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Abstract
Despite great interest in using magnetic resonance imaging (MRI) for studying the effects of genes on brain structure
in humans, current approaches have focused almost entirely on predefined regions of interest and had limited
success. Here, we used multivariate methods to define a single neuroanatomical score of how William’s Syndrome
(WS) brains deviate structurally from controls. The score is trained and validated on measures of T1 structural brain
imaging in two WS cohorts (training, n= 38; validating, n= 60). We then associated this score with single nucleotide
polymorphisms (SNPs) in the WS hemi-deleted region in five cohorts of neurologically and psychiatrically typical
individuals (healthy European descendants, n= 1863). Among 110 SNPs within the 7q11.23 WS chromosomal region,
we found one associated locus (p= 5e–5) located at GTF2IRD1, which has been implicated in animal models of WS.
Furthermore, the genetic signals of neuroanatomical scores are highly enriched locally in the 7q11.23 compared with
summary statistics based on regions of interest, such as hippocampal volumes (n= 12,596), and also globally (SNP-
heritability= 0.82, se= 0.25, p= 5e−4). The role of genetic variability in GTF2IRD1 during neurodevelopment extends
to healthy subjects. Our approach of learning MRI-derived phenotypes from clinical populations with well-established
brain abnormalities characterized by known genetic lesions may be a powerful alternative to traditional region of
interest-based studies for identifying genetic variants regulating typical brain development.

Introduction
The morphology of an adult brain represents a holistic

snapshot of a unique neurodevelopmental history; its

variations are an accumulation of dynamic processes
working in concert with few constraints1. Different brain
regions share the same original sets of proto-structures
emerging from interactive molecular signaling programs
during early embryonic stage. Post-natal brain growth,
myelination, and subsequent regressive processes leading
to mature functional circuits provide further overlap in
the processes giving rise to adult brain morphology. These
developmental processes, furthermore, are guided by
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distributed patterns of gene expression, interactions with
the environment, and operate under spatial constraints
imposed by the cranium that may link the morphology of
various parts of the adult brain1,2. Consequently, the
perturbation of a developmentally critical gene often
results in diverse morphological abnormalities not limited
to a single brain region3–5. Given this, it is reasonable to
expect that variability interjected into neurodevelopment
via a genetic variant may not only contribute to variability
in the MRI-derived morphology of a single delineated
brain region, but also to covariance among multiple
regions2.
However, genetic studies of neuroanatomy using mag-

netic resonance imaging (MRI) continue to prioritize
morphological measures on specific landmark-defined
brain regions, such as the volumes of subcortical nuclei6

or average thickness of cortical parcellations7. Although
this approach captures some genetic effects of structural
variations, it bypasses the fact that the morphological state
of an adult brain is the sum of previous developmental
processes across brain regions. These landmark-defined
regions of interest (ROIs) therefore may have lost
genetically relevant information by ignoring co-varied
components, while concurrently introducing irrelevant
variance by combining measures from genetically unre-
lated neighbors8.
The limitations of this ROI approach are most evident

in the context of studying effects on neurodevelopment,
as the age-dependent processes have been shown to
consist of a gradient spreading across the cortical surface
without a discernable relationship to traditional anato-
mical landmarks9. Past efforts to redefine the imaging
phenotypes beyond landmark-based ROIs include learn-
ing a sparse representation from patients with Alzheimer’s
disease8 or redrawing ROIs based on the genetic corre-
lations from twin studies7,10. These methods can be
conceptualized as projecting the multidimensional mea-
sures of MRI onto a lower dimensional axis while filtering
out components irrelevant to the genetic signals. Such
methods have seldom focused, however, on neurodeve-
lopmental disorders, such as Williams Syndrome (WS),
that have larger neuroanatomical impacts and more finite
candidate genetic regions attributable to the neuroana-
tomical differences. Since statistical power is the most
critical factor for identifying genes through associations11,
a redefined MRI measure that contains more relevant
genetic signals and reduces the burden of multiple com-
parisons can greatly facilitate the discovery of neurode-
velopmental genes.
WS is a multi-systemic disorder caused by hemi-

deletion of roughly 27 genes on chromosome 7, result-
ing in cardiovascular morbidities, intellectual impairment,
and hypersociability12,13. Besides a decrease of about 11%
in brain size, patients with WS have aberrant

regionalization of cortical surfaces as assessed with brain
MRI, particularly in superior parietal regions and the
orbitofrontal cortex14–18. Animal models have suggested
GTF2IRD1, a gene-encoded general transcription factor,
as one of the most promising candidate genes for neu-
roanatomical differences in WS4,19–21. Genetic perturba-
tions on GTF2IRD1 have recently been associated with
dog friendliness toward humans22. Despite such findings
in animal models, associations of this gene with brain or
behavioral phenotypes in the healthy human population
are lacking6. Without association studies on brain phe-
notypes in healthy human populations, it remains unclear
whether common genetic variants on those genes have an
impact on typical brain development.
Here, we describe a novel two-pronged approach to

capturing genetic effects on neurodevelopment. First,
using one single score to represent the global neuroana-
tomical variations, and a candidate genes approach by
examining only the WS region, we limit the effect-size
requirements imposed by Bonferroni correction. Second,
and more important, we increase the sensitivity of the
anatomical phenotype by using a single derived score
calculated from multidimensional MRI measures. In our
previous work, we derived a single global measure that
characterizes how WS brains are structurally different
from controls, across multiple parameters in multiple
locations23. In this study, we demonstrate that the WS
neuroanatomical score can be regarded as an MRI
endophenotype, enriched in genetic information pertain-
ing to neurodevelopment. By applying the neuroanato-
mical scores to five imaging genetic cohorts with brain
MRI and single nucleotide polymorphisms (SNP) data (n
= 1863 healthy European descent), we demonstrate, for
the first time, that a common variant in GTF2IRD1 is
associated with variation in brain structure (Bonferroni
corrected p= 0.023). The genetic signals are more enri-
ched than traditionally defined ROI and have significantly
high SNP-heritability (h2= 0.82, se= 0.25, p= 5e−4).
Our results provide a proof of concept for the strategy of
using multivariate structural measures as a derived
intermediate phenotype for genetic association studies.

Materials and methods
Healthy imaging genetics cohorts
We selected 1863 healthy imaging genetics subjects

from five independent cohorts: 184 from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)24, 653 from the
Nord-Trøndelag Health Study (HUNT)25, 325 from the
Norwegian Cognitive NeuroGenetics (NCNG)26, 250
from the Thematically Organized Psychosis study
(TOP)27, and 451 from the Pediatric Imaging Neurocog-
nition and Genetics Study (PING)28. From each study,
only healthy, unrelated, European-ancestry subjects were
retained for analysis. Because the WS neuroanatomical

Fan et al. Translational Psychiatry  (2018) 8:114 Page 2 of 8



scores were nevertheless trained on an adult WS cohort23,
the residual confounding of age effect might have an
impact on the association. Given that the PING study
contains the youngest individuals across all cohorts, we
further stratified the PING sample into two subcohorts,
one for those ages 16 years and older, and the other for
those younger than 16. The cut-point 16 years old is
decided based on previous studies that found most of the
developmental changes of structural measures asymptote
by the age of 1629,30. Each study collected 3D T1 MRI
images according to comparable acquisition protocols and
was processed with the same FreeSurfer reconstruction
protocols. The processing protocols include bias correc-
tion, registration, segmentation, and 3D surface recon-
struction, as implemented in FreeSurfer29,31. Studies using
the same five imaging genetic cohorts show genetic fac-
tors can be consistently estimated, demonstrating the
success in protocol homogenization despite differences in
scanners and recruiting sites7. Whole-genome genotypes
were imputed according to the same Mach/Minimac
procedure using the 1000 Genomes Project as a reference.
Estimated dosages of 110 SNPs falling within the WS
hemi-deletion region (chromosome 7q11.23,
72Mb–74Mb, hg19) were imputed with good quality in all
cohorts and selected for analysis. Demographics and
detailed summaries of data acquisition and processing for
each cohort are presented in the Supplementary materials.

WS neuroanatomical scores
We used a penalized regression model to calculate WS

neuroanatomical scores given individuals’ MRI measures.
Full details of the training and validation of the model

have been published elsewhere24. Briefly, 3D T1 MRI
images were obtained for 22 WS patients and 16 healthy
controls. A multivariate regularized logistic regression
was trained to discriminate WS patients from healthy
controls on the basis of 30,760 predictors, including
estimated cortical surface area10, cortical surface geo-
metry30, and sulcal depths16 for each of 5124 recon-
structed vertices and the volumes of 16 subcortical
structures31. When the model was trained in WS cohort,
intra-cranial volume (ICV) was used as a covariate to
ensure overall brain size was not driving the classification.
Therefore, the WS neuroanatomical score is capturing the
subtle morphological reorganization of the WS brain. For
each subject in our healthy imaging genetics cohort, we
applied the resulting discriminative weights to the same
neuroimaging feature space, summarizing this high-
dimensional data with a single, composite neuroanato-
mical score reflecting morphological variations on the axis
between healthy individuals and patients with WS. Figure
1 illustrates the flowchart of the analytic strategy and
visualization of the weights for contributing neuroimaging
measures to the final composite scores. Weights of each
imaging measure included in the analyses can be found in
Supplementary Figure 1.

Candidate Region Association analysis
Each imputed SNP dosage was regressed against the WS

neuroanatomical score while controlling age, age squared,
gender, and the first seven principal components of
genetic ancestry as potentially confounding covariates.
Although previous analyses from our group had shown
consistent estimation of genetic effects across five

Fig. 1 Flow chart of the study design. The first stage of the analysis (Training) was deriving neuroanatomical scores based on case-control data,
using a methodology which has been published elsewhere24. The second stage of the analysis (Candidate Region Associations) is the focus of this
paper, wherein we directly apply the neuroanatomical scores from large-scale imaging genetic cohorts without further calibration of the model
parameters
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cohorts7, we used meta-analysis to account for potential
bias resulting from scanner differences. We estimated
the SNP effects in each cohort separately and combined
them post-hoc according to an inverse variance weighted
meta-analysis implemented in PLINK. To account for
multiple comparisons, we used a Bonferroni adjustment
for the 110 linked SNPs. Our significance threshold
was set to p < 0.05/110= 4.5e−4, conservatively
controlling for 110 correlated tests. We then used
CAVIAR to determine which SNP is the potential causal
variant32.

Local enrichment and global SNP-heritability
To demonstrate the enrichment of local genetic signals

with newly defined WS neuroanatomical scores, we used
the quantile–quantile plots comparing –log10(p) between
our SNP associations in the WS chromosomal regions
and summary statistics obtained from the traditional ROI
approach as reported by the ENIGMA consortium (n=
12,596)6. Despite the scale of our cohorts, the sample size
is considered modest in the context of genome-wide
association studies. Therefore, to avoid under-powered
genome-wide analyses while quantifying the global
genetic signals of WS neuroanatomical score, we used
Genome-wide Complex Trait Analysis (GCTA)33 to esti-
mate the variance explained by all of the SNPs on the
entire genome (i.e., the SNP-heritability). The genetic
relationship matrix is calculated for all cohorts, using
GCTA, and then the SNP-heritability is derived while
controlling for age, age squared, gender, cohort

membership, and the first seven principal components of
genetic ancestry.

Results
The training and validating of WS neuroanatomical

scores have been published elsewhere24. In short, the
derived neuroanatomical scores robustly distinguished
WS from other groups in both the training set (leave-one-
out cross-validation area under curve as 100%) and the
validating set (area under curve as 100%). The composite
WS score significantly mediates the cognitive differences
between cases and controls, especially tests quantifying
social behaviors24. Having derived this multivariate mea-
sure which characterizes WS, we then applied the score to
healthy imaging genomic cohorts. Each healthy indivi-
dual’s MRI measures were combined into one single score
given the derived weights of WS neuroanatomical score
(Supplementary Figure 1). The score of cohort members
is normally distributed (mean: 0.6, SD: 0.09) and not
correlated with genetic ancestry (absolute Pearson cor-
relations <0.2, p > 0.05). None of the cohort members
were determined as patients with WS, and none met the
anatomical criterion for WS we derived in our earlier
work24.
The associations between SNPs and neuroanatomical

score in imaging genomic cohorts are shown in Fig. 2 and
Fig. 3. One locus containing three SNPs located at
GTF2IRD1 showed statistical significance after Bonferroni
correction (Fig. 2, top SNP, rs2267824, p= 2.0e−4). Effect
sizes of the associated SNP were consistent across cohorts

Fig. 2 Regional plot of the associations between SNP dosage and WS neuroanatomical scores. The results of 110 SNP associations were
plotted against gene annotations and physical positions. The coloring of each SNP represents the linkage disequilibrium with the top SNP, rs2267824
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(Fig. 3) except for the cohort with individuals younger
than 16 years old. After excluding individuals younger
than 16 years old, the association of rs2267824 became
stronger (reference allele: C, coefficient: 0.018, p= 5e−5).
CAVIAR confirmed that the region contains one single
locus and rs2267824 was the potential causal variant. In
addition, one SNP within 250 kb of FZF9 showed nominal
significance (rs2237280, p= 0.00627).
The quantile–quantile plots compared with associations

from the ENIGMA study demonstrated significantly
enriched genetic signals in the WS chromosomal regions
when using the WS neuroanatomical score (Fig. 4). In
terms of global genetic signals, the WS neuroanatomical
score has high heritability (h2= 0.82, se= 0.25, p= 5e−4)
despite the fact that less than 1% of phenotypic
variation can be explained by the potential causal SNP,
rs2267824.

Discussion
Here we demonstrate that the WS neuroanatomical

score can be regarded as an MRI endophenotype, enri-
ched in genetic information pertaining to neurodevelop-
ment. By applying the neuroanatomical score to five
imaging genetic cohorts, we show that a common variant
in GTF2IRD1 is associated with variation in brain struc-
ture. The genetic signals were more enriched than tradi-
tionally defined ROI and have significantly high SNP-
heritability. Our results provide a proof of concept for the

strategy of using multivariate structural measures as a
derived intermediate phenotype for genetic association
studies. An optimized multivariate MRI procedure defines
the intermediate phenotype that can accurately capture
the continuous nature of the underlying brain variations,
thus providing greater power for detecting genetic
associations.
The associations between GTF2IRD1 and the WS neu-

roanatomical score support a critical role of this general
transcription factor for normal brain development, and
specifically for one of the characteristic personality traits
of WS. WS has a unique neuroarchitecture compared to
other developmental disorders with intellectual impair-
ment, but few studies have tied anatomical changes to
strikingly heightened social behavior12–18,23. Previous case
studies of partial hemi-deletions in WS indicate that the
region telomeric to 7q11.23, which includes GTF2IRD1, is
crucial for the changes in social behaviors characteristic of
WS4,20,34. Animal models also support the role of
GTF2IRD1 in brain development4,19,21. In particular, a
recent study on dog friendliness found the genetic varia-
tions on GTF2IRD1 and GTF2I were positively selected
for the tendency to socially engage with humans22.
Together with these results, our findings provide con-
verging evidence for the role of GTF2IRD1 in human
brain development and social cognition.
The associations with GTF2IRD1 are not consistent

across age: the PING sample with age under 16 years old

Fig. 3 Meta-analysis and stratified analyses of the associations with rs2267824. The reference allele is set as C and the coefficients are
presented in arbitrary units, as the WS neuroanatomical scores were similarity measures range from 0 to 1
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did not show significant associations between WS neu-
roanatomical score and GTF2IRD1. While many factors
can lead to this null-association among younger cohort,

one possibility is that the developmental genetic effects
need to accumulate over time to be detectable. Although
the WS neuroanatomical score was validated with a WS

Fig. 4 Enrichment of genetic signals using composite neuroanatomical scores. Quantile–quantile plots compare our results and summary
statistics from the ENIGMA study6. Only SNP associations from the WS chromosomal regions were included in this analysis. To demonstrate the local
enrichment, we plot the quantiles of –log10(p) from SNP associations using neuroanatomical score against the quantiles of –lgo10(p) from SNP
associations using particular anatomical volumes in the ENIGMA. Here, p values from a particular anatomical volume in the ENIGMA study across
30,717 individuals are ranked on the X-axis whereas the WS-composite score in our 1863 individuals are on the Y-axis. Different panels compare
associations between SNPs of WS chromosomal regions to associations in ENIGMA to different anatomical ROIs: upper left, intra-cranial volumes (ICV);
upper right, putamen volumes; lower left, hippocampal volumes; lower right, amygdala volumes. Note that ICV and putamen volume decreases are
some of the most common neuroanatomical features in WS12,17,18. Although ENIGMA had almost a 10-fold larger sample size than our current study,
the genetic signals were enriched in our analyses as the tail of the quantile–quantile plots (red dots) significantly deflected upward from the
expected null (solid black line with confidence interval in blue shades)
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child cohort23, the score variations are limited among
children with typical development, which is the case for
the PING sample. Although our current sample size is too
small to systematically examine possible age-dependent
genetic effects on structural neuroimaging measures, they
may become feasible with the large-scale imaging genetic
studies now becoming available.
It is likely that other genes also affect the neuroanato-

mical profiles we defined here, and they may act syner-
gistically in producing the observed phenotype. For
example, a study of neuron-like cells derived from stem
cells in WS demonstrated reduced neuron proliferation
and enhanced dendritic elaboration resulting from per-
turbation on FZD935. As our associations found a sug-
gestive signal located at FZD9, although much weaker
than the main GTF2IRD1 effects, it nevertheless jointly
contributed to the variations in neuroanatomical profiles.
This interpretation is supported by the effects of partial
hemi-deletions, which spare the FZD9 gene23,35. We
found that although WS neuroanatomical scores
increased among these subjects, it is much weaker than in
those with a typical hemi-deletion23. Further evidence for
synergistic effects was found in studies implicating both
GTF2IRD1 and FZD9 in the Wnt pathway, a well-
researched signaling pathway that has been implicated
in stem cell control and neuroplasticity3,34,36.
In addition, we found significantly high heritability of

the observed variations in our defined neuroanatomical
score, indicating polygenic contributions. Although the
neuroanatomical scores were highly specific to WS status
among patient groups23, the variations in scores among
healthy adults can represent the accumulation of multiple
developmental processes with diverse genetic perturba-
tions, each with small effects. This phenomenon is com-
patible with the theory of the modularized genetic
networks in which canalized phenotypes, e.g., typically
developed brains, can tolerate many small genetic per-
turbations unless genetic hubs are drastically dis-
turbed5,37. In this framework, the WS deletions would
represent a large perturbation of a neurodevelopmental
process which in typical developed individuals only shows
small variations attributable to regulatory genes across the
genome. Although our WS neuroanatomical scores were
enriched for WS relevant genetic effects, it nevertheless
characterized an underlying canalized developmental
process. Using our analytic strategy with diverse genetic
developmental disorders may provide further insight into
this enduring question about phenotype–genotype
mapping.
In sum, our results provide further support for the role

of GTF2IRD1 in the WS phenotype and a proof of con-
cept for deriving multivariate MRI phenotypes for
genotype–phenotype studies. This strategy may prove
useful in other neurodevelopmental disorders that

typically have restricted genetic deletions or alterations. In
addition, more accurate measurement of the neuroana-
tomical phenotype should also provide greater power for
genetic studies of diseases such as schizophrenia and
autism spectrum disorders where the genetic basis is
distributed across the genome, and should ultimately
facilitate the discovery of other mediating paths from
genes to disorders.
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