøya Subgroup, which are encountered 
at 672 to 970 metres depth at the potential injection site 
in Adventdalen (drill site 2; Fig. 2), 5 km southeast of the 
Longyearbyen power plant. The Wilhelmøya Subgroup 
has the best porosity and permeability but well tests 
confirm the presence of baffles to fluid flow (discussed 
herein).

The overlying shale- and claystone-dominated, late 
Bathonian to Hauterivian Agardhfjellet and Rurikfjellet 
formations were identified as a suitable caprock interval. 
The presence of a 100–150 m-thick permafrost zone at 
the drill site (Humlum et al., 2003; Johansen et al., 2003) 
is also expected to contribute locally as a complementary 
seal. The potential reservoir and caprock outcrop 15 km 
to the northeast of the planned injection site (Fig. 2) 
and, as such, no conventional structural trap is present 
(Bælum et al., 2012). Subhydrostatic pressure gradients 
in the reservoir (discussed herein), however, suggest that 
the reservoir is not in communication with the surface. 

Analysis of outcrop and core data, along with water 
injection tests, have shown the reservoir to be tight, with 
low matrix permeability (<2 mD) and moderate porosity 
(up to 20%; Braathen et al., 2012; Farokhpoor et al., 
2013, 2014; Mørk, 2013; Magnabosco et al., 2014; Senger 
et al., 2015a). The tight nature of the reservoir relates 
to deep burial that occurred during the development 
of the Palaeogene West Spitsbergen Fold-and-Thrust 
Belt (WSFTB; Bergh et al., 1997; Braathen et al., 1999). 
The reservoir is further complicated by the occurrence 
of Early Cretaceous igneous intrusions (Bælum et al., 
2012; Corfu et al., 2013; Senger et al., 2014a), large-
scale low-angle thrusts and subseismic high-angle 
extensional faults related to the WSFTB (Ogata et al., 
2014; Mulrooney & Braathen, 2015). Despite these 
heterogeneities, water injection tests show an average 
flow capacity of 61 mD m-1 in the Wilhelmøya Subgroup 
(Larsen, 2010, 2012), which is envisaged to be primarily a 
function of matrix permeability, with the natural fracture 
network providing efficient fluid migration pathways 
from less to more promising reservoir zones. The 
underlying De Geerdalen Formation shows an average 
flow capacity of 45 mD m-1 in the lowermost part of the 
reservoir which is envisaged to be primarily a function of 
the natural fracture network (Larsen, 2010, 2012; Ogata 
et al., 2012, 2014).

Natural gas was encountered at several stratigraphic 
intervals during the drilling campaign (Senger et al., 
2016; Huq et al., 2017; Ohm et al., 2017). Thermogenic 
gas and oil-stained sandstones were encountered in the 
De Geerdalen Formation (DH4; Fig. 2) and envisaged 
to have been generated in the Middle Triassic Botneheia 
Formation (Abay et al., 2017) located approx. 400 m 
below the maximum drilled depth. Thermogenic gas 
from a 650–703 m interval in well DH5R (Fig. 2) which 
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shelf. Large deltaic systems prograded from the southeast, 
and across the Barents Shelf and built out over earlier 
Triassic deep-marine deposits (Riis et al., 2008; Glørstad-
Clark et al., 2010; Høy & Lundschien, 2011; Anell et al., 
2014; Klausen et al., 2015). 

The targeted reservoir section (Fig. 2) envisaged for the 
Longyearbyen CO2 Lab belongs to the Upper Triassic to 
Middle Jurassic Kapp Toscana Group, which comprises 
the sandstone-dominated De Geerdalen Formation 
and the overlying Wilhelmøya Subgroup (i.e., the 
Knorringfjellet Formation; Worsley, 1973, 2008; Knarud, 
1980; Mørk et al., 1982; Harland & Geddes, 1997; Mørk & 
Worsley, 2006; Mørk, 2013; Rismyhr et al., in press). The 
De Geerdalen Formation represents paralic deposition 
while the Wilhelmøya Subgroup was deposited in a deltaic, 
tide-dominated shoreline, and inner-shelf environments. 
Herein, the Wilhelmøya Subgroup is divided into three 
sequences after Rismyhr et al. (in press). Sequence 1 is 
broadly comparable to the Tverbekken Member and 
includes the Slottet Bed, sequence 2 is comparable to the 
Teistberget Member, while sequence 3 is comparable to 
the Brentskardhaugen Bed. 

The reservoir units are overlain by a 450 m-thick, shale-
dominated succession belonging to the Middle Jurassic 
to Lower Cretaceous Agardhfjellet Formation (Koevoets 
et al., 2016, 2018) and the Early Cretaceous Rurikfjellet 
Formation (Dypvik et al., 1991; Grundvåg et al., in 
prep.), which represents the regional caprock and seal 
for the targeted storage formation (Fig. 2). Overlying 
the reservoir-seal succession, the overburden continues 
with the 60 m-thick fluvial to deltaic deposits of the 
Barremian Helvetiafjellet Formation and 60 m-thick, 
Aptian to Albian, shallow-marine to inner-shelf deposits 
belonging to the Carolinefjellet Formation (Grundvåg et 
al., in prep.). The transition between the two formations 
is marked by an erosional unconformity related to crustal 
updoming driven by the HALIP event (Maher, 2001; 
Midtkandal et al., 2007; Nejbert et al., 2011; Minakov et 
al., 2012; Corfu et al., 2013; Senger et al., 2014a; Polteau et 
al., 2016). Mafic igneous intrusions (approx. 122.2–124.5 
Ma) associated with the HALIP locally (Fig. 2) played 
an important role in terms of diagenesis and perhaps 
compartmentalisation of the Mesozoic sedimentary 
succession (Corfu et al., 2013; Senger et al., 2013, 2014a).

In the latest Cretaceous, a dextral transform fault zone 
known as the De Geer Zone (i.e., the palaeo-Hornsund 
Fault Zone) developed between Greenland and the 
western Barents Sea (Talwani & Eldholm, 1977; Gaina 
et al., 2009). Initial stages of break-up and sea-floor 
spreading were accompanied by a phase of Palaeogene 
transpression, which led to the development of the West 
Spitsbergen Fold-and-Thrust Belt (WSFTB; Braathen 
& Bergh, 1995; Bergh et al., 1997; Braathen et al., 1999; 
Leever et al., 2011). The WSFTB is characterised by a 
western thick-skinned province where structures are 
basement-involved, and a thin-skinned fold-thrust 
belt with three distinct detachment levels along weak 

by, or linked to, a phase of east–west crustal shortening 
during the latest Devonian to earliest Carboniferous 
Svalbardian–Ellesmerian deformation event (McCann, 
2000; Piepjohn, 2000; Braathen et al., 2018). Narrow 
rift grabens, again reactivating Caledonian lineaments, 
formed in the Middle–Late Carboniferous, e.g., the 
Billefjorden Fault Zone (Braathen et al., 2011; Maher 
& Braathen, 2011) and were filled by a mixture of 
siliciclastic and evaporite deposits. 

Extensional activity along lineaments slowed in the Late 
Carboniferous–Permian (Høy & Lundschien, 2011), 
and Permian carbonates and evaporites were deposited 
as part of a stable platform succession. Later Permian 
deposits record a shift from warm-water carbonates to 
cold-water, siliceous deposits (Steel & Worsley, 1984; 
Stemmerik & Håkansson, 1989; Stemmerik & Worsley, 
1989; Nilsson et al., 1996; Worsley, 2008; Smelror, 2009).

The Carboniferous–Triassic Uralian orogeny in the east 
of the Barents shelf (Rickard & Belbin, 1980; Ziegler, 
1988; Gee et al., 2006; Pease, 2011) and associated uplift 
provided a prominent sediment source for the Barents 

Figure 2. (A) Simplified geological map and cross-section of the 
Longyearbyen CO2 Lab study site and surrounding area, modified 
from Major et al. (1992) and Ogata et al. (2012, 2014), based on 
Dallmann (1999). The inset simplified cross-section (Y–Y’) and 
stratigraphic column show that the potential reservoir unit (within 
the Kapp Toscana Group) is sandwiched between two décollement 
surfaces related to the WSFTB. Abbreviations: DG – De Geerdalen 
Formation, W – Wilhelmøya Subgroup. The reservoir is also shown 
to be affected by small extensional faults (also associated with 
the WSFTB), and Late Cretaceous doleritic dykes and sills. (B) 
Simplified geological map of the Deltaneset to Hatten area, where 
the Longyearbyen CO2 target reservoir crops out 15 km northeast 
of the proposed injection site (Drill site 2). Two valley sections, 
Konusdalen and Criocerasdalen, are highlighted, where faults and 
fractures have been investigated in both the reservoir and the cap-
rock succession, respectively. (C) Simplified geological map of the 
Longyearbyen area showing the two drill sites. Inset: Map of the 
Aventdalen Well Park, which is the potential CO2 injection site. 
Lab study site and surrounding area, modified from Major et al. 
(1992) and Ogata et al. (2012, 2014), based on Dallmann (1999). 
The inset simplified cross-section (Y–Y’) and stratigraphic column 
show that the potential reservoir unit (within the Kapp Toscana 
Group) is sandwiched between two décollement surfaces related to 
the WSFTB. Abbreviations: DG – De Geerdalen Formation, W – 
Wilhelmøya Subgroup. The reservoir is also shown to be affected 
by small extensional faults (also associated with the WSFTB), and 
Late Cretaceous doleritic dykes and sills. (B) Simplified geological 
map of the Deltaneset to Hatten area, where the Longyearbyen (A) 
Simplified geological map and cross-section of the Longyearbyen 
CO2. 

➧
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 evaporite and shale intervals, two of which bound the 
Longyearbyen CO2 reservoir (Fig. 2; Bergh et al., 1997; 
Braathen et al., 1999; Blinova et al., 2012). In addition, 
small-scale extensional structures (Fig. 2) seen to offset 
the storage formation (Lord, 2013; Ogata et al., 2014; 
Roy et al., 2014; Mulrooney & Braathen, 2015) have 
been related to differential tectonic loading during the 
evolution of the WSFTB crustal flexure. This flexure 
was  induced by orogenic loading of the WSFTB which 
created the Palaeogene Central Tertiary Basin (CTB), 
a foreland basin accommodating sediments from the 
uplifted western hinterland and infilled by Palaeogene 
marine to continental facies (Steel & Worsley, 1984; 
Braathen et al., 1999; Helland-Hansen, 2010; Anell et al., 
2014). The Longyearbyen CO2 Lab study area (Fig. 2) is 
situated on the northwestern margin of the CTB. Vitrinite 
reflectance measurements by Throndsen (1982) suggest 
that the target formations in this study were buried to a 
depth of approx. 4.5 km, while a depth of approx. 3.7 km 
can be inferred from a more recent study by Marshall et 
al. (2015). This burial caused mechanical and chemical 
compaction that significantly altered the primary 
properties of the potential reservoir sandstones and cap-
rock shales (Braathen et al., 2012; Senger et al., 2012; 
Mørk, 2013; Koevoets et al., 2018). The Longyearbyen 
CO2 reservoir experienced approximately 3.5 km of 
uplift from the Oligocene, and mostly during the Late 
Miocene, Pliocene and Quaternary when Svalbard and 
the entire Barents Sea region were subject to significant 
glacial isostatic rebound and erosion (Dimakis et al., 
1998; Bohloli et al., 2014). The development of severe 
underpressure within the study area is linked to the 
Cenozoic uplift and repeated glaciations (e.g., Wangen et 
al., 2016), though the extent of this and the main drivers 
are not fully understood.

Data and methods

The study presented herein utilised core and wireline 
log data from three closely spaced wells in Adventdalen 
(DH4, DH5R, DH7A) and an additional well 7 km to 
the northwest (DH2; Fig. 2), which fully penetrated the 
Wilhelmøya Subgroup. In addition, field studies were 
conducted 15 kilometres northwest of the Adventdalen 
well site (Drill site 2; Fig. 2) where the subgroup crops 
out. A summary of the multidisciplined approach to 
appraising the target reservoir is given in Table 1. 

Core samples from boreholes and outcrops were 
collected for pore network characterisation (Fig. 3), 
and analysed using high-resolution X-ray computed 
tomography (micro-CT; Cnudde & Boone, 2013; Van 
Stappen et al., 2014). In order to fully characterise the 
pore network, micro-CT was then combined with other 
techniques, notably Mercury Intrusion Porosimetry 
(MIP; Cnudde et al., 2009) and Helium-porosimetry 

(HeP; Van Stappen et al., 2014). The analysis focused on 
the 3D pore structure and the presence of microcracks 
(Van Stappen et al., 2014). A more complete description 
of this methodology is described in Appendix 1. 

High- and low-pressure water injection tests (Larsen, 
2010, 2012; Senger et al., 2015a) were performed targeting 
the Wilhelmøya Subgroup (Fig. 4) to obtain permeability 
information and to test lateral communication between 
wells. 

Effects of diagenesis and quartz cement distribution 
within the target reservoir were discerned by optical 
microscopy of 55 polished thin-sections, supplemented 
by scanning electron microscopy back-scattered electron 
image and energy dispersive analysis for mineral 
identification and microstructural interpretation (Mørk, 
2013).

Structural analysis of the outcropping reservoir section 
was performed to improve the control of differential 
fracturing of litho-mechanical units as well as meso-
scale (>50 cm displacement, subseismic) faults 
and igneous intrusions on fluid flow and reservoir 
compartmentalisation. Structural discontinuity mapping 
was conducted on the target succession outcrops where 
scan-lines (i.e., the line-intersection method; Singhal & 
Gupta, 2010) have been measured to provide horizontal 
fracture frequency plots along individual intervals, 
as well as fracture orientation, not available from the 
unorientated drillcores. Discontinuity classification is 
based on Schultz & Fossen (2008). In addition, meso-
scale fault systems and associated damage zones were 
identified and mapped in terms of breccia series and 
gouge thickness/composition (Ogata et al., 2014; 
Mulrooney & Braathen, 2015). Fault architecture was 
mapped using virtual outcrop models created using 
photogrammetry, e.g., Buckley et al. (2016).

Clay gouge from 5 normal faults affecting the reservoir 
were sampled from outcrops in Konusdalen (Fig. 2) 
and subject to X-ray diffraction (XRD) mineralogical 
composition analyses. A background sample from a 
shale-rich bed within the Wilhelmøya Subgroup and 
outside of the fault damage zones was also analysed. 
The second part of the analysis attempted to model 
clay fraction aggregates. Analysis was run using a D8 
advanced Bruker diffractometer equipped with Copper 
Ka radiation (40 kV and 40 mA) and LynxEye detector 
(expanded upon in Appendix 2).

Injection and fluid flow properties of the Wilhelmøya 
Subgroup were investigated by conducting water 
injection tests (Fig. 4) in DH7A (Test 1) and DH5R 
(Test 2). High- and low-pressure water injection 
tests (Larsen, 2010, 2012) were performed (Fig. 4) to 
obtain permeability information and to test lateral 
communication between wells. The first (Test 1) 
consisted of an active injection and falloff sequence in 
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with injection rates of up to 1373 m3/d followed by 71.4 
hours of shut-in, and finally 72.2 hours with injection 
rates of up to 476 m3/d (451 m3/d the last 13.5 hours) 
followed by an extended falloff interval that lasted 7432 
hours (approx. 10 months). The second injection and 
falloff test (Test 2) was conducted in DH5R (Larsen, 
2012; UNIS CO2 lab AS, 2015) with 2 days of injection 

DH7A over a 9-day period starting Sept. 6, 2012, followed 
by an extended falloff for 310 days ending July 21, 2013, 
with possible pressure interference monitored in DH5R, 
94 m away. The test sequence was run for 4 hours with 
injection rates of up to 368 m3/d followed by 22.6 hours 
of shut-in, for 0.36 hours with injection rates of up to 
1363 m3/d followed by 42 hours of shut-in, for 5.8 hours 

Table 1. Summary of Longyearbyen CO2 lab studies, methods and datasets.

Well appraisal
Analyses Aims Data sets Resolution (m) Key references

Water injection and monitoring tests Permeability information/  
test lateral communication

Test results from 3 wells ~100 m Larsen (2010, 2012)

Pore network characterisation
Analyses Aims Data sets Resolution (m) Key references

X-ray computed tomography 
(Micro-CT)

Quantify fracture orientation, length and 
maximum aperture

12 Core plugs/  
12 outcrop plugs

≥2.8 µm Cnudde & Boone (2013);  
Van Stappen et al. (2014)

Image reconstruction   
(Octopus software suite)

3D pore structure and (micro-) crack 
analysis

12 Core plugs/  
12 outcrop plugs

~1 µm Van Stappen et al. (2014)

Mercury Intrusion Porosimetry 
(MIP)

Refinement of pore network 
characterisation

12 Core plugs/  
12 outcrop plugs

~1 µm Cnudde et al. (2009)

Helium-porosimetry  (HeP) Refinement of pore network 
characterisation

12 Core plugs/  
12 outcrop plugs

~1 µm Van Stappen et al. (2014)

optical microscopy Effects of Diagenesis and quartz cement 
distribution 

55 polished thin 
sections

~0.5 mm Mørk (2013)

scanning electron microscopy / 
energy dispersive analysis 

mineral identification and 
microstructural interpretation 

Core samples ~1 µm Mørk (2013)

Fault analysis
Analyses Aims Data sets Resolution (m) Key references

Meso-scale fault systems Determine fault attitudes, frequency, 
style

Outcrops, Virtual 
outcrop models

cm - 100 m Ogata et al. (2014); 
Mulrooney & Braathen 

(2015)

Fault gouge analysis Determine clay mineral composition 
and clay fractions

6 outcrop samples 
(locations in Fig. 6)

~1 µm Mulrooney et al.  
(this volume)

Fracture Analysis
Analyses Aims Data sets Resolution (m) Key references

Structural logging of  cores Determine physical characteristics and 
frequency distribution

4500 m of drill cores/
Optical televiewer 

~1 cm Ogata et al. (2012)

Line-intersection method, outcrops Litho-mechanical control of fracture 
network

105 scan-lines,  
7672 measurements 

~1 cm Ogata et al. (2014)

Igneous intrusion analysis
Analyses Aims Data sets Resolution (m) Key references

Regional igneous study Determine geometries of igneous 
intrusions

Seismic, magnetic,  
LIDAR and borehole data

≥10 m Senger et al. (2013)

Igneous affects on reservoir Impact of igneous intrusions on 
reservoir properties 

Sedimentological analysis
Analyses Aims Data sets Resolution (m) Key references

Sedimentological study Facies analysis, seq. strat,  
palynology of the reservoir 

4 drill cores/ 
outcrop logs

~1 cm Rismyhr et al.  
(this volume)
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starting on Aug. 11, 2014 and followed by an 848 hour-
long falloff period ending Sept. 17, 2014. The injection 
rate was kept stable at approx. 310 m3/d for 40 hours, 
after which the rate was gradually increased to 325 m3/d 
over an 8-hour period. 

Results

Flow and shut-in tests

Test 1
Injection and falloff results from DH7A are shown 
in Fig. 5, with a log-log diagnostic plot in Fig. 5A of 
test data from the extended falloff (markers) and data 
from an analytical model (curves) with a uniform-flux 
fracture (i.e., uniform inflow over the entire fracture 
area) with half-length xf = 83 m orientated parallel to a 
flow barrier 58 m from the well, and a test overview plot 
in Fig. 5B of the entire data set from DH7A (markers) 
along with output from the analytical model (curve). 
The green markers in Fig. 5A represent pressure changes 
after shut-in, while the red markers represent semi-
log derivatives after shut-in. The derivatives are used 
to identify the flow response, with the 45 degree climb 

between 0.4 and 100 hours into the falloff typical for flow 
along a fracture enhanced by boundary effects from the 
nearby flow barrier, and the flat part indicated at the end 
typical for radial flow (in this case from a half-circle due 
to the flow barrier on one side). Apart from the first half 
hour, the match of test data and model output is excellent. 
Given a reservoir thickness of approx. 24 m (determined 
from outcrops; Ogata et al., 2014), a permeability of 
2.55 md is obtained from a flow capacity of 61.2 md·m 
referred to above. 

The results (Fig. 5) of the first test show very limited 
to no pressure communication between DH5R and 
DH7A, which implies that there must be flow barriers 
in the subsurface. In addition, test results for DH7A are 
consistent with injection-related hydraulic fracturing 
(i.e., DH7A is a fractured well) and the presence of 
a nearby flow barrier. Since it is often difficult to 
identify radial flow data from fractured wells, it can be 
challenging to obtain good estimates of the flow capacity 
(i.e., the kh product). However, with almost 8000 hours 
of shut-in data from DH7A, a flow capacity of 61.2 md·m 
can be determined with a high degree of confidence. 
Results are less certain for determining the fracture half-
length (xf in Fig. 5) and the distance to the flow barrier, 
but values outside the range 70–100 m for the half-
length and 50–60 m for the distance are not likely. These 

1 cm 1 mm

2.5 mm

C

D

A B

Figure 3. Principle of down sampling for the CT-scanning technique, illustrated with a drillcore sample (A) from DH2, taken at depth of 752.34 
m. The drillcore sample (diameter 42 mm) was initially scanned at a resolution of 60 µm, in which a sudden change in lithology is present (B). 
Based on this rendering, smaller subsamples (5 mm and 3–4 mm diameter) were taken, which could be analysed at resolutions of 4 µm and 2.8 
µm, respectively, illustrated by the 2D slices in (C) and (D), respectively.
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Figure 4. Well design and flow chart for the fluid flow tests. (A) Schematic depiction of the water flow test conducted on the Wilhelmøya 
Subgroup with well DH7A as the injector and DH5R as the observation well. The down-hole pressure gauge in DH5R was placed at 645 m. 
Abbreviations: HWT – Well into bedrock, HQ – 66 mm casing, NQ – 56 mm casing, BQ – 46 mm casing, ID – Internal diameter. Blue stippling is 
cement. (B) Technical diagram for the water test provided by Baker Hughes.
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uncertainties are related to unknown flow properties 
within the induced fracture.

In the analysis, the flow barrier has been modelled as 
fully sealing, but the DH7A data are also consistent with 
some minor leakage across the boundary, e.g., with a 
multiplier lower than 0.01. A multiplier in this range is 
also consistent with the lack of observable interference in 
DH5R, especially with unstable and noisy data in DH5R 
after well operations with falling water level coupled 
with variable gas influx in DH5R (Huq et al., 2017). Poor 
reference data, as in this case, require a strong response to 
be clearly identifiable as interference, as with no barriers 
or barriers with only moderate flow restrictions. Pressure 
data were monitored for almost two years in DH5R, until 
May 5, 2014, but beyond the first few weeks the response 
was clearly dominated by gas influx.

A key observation from the DH7A data is that the 
Wilhelmøya Subgroup is under-pressured by at least 35 
bar with reference to standard sea level. 

Test 2
In contrast to the DH7A data from the first test, the 
extended falloff from DH5R is difficult to match with 
a single model. The log-log diagnostic plot in Fig. 5C 
shows a chosen match of falloff data from DH5R with 
a fractured well between parallel no-flow boundaries. 

Although the model does not match early data, a good 
match is obtained for the last 830 hours of the falloff. 
The results listed in the plot, with a uniform-flux fracture 
with a half-length of 93 m, permeability of 1.9 md, and 
the presence of no-flow boundaries (e.g., impermeable 
fractures) at 22 and 138 m from the well, are based on 
an assumed reservoir thickness of 30 m. These results 
are consistent with the DH7A results (Fig. 5A). The 
uniform-flux fracture has also been oriented parallel 
to the boundaries in the model. The reason for this 
‘channel-like’ model used for DH5R is the upturn seen 
in derivatives (the lower data) after about 200 hours. 
The poor match of the early data shown in Fig. 5C is 
likely caused by a lack of fracture stabilisation during 
the single injection period prior to the falloff. This is 
evident in the history plot shown in Fig. 5D, where the 
uniform-flux fracture length is only consistent with the 
pressure response at the end of the injection period. 
In order to match the first part of the injection data, a 
shorter uniform-flux fracture would be needed. The 
same can be observed in the DH7A data over a shorter 
time scale, but not evident in Fig. 5B with almost 1 year 
of data. Although fracture propagation is evident in both 
datasets, a key difference is that a much larger volume 
was injected in DH7A (test 1) compared with DH5R (test 
2) prior to the long shut-ins. 
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and a no-flow boundary at 58 m

Uniform flux fracture with xf = 93 m, k = 1.9 mD 
and parallel boundaries at 22 m and 138 m

Uniform flux fracture with xf = 83 m, 
k = 2.55 mD, a no-flow boundary at 58 m
and initial pressure of 27.5 bar

Uniform flux fracture with xf = 93 m, 
k = 1.9 mD, parallel boundaries at 22 m 
and 138 m and initial pressure of 24.2 bar
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Figure 5. Flow and shut-in test results from the Wilhelmøya Subgroup in Adventdalen. (A) Log–log match of the extended DH7A falloff (test 1) 
with a uniform-flux fracture and a sealing boundary. Observed pressure change after shut-in (green markers). Modelled pressure change after 
shut-in (red curves). Semi-log derivates (red markers). Modelled semi-log derivitives (black curves). Abbreviation: xf – fracture half-length, K - 
permeability. (B) Match of the entire DH7A dataset with the uniform-flux fracture and sealing boundary. Y-axis showing both pressure (bar) 
and flow rate (m3/d). (C) Log–log match of the DH5R falloff data (test 2) with a fractured off-centre well in a linear flow unit. Observed pressure 
change after shut-in (green markers). Modelled pressure change after shut-in (red curves). Semi-log derivates (red markers). Modelled semi-log 
derivatives (black curves). (D) Match of the entire DH5R dataset with the fractured off-centre well in a linear flow unit. Y-axis showing both 
pressure (bar) and flow rate (m3/d).
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It is important to note that the initial pressure of 24.2 bar 
at a depth of 645 m listed in Fig. 5D corresponds to the 
value needed in the analytical model to match the test 
data from DH5R. Since the model does not fully match 
the data, there is some added uncertainty about the 
formation pressure in DH5R. Since the recorded pressure 
was 27.5 bar and rising prior to the start of injection, it 
is most likely that the initial pressures were the same at 
the two well locations, e.g., 29.9 bar at 670 m depth, and 
hence similarly under-pressured. 

Faults in the target successions

The presence of subsurface, potentially baffling faults 
within the target reservoir is consistent with outcrop and 
seismic observations throughout central Spitsbergen. 
Normal faults are observed along the coast of western 
Spitsbergen, e.g., the Forlandsundet Graben (Steel et 
al., 1985; Gabrielsen, 1992), as well as offshore (Eiken & 
Austegard, 1987). Similar structures are described on the 
eastern flank of Boret Mountain, central Spitsbergen and 
within the Svea mine (locations shown in Fig. 1; Goss, 
2013). In the latter case, thrusts related to the WSFTB 
(Bergh et al., 1997; Braathen et al., 1999) form the sole 
to the extensional faults where both structures are 
envisaged to have formed contemporaneously.

Meso-scale faults, defined herein as faults that have >50 
cm displacement, are subseismic (Ogata et al., 2012, 2014; 
Roy et al., 2014; Mulrooney & Braathen, 2015) and affect 
the reservoir successions in a N–S-trending river section 
15 kilometres northeast of the drill sites. The Konusdalen 
fault system, illustrated in Fig. 6, affects the uppermost 
part of the De Geerdalen Formation (Isfjorden Member) 
and the entire Wilhelmøya Subgroup. Here, these faults 
exhibit strikes of NE–SW to ENE–WSW, and dip 
approximately 65° towards the NW to NNW. Antithetic 
faults are also present, and dip approximately 70° 
towards the SE to SSE. The Konusdalen outcrop consists 
of 3 rotated fault blocks ranging from 2 to 6 metres in 
width, and is characterised by a 2 m-wide graben and 
an 11 m-wide horst. Five faults and associated splays are 
identified: the K1, K3 and K5 faults consist of several 
synthetic and antithetic segments, some discontinuous. 
The majority of fault displacement is accommodated 
by narrow zones of penetrative strain, i.e., fault cores. In 
one case, K3, an example of down-section bifurcation is 
observed (Fig. 6B). Fault zones K2 and K5, in contrast, 
are defined by single discrete slip surfaces. Maximum 
displacement on individual faults is approximately 3 m. 

Each fault core is surrounded by a damage zone, i.e., a 
volume of deformed wall rocks around a fault core or 
slip surface that results from the initiation, propagation, 
interaction and build-up of slip along faults (e.g., Cowie 
& Scholz, 1992; McGrath & Davison, 1995). The fault 
core and damage zones in Konusdalen can be described 
in terms of breccia series, fracture frequency and gouge 

presence following Braathen et al. (2004, 2009). Country-
rock brecciation (protobreccia, breccias or ultrabreccia) 
and gouge are displayed in Fig. 6D. Away from zones of 
brecciation and fault induced fracturing, background 
fracturing (Fig. 6C) is observed. Deformation varies 
between fault zones; for example, K1 is characterised by a 
discrete gouge-cored fault zone surrounded by relatively 
undeformed country rock. In contrast, faults K3a and 
K4 show undulating zones of coarse-grained gouge and 
breccias spanning a 25 cm envelope around the fault’s 
core. Fault zones K3 and K5 are characterised by thick, 
but undulating (max. 75 and 22 cm, respectively) zones of 
variably brecciated rock. In addition, lenses comprising 
lesser localised brecciation are in places rafted within 
more mature brecciated fault rock, and envisaged to have 
been broken off from the fault-core walls during slip 
events. The damage zones shown in Fig. 6 range between 
1 and 4.5 m width for individual faults. The presence 
of undulating clay gouge in fault cores is likely derived 
from the low N/G ratio (25–50%) host-rock succession. 
The gouge forms clay abrasion membranes of variable 
thicknesses, but no true development of shale-smear is 
present.

Results of X-Ray diffraction (XRD) analyses of gouge 
sampled from five fault cores (K1, K2, K3, K4 and K5) 
are summarised in Table 2. The gouge is not completely 
formed of clay minerals, containing between 23 and 
43% quartz. The cores are typically characterised by 
gouge containing (in descending abundance) quartz, 
muscovite/illite, plagioclase, kaolinite and chlorite. Some 
fault cores also contain small volumes of microcline, 
siderite, pyrite and apatite. The composition of the gouge 
is broadly similar to that of shale- and claystone-rich 
beds of the Wilhelmøya Subgroup (sequence 1). Clay 
fraction modelling, in addition to chlorite-smectite (C–S) 
and mixed layer Illite-smectite (I–S) ratios are shown 
in Table 3. The increased I/S ratio in the fault gouges 
in comparison to the host rock, apart from K3, may be 
indicative of shear-stress-induced dehydration, which 
makes smectite highly reactive and prone to transform 
into illite (Casciello et al., 2004). The progressive 
transformation of smectite to illite via mixed-layer illite/
smectite (I/S) correlates with changes in temperature 
due to burial depth, although the function curve for this 
process is very coarse (Kubler, 1967; Hower et al., 1976; 
Boles & Franks, 1979; Pollastro, 1993; Árkai et al., 2002). 
Other factors, such as geotectonic setting, period of 
heating, rock composition, porosity, fluid circulation, and 
K+ ion availability, can also influence these parameters 
(Frey, 1987; Merriman, 2005; Dellisanti & Valdrè, 
2008; Merriman & Peacor, 2009; Dellisanti et al., 2010). 
Assuming a hyperthermal gradient of 50°C/km (Marshall 
et al., 2015) owing to the presence of dolerite intrusions 
(Senger et al., 2014a), and burial to approx. 3.7 km (see 
above), the target reservoir experienced temperatures of 
approximately 185°C (Marshall et al., 2015). This high 
temperature is supported by observations of pervasive 
quartz cementation (Mørk, 2013).
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Faults affecting the lower part of the Agardhfjellet 
Formation are observed in a valley section 3 km to the 
east of Konusdalen (Fig. 7; Ogata et al., 2014; Mulrooney 
& Braathen, 2015) in Criocerasdalen, and in an 
unnamed valley 1 km west of Criocerasdalen (location 
in Fig. 2). These faults are, however, not hard linked to 
the aforementioned Konusdalen system, i.e., they tip 
out towards the base of the Agardhfjellet Formation. 
Correspondingly, the Konusdalen faults tip out 
up-section approx. 10 m below the interface between the 
Wilhelmøya Subgroup and the Agardhfjellet Formation. 
In addition, faults affecting both successions show some 
notable geometrical contrasts, i.e., spacing and dip (Fig. 
8). Konusdalen faults are closely spaced (1–10 m spacing) 

and show steep dips in the range of 65–85°, whereas 
Criocerasdalen faults display spacing in the range of 25 
and 45 m, low-angle 25° dipping synthetic faults and 
steeper, 60° dipping, antithetic faults. Moreover, the 
Criocerasdalen faults strike approximately 10° counter-
clockwise of the underlying systems.

The varying styles of faulting affecting the caprock and 
reservoir sections along with similar discrepancies 
in fracture trends observed by Ogata et al. (2014) are 
likely caused by vertical geomechanical variation in the 
stratigraphic succession, not least controlled by a notable 
transition from the heterolithic Wilhelmøya Subgroup 
into the shale- and claystone-dominated Agardhfjellet 
Formation. The transition also stratigraphically 
correlates to a variation in fracture pressures identified in 
well tests (Bohloli et al., 2014).

Natural fracture systems

Open natural fractures (unrelated to injection or 
drilling operations) within the Wilhelmøya Subgroup 
have been shown to contribute to permeability, fluid 
injectivity and storage capacity. Fractures are identified 
in both outcrop and in drillcores (Fig. 9; e.g., Ogata et 
al., 2012, 2014), and their genesis is primarily attributed 
to Palaeogene transpression during evolution of the 
WSFTB and subsequent uplift and unroofing. Locally, 
enhanced fracturing occurs in damage zones of the 
Konusdalen fault system as described above and in 
the vicinity of igneous intrusions (Senger et al., 2014a, 
b). Due to the low matrix permeability, it is critical to 

Figure 6. (A) Photogrammetric mosaic of the extensional fault system 
affecting the Wilhelmøya Subgroup that crops out in Konusdalen 
(location shown in Fig. 2). (B) Interpretation of faults, slip directions 
and main litho-stratigraphic features. The inset stereoplot shows that 
the normal faults predominately strike NE–SW to ENE–WSW and 
have displacements down to the NW to NNW. Antithetic faults are 
also present. (C) Fault damage zones are characterised by increased 
fracture frequency and range between 1 and 4.5 metres in width. 
(D) Images of architectures of the fault zones showing fault zone 
brecciation. Fault cores are characterised by undulating clay gouge 
of variable thickness, the maximum observed thickness of which is 
plotted against the observed displacement on slip surfaces (E). Dashed 
lines in (D) highlight boundaries  between fault facies, arrows show 
fault kinematics, D – fault displacement in cm, double-headed arrow 
– fault facies element width. 

➧

Table 2. X-ray diffraction (XRD) Reitveld refinement results showing bulk composition of gouge samples from five fault cores (K1 to K5) and 
from a single sample (W1) from a shale-rich bed of the Wilhelmøya Subgroup (sequence 1). 

Quartz  
(%)

Muscovite/Illite 
(%)

Chlorite  
(%)

Kaolinite  
(%)

Microcline 
(%)

Plagioclase 
(%)

Siderite  
(%)

Pyrite  
(%)

Apatite  
(%)

K1 38,5 25,43 1,42 15,9 n/a 18,69 n/a n/a n/a

K2 43,01 21 7,64 1,98 n/a 18,45 7,93 n/a n/a

K3 23,13 19,39 2,16 5,27 n/a 8,49 33,76 1,606 3,69

K4 40,56 28,45 2,49 9,09 1,19 16,89 1,32 n/a n/a

K5 38,66 32,21 n/a 10,64 3,72 14,77 n/a n/a n/a

W1 39,3 31,31 2,99 15,02 2,61 8,19 n/a 0,576 n/a

Table 3. Results of NEWMODE II clay fraction modelling.

Sample 1Illite 2Chlorite 3Kaolinite 4Chlorite-Smectite (R1) 5mixed layer Illite-smectite (R0)

K1 49,1 1,0 24,8 0,7 24,3

K2 48,7 2,3 25,4 1,0 22,6

K3 43,0 1,1 36,0 2,2 17,8

K4 63,7 6,5 5,3 0,4 24,0

K5 66,1 0,0 7,7 0,9 25,3

W1 41,3 0,7 37,1 1,8 19,1
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understand the nature of the fracture network from 
both field and injection data to accurately predict the 
likely CO2 distribution in the subsurface. In this section, 
we outline the fracture heterogeneities at various scales 
(from micro-CT to meso-scale faults) and discuss their 
significance with respect to dynamic pressure data 
obtained from the boreholes. 

Natural fractures in drillcores and outcrops
The significance of natural fractures in contributing to 
injectivity and fluid flow has been quantified during 
an open-hole water injection test in the underlying De 
Geerdalen Formation at 870–970 m in DH4 (Braathen 
et al., 2012; Ogata et al., 2012; Senger et al., 2015a). 
Following this test, the calculated permeability exceeded 

the measured matrix permeability by approximately 
one order of magnitude, with the enhanced injectivity 
attributed to an extensive natural fracture network. In the 
upper part of the reservoir, in the Wilhelmøya Subgroup, 
the matrix porosity and permeability is significantly 
higher than in the De Geerdalen Formation (Magnabosco 
et al., 2014), but the fracture network is nonetheless 
envisioned to enhance injectivity and provide fluid 
flow access to the secondary porosity. Furthermore, the 
fracture network may contribute up to 2.5% of the total 
storage resource estimate (Senger et al., 2015a).

The natural fracture network has been quantitatively 
characterised in terms of its density, orientation and 
relationship to the sedimentary succession (Ogata et al., 
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Figure 7. (A) Photogrammetric mosaic of the extensional fault system affecting the Agardhfjellet Formation that crops out in Criocerasdalen 
(location shown in Fig. 2). (B) Interpretation of faults and slip directions. S – synthetic, A – antithetic. Similar to the faults affecting the 
Wilhelmøya Subgroup, the Criocerasdalen faults predominately strike NE–SW to ENE–WSW and have displacements down to the NW to 
NNW. Synthetic faults are shallower than their Konusdalen counterparts (65–85° vs. 25°), while antithetic faults show comparable dips (approx. 
60°). Spacing between faults is also wider in Criocerasdalen (more than double; see Fig. 8). 

Figure 8. Schematic representation of the extensional fault system of Figs. 6 & 7 showing variations between a steep-dipping, narrow-spaced 
fault system within the Wilhelmøya Subgroup and a shallower dipping, widely spaced system within the Agardhfjellet Formation.



NORWEGIAN JOURNAL OF GEOLOGY Fluid flow properties of the Wilhelmøya Subgroup, a potential unconventional CO2 storage unit in central Spitsbergen 99

2014). Drillcores, wireline logs and outcrop data were 
integrated to produce a conceptual model involving five 
litho-structural units (LSU) characterised by intrinsic 
fracture associations and lithological properties (Fig. 
10; Ogata et al., 2014). Over 7500 individual fracture 
measurements were acquired in the field, primarily 
to determine the dominant fracture orientations. Two 
main fracture sets have been identified, namely an ENE–
WSW-trending principal fracture set (parallel to faults 
discussed above) and a NNW–SSE-trending subordinate 
fracture set (Fig. 10B). This implies a potential for 
generating an asymmetric CO2 plume governed both 
by the matrix permeability, the fracture permeability 
and the overall regional tilt of the reservoir. Finally, the 
fracture orientation analysis (Ogata et al., 2012, 2014) 
suggests that reservoir sandstones (i.e., LSU C; Fig. 10) 
will act as preferential vertical fluid migration pathways, 
while shale-dominated successions (i.e., LSU A; Fig. 10) 
will preferentially form lateral fluid migration pathways 
and enhance intraformational baffling

Micro-CT analysis

Micro-CT analysis offers a way to visualise the pore 
structure and pore size distribution inside rocks (e.g., 
Cnudde & Boone, 2013; Van Stappen et al., 2014, 
2018). However, since it is limited in resolution, it 
has to be combined with other techniques such as 
Mercury Intrusion Porosimetry (MIP). This approach 
is illustrated in Fig. 11, in which a conglomerate sample 
of the Toarcian–Bajocian Brentskardhaugen Bed in 
DH4 (at a depth of 677.15 m) was analysed. The initial 
He-porosimetry measurements showed a porosity of 
15.3%. The sample was scanned at a resolution of 56.6 
µm, which allowed a subsample to be chosen in the area 
of the drillcore with the highest expected porosity. This 
subsample core was drilled with a diameter of 6 mm, 
allowing a scanning resolution of 4 µm. 

For fracture characterisation, additional image analysis 
tools were applied complementary to previous studies 
(Van Stappen et al., 2014). This allowed the fractures 
within the retrieved samples to be analysed for their 
maximum aperture, length and relative orientation. 
Previous observations relating fracture occurrence 
to competence contrasts in sandstone and clay layers 
(Ogata et al., 2012, 2014) could be confirmed at the pore 
scale level (Van Stappen et al., 2014).

A comparison between fractures present in field 
samples and in the drillcores reveals some variations 
in fracture characteristics. Micro-CT analysis shows a 
clear difference in fracture length between the outcrop 
fractures and those analysed in the drillcores (Van 
Stappen et al., 2014). Generally, the fractures in the field 
samples are found throughout the entire diameter of 
the cylindrical samples and must thus be considered as 
a minimum length, whereas the length of fractures is 
limited in core samples to a maximum of 2.1 cm. Fracture 
apertures, on the other hand, were found to be similar in 
outcrop and core samples, with most apertures ranging 
between 123 and 283 µm (Fig. 11). Fracture orientations 
are predominantly horizontal to subhorizontal (Fig. 11), 
although these fractures are sometimes connected by a 
population of vertical fractures (Van Stappen et al., 2014). 
There is a small discrepancy between the absolute values 
of the measured fracture apertures for field and drillcore 
samples (Fig. 11). 

Igneous bodies

Early Cretaceous igneous intrusions, U–Pb dated to c. 
124.5 Ma, are present throughout Svalbard and especially 
in central Spitsbergen (e.g., Nejbert et al., 2011; Corfu et 
al., 2013; Senger et al., 2013, 2014b, 2015b). The mafic 
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intrusions, collectively referred to as the Diabasodden 
Suite (Dallmann, 1999), are all genetically linked and 
form part of the High Arctic Large Igneous Province 
(HALIP; Maher, 2001). The igneous bodies primarily 
form sills, typically less than 50 m thick but extending 
over 10 km laterally (Senger et al., 2014a). Subordinate 
dykes, transgressive sill segments and saucer-shaped 
intrusions are also present (Senger et al., 2013). 
Stratigraphically, the thickest sills are emplaced below the 
target reservoir as evident from borehole, outcrop and 
seismic observations (Bælum et al., 2012; Senger et al., 
2013). Senger et al. (2014a) reported a 2.28 m-thick sill 
near the base of the DH4 borehole at 949.71–941.99 m 
depth with an associated contact metamorphic aureole, 
while Bælum et al. (2012) interpreted a high-amplitude 
reflection beneath the base of the DH4 borehole at 
972 m as a much thicker sill, analogous to thick sills 
outcropping in the equivalent exposed stratigraphic 
interval at Hatten, approximately 18 km northeast of 
the DH4 borehole (i.e., within the lower De Geerdalen 
Formation). In addition, the presence of a solitary, thin 
(approx. 5 m thick) dolerite dyke at Botneheia (see Fig. 2 
for location) extending through the entire Kapp Toscana 

Group into the overlying Agardhfjellet Formation cap-
rock shales, shows that the entire thickness of the target 
successions is likely to be locally affected by small-scale 
intrusions. The directionality of the intrusions, especially 
where they occur as dykes, shows affinity towards two 
main trends, northwest–southeast and northeast–
southwest. Contact aureoles documented by Senger et 
al. (2014a), and credited to heat conduction, show that 
a distance of up to 195% of the sill thickness has been 
geochemicaly and mechanicaly perturbed. To the east, on 
the island of Wilhelmøya, Haile et al. (2018) have credited 
hydrothermal circulation for the hydrothermal alteration 
of the reservoir succession a distance of over 500% of the 
thickess of sills. In places,  this diagenesis shows reservoir 
temperatures locally reached approx. 140°C compared 
with more regional temperatures of 60–70°C driven my 
burial. 

Reservoir characteristics and properties

Net gross; sandstone-shale ratio 
A summary diagram showing a synthesis of reservoir 
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Figure 10. Synthesis of structural information in the Wilhelmøya Subgroup from DH4 and relevant outcrops. (A) Wireline and core-based 
characterisation of the Wilhelmøya Subgroup in the DH4 borehole. The fracture dip and intensity plots are based on manual fracture counting 
reported by Ogata et al. (2012). (B) Typical outcrop appearance of the Wilhelmøya Subgroup lithologies, illustrating pervasive fracturing. (C) 
Orientation of slickenlines on two scanlines within the Wilhelmøya Subgroup (CD_KD_4 and CD_KD_5), illustrating a predominant WSW–
ENE trend attributed to Paleocene transpression. This trend is also the dominant orientation of joints and fractures within the entire Kapp 
Toscana Group reservoir (from Ogata et al., 2014). (D) Average fracture intensity in 7 scanlines within the Wilhelmøya Subgroup from Ogata 
et al. (2014). On average, horizontal fracture intensity varies from 4 to 6 fractures/metre, but is anomalously higher in the shale-dominated 
CD_KA_6 scanline. The numbers indicate the amount of individual fractures measured at each scanline. 
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properties for the Wilhelmøya Subgroup is shown in 
Fig. 12 including wireline logs, sedimentary textures 
and structures, net to gross sandstone-shale ratio, and 
litho-structural units. A subdivision of reservoir units 
based on reservoir properties is also presented. Cut-off 
criteria based on permeability values have not been used 
in this study due to the importance of fracture-enhanced 
permeability within sandstone beds. The net to gross 
sandstone-shale ratio of the more heterolithic reservoir 
unit 1 is estimated to vary between 0.3 and 0.6 and with 
a mean of approximately 0.5. The sequence-stratigraphic 
correlation in Fig. 12B indicates that reservoir unit 
2 is laterally discontinuous and becomes truncated 
and eroded towards the west. In DH4, 5R and 7A, this 
reservoir zone has a net to gross ratio of 1. Reservoir zone 
3 (Brentskardhaugen Bed) also varies in thickness but is 
characterised by a high net-to-gross ratio throughout the 
study area. 

Porosity and permeability
The estimated burial depths, and more importantly 
the maximum burial temperature, imply that chemical 
compaction is the main factor responsible for the 
moderate porosities and low permeability measured 
in the Wilhelmøya Subgroup sandstones (Mørk, 2013). 
Detailed petrographic studies of sandstones from 
DH4 document considerable diagenetic impacts on 

the reservoir quality of the Wilhelmøya Subgroup. The 
sandstone data from DH4 also verify a distinct increase 
in mineralogical maturity compared to the underlying 
De Geerdalen Formation. The quartz-rich sandstones 
of the Wilhelmøya Subgroup also include a notable 
feldspar content and, as in the underlying De Geerdalen 
Formation, chert is the common rock fragment. 
Rounded, accessory grains of tourmaline and zircon 
support the earlier interpretations of sediment recycling. 
Variations in clay-mineral contents (up to 15%) in the 
bioturbated sandstones probably reflect both primary 
facies variations and diagenesis. 

The diagenetic style of the quartz-rich sandstones 
includes quartz cementation associated with micro-
stylolites, mineral dissolution and precipitation of pore-
filling clay minerals, and commonly associated late 
pyrite and calcite. The chemical compaction resulted in 
major reductions of sandstone porosity and permeability. 
Permeability has been further reduced by a persistence 
of authigenic Fe-chlorite and fibrous illite in the pores, 
which explains the low matrix permeability values 
derived by conventional core plug measurements 

The Slottet and Brentskardhaugen beds comprise 
phosphatic and non-phosphatic conglomerate beds as 
well as thin sandy interbeds. Thin-section study of the 
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Figure 11. Pore scale/space analysis of the Brentskardhaugen Bed conglomerate core sample from DH4 (depth = 677.15 m), through a 
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granule fraction and sandy matrix in DH4 shows an 
abundance of quartz (mono- and polygranular), chert 
fragments, minor K-feldspar, as well as reworked basinal 
grains of phosphate, glauconite and coated grains. 
Diagenesis has resulted in replacement of glauconite by 
chlorite and illite aggregates, and cementation of clay and 
phosphate matrix by microcrystalline siderite, whereas 
quartz cementation is relatively limited and only patchy 
within the sand-supported conglomerates (Mørk, 2013). 

Permeability and porosity measurements from 
conventional core plug analysis were presented in 
Farokhpoor et al. (2010, 2013) and discussed in Mørk 
(2013). Permeability and porosity values have also been 
correlated with measurements derived from portable 
miniperm equipment (TinyPerm II; Magnabosco et al., 
2014). The porosity and permeability measurements 
of samples from well DH4 revealed the best reservoir 
quality with porosities up to 20% and permeability up to 
1.8 mD in conglomerates and thin sandstone beds (Fig. 
12A) in the Brentskardhaugen Bed. The conglomerates 
with highest values are characterised by the presence of 
a sandstone matrix, where quartz cementation is locally 
reduced due to chlorite coatings. Lower porosities in 
similar facies is caused by quartz cement. In contrast, 
the phosphatic conglomerates and sandstones associated 
with the Slottet and Brentskardhaugen beds are 
characterised by low porosity and permeability due to 
siderite- and phosphate-cemented clay matrices (Mørk, 
2013).

Reservoir zones
Three reservoir zones which correspond to the sequences 
defined by Rismyhr et al. (in press) are distinguished 
in the Wilhelmøya Subgroup (zones 1–3; Fig. 12B). The 
best injection and storage potential of the reservoir 
zones (best porosity and permeabilities) are found in 
reservoir zone 3, with an NTG ratio essentially equal 
to 1 and lateral continuity throughout the study area. 
Porosities of 15–20% (average 17%) and permeabilities 
of 0.1–1.8 mD (average 0.96 mD) are measured. The 

presence of clay-mineral coatings have inhibited 
extensive quartz cementation (Mørk, 2013) thereby 
preserving the relatively good reservoir properties. The 
contribution of fractures to reservoir potential must also 
be considered, and the reservoir zones can be correlated 
to lithostructural units (LSU) defined by Ogata et al. 
(2014) which show fracture characteristics as a function 
of the mechanical properties of the stratigraphy, i.e., LSU 
A (shaly/massive-laminated) is dominated by low-angle 
fractures and is observed within mudstone intervals, 
LSU B (silty/thin-bedded) includes a mix of both low- 
and high-angle fractures and is represented by thin 
sandstones, and LSU C (sandy/medium-thick bedded) 
that includes both low- and high-angle fractures present 
in medium-bedded sandstones. 

Accordingly, reservoir zone 3 is considered to be the best 
reservoir zone in the Wilhelmøya Subgroup; however, 
zones with less favourable properties will contribute more 
to the storage space of the reservoir given their larger 
bulk volume. Reservoir zone 3 correlates approximately 
to LSU C (Fig. 12A; Ogata et al., 2014). Reservoir 
subzone 1.1 and zone 2 are considered to have moderate 
reservoir potential with NTG ratios up to 1, porosities 
of 9–19.6% (average 14%) and 8.7–13.9% (average 
12%), and permeabilities of 0–0.73 mD (average 0.29 
mD) and 0.05–0.82 mD (average 0.31 mD), respectively. 
Both zones correlate to LSU C (Fig. 12A; Ogata et al., 
2014). Quartz cement is limited in subzone 1.1 due the 
presence of siderite and phosphate cement. In contrast, 
reservoir zone 2 contains abundant quartz cement 
with a patchy distribution reflecting the pre-existing 
bioturbation pattern (Mørk, 2013). Reservoir subzone 1.1 
is laterally continuous throughout the study area, whereas 
reservoir zone 2 thins both towards the north and west. 
It also becomes slightly more heterolithic towards the 
north and is replaced by mudstones towards the west 
suggesting reduced reservoir potential in these directions. 
Reservoir subzone 1.2 is considered to have very little or 
no reservoir potential, consisting mainly of mudstones 
with a few thin and laterally restricted sandstones (NTG 
ratio 0.53 in DH–4). The porosities and permeabilities of 
these sandstones range from 9 to 18.7% and 0 to 0.06 mD, 
respectively, and the sandstones are extensively quartz 
cemented (Mørk, 2013). Reservoir subzone 1.2 correlates 
to LSU A and B (Fig. 12A; Ogata et al., 2014). 

Discussion

The well pressure communication tests detailed 
herein show unequivocal support for the presence 
of vertical to sub-vertical heterogeneities within the 
Longyearbyen CO2 target reservoir that act as baffles to 
fluid flow between DH5R and DH7A. Seismic imaging 
(two-dimensional) of the target reservoir intervals 
to date (Bælum et al., 2012) have failed to resolve the 

Figure 12. (A) Wireline logs and net-to-gross ratio (NTG), 
permeability and porosity measurements from DH–4. The wireline 
log suite includes caliper (CALP), natural gamma-ray (NGAM), 
sonic (S and P wave velocity) and resistivity. Litho-structural units 
(Ogata et al., 2012, 2014) also shown. Porosity and permeability 
values from Farokhpoor et al. (2010) and Magnabosco et al. 
(2014). Abbreviations: SB – sequence boundary, MFS – maximum 
flooding surface, FA – facies association. (B) Schematic illustration 
of the distribution of different reservoir zones in the Wilhelmøya 
Subgroup in and around the CO2 storage area. A fault of approx. 5 
m displacement is shown offsetting the reservoir between DH7A 
and DH5R. Diagenetic data from Mørk (2013) and litho-structural 
units (LSU) and natural fracture data from Ogata et al. (2012, 2014). 
Facies numbers correspond to those given in Rismyhr et al. (in press). 
Distance between sections is not to scale.

➧
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 heterogeneities responsible for this lack of pressure 
communication. In part, this could be explained by 
resolution limitations attributed to terrestrial seismic 
imaging of high-velocity rocks. Additionally, the presence 
of a 100–120 m-thick permafrost zone in Adventdalen 
(Johansen et al., 2003) likely contributes to imaging 
issues, (e.g., Matson et al., 2013). Permafrost raises the 
velocity of what would otherwise be weakly consolidated 
Quaternary cover. Natural arctic surface features (e.g., 
pingos), that represent local bodies of unfrozen sediment 
create low-velocity perturbations in the surrounding 
high-velocity permafrost.  Abrupt lateral and vertical 
velocity variations detrimentally affect conventional 
surface seismic imaging of the reservoir.

In this section, vertical to sub-vertical geological 
heterogeneities are discussed with regard to how 
they may act as baffles to fluid flow. Three possible 
explanations for the observed lack of communication 
in well pressure communication tests are suggested, 1) 
Meso-scale normal faults formed during evolution of 
the WSFTB, 2) Cretaceous dolerite dykes emplaced in 
the Mesozoic successions during the HALIP event and 
3) potential stratigraphic and/or diagenetic induced 
compartmentalisation. Further, the roll of fractures 
and impacts of the observed compartmentalisation are 
discussed with regard to potential CO2 injection in the 
subsurface of Svalbard.

Faults as baffles

The widespread occurrence of subsurface baffling faults 
is consistent with outcrop and seismic observations 
throughout central Spitsbergen. The normal fault 
system affecting the reservoir outcrops in Konusdalen 
is therefore the most likely explanation for the lack of 
pressure communication between DH7A and DH5R 
during injection tests. Observations from outcrops 
(Fig. 6B) show sand-prone facies in the Wilhelmøya 
Subgroup are variably juxtaposed across faults. In the 
case of faults K2, K4 and K5, the sand-prone facies 
are self-separated across single fault planes, i.e., are 
juxtaposed against shaly-silty facies. These scenarios 
represent a high fault seal probability (PFS) of between 0.7 
and 1.0 (Færseth, 1996; Færseth et al., 2007). Faults K1 
and K3 which contain several slip surfaces show partial 
across-fault self juxtaposition of sand-prone bodies, 
i.e., sand on sand contacts may allow for greater fluid 
communication across these fault zones. These scenarios 
represent lower PFS values in the range of 0.3 and 0.6 
(Færseth, 1996; Færseth et al., 2007). The faults that are 
antithetic to K5 show almost complete self juxtapostion 
of sand-prone facies across single slip surfaces, i.e., low 
PFS values in the range of 0.0 and 0.3. For these latter 
examples with self juxtaposed sand-prone facies, and 
subsequent lower PFS values, the consistent presence 
of clay abrasion membranes composed of between 
35% and 65% clay minerals (Table 2) and an associated 

reduction in pore throat size in the fault rock can 
produce an effective seal (e.g., Freeman et al., 1998). For 
net to gross sandstone-shale ratios of 0.3 to 0.6, typical 
of sequence 1 in the Wilhelmøya Subgroup (Rismyhr 
et al., in press), calculation of shale-gouge ratios (SGR), 
i.e., the percentage of shale within a part of the sequence 
which has moved past a point on the fault surface, is of 
little benefit given that the values will be very high and 
our lack of control on the distribution of the faults in the 
subsurface. For a fault with a throw value of 3 m, SGR 
will equal 40 to 70% which would typically be interpreted 
as an effective fault seal (e.g., Knipe, 1992; Freeman et al., 
1998). 

In reality, however, it is hard to envisage faults of this 
scale acting as truly sealing structures. The immature 
nature of the structures (e.g., with throws no larger than 
4 m) suggests faults are laterally discontinuous (Fig. 13A  
inset). Relay zones between adjacent faults may 
allow localised across-fault fluid transmissibility and 
subsequent communication between compartments 
(Walsh & Watterson, 1991; Cartwright et al., 1995; Childs 
et al., 1995; Meyer et al., 2002; Kristensen et al., 2008). In 
addition, the undulating nature of the fault gouge may 
result in gaps, i.e., sites of enhanced fluid transmissibility. 
The baffling capacity of such faults may be the net effect 
of a large number of these small structures and/or some 
contribution from other discontinuities such as igneous 

Figure 13. Schematic diagrams of the three, subseismic, 
geological heterogeneities potentially responsible for baffling 
fluid communication between DH7A (injection well) and DH5R 
(monitoring well). (A) Small-scale (less than 10 m displacement) 
faults as identified in the Konusdalen valley section. Faults affecting 
the reservoir section have considerable sealing capacity owing to 
the consistent presence of clay abrasion membranes in fault cores. 
Enhanced fluid flow both along strike and up-dip is also envisaged 
owing to high-intensity, fault parallel/subparallel fractures within the 
damage zones and presence of brecciation. Bottom left inlay: Fluid 
migration pathways may be preserved at relay zones between laterally 
discontinuous segments (Rotevatn et al., 2007). (B) Thin, less than 1 
m-thick dykes as observed in outcrop at Botnehia and Hatten, may 
feed from a large sill seismically imaged at approx. 250 m below DH5R 
and DH7A. Numerous thin intrusions are also encountered within the 
Wilhelmøya Subgroup in DH4 but are likely sills (Ogata et al., 2014). 
The baffling capacity of dykes results from contact metamorphism 
where the reservoir country rock has undergone reductions in 
porosity and permeability. Similar to the faults, enhanced fluid flow 
is envisaged both up-dip and along-strike of the intrusion owing to 
intense, emplacement-related fractures striking parallel/subparallel 
to the intrusion. Across dyke, fluid transmission may, however, be 
facilitated by intrusion perpendicular cooling joints. (C) Minor 
stratigraphic pinch-outs may be facilitated by depositional geometries 
and diagenetic processes, although they are unlikely to explain the 
complete lack of communication between DH7A and DH5R. 

➧
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 bodies or stratigraphic pinchouts. While the faults likely 
impede flow of injected fluids, Huq et al. (2017) showed 
that the strontium isotope composition of formation 
water within the reservoir is uniform, suggesting these 
faults will not compartmentalise the reservoir on a 
geological time scale.

The presence of extensional faults in the otherwise 
compressional regime of the WSFTB is also somewhat 
anomalous. These normal faults have been related to 
the latest evolutionary phase of the WSFTB where, in 
the western hinterland, the elevated fold complex began 
to collapse resulting in extension along NNE-SSW- to 
NW-SE-striking normal faults, parallel with the earlier 
thrusting (Braathen et al., 1995). Ogata et al. (2012) 
relates local extension towards the foreland, i.e., the 
Konusdalen and Criocerasdalen faults described herein, 
to differential tectonic loading and perturbations of the 
compressional regime along strike of the WSFTB, where 
extensional faults parallel to the direction of thrusting 
accommodate thrust transport-normal extension.

The varying styles characterising the faults affecting the 
caprock and reservoir sections, i.e., the former exhibiting 
wider spacing, lower angles and anticlockwise strikes 
to the latter (Fig. 8), are credited to geomechanical 
variations (see above). Similar discrepancies in fracture 
trends across this boundary are also observed by Ogata et 
al. (2014). The transition also correlates stratigraphically 
with variations in fracture pressures identified in well 
tests. Mechanical laboratory testing and interpretation of 
injection test results by Bohloli et al. (2014) conclude that 
fracture pressure has a higher magnitude and gradient in 
the overburden than in the reservoir. In addition, in situ 
stresses in both successions vary, which has been used to 
speculate on potential fracture opening modes.

Igneous bodies as baffles

In terms of implications on reservoir properties, the 
emplacement of extensive igneous complexes has the 
potential to compartmentalise a reservoir by forming 
baffles/barriers to fluid flow (e.g., Gurba & Weber, 2001; 
Thomaz Filho et al., 2008), as well as introducing high-
permeability fluid-flow pathways (e.g., Smit, 1978; Morel 
& Wikramaratna, 1982; Babiker & Gudmundsson, 2004; 
Sankaran et al., 2005; Mège & Rango, 2010; Senger et al., 
2017). In some cases, individual intrusions can act as both 
conduits and baffles (e.g., Stearns, 1942; Rateau et al., 
2013). The matrix of crystalline igneous rocks is typically 
tight, with submilliDarcy permeability and primary 
porosity commonly less than 0.5–1% (Van Wyk, 1963; 
Petford, 2003; Sruoga et al., 2004). Permeability within 
and adjacent to intrusions is dependent on the associated 
fracture networks typically generated by magma 
cooling, thermal contraction, magma emplacement 
and mechanical disturbance of the host rock (Senger et 
al., 2015b). Fracturing may be locally enhanced along 

intrusion–host rock interfaces, at dyke–sill junctions, or 
at the base of curving sills, thereby potentially enhancing 
permeability associated with these features.

Both Ogata et al. (2014) and Senger et al. (2014a) have 
shown that emplacement of the Diabasodden Suite 
caused local geochemical and mechanical perturbations 
to the sedimentary succession that influenced rock 
properties, including porosity and permeability. A 
thermal aureole encompassing the sill encountered 
towards the base of DH4 is observed and measures 
160–195% of the physical sill thickness (Senger et al., 
2014a). The aureole is characterised by hard, flint-like 
bleaching of the country rock where total organic carbon 
(TOC) decreases systematically towards the intrusion 
contacts. Increased fracturing within and around 
the intrusion, including some calcite-filled fractures, 
compared to background fracturing of the host rock 
indicates enhanced past fluid flow within and around 
the intrusions. Many of the fractures within the dolerites 
are thought to be related to natural cooling phenomena, 
i.e., cooling joints, while enhanced fracturing in the 
sedimentary host rock in the vicinity of the intrusion 
may be related to syn-emplacement mechanical 
deformation and later localised tectonic deformation due 
to mechanical contrasts, primarily during Palaeogene 
trans pression. Moreover, incremental structural 
measure ments by Senger et al. (2013) along the 4 km 
Delta neset to Hatten beach sections (locations in Fig. 
2), show considerable localised undulation in bedding 
attitude with a distinct deviation from the southwesterly 
regional dip (towards a northeasterly dip). Locally, 
adjacent to igneous intrusions, beds dip in excess of 20 
degrees, likely the result of forced folding (e.g., Jackson et 
al., 2013) during emplacement of the igneous bodies.

Further evidence for enhanced fluid flow around the 
intrusions is observed offshore by Senger et al. (2013) and 
Roy et al. (2014) who document pockmark alignment 
along dolerite ridges on the seafloor. It is suggested that 
fluids may be channelled along the base of sills to the 
surface.

With respect to crediting doleritic sills as the cause of 
vertical pressure compartments within the target CO2 
successions, Senger et al. (2014a) concede that given 
the localised nature of intrusion occurrence and their 
general deeper stratigraphic position than the bulk of 
the target succession, intrusions are unlikely to be the 
primary cause of pressure compartmentalisation. The 
reservoir underpressure is more likely bounded by lateral 
lithological contacts or possibly the presence of the 
WSFTB-related décollement located at the Agardhfjellet–
Rurikfjellet Formation interface. Small dykes, however, as 
seen in Botneheia must be present in the vicinity of DH4 
in order to feed the thin sills encountered in DH4. These 
features very likely perturb fluid flow and represent 
possible seal bypass systems (Cartwright et al., 2007) if 
the dyke is permeable to fluid flow.
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Stratigraphic compartmentalisation

An additional geological scenario that may account for 
the observed lateral pressure compartmentalisation is 
the possible presence of stratigraphic compartments, 
i.e., a segregation of flow units due to depositional and 
diagenetic heterogeneities (e.g., Jolley et al., 2010). 
Stratigraphic heterogeneities comprise many baffling 
and trapping features in hydrocarbon-bearing basins 
worldwide, e.g., Devonian reservoirs of the Paradox 
Basin in southeast Utah (Baars & Stevenson, 1981) 
and offshore Indonesia, Nigeria and the Gulf of 
Mexico (Posamentier & Kolla, 2003). Stratigraphic 
compartmentalisation can result from primary processes, 
i.e., depositional processes/geometries and/or diagenesis, 
i.e., lenses and facies variations in siliciclastic rocks. 
Secondary processes that can cause stratigraphic 
compartmentalisation commonly result from some 
lithological anomaly or variation that developed after 
deposition and diagenesis of the reservoir rock, and are 
usually associated with unconformities.

The Norian to Bathonian Wilhelmøya Subgroup 
was deposited as a highly condensed unit (now 
approximately 25 m thick) in an open marine-dominated 
inner-shelf to shore-face environment (Bjærke & 
Dypvik, 1977; Wierzbowski et al., 1981; Mørk et al., 
1982, 1999; Bäckström & Nagy, 1985; Maher et al., 
1989; Krajewski, 1990; Krajewski, 2000a, 2000b; Nagy 
& Berge, 2008; Reolid et al., 2010; Mørk, 2013; Rismyhr 
et al., in press). This inferred depositional environment 
has the potential to introduce stratigraphic closures 
and pinchouts, i.e., sand bodies may be lenticular in 
shape up dip and/or along strike of the depositional 
slope. Stratigraphic control (Rismyhr et al., in press) on 
the reservoir is good owing to extensive analyses of the 
strata where they crop out in the Deltaneset to Hatten 
area, and is complemented by correlation with four of the 
Longyearbyen CO2 Lab wells which penetrate the target 
reservoir (DH2, DH4, DH5R and DH7A). 

Despite the Wilhelmøya Subgroup showing the best 
reservoir properties in the Kapp Toscana Group, 
Mørk (2013) interpreted a moderate porosity and low 
permeability (up to 20% and 1.8 mD, respectively) due to 
deep burial and resultant chemical/physical compaction 
during the evolution of the WSFTB. In addition, low 
permeability in quartz-rich sandstones is caused by 
patchy (re)distribution of quartz cement, pressure 
solution (e.g., microstylolites) and pore-filling clay 
minerals. Miniperm measurements (Magnabosco et al., 
2014) also showed that sandstones and conglomerates 
in the Wilhelmøya Subgroup have the best matrix 
properties for storage of CO2.

The attitude of the depositional facies is critical with 
regard to the formation of stratigraphic compartmentali-
sation. Regionally, the Svalbard archipelago shows a 
gentle, two to four degree stratigraphic dip to the south 

owing to HALIP-related uplift in the Early Cretaceous 
(Maher, 2001). Locally, this is perturbed by forced folding 
during the emplacement of dolerite sills (discussed 
above). 

The two-dimensional seismic coverage of the 
Longyearbyen CO2 well park (Bælum et al., 2012) shows 
subtle evidence for the presence of stratigraphic pinchout 
geometries. Ideally, the identification of such geometries 
requires three-dimensional seismic to properly delineate 
their orientation and extent, e.g., Levey et al. (1992). 
Nevertheless, seismic reflectors representative of 
Triassic strata (Bælum et al., 2012) show bifurcation of 
seismic reflectors approximately towards the southeast. 
Additionally, in outcrop data, a deltaic sandstone in 
Konusdalen exhibits a lenticular geometry. 

Despite the presence of many of the conditions that are 
associated with stratigraphic compartmentalisation 
within the Longyearbyen CO2 Lab target reservoir, 
Ogata et al. (2012, 2014) have shown that even the 
lowest porosity/permeability litho-mechanical units 
in the reservoir, i.e., massive to laminated, shale-
dominated intervals and massive to thin, interbedded, 
heterogeneous, mixed silty-shaly-sandy facies are 
characterised by a dense network of systematic fracture 
sets. These fractures are both high- and low-angled, 
which would possibly compromise any stratigraphic 
baffle, at least locally. 

With respect to the horizontal compartmentalisation in 
the Svalbard stratigraphic succession, i.e., the presence 
of underpressure in the Wilhelmøya Subgroup, Huq 
et al. (2017), using the strontium isotope composition 
of formation water, showed there is a distinct barrier 
to vertical communication within the DeGeerdalen 
Formation, corresponding to a thin but presumably 
laterally extensive (>1.5 km) lagoonal mudrock interval 
(Rismyhr et al., in press). 

The role of fractures

The larger abundance of fractures in outcrop samples 
in comparison to core samples is credited by Ogata et al. 
(2012) and Van Stappen et al. (2014, 2018) to the effects 
of unroofing, and subsequent decompaction that leads 
to reworking of pre-existing fractures. Furthermore, 
fracture abundance can be accentuated by the effects 
of freeze-thaw cycles (Tharp, 1987), i.e., frost wedging, 
which is caused by the repeated freeze-thaw cycle of water 
in extreme climates and consistent with the recent high 
latitudes of the Svalbard archipelago. Longer fracture 
lengths found in outcrop samples, in comparison with 
core samples have been credited to the same mechanisms. 
Fracture apertures are consistent between outcrop and 
core samples, mostly ranging between 123 and 283 μm, 
with a further population of microfractures showing 
apertures of approx. 25 μm being recognised in high-
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 resolution analysis (Van Stappen et al., 2014). These 
micro-fractures show preferential horizontal orientations 
as they exploit boundaries between sandstone sections 
and the interbedded claystones, whereas the larger 
fractures observed in outcrop are preferentially 
tectonically and uplift induced vertical fracturing and 
jointing, and are envisaged by Ogata et al. (2012, 2014) 
to facilitate preferential vertical and along-fault fluid 
migration. The discrepancy between the absolute values 
of the measured fracture apertures for field and drillcore 
samples is probably linked to the method used to calculate 
the maximum aperture (Brabant et al., 2011), i.e., from the 
micro-CT scans, which is linked to the scan resolution.

Given the severe under pressure of the target formation, 
the fractures are prone to open when subjected to 
relatively small pressure increments (Ogata et al., 2012). 
The primary function of the fracture systems in the 
target formationis to facilitate permeability. In addition, 
Senger et al. (2015a) estimated that 2.5% of storage 
resources are facilitated by the fracture network, which 
could increase if fractures open during injection. 

Fractures induced during well tests (section 4.1) are 
likely the product of new large dimension fractures as 
evident by the test data (Fig. 12). It is probable, however, 
that some of these large-dimension fractures may result 
from opening and propagation of pre-existing natural 
fractures where they are preferentially orientated with 
regard to the injection-related stresses.  

Towards injecting CO2 in the Wilhelmøya 
Subgroup

The Wilhelmøya Subgroup can be considered an 
‘unconventional reservoir’, given that it has low–
moderate matrix porosity, significant fracture 
contribution to the pore volume, an abnormal pressure 
regime, compartmentalisation and a shallow storage 
depth (affecting the gas phase).

Senger et al. (2015a) presented a first-order static storage 
capacity assessment of the entire Kapp Toscana Group, 
with its ‘upper’ zone corresponding to the Wilhelmøya 
Subgroup. The subgroup exhibits the best reservoir 
properties of the Kapp Toscana Group but its limited 
thickness means that the Wilhelmøya Subgroup only 
contributes with 15.2% of the overall storage capacity. 
Significant uncertainty in input parameters was 
accounted for by stochastic Monte Carlo modelling 
using probabilistic distributions, and a scenario-based 
approach was implemented based primarily on the area 
accessible for drilling. Calculated storage capacity was 
matched to required volumes given 20 years of energy 
production from the coal-fueled power plant (1.2 million 
tons of CO2 in total). The deterministic backward 
volumetric calculation presented by Senger et al. (2015a) 
indicates that CO2 would occupy an area of 58 km2 if 

only the Wilhelmøya Subgroup contributed as a reservoir 
and pressure would be adequate to maintain high-
density CO2. The main uncertainty is related to both the 
accessible area and the phase of CO2 (liquid, supercritical 
vs. gas-phase) which is directly linked to the spatio-
temporal evolution of the underpressured compartment. 

The present results suggest that significant and subseismic 
reservoir compartmentalisation is present within the 
Wilhelmøya Sugroup. As such, accessing adequate storage 
capacity for CO2 storage would likely require several wells 
and perhaps even horizontal wells capable of accessing 
numerous compartments. Fig. 14 presents a simple 
model for the position and orientation of heterogeneities 
responsible for the lack of pressure communication 
within the Wilhelmøya Subgroup. A subseismic fault, 
or array of faults, is envisaged to strike ENE–WSW 
approx. 40–60 m north of DH7A. This orientation is 
inferred from the faults observed in equivalent outcrops. 
Additional faults(s) may be located north of DH4. 

Subsurface heterogeneities can increase sequestration 
capacity, i.e., the volume fraction of the subsurface 
available for CO2 storage (Hovorka et al., 2004). In 
homogeneous reservoirs, CO2 flow paths are controlled 
by buoyancy (assuming low viscosity of CO2; see 
below) and, as such, usually only exploit upper reservoir 
levels. Heterogeneous rocks force CO2 to exploit more 
dispersive flow paths resulting in a larger contact 
percentage and thereby increasing sequestration 
capacity. Furthermore, in a heterogeneous reservoir 
(with horizontal stratification), a larger distribution of 
stored CO2 may decrease leakage risk by shortening the 
continuous column of buoyant gas acting on a capillary 
seal and inhibiting seal failure.

The phase in which CO2 exists is a function of pressure 
and temperature conditions (Goos et al., 2011; Miri et al., 
2014). To date, CO2 storage has mostly been conducted at 
depths exceeding 800 m (White et al., 2004; Whittaker et 
al., 2004; Förster et al., 2006; Xue et al., 2006; Daley et al., 
2008; Doughty et al., 2008; Vasco et al., 2008; Aradóttir 
et al., 2011; Eiken et al., 2011), where CO2 naturally 
occurs as a supercritical fluid. The temperature gradient 
in the Longyearbyen target reservoir varies on average 
between 25 and 50°C/km below the water level at 225 m 
depth (Elvebakk, 2010; Senger et al., 2013). A maximum 
temperature of 31.8°C measured at 900 m depth 
(Elvebakk, 2010) lies just above the CO2 critical point 
of 30.97°C (Goos et al., 2011). CO2 is then likely to be in 
gas phase in this pilot study and exhibit a low viscosity 
(Senger et al., 2015a), unless pressure is built up by water 
injection prior to CO2 injection. Flow barriers, however, 
such as faults, increase induced pressures considerably, 
and may perturb local conditions within the reservoir, 
leading to pockets of supercritical fluid (Chadwick et al., 
2009). It would be of benefit to repeat some well injection 
tests using CO2 in different phases; however, owing to 
the remote location of the pilot study, and the difficulty 
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to source CO2, this has proven logistically challenging to 
date (Snorre Olaussen, UNIS CO2 LAB Project Leader, 
pers. comm., 2017).

Conclusions

Well pressure tests, core- and outcrop-based analyses of 
discontinuities within a potential CO2 storage unit on 
Svalbard have provided insight into the behaviour of 
injected fluids. 

• The Wilhelmøya Subgroup represents a viable CO2 
storage reservoir with confirmed storage capacity and 
injectivity.

• The lack of interference during water injection tests 
in an observation well (DH5R) show limited lateral 
pressure communication within the reservoir, and the 
presence of barriers to flow or severe flow restriction 
within a relatively short distance (40–60 m) to the 
injector (DH7A). An additional barrier to fluid flow is 
predicted north of DH5R.

• An extensive natural fracture network contributes 
both to fluid injectivity and to storage potential. 
Micro-CT analysis provides reservoir information 
at the pore scale and allows for a quantification of 
fracture apertures. Field measurements indicate a 
potential for enhanced fracture-related fluid flow, 
primarily in a WSW–ENE trend, with a subordinate 

NNW–SSE trend. 

• Large hydraulic fractures have been induced during 
the water injection tests, and have been modelled to 
obtain a satisfactory history match to the injection 
data. The fractures may be partially credited to pre-
existing natural fractures that were preferentially 
orientated and propagated beyond their existing 
dimensions. 

• Natural fractures contribute significantly to fluid 
injectivity in the Wilhelmøya Subgroup, although play 
a more substantial role in the De Geerdalen Formation 
where matrix porosity and permeability is worse.

• Analysis of petrographic diagenesis and paleo-
temperature data shows that chemical compaction 
had major impact on reservoir quality.

• We propose that an extensional fault system consisting 
of relatively small (i.e., subseismic) but numerous 
segments is located between DH5R and DH7A, and 
oriented WSW–ENE in accordance with analogue 
fault systems identified in outcrop. Dolerite dykes and 
stratigraphic closures may also contribute to lateral 
pressure compartmentalisation.
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 Appendix 1

Core samples from boreholes and outcrops were 
collected for pore network characterisation, and analysed 
using high-resolution X-ray computed tomography 
(micro-CT; Cnudde & Boone, 2013; Van Stappen et 
al., 2014). This method allowed spatial resolutions 
down to 2.8 µm to be achieved. To ensure maximum 
resolution, subsamples were taken from original core 
samples, thereby limiting the analysed volume. Image 
reconstruction and analysis was carried out using the 
Octopus software suite (Brabant et al., 2011). The analysis 
focused on the 3D pore structure and the presence of 
micro-cracks (Van Stappen et al., 2014). However, due 
to the systematic limitations related to the focal spot 
size of the X-ray source, the pore space is often not fully 
represented even in scans with the highest achievable 
resolution (on the order of 1 µm). This is especially true 
in very tight sandstones, as in the Wilhelmøya Subgroup, 
where pores smaller than the resolution limits are 
present. In order to fully characterise the pore network, 
micro-CT was combined with other techniques, notably 
Mercury Intrusion Porosimetry (MIP; Cnudde et al., 
2009) and Helium porosimetry (HeP; Van Stappen et al., 
2014). 

In an initial campaign, 24 sandstone core samples (3 from 
DH2, 9 from DH4 and 12 from outcrop) were chosen for 
micro-CT analysis, using a Feinfocus X-ray source and 
a Varian 2520 V Paxscan panel detector. In combination 
with He-porosimetry and MIP, the full pore space was 
evaluated (Van Stappen et al., 2014). Furthermore, 
micro-CT investigations allowed the quantitative analysis 
of fracture orientation, length and maximum aperture. In 
this case, fracture length is calculated as the diameter of 
the circumscribed sphere around a 3D object, while the 
maximum fracture aperture is defined as the maximum 
inscribed sphere fitting in this 3D object (Brabant et al., 
2011).

In order to determine fracture apertures in CT images, 
the fracture is segmented from the overall rock matrix. 
Next, the fracture is virtually packed with spheres 
having their central points in the middle of the fracture. 
Finally, the diameters of these spheres are increased 
until they reach the fracture walls. As a consequence, the 
accuracy of fracture aperture measurements is limited to 
integral multiples of the image resolution. Nonetheless, 
this method adequately describes fracture aperture 
distribution.

Appendix 2

Clay gouge from 5 normal faults affecting the reservoir 
were sampled from outcrops in Konusdalen (Fig. 2) 
and subject to X-Ray diffraction (XRD) mineralogical 
composition analyses. A background sample from a 
shale-rich bed within the Wilhelmøya Subgroup and 
outside of the fault damage zones was also analysed. 
Samples were initially treated in bulk to derive 
cumulative XRD mineralogical composition. Rietveld 
refinement was then applied, i.e., a technique where 
the neutron and X-ray diffraction of powder samples 
results in a pattern characterised by reflections (peaks 
in intensity) at certain positions. This process was 
challenging, possibly due to structural complexity. Even 
though microstrain corrections were applied, it was not 
possible to remove the effect completely. The second 
part of the analysis attempted to model clay fraction 
aggregates. Samples were washed using Milli-Q water, i.e., 
ultrapure water (Type 1), before clay fraction separation. 
Sodium bicarbonate was added to the suspension to 
obtain better dispersion. The grain size fraction (<2 
µm) was extracted based on the principles of Stokes’ law 
and placed on a circular glass sample holder using the 
Millipore filter transfer method. The uppermost part of 
the suspended material (clay fraction) was removed or 
extracted using a siphon. Analysis was run using a D8 
advanced Bruker diffractometer equipped with Copper 
Ka radiation (40 kV and 40 mA) and LynxEye detector. 
The data were collected from 2 to 65 degrees 2q for air-
dried samples and 2–35 degree 2q for ethylene glycol 
and heat-treated samples. Each sample was subject to 
four methods of analysis: 1) air drying, 2) Ethylene 
glycol solvation carried out in a desiccator at 60°C over 
12 hours. 3) heating to 350°C and 550°C for an hour to 
ensure proper identification of mixed-layer clays, and to 
differentiate between chlorite and kaolinite, respectively. 
Clay phases in each sample follow the USGS clay mineral 
identification flow diagram. NEWMODE II was used 
to quantify the clay fractions, and input data were 
adjusted until a satisfactory fit of peak positions, shapes 
and intensities in the entire XRD profile was reached 
compared to theoretical patterns. This modelling gives 
a good estimate of the relative abundance of each clay 
mineral with respect to each sample.


