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ABSTRACT 

 

Myelin is a multilayered lipid-rich structure that surrounds selected axonal segments 

in the central and peripheral nervous systems (CNS and PNS, respectively). Myelin 

insulates axons, which increases nerve conduction velocity by up to two orders of 

magnitude. The correct formation and stability of myelin are crucial for the function 

of the nervous system, as demonstrated in the case of demyelinating diseases. The 

disruption of myelin and its compact structure can result from an autoimmune 

response, such as in the case of multiple sclerosis (MS), which affects the CNS. 

Another mechanism arises from mutations, which compromise myelin protein 

function and lead to disease. Such disorders include PNS neuropathies. 

Demyelinating conditions are generally chronic, incurable diseases. Remedies for 

these remain to be developed due to insufficient understanding of the formation and 

stability of healthy myelin. 

The insulative nature of myelin arises from a specialized plasma membrane that is 

wrapped dozens of times around the axon, before myelin undergoes compaction that 

excludes most water content. Stacked lipid membranes are adhered together by 

myelin-specific proteins with unique structural and functional properties. Such 

proteins include the intrinsically disordered myelin basic protein (MBP) and the 

integral membrane protein, myelin protein zero (P0), in the CNS and PNS, 

respectively. These proteins are only abundantly expressed in myelin and they are 

highly conserved within vertebrates. Both MBP and P0 have been linked to 

demyelinating disorders, with the structural details remaining to be elucidated. 

In this thesis, a cross-complementary biophysical method ensemble was established 

and used to characterize the folding, lipid binding, and membrane stacking properties 

of MBP, uncovering a putative mechanism for MBP-induced formation of compact 

myelin. The same workflow was used to characterize the cytoplasmic domain of P0 

(P0ct), which has been suggested to adhere membranes together in the PNS similarly 

to MBP in the CNS. Indeed, P0ct behaved similarly to MBP in various lipid 
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environments. The results provide a model for P0-induced membrane stacking in the 

PNS. 

The effect of ions on the function of MBP and P0ct was studied, unveiling that Ca2+, 

the most abundant divalent cation in myelin, modulates their activity. The study was 

expanded to peripheral neuropathy-related mutant variants of P0ct, and a specific 

gain-of-function mutation may explain the aberrant myelin phenotype in patients. 

The biophysical approach described in this thesis enables the characterization of 

myelin proteins and their disease variants. While well-behaving model lipid 

conditions were employed here, more physiologically relevant conditions should be 

studied in the future, possibly by the inclusion additional methods. 
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1 INTRODUCTION 

 

1.1. MYELIN, A NERVE INSULATOR 

1.1.1. THE NERVOUS SYSTEM 

Humans and all vertebrates alike enjoy the luxury of a nervous system – the 

immensely complicated, yet organized biological network that specializes in 

transmitting, storing, and processing information as nervous impulses originating 

from internal or external stimuli, or commands from the organism itself. The nervous 

system is classically divided into two interconnected parts: the central and the 

peripheral nervous systems (CNS and PNS, respectively). The CNS is comprised of 

the brain and spinal cord, and functions as a mainframe to process and compile 

information needed for maintaining normal bodily functions, making decisions, 

learning and memory. The PNS connects to the CNS, and consists of sensory 

(afferent) and motor (efferent) nerves that encompass all other nerves in the body. 

The PNS is subdivided into autonomic and somatic, or voluntary and involuntary 

nervous systems, respectively, which control information relay between the CNS and 

peripheral organs, muscles, the skin, and sensory organs. Together with the CNS, the 

PNS forms a tremendously efficient system that allows the vertebrate to maintain 

normal everyday existence and respond to stimuli1. 

The most important cell type in both the CNS and the PNS is the neuron. This 

specialized cell is composed of (1) a soma, where the nucleus resides and the majority 

of cell respiration and protein synthesis occurs, (2) the axon, the only process used to 

relay nervous impulses towards synapses, and (3) dendrites, which are processes 

connecting to other neurons through synapses and act in nerve impulse reception2. 

The axon connects to other neurons or cells of peripheral organs, and relays nerve 
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impulses, also known as action potentials. In these events, voltage-gated ion channels 

open on the axonal plasma membrane (axolemma) and cause a rapid influx of Na+ 

ions from the extracellular space to the Na+-deficient axonal cytoplasm (axoplasm), 

which results in membrane depolarization and a flow of ions traveling along the axon 

towards the synapse due to the rapidly formed concentration gradient. The flow of 

Na+ consecutively triggers opening of more Na+-channels on the way, increasing the 

amount of cytosolic Na+, thus allowing the action potential to propagate. The 

membrane is repolarized through a flux of intracellular K+ to the extracellular milieu, 

followed by active Na+/K+ exchange through the membrane, returning the resting 

potential3. 

In addition to neurons, both the CNS and PNS consist of several other cell types, 

collectively referred to as glial cells. In the CNS, this group includes microglia and 

astrocytes. Microglia act as immune response cells in the brain and spinal cord, where 

macrophages and other immune cells cannot normally enter due to the presence of the 

blood-brain barrier. Astrocytes carry out a myriad of roles in the CNS, including 

structural and metabolic support to other cell types, such as neurons. Glial cells found 

in the PNS include satellite cells and enteric glia. Satellite cells carry out supportive 

roles in sensory, sympathetic and parasympathetic neuronal clusters, whereas enteric 

glia have similar roles in the digestive system2. 

Very abundant cell types in both the CNS and PNS are myelinating glia. These cell 

types have several supportive roles, but most importantly they are responsible for the 

generation of myelin, which will be introduced in the forthcoming chapter. 

 

1.1.2. THE STRUCTURE AND FUNCTION OF MYELIN 

In the nervous system, myelinating glia produce a periodic structure called myelin, 

which forms a sheath by wrapping around short, adjacent segments of selected axonal 

regions with the main purpose of insulating them. After the initial discovery of 

myelin over 160 years ago4, the structure and function of myelin has been extensively 

studied and reviewed5, 6. Myelin is essentially a highly specialized plasma membrane 
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that is wrapped around an axonal length in the order of 20-200 µm, but can be as long 

as 1500 µm. Several dozens or even hundreds of membrane layers are formed, which 

undergo protein-mediated compaction through the tight adhesion of adjacent, 

apposing membranes. This excludes nearly all solvent content from the cytoplasmic 

and extracellular compartments of myelin, and makes myelin into an incredibly lipid-

rich structure, forming the basis of its insulative function7. 

Insulation of axons results in an enhancement in action potential velocity. The 

underlying mechanism is relatively simple: the insulative nature of myelin blocks 

most of direct ionic contact with the axolemma, which prevents ionic entry and 

leakage to and from the axeplasm. Between evenly spaced, individual myelin units, 

short segments of axolemma remains unmyelinated and thus accessible to 

extracellular ionic content. It is at these segments, called nodes of Ranvier, where 

massive concentrations of voltage-gated ion channels are present, waiting for an 

action potential to occur. Upon channel activation, a tremendous ionic influx occurs 

almost instantaneously towards the axoplasm, generating membrane depolarization 

and a high, sudden local concentration of Na+, which will rapidly dissipate along the 

axon, until reaching the next node of Ranvier, where the effect re-occurs8. This fast 

mode of nerve impulse conduction, with a velocity of up to two orders of magnitude 

compared to unmyelinated axons, is called saltatory conduction. It is the product of 

the combined effect of myelin-mediated insulation, regularly spaced nodes of 

Ranvier, as well as the local concentration of voltage-gated ion channel at these 

nodes5. 

Historically, myelin was thought to be merely involved in axonal insulation, but in 

more recent times, novel roles for myelin have been suggested and unveiled9-11. 

Axons by themselves vary between 0.1 - 20 µm in diameter, and can be even a meter 

in length1, 12. This makes them inherently fragile, and myelin has been shown to have 

a supportive role in providing mechanical strength to axons and brain matter itself13. 

Additionally, since membrane polarization in axons is actively maintained by Na+/K+ 

exchangers, axons require substantial amounts of energy in the form of adenosine 5′-

triphosphate, which needs to be primarily generated through cell respiration9. 
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Recently, a supportive role of myelin by supplying substrates that can be fed to 

axonal metabolic pathways has been suggested, allowing axons to gain a more 

constant stock of chemical energy in their otherwise insulated environment9, 10. This 

trophic support is not limited to the transfer of small molecules from myelin to the 

axon, but the transfer of entire proteins and even ribosomes has been documented14, 

15. 

Myelin in the CNS and PNS carries out the same function(s), and while they 

structurally resemble each other, there are some notable morphological differences in 

myelinating glia and myelin itself. These differences will be described in more detail 

in the forthcoming sections, finally followed by the description of the molecular 

ultrastructure of myelin. 

 

1.1.2.1. Central nervous system myelin 

The myelinating cell of the CNS is the oligodendrocyte – a type of glial cell that 

develops and matures during embryogenesis and early post-natal life from 

oligodendrocytic progenitor cells16. From the oligodendrocytic cell body, several long 

outgrowths make contacts with axonal segments, which become enclosed in myelin. 

A single oligodendrocyte often myelinates axons of several neurons and can also 

produce multiple adjacent or separate myelin units on a single axon (Fig. 1)17. Most 

CNS axons that have a diameter of 0.2 µm or more are myelinated by 

oligodendrocytes, and the myelination is controlled through cell signaling18. Most 

axons in the CNS are myelinated, but those few unmyelinated axons that remain are 

by no means “naked”. These axons are covered in astrocytes, which harbor a 

maintenance role19. 
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Fig. 1. Oligodendrocytic myelin sheath. (A) Schematic of a CNS neuron with its axon 
decorated with oligodendrocytic myelin. (B) Unrolled myelin sheath with various 
compartments indicated. (C) Cross section of an oligodendrocytic myelin-axon unit, with 
compartments and features indicated. Legend: Ab, abaxonal collar; Ad, adaxonal collar; CM, 
compact myelin; IM, inner mesaxon; LIs, longitudinal incisures; OM, outer mesaxon; PAS, 
periaxonal space; PNC, paranodal collar; RCs, radial components. Light blue and gray 
denote compact and non-compact myelin, respectively. 
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Even though myelin clearly has its benefits, one might still ask if myelin is absolutely 

necessary. In practical terms, insulation is the only feasible method to increase nerve 

impulse conduction in vertebrates, as the amount of axons and neurons that build up 

nerves can be immensely high. In the absence of myelin, however, it is known that 

nerve impulse conduction velocity does correlate with axonal diameter20, and a 

notable example is the squid axon, which lacks a myelin sheath, but ensures efficient 

nerve impulse conduction by having a diameter of up to 1 mm21. The sheer 

complexity of the vertebrate nervous system seems to have favored the emergence of 

myelin in evolution so much that it has occurred twice: in the CNS and in the PNS22. 

 

1.1.2.2. Peripheral nervous system myelin 

PNS myelin is formed by Schwann cells, named in the honor of Theodor Schwann, 

who discovered peripheral myelin. The fundamental difference to oligodendrocytic 

myelin is that each individual Schwann cell forms a single myelin unit and as such is 

situated very close to the axon itself, with the Schwann cell nucleus residing on the 

outer edge of the myelin unit. Hundreds of Schwann cells may decorate a single axon, 

each separated by a node of Ranvier (Fig. 2)23. Schwann cells are surrounded by a 

basal lamina – a carbohydrate-rich sheath that smoothly transitions from one myelin 

unit to another. This basal lamina is a specific structure of unknown function and is 

not found around oligodendrocytic myelin24. The myelination of PNS axons seems to 

correlate with axonal diameter, with axons having a diameter below 2 µm being 

unmyelinated. The fate and amount of ensheathment is governed by the axon through 

signaling pathways25. Unmyelinated PNS axons are still wrapped by Schwann cells, 

but as opposed to forming multiple layers of tight water-deficient membrane stacks, 

the axons only become surrounded by a non-compacted structure called amyelin, 

where a single Schwann cell can ensheath multiple nearby axons26. However, the 

general consensus of axonal diameter being the regulator of myelination in the 

scientific community has been challenged, as axonal signaling with Schwann cells 

has been shown to be an important regulatory mechanism in the formation of myelin, 

similarly to CNS myelination27. 
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Fig. 2. Schwann cell myelin sheath. (A) Schematic of a peripheral neuron with its axon 
decorated by Schwann cells. (B) Unrolled Schwann cell with various compartments 
indicated. (C) Cross section of a Schwann cell-axon unit, with compartments and features 
indicated. Legend: Ab, abaxonal collar; Ad, adaxonal collar; BL, basal lamina; CM, compact 
myelin; IM, inner mesaxon; OM, outer mesaxon; PAS, periaxonal space; PNC, paranodal 
collar; SLIs, Schmidt-Lanterman incisures. Light blue and gray denote compact and non-
compact myelin, respectively. 
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In addition to oligodendrocytes and Schwann cells, it is worth mentioning that these 

two cell types are often mistakenly considered the only myelinating glia of the 

nervous system. In fact, Schwann cell-like olfactory ensheathing cells are present 

both in the CNS and PNS in small numbers, specifically involved in myelinating 

axons of the olfactory bulb and the olfactory nerve, respectively28. Additionally, a 

relatively new discovery of myelinating cells termed motor exit point glia seems to 

also extend over the boundaries of CNS and PNS29. In this thesis, we will focus only 

on myelin originating from Schwann cells and oligodendrocytes, as those cells types 

are generally responsible of producing the major fraction of all endogenous myelin. 

 

1.1.2.3. The ultrastructure of myelin 

While myelination in the CNS and PNS is organized rather differently in terms of 

how the myelinating glia actually form myelin, the ultrastructure of a single myelin 

sheath is quite similar between the two nervous systems in terms of the overall 

structure and molecular organization. Of the total mass of myelin, less than half is 

water on average30, and on the molecular level, myelin is mostly composed of lipids, 

around 70 – 85% of the dry mass, with proteins representing the remaining 15 – 

30%31. This equals an average protein-to-lipid (P/L) ratio of 0.25, by mass, and is 

significantly less than in other biological membranes. For comparison, most plasma 

membranes have a P/L ratio of 0.7 – 1.5 by mass32, and in the mitochondrial inner 

membrane the P/L ratio can be as high as 3 – 4 by mass32, 33. Additionally, several 

ionic species are present, most notably the divalent cations Ca2+ and Zn2+, at 

concentrations of 1 mM and 50 µM, respectively34, 35. 

As illustrated in Fig. 3, a myelin unit can be longitudinally divided into three 

principal segments: the internode spans most of the myelin unit, and at the distal ends 

of the internode, the myelin membrane curves in towards the axon. This curved 

segment is called the juxtanode, which then transitions into the paranode, mostly 

consisting of the paranodal loops. The paranodes form the ends of the myelin sheath, 

which flank the nodes of Ranvier on either side.  
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Fig. 3. Myelin ultrastructure. Schematic view of a longitudinal section of myelin in the 
CNS and PNS with the internode, juxtanodes and paranodes indicated. The cytoplasmic 
(MDL, major dense line) and extracellular/intramyelinic (IPL, intraperiod line) 
compartments form the periodicity of compact myelin (CM), as shown in the zoom-in (red 
inset). Adjacent myelin units cover the nodes of Ranvier (NOR) with microvilli in the PNS. 
Schwann cells are additionally shrouded by a basal lamina (BL). In the CNS, the nodes of 
Ranvier are covered with astrocyte processes (ASP). Non-compact myelin is shown in gray. 
The axoplasm is colored yellow. Most of the indicated morphological features are shared 
between the CNS and PNS myelin. Legend: Ab, abaxonal layer; Ad, adaxonal layer; PAS, 
periaxonal space; PJs, paranodal junctions; PLs, paranodal loops; SLIs, Schmidt-Lanterman 
incisures. 
 
 

The two major morphological structures in myelin are compact and non-compact 

myelin, which differ from each other in appearance, function, solvent content, protein 

content, and subdivisions36. The general architecture of a myelin sheath is fairly 

simple and has been illustrated in various ways in Fig. 1-3. Starting from inside, after 

the axolemma resides the periaxonal space – the extracellular compartment between 

the axon and the innermost myelin membrane known as the adaxonal membrane. 

Cellular communication between the axon and the myelinating glia takes place 

through the periaxonal space37. Additionally, the myelin sheath supplies the 

periaxonal space with lactate and pyruvate, which can be transported to the axon for 

energy metabolism9, 38.  



10 
 

 
 

The adaxonal membrane encompasses the adaxonal collar, a single aqueous cytosolic 

compartment of non-compact myelin, where also the leading edge of the myelinating 

plasma membrane, the inner mesaxon, resides. This is followed by dozens of tightly 

stacked myelin membranes that form the bulk content of compact myelin. Moving 

outwards, compact myelin is followed by the abaxonal collar, another non-compact 

compartment of high cytosolic content36. Finally, the abaxonal membrane, the 

outermost plasma membrane, separates the myelin sheath from the extracellular 

milieu. Here, the non-leading end of the plasma membrane, the outer mesaxon, is 

present. Additionally, the abaxonal layers in the PNS form villi that shroud the nodes 

of Ranvier. In the CNS, such villi are not present. Instead, the nodes are covered by 

astrocyte processes39. 

While the overall myelin architecture in the CNS and PNS is similar, the two myelin 

systems are not identical. There are noteworthy differences present, including the 

radial component and longitudinal incisures in CNS myelin, and Cajal bands and 

Schmidt-Lanterman incisures (SLIs) in PNS myelin. Further details about these 

structures, as well as compact and non-compact myelin in general, will be covered in 

the next chapters. 

 

1.1.2.4. Compact myelin 

Compact myelin forms the major fraction of the entire myelin sheath. As the name 

implies, this is the main structure containing stacked adhered membranes, which 

substantially decreases solvent content and provides myelin with its insulative 

character. Alternating between the stacked membranes of compact myelin is the 

cytoplasm of the myelinating cell and the enclosed extracellular compartment, also 

known as the intramyelinic compartment (Fig. 3). These two compartments have 

differences in protein content as well as their volume. Early electron micrographs 

already provided evidence of this periodic structure in the myelin sheath, where 

alternating electron-dense features and separating spaces between them could be 

resolved40-42. The electron-dense feature, the major dense line (MDL), turned out to 

be the substantially compacted cytosolic compartment, where the two apposing 
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membrane bilayers are nearly fused together (Fig. 3), with a mere 3-nm spacing 

between them. For comparison, a single myelin lipid bilayer is typically around 4.5 

nm in thickness. The space between the separate MDLs, the intraperiod line (IPL), 

was in fact the less compacted extracellular compartment, with a spacing of ~5 nm43. 

The high periodicity of these alternating structures was discovered many decades ago, 

with a level of organization capable of producing a diffraction pattern, when exposed 

to X-rays44, 45. In CNS, a unique structure is present in compact myelin, known as the 

radial component, which is a network of tight junctions between the myelin 

membranes. The radial component lacks cytosolic content, and is thought to 

contribute to the stabilization of the multilamellar structure of compact myelin46, 47. 

 

1.1.2.5. Non-compact myelin 

Despite being the lesser myelin compartment in terms of volume and dry mass, non-

compact myelin carries an essential role in myelin maintenance. In addition to 

encompassing various cell organelles and metabolic pathways that maintain the 

homeostasis of the myelin sheath, translation of all compact myelin proteins required 

for the stability and formation of myelin occur in non-compact myelin. 

Within the abaxonal collar, vast amounts of respiration and other cellular metabolism 

occurs in addition to the transport of extracellular nutrients and exchange of other 

factors with the cytoplasm38. Various cellular interactions and processes are present in 

the abaxonal collar and in the extracellular milieu, such as metabolic exchange with 

astrocytes, linking the metabolic flux towards myelinating glia to the blood stream48. 

An interesting difference can be noted for the abaxonal layer between the CNS and 

PNS: whereas the abaxonal collar in the CNS is uniformly non-compacted, the 

abaxonal collar in the PNS contains membrane appositions that exclude substantial 

amounts of cytosolic volume. Whilst similar to compact myelin, albeit not as tight, 

these appositions form the morphologically distinct boundaries for non-compact 

myelin veins known as Cajal bands49. 
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The adaxonal collar acts as a reservoir of cargo that crosses the adaxonal membrane 

to and from the periaxonal space, as well as factors relevant for compact myelin 

maintenance9, 38. The paranodal collars connect the abaxonal and adaxonal collars 

with each other at the ends of the myelin unit. At the end of the myelin unit, the collar 

arranges in a longitudinal fashion around the axon and forms structures called 

paranodal loops. These are attached to the axon through tight paranodal junctions, 

separating the periaxonal space from the extracellular space50. 

In addition to the paranodal collars, cytoplasmic channels that span through compact 

myelin are present in myelin. Longitudinal incisures in CNS myelin are arranged 

along the length of the myeli unit, whereas the equivalent channels found in PNS 

myelin, the SLIs, are arranged transversely. These channels are filled with cytosolic 

content, and in wrapped myelin, these channels will stack on each other, creating a 

gap junction-mediated shortcut through compact myelin from the abaxonal collar to 

the adaxonal collar50, 51. 

 

1.2. THE MOLECULAR CHARACTERISTICS OF MYELIN 

1.2.1. THE LIPID COMPOSITION OF MYELIN 

Since myelin is notably rich in lipids, it is necessary to consider the lipid species 

present. Despite being quite different from other biological membrane arrangements 

in terms of morphology and total lipid fraction, the lipid species present are, 

surprisingly, not specific to myelin, but only enriched in certain aspects. 

Around 700 different individual lipid species have been identified in myelin, which 

differ in terms of headgroup and fatty acid complexity52. In humans, the CNS myelin 

lipid content consists of 27.7% cholesterol, 27.5% galactosphingolipids and 43.1% 

phospholipids by mass. The major fraction of galactosphingolipids exists as 

cerebrosides at 22.7% of total myelin lipid content, accompanied by sulfatides, 

present at around 3%. The phospholipid pool consists of the neutral phospholipids 

phosphatidylcholine (PC), phosphatidylethanolamine (PE) and sphingomyelin (SM), 

as well as the major negatively charged phospholipid phosphatidylserine (PS). 
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Marginal amounts of cardiolipin, phosphatidic acid (PA), phosphatidylinositols (PI), 

and phosphatidylglycerol (PG) are also present53. Additionally, a rather large fraction 

of total myelin lipids is formed of plasmalogens, at around 12.3%, mostly 

ethanolamineplasmalogens54. The length and saturation degree of fatty acids in 

myelin vary: virtually all fatty acid chains are between 16 and 22 carbons long, with 

46% being fully saturated (lacking double bonds; major species are 16, 18, and 20 

carbon units in length) and 54% unsaturated (major species are 18 and 22 carbons 

long with 1 and 3 double bonds present, respectively). The fraction of 

polyunsaturated fatty acids, with two or more double bonds present, is around 30%, 

from which around half consists of fatty acids with 22 carbons and 3 double bonds55. 

The myelin membrane is asymmetric, meaning that the two monolayers that form the 

bilayer have different lipid profiles. Whilst cholesterol is rather uniformly distributed 

in the bilayer, the outer membrane monolayer is mostly composed of galactolipids, 

whereas the inner monolayer is enriched in phospholipids56. This essentially makes 

the outer monolayer surface covered in sugar moieties on the extracellular side, 

whereas the inner monolayer surface, which faces the cytoplasm, becomes net 

negatively charged due to the presence of PS, PI, PG, and PA. Past lipid 

quantifications of marmoset white matter allow us to elaborate further on the 

composition of the inner myelin monolayer: in healthy marmoset CNS myelin, the 

dominant lipid species are cholesterol at 31.6%, and the zwitterionic PC and PE at 

25.9% and 29.0%, respectively. SM makes up 6.2%, whereas PS, the major 

negatively charged lipid, is present at 7%57, 58. Given that around 12.3% of total 

myelin lipids are (ethanolamine)plasmalogens, one can also calculate that as much as 

70% of all PE content is in fact present as plasmalogens54 Additionally, one should 

note that the headgroups of phospholipids are significantly larger and more polar 

compared to the single hydroxyl group of cholesterol. Due to this, as well as its 

highly hydrophobic tail, cholesterol tends to embed deep into the membrane, causing 

the membrane surface on the cytoplasmic side to be almost entirely covered by 

phospholipid headgroups59. Therefore, the headgroup fractions can be further 

calculated to be 38%, 42%, 10%, and 9% for PC, PE, PS, and SM, respectively, with 

the neutral zwitterionic species making up 89% of all major headgroups in the 
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cytoplasmic monolayer. Marmoset lipid compositions are described here, instead of 

human, due to the fact that demyelinating models in marmosets, more specifically 

experimental autoimmune encephalitis (EAE) models, have been characterized and 

will be further discussed in Chapter 1.3.2. Very notably, the cholesterol fraction in 

EAE lipid compositions is increased from 31.6% to 37.4%57, 58, which is an almost 

20% increase in total cholesterol amount, and in this disease model, myelin 

compaction is aberrant. Cholesterol is generally very abundant in myelin. In fact, 

endogenous free cholesterol is mostly present in myelin membranes, and only minor 

changes in its abundance can be tolerated, especially when its total lipid fraction is 

lowered; its availability is considered a rate-limiting step in myelin formation60, 61. 

The differences between CNS and PNS myelin in terms of lipid species are rather 

small. Compared to CNS myelin, the amount of galactolipids is lower in PNS myelin, 

and SM is present in higher amounts53. This is rather important to note, since SM is 

known to influence the behaviour of the membrane and its lipid rafts, together with 

cholesterol62. SM has also been shown to interact with some myelin proteins63. In 

PNS myelin, the distribution of fatty acid lengths and saturation degrees is rather 

similar to CNS myelin, with the single most abundant type of fatty acid being oleoyl, 

consisting of 18 carbon units and a single cis-double bond in carbon position 9. This 

type of fatty acid makes up over 30 mol-% of total fatty acid content in PNS myelin64. 

 

1.2.2. MYELIN PROTEINS 

As opposed to lipids, the myelin proteome is significantly different from any other 

biological system. Both CNS and PNS myelin harbor only a handful of very abundant 

and specific proteins that are strictly localized to either non-compact or compact 

myelin in a manner that is at least partially driven by size exclusion65. The proteins in 

these two compartments carry out various structural and functional roles, which will 

be only generally outlined in this chapter before focusing more on specific proteins. It 

is noteworthy that a general trait of myelin proteins is that their functions are rather 

poorly characterized, if known at all. An overview of myelin proteins and their major 

localization in the CNS and PNS has been illustrated in Fig. 4.  
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1.2.2.1. Compact myelin proteins 

As compact myelin needs to remain stable, it is enriched with structural proteins that 

promote membrane adhesion in both the MDL and IPL. Despite the apparent 

similarity of CNS and PNS myelin, they in fact contain a different assortment of 

proteins with little overlap. 

In the CNS, the major compact myelin proteins are proteolipid protein (PLP), myelin 

basic protein (MBP), myelin-associated oligodendrocytic basic protein (MOBP), and 

myelin/oligodendrocyte glycoprotein (MOG). Of the total myelin protein mass, PLP 

and MBP solely make up around 50% and 30%, respectively66. The function of the 

highly hydrophobic tetraspan proteins PLP and its minor splice variant ‘DM20’ are 

not entirely understood. Both are thought to be involved in oligodendrocyte 

maturation, and PLP is a required component for the structural integrity of myelin, 

likely to be involved in the formation of stacked bilayers67-69. MBP is rich in Arg and 

Lys, making it strongly positively charged and capable of interacting with negatively 

charged phospholipids. MBP has a key role in the formation and stability of compact 

myelin as a membrane stacker, and MBP is a key factor involved in multiple sclerosis 

(MS)70. MBP is one of the principal proteins for this thesis, and will be discussed in 

closer detail in Chapters 1.2.2.3. and 1.3.2.1. MOBP is the third most abundant 

protein in CNS myelin, and like MBP, is notably abundant in cationic amino acids. Its 

function, however, is most likely involved in the formation of the radial component 

rather than MBP-like membrane stacking71-73. MOBP, like MBP, is an antigenic 

protein in MS74, 75, and sequence analyses have revealed a potential zinc-finger 

domain76, which might have functional implications, given that Zn2+ is rather 

abundant in myelin34, 35. MOG is an exclusively mammalian protein, present only on 

the outermost surface of oligodendrocytic myelin77, 78. It is further a member of the 

immunoglobulin (Ig) superfamily, and contains an extracellular, glycosylated Ig-like 

domain, followed by a transmembrane domain and a membrane-associated 

cytoplasmic segment79. While MOG is known to be involved in MS80, its 

physiological function is unknown81. 
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In PNS myelin, the most abundant compact myelin proteins are myelin protein zero 

(P0), peripheral myelin protein 2 (P2), peripheral myelin protein 22 (PMP22), and 

MBP. A striking difference to CNS compact myelin is that the abundance of MBP is 

merely 5 – 18%, while the other three are present at over 50%, 15% and 2 – 5%, 

respectively82.   

P0 is a 30-kDa single-pass transmembrane protein and the most abundant protein in 

PNS compact myelin. It is involved in membrane stacking in the IPL through 

homophilic interactions involving its Ig-like domain83, and the molecular aspects of 

P0 will be explained deeper in Chapter 1.2.2.4., as well as its role in peripheral 

neuropathies in Chapter 1.3.2.2. PMP22 is a 22-kDa transmembrane protein with four 

membrane-spanning helices and is involved in the formation of cholesterol-rich lipid 

patches and linking the actin cytoskeleton to the membrane84. Whilst none of the 

tetraspanning membrane proteins of myelin have been characterized structurally, a 

recent structure of claudin-15 and the subsequent construction of a PMP22 homology 

model have provided insights into the PMP22 conformation and potential 

arrangement in the myelin membrane85, 86. Both P0 and PMP22 are glycosylated on 

the extracellular side of the membrane, and while both are integral membrane 

proteins confined to the lipid membrane environment, P2 is a folded, soluble protein 

in the cytoplasm. Discovered already in the early 1970s, P2 carries out a function in 

MDL membrane stacking, similarly to and in synergy with MBP, although the 

interesting feature remains that P2 is not ubiquitously expressed between separate 

PNS myelin units87-90. P2 is structurally well-characterized; crystal structures have 

been solved numerous times of the wild-type protein as well as mutants91-97, and 

shown to belong to the superfamily of fatty acid-binding proteins. P2 is a 14.5-kDa 

protein with a β-barrel fold, topped with a helical lid segment, which is known to be 

involved in membrane binding in the cytoplasm. Crystal structures have supported the 

function of P2 as a lipid carrier in myelin maintenance. The transportation of 

cholesterol by P2 has also been suggested93, 98. 
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1.2.2.2. Non-compact myelin proteins 

Sequestered from compact myelin are the proteins present in non-compact myelin. 

Much different from other glia, there are factors that specifically express in these 

distinct compartments and co-exist with the more canonical cellular elements, often in 

very high levels. Non-compact myelin is involved in the maintenance of compact 

myelin and the axon, and includes metabolic functions as well as nutrient transport, 

and therefore carries a different proteome than compact myelin9, 99. Additionally, 

some non-compact myelin proteins define the boundaries of major cytoplasmic 

content and tight membrane adhesions100-102.   

In the CNS, one of the most abundant proteins by far is 2′,3′-cylic nucleotide 3′-

phosphodiesterase (CNPase), a member of the 2H phosphodiesterase superfamily and 

makes up 4% of all myelin proteins66, 103. Part of the pool of CNPase is membrane-

associated via a fatty acylated cysteine104, 105, and since it interacts with filamentous 

actin and tubulin, it has been proposed to link the cytoskeleton to the myelin 

membrane106, 107. This function is important in myelin, as a recent study revealed that 

it is this specific function that together with MBP regulates the balance between 

compact and non-compact myelin, which has a fundamental importance not only in 

insulation, but in establishing cytoplasmic channels essential for myelin 

maintenance102. Perhaps the most important function of CNPase is its enzymatic 

activity in depleting 2′,3′-cyclic nucleotides from the cytosol108-113, many of which are 

thought to be transported into myelin from the axon114. These compounds damage 

mitochondria, potentially to an apoptotic degree110, 115, and CNPase therefore has 

been suggested to be essential in ensuring the long-term survival of the myelinated 

axon114. Additionally, CNPase has been shown to interact with calmodulin, much like 

many other myelin proteins, and potentially be involved in ribonucleic acid (RNA) 

metabolism and trafficking116-119. 

Non-compact CNS myelin includes several other specific proteins, the most abundant 

ones including myelin-associated glycoprotein (MAG), sirtuin-2 (S2), and 

oligodendrocyte-specific protein (OSP, also known as claudin 11)66, 103, 120, 121. MAG 

is present at relatively moderate levels, at 1% of all myelin proteins, and exhibits a 
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long (L-MAG) and a short (S-MAG) isoform103. L-MAG has a function in 

establishing physical contact with the axon through the periaxonal space, by the use 

of its multiple Ig-like domains122, and L-MAG and S-MAG both are capable of 

interacting with several cytosolic factors with distinct selectivity between the two 

isoforms, as reviewed earlier76, 122. S2 is a nicotinamide adenine dinucleotide-

dependent deacetylase, which is involved in the deacetylation of microtubules, for 

instance120. S2 has been shown to be present in myelin, and its transport to myelin is 

governed by the presence of PLP123. OSP is an integral membrane protein that forms 

local tight junctions between apposed myelin membranes in the radial component121. 

PNS myelin is rather different from the CNS regarding its proteome. Both MAG and 

CNPase are present at reduced amounts, at a mere 0.3% and 0.5%, respectively82. 

Unlike in CNS myelin, MAG is present in SLIs, both mesaxons and paranodal loops, 

in addition to the adaxonal membrane122. The most abundant protein in PNS non-

compact myelin is periaxin (PRX), present as a short (S-PRX, 16 kDa) and long (L-

PRX, 155 kDa) isoform, the latter harboring a nuclear localization signal (NLS) 

sequence and predicted to be mostly disordered124, 125. S- and L-PRX, which form 

cytosolic homo- and heterodimers through their N-terminal PDZ domains126-128, are 

abundant at the abaxonal layer, where L-PRX scaffolds dystrophin-related protein 2 

and integrin β4, forming membrane appositions through a protein meshwork 

underneath the myelin membrane itself100, 129, 130. The function of S-PRX is unclear to 

date, although it might have relevance in sequestering the aforementioned meshwork 

or blocking the nuclear export of L-PRX128, 131. The exact significance of these 

appositions that line Cajal bands is not understood, let alone them specifically being 

present in PNS myelin, but the absence of PRX or dystrophin-related protein 2 

abolishes the morphology49, 100, 101. 

One noteworthy, less abundant protein is connexin 32 (Cx32), which like other 

connexins is not exactly specific for myelin, but is important for its development132-

134. This transmembrane protein is present in paranodal loops and SLIs, where it has 

been hypothesized to form gap junctions with the axonal membrane, contributing to 

the isolation of the periaxonal space and to provide a direct route for small molecule 
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flux through compact myelin, as well as between the Schwann cell and the axon134, 

135. Finally, epithelial cadherin (EC) is another low-abundance protein, which is 

involved in the formation of Ca2+-dependent homophilic adherens junctions between 

myelin membranes in SLIs, at the paranode, and at the outer mesaxon136-138. 

One might consider myelin as a relatively simple system in terms of the proteins 

present and the functions they perform, given the overwhelming abundance of a 

relatively small collection of proteins compared to the entire myelin proteome. 

However, especially recent research has made it obvious that the few abundant 

proteins in myelin are not meant for a single task, but rather carry out multifunctional 

roles. These proteins include, but are not limited to, MBP, CNPase, and P2, which are 

very abundant in myelin66, 70, 76, 82, 125, 139. Be it membrane adhesion/interaction with 

the myelin membrane, protein-protein interactions, fatty acid transport, or enzyme 

activity, it is enticing to speculate that myelin has evolved to accommodate proteins 

that are capable of simultaneous but functionally different tasks, or at least adapt to 

carry out such tasks upon need. Due to the spatial confinement of myelin, as well as 

its requirement to remain under stable equilibrium for prolonged times, the high 

expression levels of extremely long-lived140, multifunctional proteins might be 

advantageous, as opposed to multiple proteins carrying out solely distinct tasks. 

In the chapters that follow, we will focus deeper on MBP and P0, two of the most 

abundant compact myelin proteins in the CNS and PNS, respectively. Most of what is 

discussed in the current study from now on will particularly involve these two 

proteins and their variants. 

 

1.2.2.3. Myelin basic protein 

MBP is one of the most important and abundant multifunctional proteins in CNS 

compact myelin. Originally, MBP was named A1 protein after its discovery as an 

elongated myelin-specific protein141-145. The name ‘myelin basic protein’ is more 

descriptive in the sense that the protein resides in myelin and has an alkaline nature, 

ergo, a high positive net charge. However, the name is also misleading; in fact, we 
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cannot consider MBP to be a single protein, but rather a heterogeneous ensemble of 

different splice variants that are subject to numerous post-translational modifications 

(PTM), although a predominant form exists endogenously146. 

In humans, the Mbp gene is located in chromosome 18 after the gene in the 

oligodendrocyte lineage (Golli), which are transcribed together into a long 179-kb 

RNA transcript that gets spliced into several messenger RNAs (mRNAs) encoding for 

a total of six known MBP protein isoforms (UniProt P02686)147. Two of them consist 

of translated content encoded by Golli exons, in addition to Mbp exons. The 

remaining four are solely encoded by Mbp – these four are often referred to as the 

‘classical isoforms’148. All four undergo N-terminal processing in the form of initial 

Met removal and subsequent N-terminal acetylation, which are thought to occur co- 

or post-translationally149. The Golli-MBP isoforms are less characterized non-

classical MBPs, which undergo nuclear localization and bind nuclear factors that 

regulate gene expression150. They also have been shown to regulate Ca2+ entry in 

different cell types151, 152. It is probable that more classical isoforms exist in humans, 

based on studies on other organisms: especially mouse and rat MBPs have been 

extensively characterized and found to undergo similar splicing and N-terminal 

processing as the human protein (UniProt P04370; P02688)153-159. The major classical 

mouse MBP isoforms are listed in Table I. 

 

Table. I. Details of the major classical mouse MBP isoforms. All data is based on the 
sequences from UniProt P04370 (MBP_MOUSE). Isoelectric points (pI) were calculated 
using ProtParam160. 

Isoform # Residues* Mass (kDa)* pI** Localization161, 162 

4 194 21.5 11.24 Nucleus, cytosol 

5 168 18.5 11.14 Cytosol 

6 153 17.2 11.75 Nucleus, cytosol 

8 127 14.2 11.75 Cytosol 

*Post-translational initial Met removal and subsequent N-terminal acetylation. 
**PTMs are not accounted for. 
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The predominant isoform of all endogenous MBP in myelin, the ‘18.5-kDa 

isoform’146, will be a major focus in this thesis. MBP is not homologous to any other 

known proteins, yet it is conserved among vertebrates, especially in mammals163. As 

selected examples, the human and chimpanzee 18.5-kDa MBP isoforms are almost 

100% identical, mouse and rat proteins both have sequence identities of 94% 

compared to the human protein, whereas for bovine MBP the same identity is 91%. 

More distantly related vertebrates, the chicken and the African clawed frog, have 

sequence identities of only 69% and 59%, respectively. The discussed sequences are 

aligned in Fig. 5. The most distantly related MBPs have been identified in 

cartilaginous fish163, 164. 

 

Fig. 5. Sequence alignment of selected vertebrate MBP 18.5-kDa isoforms. Selected 
sequences have been aligned to highlight the conservation of MBP among vertebrates165, 166. 
Residue numbering is based on the human protein. The secondary structure labels denote the 
known α-helical segments of lipid-bound MBP167. ‘Xenopus’ denotes the African clawed 
frog (Xenopus laevis). All sequences were retrieved from UniProt (P02686, P06906, P04370, 
P02688, P02687, P15720, P87346). Double Phe-motifs (**), the Src homology 3-binding 
motif (PXXP), the predicted calmodulin-interaction site (green) and the immunogenic 
segment (blue) are highlighted. 
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Fig. 5 displays that MBPs are abundant in Arg and Lys, which increase their 

isoelectric points (pI; see Table I) and give them an unusually high net charge at 

physiological pH. Based on the amino acid sequence of N-terminally acetylated 

mouse 18.5-kDa isoform, this charge is +19, and has a significant impact on the 

structure and functions of MBP. Free in solution, MBP has been shown to be an 

intrinsically disordered protein (IDP), lacking substantial secondary and tertiary 

structure content168-171. MBP is often considered an archetypal IDP, which exists as 

an ensemble of flexible, dynamically interchanging conformers in solution172, rather 

than having defined molecular boundaries like folded proteins do173, 174. The unfolded 

nature of MBP was already realized quite early142, 143 and finally accepted as a 

consensus when rigorous crystallization attempts for structure determination had 

failed175. MBP is present in the stacked membranes of compact myelin (Fig. 6). Upon 

lipid biding, MBP gains significant amounts of folding as shown by circular 

dichroism (CD) spectroscopy171. Attempts to determine the detergent- and lipid-

bound structures of MBP have been carried out using electron microscopy and 

modeling techniques176-178, and to this date, the best experimental structure of lipid-

bound MBP is a low resolution C-shaped, folded molecule with a diameter of 5 

nm177, which has also been supported by small-angle X-ray scattering (SAXS) 

experiments on lipid-bound MBP169. Modeling studies suggest that the core of this C-

shaped conformation is rich in β-sheets (Protein Data Bank (PDB) ID: 1QCL)178. 

More recently, some more elaborate experiments on MBP-derived peptides using 

nuclear magnetic resonance (NMR) and electron paramagnetic resonance 

spectroscopy been conducted to uncover helical segments and solvent exposed areas 

of lipid-bound MBP170, 179-182. Three transient α-helical segments within MBP have 

been discovered in the presence of 30% 2,2,2-trifluoroethanol (TFE), a compound 

that decreases the dielectric nature of water, favoring spontaneous protein folding. 

These helices have been shown to be amphipathic when folding in the presence of 

lipids and detergents167, 183, 184. In the computationally predicted model of MBP, none 

of these segments adopt a helical fold, but are specifically part of the β-sheet core, 

indicating that more structural studies are required to understand the conformation of 

MBP in myelin. 
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Fig. 6. The structure, functions, and modifications of MBP. MBP is multifunctional, and 
in its soluble disordered state takes upon many tasks. MBP and cations are drawn in red, 
whereas other proteins and the oligodendrocyte are drawn in gray. In modifications, Arg is 
colored red due to its positive charge, whereas the phosphoresidues pSer and pThr are 
colored blue to denote negative charge. Black arrows represent the functions of MBP, 
whereas gray dashed arrows represent modulation effects. Legend: PI, phosphatidylinositols. 
The structures of calmodulin and Fyn Src homology 3 domain are based on PDB IDs 
1CLL185 and 4EIK186, respectively. The C-shaped model for MBP is based on PDB ID 
1QCL177, 178. The figure is not exhaustive in terms of protein-protein interactions. 
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In addition to membrane stacking, which is the most important function regarding this 

thesis, MBP is multifunctional. These various functions of MBP have been illustrated 

in Fig. 6. Amongst many protein-protein interactions, MBP interacts with actin- and 

tubulin-based cytoskeletal elements, calmodulin, and Fyn kinase171, 187-191. The 

cytoskeletal interactions affect oligodendrocyte process formation191, 192, and the 

occurrence of certain MBP isoforms in the nucleus has been linked to 

oligodendrocyte differentiation, although the nuclear interaction partners of MBP are 

not known162, 193. Additionally, MBP contains a PXXP polyproline motif (Fig. 5–6), 

which binds the Src homology 3 domain of Fyn kinase, an important signaling 

molecule in neuronal differentiation and development194, 195. These functions link 

MBP to oligodendrocytic myelination that is clearly separate from membrane 

stacking. The calmodulin interaction has been shown to be Ca2+ dependent187, having 

an impact on the membrane-stacking function and cytoskeletal interactions of 

MBP171, 183. A major calmodulin binding site has been identified in the C-terminus of 

MBP188, 189, 196, but also other sites have been proposed to be present190. 

More recent findings around the membrane-stacking function of MBP has been 

studied and reviewed extensively. The membrane stacking and involved folding of 

MBP are spontaneous; however, they are affected by the individual lipid types as 

demonstrated in several biophysical studies: the essential requirement for the 

association of MBP with membranes is the presence of net negatively charged lipids, 

namely PS and PI171, 197, 198. Additionally, cholesterol and PE have been shown to 

enhance the binding of MBP to lipid vesicles, especially in conditions that disfavor 

electrostatic binding, indicating either specific molecular interactions between the 

lipids and the protein, or the involvement of the general biophysical properties of the 

membrane itself197, 198. Ions, especially divalent cations, have an effect on MBP 

binding and membrane stack organization, likely impacting myelin formation and 

pathology199, 200. Indeed, MBP has been shown to sequester PIs in the membrane, PI-

phosphates specifically, as well as divalent cations201, 202. 

At the molecular level, membranes stacked by MBP in in vitro model systems 

resemble those of endogenous myelin89, 90, 94, 203, 204. Especially recent experiments 
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have shed light on the molecular details of MBP-mediated membrane stacking: cell 

culture models expressing MBP have shown that plasma membranes can collapse into 

a myelin-like stack65, and atomic force microscopy (AFM) studies have revealed that 

MBP adsorbs into net negatively charged membranes in vitro and eventually stacks 

them in a cholesterol-dependent manner89, 203. Characterization of MBP bound to lipid 

vesicles has also been performed using X-ray and neutron scattering methods. The 

membrane repeat distance of MBP-adhered vesicles was determined using small-

angle X-ray diffraction (SAXD) to be around 80-82 Å, depending on P/L ratio, where 

an increased amount of protein tightened the membrane stack94. Recent studies have 

allowed a more detailed picture on this, showing that the interlamellar space between 

the membranes is around 35 Å204, which is expected considering the repeat distances 

observed for the MDL in endogenous myelin205. Additionally, the impact of 

temperature and the presence of P2 alter the repeat distance90. 

The arrangement of MBP within a membrane stack is thought to be very dense, 

existing as a protein meshwork, which is phase-separated from the surrounding 

solvent, as was shown though a combined approach of fluorescence microscopy, 

visible light microscopy, and AFM. More importantly, the arrangement seems to be 

governed by specific amino acids: two pairs of Phe residues were identified to be 

essential for the phase separation to occur in MBP charge-neutralizing conditions, as 

mutagenesis of these amino acids abolished the behaviour206. Still, some key aspects 

of myelination are open: how does MBP associate with a membrane at the molecular 

level? What is the conformation of MBP on a single membrane prior to stacking? 

Finally, a notable aspect of MBP that separates it from many other proteins is the vast 

assortment of PTMs it undergoes, especially in higher vertebrates164. In addition to 

co-translational N-terminal processing, including N-terminal acetylation, MBP has 

been found to undergo N-terminal butylation, hexylation, octylation, and 

decylation149, 207. Other PTMs include adenosine diphosphate ribosylation208, 209, Arg 

deimination (citrullination)210-213, Arg Nω-methylation and dimethylation214, 215, Gln 

deamidation212, 216, 217, Lys acetylation164, Met oxidation218 and Ser/Thr/Tyr 

phosphorylation212, 217, 219-224. Many of these modifications alter the charge of the 
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targeted amino acid, and the most abundant ones are the deimination of Arg to 

citrulline (Cit) and the phosphorylation of Ser and Thr (Fig. 6)210, 212. These 

modifications are thought to modulate all functions MBP harbours. As an example, 

Thr98 phosphorylation in the PXXP motif weakens MBP binding to Fyn kinase194, 222. 

The effect of citrullination is the most studied aspect of MBP modifications due to the 

fact that deamination of Arg, which MBP is very abundant in, irreversibly decreases 

the net charge of the protein. This affects the binding of MBP to phospholipids225, 226, 

and has been suggested to potentially alter its cation-binding properties, resulting in 

stacked myelin membrane destabilization146. The citrullination of MBP is carried out 

in the myelin cytosol and nucleus by peptidylarginine deiminases 2 and 4213, resulting 

in eight charge isomers, denoted C1 – C8 with varying amounts of Cit. The C1 charge 

variant is completely uncitrullinated, and thus the most cationic species of MBP. C8 

on the other hand is the most citrullinated and least cationic variant, containing 6 – 7 

Cit residues per protein146. All 18 highly conserved Arg residues of 18.5-kDa MBP 

(Fig. 5), have been identified as (potential) targets of deimination210-212. 

 

1.2.2.4. Myelin protein zero 

P0, along with MBP and P2, was one of the first myelin-specific proteins 

discovered87. P0 is a 30-kDa transmembrane protein of the PNS, localized into the 

compact myelin of Schwann cells. It has an extracellular, N-terminal Ig-like domain, 

a single-span transmembrane helix, and a C-terminal cytosolic extension of 69 

residues (P0ct). This domain structure, and the domains themselves, are highly 

conserved in vertebrates (Fig. 7A). The structure of the rat P0 Ig-like domain was 

solved in 1996 from a soluble, truncated construct227. In 2012, the human P0 Ig-like 

domain was solved228, and both proteins present a typical Ig-like stacked β-sheet fold 

with high structural conservation. A conserved disulphide between β-strands 2 and 6 

was observed and is required for the correct function of the protein in myelin (Fig. 

7B)227-229. In humans, only one P0 isoform is considered predominant, although a stop 

codon readthrough has been described in mice and rats, producing an L-MPZ isoform 

of unknown function, which is 63 residues longer than the major isoform230, 231. 
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Fig. 7. Sequence alignment of selected vertebrate P0s. (A) Selected sequences have been 
aligned to highlight the conservation of P0 among vertebrates165, 166. Residue numbering and 
secondary structure labels are based on the mature human protein. ‘Xenopus’ denotes the 
African clawed frog (Xenopus laevis). All sequences were retrieved from UniProt (P25189, 
A0A2J8JAV0, P27573, P06907, P10522, P37301, A2VD98). The conserved disulphide-
forming Cys residues (*) and the palmitoylation site (P) have been indicated. The colored 
lines below the alignment mark the boundaries of the Ig-like domain, transmembrane helix 
and P0ct. The blue box indicates the known neuritogenic segment. (B) Superposition of rat 
(green; PDB ID 1NEU227) and human (magenta; PDB ID 3OAI228) P0 Ig-like domains with 
N- and C-termini highlighted. The conserved disulphide is indicated with an arrow. 
 

 

When translated, P0 harbours an N-terminal 29-residue signal sequence that targets 

the protein to the endoplasmic reticulum (ER)232. In this thesis, the numbering of P0 

will correspond to the precursor sequence, ergo, the first amino acid of mature P0 is 

residue number 30 (Fig. 7). After membrane insertion and translation, the signal 

peptide is cleaved off, which results in mature P0. In the ER, the disulphide bond 

between β-strands 2 and 6 is formed, and Asn122 in the Ig-like domain is 

glycosylated, before P0 is trafficked to the plasma membrane233. 
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P0 is a membrane stacking protein involved in the compaction of the IPL. The Ig-like 

domains carry out this function by forming homophilic oligomers83, and the reported 

PTMs in the Ig-like domain are crucial for its role as a membrane stacker229, 234, 235. 

The oligomeric state of P0 has puzzled the field for years. Detergent-solubilized P0 

has been observed to form dimers and tetramers, but the oligomeric distribution has 

been noted to be different between P0 from different organisms236-238. The crystal 

packing of the rat Ig-like domain provided insights into the potential mechanism of 

membrane stacking in the IPL, again, hinting a dimeric or tetrameric assembly, 

resulting in several different suggested arrangements227. However, the tetramerization 

of the Ig-like domain in solution was only observed at very high protein 

concentrations227. Additionally, the transmembrane domain of P0 has been described 

as a dimerizing Gly-zipper, which would contribute to the formation of tetrameric P0 

assemblies239, but in the absence of further studies the true oligomerization mode of 

the apposing Ig-like domains remains obscure. In addition to homophilic adhesion, P0 

has been shown to interact with PMP22 in the IPL. This interaction might have 

additional structural relevance in myelin stability240, 241. 

P0ct resides in the cytoplasmic compartment of myelin and is known to be essential 

for the stacking function of the extracellular domain in the IPL242. Despite lack of 

homology, P0ct greatly resembles MBP in the sense that it is highly basic, with a pI 

value of 11.11, due to high abundance of Arg and Lys residues. Similarly to MBP, 

P0ct is an IDP and binds negatively charged lipids, folding in the process. P0ct has 

been suggested to function as an MBP-like membrane stacker in the MDL243-246. 

Especially the presence of cholesterol has been shown to influence the folding of 

P0ct, and the protein has been suggested to adopt a β-sheet-rich fold in myelin244. 

Regarding PTMs, P0ct contains a Cys residue close to the end of the transmembrane 

helix, which is known to be fatty acylated, most often palmitoylated247, 248. The fatty 

acylation has been shown to be required for the proper membrane stacking function 

of P0249. P0ct also undergoes phosphorylation at Ser210, Tyr220, Ser226, Ser228, 

Ser233, Ser237, and Ser243250-253. Mutation of Ser228 and Ser243 blocks 

phosphorylation and reduces P0-mediated membrane adhesion254. A neuritogenic 

segment, corresponding to amino acids 209-228, has been identified in P0ct (Fig. 7), 
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which can be used to induce EAE in rodents255. Within the neuritogenic segment, a 

conserved YAML-motif, which is required for the trafficking of P0, is present256. 

 

1.3. THE BIOCHEMISTRY OF (DE)MYELINATION 

Myelination is the process of myelin formation and is rather poorly understood at the 

molecular level. The formation of the intricate periodic structure is a carefully 

regulated event, which requires the coordinated translation and interplay of correctly 

functioning proteins, as well as the presence of the correct lipids, ions, and other 

factors61, 102, 257, 258. Successful myelination results in a mature myelin sheath, which 

needs to be actively maintained. The characterization of myelin at the molecular level 

is important, as it is the only way to understand demyelination and dysmyelination – 

the states of myelin destruction and abnormal formation, respectively, both of which 

lead to incurable diseases. In this chapter, the function of selected myelin proteins in 

myelination, myelin stability, and disease will be introduced, with emphasis on MBP 

and P0. 

 

1.3.1. MYELINATION 

The cell signaling involved in myelination has been reviewed earlier17, 36, 51, 259-261, but 

what induces myelin maturation at the biochemical level is still slightly obscure. 

Nevertheless, progress in this aspect has been made, as a recent study unveiled the 

central role of actin disassembly in myelin compaction257. This is a logical 

mechanism, as the MDL is obviously too narrow to accommodate major cytoskeletal 

structures, but changes in oligodendrocyte process growth requires actin filaments in 

myelin wrapping262. The regulation of myelin protein expression is carried out by 

factors like Unc-51-like kinase 4. Hypomorphic mice of this putative kinase 

developed hypomyelination in the CNS and 40 – 60% lowered transcription and 

expression levels of the normally very abundant myelin proteins, including CNPase, 

MAG, MBP, MOBP, MOG, OSP, PLP, S2263. 



31 
 

 
 

The membrane-stacking function of MBP and its regulation in the CNS are pivotal in 

the formation of compact myelin, as MBP is one of the first proteins to be translated 

during myelin compaction, even before the most abundant CNS compact myelin 

protein, PLP264. Clearly MBP orchestrates CNS myelination, but how does MBP 

exactly stack membranes in vivo? It is known that the mRNA of MBP is transported 

along microtubules to the peripheral processes of oligodendrocytes, and translated in 

the vicinity of the membrane when compaction occurs265-270, which is presumed to be 

enabled by stimulation by axonal electrical signals271. The molecular mechanisms by 

which MBP actually induce stacking are unclear, although several theories and final 

stacked arrangements have been proposed based on studies reviewed above70, 182, 272, 

273. 

The importance of MBP is well demonstrated by its absence, which has an effect on 

CNS myelination. This is evident from autosomal recessive mouse models, harboring 

spontaneous MBP-deficiency, termed shiverer mice based on their phenotype to 

‘shake’ involuntarily. On the cellular level, the phenotype manifests as 

dysmyelination – the abnormal formation and reduced amounts of myelin – in the 

CNS, while PNS myelin remains unaffected274. The effect is related to the formation 

of the MDL, which in MBP-deficient mice does not properly compact275, 276. 

The role of P0 in PNS myelination is rather different from MBP. P0 is basally 

expressed in Schwann cells already before myelination occurs, regardless of whether 

a Schwann cell is destined to form myelin or amyelin277. Upon myelination, the 

expression levels of P0 have to be carefully regulated, as overexpression of P0 has 

been shown to end myelination prematurely278. Nevertheless, the absence of P0 does 

result in an aberrant myelin phenotype, which cannot be rescued by overexpression of 

PLP, the most abundant CNS compact myelin protein279, 280. 

 

1.3.2. DEMYELINATION 

Loss of myelin mass and/or function can occur through demyelination or 

dysmyelination. Demyelination is the destruction of the myelin sheath after its 
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formation, whereas dysmyelination is the abnormal formation of myelin. Both 

demyelination and dysmyelination can arise from genetic reasons281, 282, but 

especially demyelination can involve several other factors as well, such as 

autoimmunogenic events283, abnormalities in mitochondrial function284, 285, and 

mechanical disruption such as traumatic brain injury286. Demyelination and 

dysmyelination not only disturb myelin and its function, but can also contribute to 

axonal degeneration287. In this chapter, two of the most abundant demyelinating 

disorders are presented on a general level, followed by discussing the proteins 

involved in these diseases. 

 

1.3.2.1. Myelin basic protein and multiple sclerosis 

MS is a chronic autoinflammatory disease of the CNS, in which nerve impulse 

conduction velocities decrease substantially due to demyelination, manifesting as a 

spectrum of neurological problems: numbness, weakness and pain of the limbs, 

double vision, loss of vision, fatigue, dizziness, tremors, lack of coordination, and 

speech issues288. Patients suffering from MS might experience several of these 

symptoms together in a progressive manner, with symptoms becoming worse over 

time, or a relapsing-remitting manner, with symptoms re-occurring as attacks and 

disappearing for periods of unpredictable length. At the histological level, 

demyelination causes lesions, scarring of nerve tissue. MS is the most common 

neurological disease within the age group of 20 – 40 years, where the disease usually 

onsets289. 

While the possible causes of MS are largely debated, MS patients often display only 

some of all known symptoms, making the treatment of MS difficult and often 

personalized. There is no known cure for MS, and patients remain affected for life. 

The demyelination in MS is at least partially considered to be of autoimmunogenic 

origin, either caused by T-cells that manage to cross the blood-brain barrier, or by 

CNS microglia. These immune cells destroy myelin due to myelin factors mistakenly 

being recognized as threats, decreasing axonal insulation and saltatory conduction290, 

291. The recognition occurs by macrophages expressing class II major 
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histocompatibility molecules that can bind specific myelin proteins and/or peptide 

segments292. 

Numerous myelin-specific proteins have been identified as autoantigens in MS, 

including CNPase, MAG, MBP, MOBP, MOG and PLP74, 75, 211, 293-300. Several 

peptide segments of these proteins have been shown to be autoantigenic when 

injected to animals, causing EAE301, 302, and many EAE animal models have 

subsequently been used as MS disease models to study the molecular basis of the 

disease57, 302, 303. 

The involvement of MBP in MS has been studied for decades, and multiple aspects of 

MBP-mediated autoantigenicity have been suggested. In its physiological state, MBP 

should remain lipid-bound between the myelin membranes, but several factors can 

cause MBP to ‘escape’ and become recognized by the immune system292, 304. Indeed, 

an immunogenic segment within MBP and the critical residues required for 

antigenicity have been identified and structurally characterized, in which the segment 

assumes an extended conformation (Fig. 8)305-309. These residues are Glu85 – Arg99 

in human MBP, and the segment is highly conserved (Fig. 5). Residues 82 – 91 in 

mouse MBP are likely to be folded as an α-helix when MBP is membrane-bound184. 

The roles of citrullination and phosphorylation are rather central, as heavy 

citrullination reduces the cationic nature of MBP and thus its membrane-binding 

tendency, potentially allowing dissociation and interaction with the immune 

system226. In mouse MBP, Thr92 and Thr95 within the immunodominant segment are 

known phosphorylation sites that influence membrane binding when 

phosphorylated310. These residues match Thr95 and Thr98 in human MBP, 

respectively.  
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Fig. 8. Molecular recognition of the immunogenic segment of MBP. Crystal structure of 
major histocompatibility complex class 2 crystallized with the autoantigenic segment of 
MBP (PDB ID 1FV1308). Residues Pro85 – Gln103 of human MBP have been indicated in 
the figure from left to right. 
 
 

Another autoimmunogenic aspect to consider is the proteolytic degradation of myelin 

proteins, including MBP, resulting in immunogenic peptides. MBP in its unbound 

state is disordered, and hence an attractive target for proteolysis311, and MBP has 

even been reported to undergo autoproteolysis312. On the other hand, modified MBP-

derived peptides have been explored as potential treatment candidates for MS, due to 

their antagonistic properties in EAE313-319. The inflammatory peptide recognition of 

MBP could arise from molecular mimicry, as several immunogenic MBP peptides 

share sequence and folding similarities to peptides of pathogenic origin, like the 

human immunodeficiency virus (HIV)320-324. Recognition of such MBP peptides 

could therefore trigger inflammation, which normally would occur in the event of a 

viral infection. This has also been observed in the opposite direction, where HIV 

patients display MS-like symptoms and produce antibodies against MBP325.  

In EAE/MS models involving MBP, aspects surrounding lipid composition and 

cellular environment have also been studied: the cytoplasmic lipid composition in 

EAE-marmosets is altered204, and aberrant phase behaviour of the lipids has been 
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reported55, 57, 204. Such phase behaviour can be modulated by ionic strength200, and 

these two factors together could be speculated to drive the progression of MBP 

release and/or degradation. Understanding how MBP and the other factors mentioned 

above are involved in MS etiology at the molecular level is necessary for designing 

novel treatments and remedies. 

 

1.3.2.2. Myelin protein zero and peripheral neuropathies 

Charcot-Marie-Tooth disease (CMT) is a peripheral neuropathy and the most 

common inherited neurological condition, with a prevalence peaking at 1 in 2500. 

CMT exhibits a broad spectrum of symptoms, including numbness and tingling 

sensations in limbs, fatigue, weakness, pain, muscle spasms, loss of muscle mass and 

very commonly arched feet, which is considered a hallmark for the disease. The 

disease onset varies broadly. Some experience their first symptoms in early 

childhood, while others reach an age of 40 years before any symptoms surface326. 

CMT occurs due to PNS demyelination and sometimes due to related axonal 

degeneration. Unlike MS, CMT has a strong genetic component associated to it, and 

is not an autoimmune disease affecting oligodendrocytes, but a demyelinating 

condition in which the integrity of Schwann cell myelin decreases and axonal 

function slows down or fails due to lack of insulation and trophic support327. 

Several subtypes of CMT exist, denoted CMT1, CMT2, CMT4, CMTX, and 

dominant intermediate CMT, which are further subcategorized with letters (CMT1A, 

CMT1B, etc.). The various categories enclose differences in the affected proteins, 

specific mutations (including deletions, duplications and point mutations), and in 

dominant, recessive or X-linked heritability. These include, but are not limited to, the 

myelin proteins Cx32, P0, P2, PMP22, PRX, DRP2 and several mitochondrial 

proteins, implying that mitochondrial dysfunction can also result in CMT in addition 

to common factors from compact and non-compact myelin328, 329. Mitochondrial 

dysfunction is also evident in the case of two Pt-containing anti-cancer drugs, 

carboplatin and cis-platin330, from which the latter is known to bind mitochondrial 
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DNA and as such could cause a CMT-like peripheral neuropathy as a side effect331. 

CMT can therefore be induced by defects in structural proteins relevant for myelin 

structure and by the disruption of myelin and/or axonal maintenance through 

mitochondrial dysfunction. 

One subtype of CMT, Dejerine-Sottas syndrome (DSS; historically CMT3), is 

characterized as a severely disabling form of CMT that onsets very early in life and 

causes major muscle degeneration due to lowered nerve conduction velocity. 

Treatments for CMT and DSS are symptomatic, and the diseases are currently 

deemed incurable326. 

Specific mutations in P0 account for demyelinating autosomal dominant CMT1B, 

axonal dominant CMT2I, DSS, and other CMT-like peripheral neuropathies332, 333. 

Most individual mutations, and the most common ones, occur in CMT1B. These 

mutations in P0 are mostly localized in the Ig-like domain, but several also exist in 

P0ct251, 332, 334: T216ER335, D224Y334, 336, R227S332, and the deletion of Lys236 

(K236del)337 are connected to CMT1B, K236E338 occurs in CMT2I, and A221T339 

occurs in DSS together with V42del, which resides in the Ig-like domain. The P0ct 

mutations have been illustrated in Fig. 9. 

   
 

Fig. 9. P0ct mutations. P0 has 
been drawn in its membrane-bound 
state with P0ct shown as individual 
residues. Color coding signifies 
residue characteristics: red, basic; 
blue, acidic; gray, non-polar; white, 
polar; green, Gly and Pro; yellow, 
Cys. The fatty acyl PTM has been 
drawn on Cys182. The YAML 
motif is indicated with white letters 
and the neuritogenic segment is 
indicated with a red line color. The 
Ig-like domain, transmembrane 
helix and P0ct are not drawn in 
scale relative to each other. 
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The effects of many of the mutations in the Ig-like domain or P0ct are not known. 

The mutations could disturb membrane stacking by affecting the folding of P0, its 

homophilic adhesion, or its other interactions. Additionally, some mutations have 

been proposed to induce ER stress and the unfolded protein response (UPR)340. 

Interestingly, one specific mutation in the Ig-like domain has been shown to introduce 

a new glycosylation site341. Most of the mutations mentioned above are involved in 

demyelinating phenotypes, but D224Y is a clear outlier as it has been connected to a 

hypermyelinating CMT1B phenotype, with unusually thick compact myelin336. The 

molecular details of mutation-induced myelin malformation are not understood, 

which also hinders the development of general remedies for peripheral neuropathies. 
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2 AIMS OF THE STUDY 

 

The study of myelin-related proteins in solution and in native-like environments can 

be challenging due to the involved physical attributes: hydrophobicity, highly 

positively charged proteins, low water content, high content of certain ionic species, 

and intrinsic protein disorder76. As MBP and P0 are highly abundant CM proteins in 

CNS and PNS myelin, respectively, their thorough characterization in lipid-rich 

conditions is necessary. While numerous past studies have amassed data for MBP 

regarding its various functions70, 342, the same cannot be stated for P0ct, for which 

only a few studies have been published243-245. To understand the biochemical 

foundation of myelin in health and disease, further studies are required for both 

proteins. 

The primary object of this project was to establish a collection of biophysical, cross-

complementary methods, suitable for the study of recombinantly produced MBP, 

P0ct, and other proteins alike. The reasoning behind the chosen methods was to 

obtain quantitative data for several sample aspects, which allow the description of 

protein interaction mechanisms, affinities and rates with lipid structures of various 

compositions, as well as the involved effects on protein folding, dispersity, and 

potential membrane stacking. A key component of the study was to involve methods 

that remain independent of using tags, antibodies, or other modifications on the 

studied proteins and lipids, but rather follow intrinsic biophysical attributes of the 

analytes. MBP, a protein already characterized earlier, was to be used as a reference 

protein to test and optimize the methods at hand, and P0ct was chosen as a novel 

protein, which had been characterized before only to a lesser extent. 
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The secondary object of this project was to subsequently use the established method 

workflow to study the role of MBP and P0ct in myelin stability, formation, and 

disease. Both proteins were to be characterized in different lipid compositions and 

ionic contents, to gain an insight into which molecular determinants can affect their 

functions, and to what extent. Additionally, since P0ct is known to be a fundamental 

player in the disease etiology of peripheral neuropathies, mutant variants of P0ct were 

to be studied using the same workflow, once one had been established for the wild-

type protein. 

The expected outcome of the project was to efficiently take advantage of strong 

cross-complementation of various methods, with the possibility to apply the obtained 

characterization strategy in future studies involving the same proteins, or 

physically/functionally similar ones. The application would require only minimal 

working habit adjustments in screening through different conditions, for instance. 

Additionally, the project was expected to provide novel information on the molecular 

structures and functions MBP and P0ct, thereby providing novel structural aspects of 

myelin stability and formation in general. 
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3 MATERIALS AND METHODS 

 

In this chapter, experimental procedures used to obtain all relevant data for this thesis 

are presented, with a focus on background principle, usage, sample requirements, and 

data analysis. Protein, peptide and lipid preparations are also outlined briefly – more 

detailed information on all experiments can be found in Articles I – IV. Only the 

relevant experiments that were performed by the author of this thesis are presented in 

high detail, together with some relevant collaborative studies, which were crucial for 

the outcome of the study (Chapter 3.7).  

 

3.1. RECOMBINANT PROTEIN PREPARATION 

The proteins used in the study were produced using recombinant methods. Bacterial 

expression plasmids prepared in Gateway vectors (Invitrogen) were available prior to 

the start of this study. These plasmids encoded for an MBP construct corresponding 

to the mouse 18.5-kDa isoform (UniProt ID: P04370-5) with a cleavable N-terminal 

hexahistidine-tag from the pTH27 vector343 (His-MBP) used in Articles I and III, 

and a P0ct construct corresponding to the 69 C-terminal amino acids of human P0 

(UniProt ID: P25189-1) with a cleavable N-terminal His-tagged maltose-binding 

protein (pHMGWA vector343, 344), used in Articles II, III and IV. Additionally, a 

plasmid from earlier studies171, 345, encoding for an MBP construct with an 

uncleavable C-terminal Leu-Glu linker and His-tag (MBP-His) in a pET22b(+) vector 

(Novagen) was used in Article I for nanogold labeling of transmission electron 

microscopy (TEM) samples. 
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Detailed expression and purification procedures are described in Article I for His-

MBP and MBP-His, and in Article II for P0ct. In short, the expression of all proteins 

was carried out in LB medium at 37 °C using 0.4 – 1.0 mM isopropyl β-D-1-

thiogalactopyranoside induction for 2-3 h with constant shaking. After expression, the 

cells were collected by centrifugation and re-suspended in suitable lysis buffers, 

followed by purification or storage by freezing. The purification of His-MBP was 

carried out using immobilized metal ion affinity chromatography (IMAC) in 

denaturing conditions, followed by His-tag removal using selective proteolysis346 and 

a second IMAC step, and finally by a size-exclusion chromatography (SEC) step in a 

non-denaturing buffer to ensure monodispersity and removal of soluble aggregates. 

MBP-His was expressed and purified in a similar manner using IMAC, with the 

exception of omitting subsequent His-tag removal, and instead dialyzing the protein 

into a non-denaturing buffer prior to SEC. The reasoning behind the initial denaturing 

purification steps was the fact that both His-MBP and MBP-His were expressed in an 

insoluble state. The denaturing buffer allowed solubilization of the proteins and the 

final purity of the proteins was enhanced due to the lower presence of degradation 

products and contaminating proteins. 

In the case of P0ct, all purification steps were performed in non-denaturing 

conditions. After the initial IMAC step and proteolytic affinity tag cleavage, the 

protein mixture was either subjected to sequential SEC runs, or the His-tagged 

maltose-binding protein was removed using an amylose resin affinity step, prior to 

SEC. A second IMAC step was deemed impossible since cleaved P0ct was found to 

have strong affinity for the resin even without an affinity tag (data not shown). 

After purification, the obtained cleaved recombinant MBP composed of 170 amino 

acids (ProtParam160: 18544.7 Da; pI = 11.14), corresponding to the full 169-amino 

acid sequence of mouse 18.5-kDa MBP isoform, with an additional N-terminal Gly 

residue remaining from the tag cleavage. The obtained MBP-His behaved similarly to 

His-MBP in IMAC purification and SEC, and as such would be composed of 177 

amino acids (ProtParam160: 19552.8 Da; pI = 11.00), but had undergone N-terminal 
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initial Met removal345, which resulted in a 176-residue protein with an experimentally 

determined molecular weight of 19421.6 Da. 

The obtained P0ct, on the other hand, contained 70 amino acids (ProtParam160: 

7990.3 Da; pI = 11.11), corresponding to residues 180-248 of the human P0 

precursor, again with an additional N-terminal Gly. P0 is known to undergo 

palmitoylation at Cys182247, 248, which would be unlikely to occur in bacteria during 

expression. Therefore, this residue in P0ct had been deliberately mutated into a Leu, 

which is a bulky hydrophobic residue that partially mimics a fatty acid moiety and 

increases the local hydrophobicity in the protein chain. Additionally, the mutation 

deletes a chemically reactive residue, which could otherwise result in unwanted 

disulphide-mediated dimers or other oxidized molecular species, as IDPs are known 

to easily form dimer artifacts that can influence downstream experiments347.  

Related to the neuritogenic segment within P0ct255, a synthetic peptide corresponding 

to the sequence (P0ctpept; NH2-ASKRGRQTPVLYAMLDHSRS-COOH) was ordered 

from GenScript and used in Article II for folding studies. 

In Article IV, a total of six CMT and DSS mutations332, 334-339 were generated directly 

in the P0ct expression construct using site-directed mutagenesis, and the six mutant 

protein variants were expressed and purified in an identical manner to wild-type P0ct. 

The introduced mutations resulted in the following single amino acid changes: 

T216ER, A221T, D224Y, R227S, K236E and K236del. 

 

3.2. LIPIDS AND DETERGENTS 

The experiments presented later in this study involved the use of various lipids and 

detergents. Synthetic chemicals were used as opposed to natural extracts whenever 

possible to gain strict molecular control over different experimental conditions. This 

allowed testing of specific molecular attributes when determining the functional 

nuances of the proteins. 
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To study protein binding to lipids, membrane stacking and protein folding, several 

chemical aspects were compared: lipid headgroup charge, lipid tail saturation, and the 

presence of selected lipid species known to be present in myelin. Mixtures of mostly 

PC, PG and PS headgroups were used to assess the effect of electrostatic forces on the 

studied proteins and their functions, and additionally, two different lipid tail settings 

were chosen for checking the effect of fatty acid saturation: 1,2-dimyristoyls (DM) 

and 1,2-dioleoyls (DO). The following lipids formed the basis of the experimental 

material: 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-

glycero-3-phospho-(1′-rac-glycerol) (DMPG), 1,2-dimyristoyl-sn-glycero-3-phospho-

L-serine (DMPS), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-

sn-glycero-3-phospho-(1′-rac-glycerol) (DOPG), 1,2-dioleoyl-sn-glycero-3-phospho-

L-serine (DOPS) (Fig. 10A). To compare lipid tail saturation, the DM- and DO-based 

lipids were chosen for two reasons. Firstly, DO-based lipids, which are abundant in 

myelin, have their gel-fluid transition temperature (Tm) below 0 °C, and they will 

always remain in the liquid disordered phase at ambient temperatures. The chosen 

DM lipid mixtures in most cases can also be brought to the same phase at reasonable 

temperatures around 25–30 °C, as opposed to 1,2-dipalmitoyl- or 1,2-distearoyl-based 

lipids that have very high Tm values. Secondly, since DO-based lipids have a cis-

double bond in carbon position 9, they will be kinked in the middle, essentially 

reducing the thickness of the bilayer. Bilayers of DOPC and DMPC are roughly the 

same thickness in the liquid disordered phase at 30 °C, which rules out artifacts in 

protein function arising from bilayer thickness itself348, 349. In addition to these 

general lipids and their mixtures, we chose to include other lipids as well, most 

notably 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), a mixture of 

SMs, and cholesterol (Fig. 10A-B). PEs, SMs, and cholesterol are all abundant lipids 

in myelin, and the two latter are known interaction partners of one another and of 

myelin proteins62, 63. They are also known modulators of membrane phase 

behaviour62, 350, 351. 
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Fig. 10. Detergents and lipids. (A) The phospholipids used in this study varied with respect 
to their headgroup complexity and charge (PC, PS, PG and PE), as well as lipid tail 
saturation (DM and DO). The structure of SM is representative with regard to its fatty acyl 
chain (here drawn as an oleoyl group), as the used SM was a natural extract containing a 
mixture of several molecular species. (B) Cholesterol was the only sterol used in this study, 
being the major sterol compound present in myelin membranes. (C) The used detergents 
were mostly different in headgroup complexity, although OG also had a shorter hydrocarbon 
tail compared to SDS, DPC and LDAO. For simplicity and when applicable, all lipids and 
detergents have been drawn without their counter ions they were purchased in. 
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With the intention of eventually expanding into more physiologically relevant 

materials, well-behaving model lipid mixtures were initially used. DOPC:DOPS (1:1) 

was chosen as a base lipid composition, as DO-based lipids are abundant in myelin, 

and an equimolar amount of PC and PS typically can be used to form small and large 

vesicle structures that repel each other and do not fuse into larger structures rapidly. 

To compare the saturation degree, we chose DMPC:DMPG (1:1) for three reasons: 

(1) this lipid mixture, whilst PG is not as physiologically relevant as PS, is net 

negatively charged, and forms small vesicles that remain stable in size. (2) DMPC 

and DMPG both have a Tm around 23 – 24 °C, as opposed to DMPS (Tm = 35 °C)352, 

meaning that their phase behaviour is similar and the transition between the gel phase 

and fluid phase can be performed at near-ambient temperatures, ensuring protein 

stability over long periods of time. Finally, (3) as mentioned above, DMPC and 

DOPC in their fluid phases have very similar lipid bilayer thicknesses348, 349. In this 

case, the fluid phase has to be considered rather than the gel phase, as DOs remained 

always in the fluid phase due to all experiments being performed above their Tm. With 

these points at hand, protein activity in the two lipid mixtures would be mostly 

governed by fatty acid saturation degree, although the chemical difference between 

PS vs. PG headgroups could influence binding as well. For the latter, given the 

equimolar ratio in the mixtures, the specific headgroup complexity was expected to 

play a minor role in contrast to the total net charge of the chosen lipids. In vesicle 

aggregation studies, DOPG was initially used instead of DOPS, to gain a better 

comparison. 

It is noteworthy that myelin contains more PE than PC53, both of which have a net 

neutral charge. Again, PCs were chosen as the major lipid species instead of PEs for 

two reasons: (1) PEs are mostly present as plasmalogens54, and the tail complexity 

adds another variable to the lipid mixture. We simplified the system to contain only 

one type of hydrocarbon tail per lipid mixture, with the exception of SM, which could 

only be obtained as a natural extract, being of heterogeneous composition. (2) In the 

case of DMPC vs. DMPE, if we consider the Tm values of PC, PE and PS, PE has a 

significantly higher Tm value (~50 °C) 352 as opposed to the other two that melt close 
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to ambient temperature. With these arguments at hand, PCs were chosen as the net 

neutral lipid species. 

In the current study, both vesicles and supported lipid bilayers (SLB) were used as 

model systems. Vesicles can essentially be divided into multilamellar vesicles (MLV) 

and unilamellar vesicles, of which the latter can be further divided into small 

(diameter <100 nm; SUV), large (diameter 100 – 200 nm, LUV), and giant 

unilamellar vesicles (diameter >1 µm; GUV)353, based on their average size. In this 

study, GUVs were avoided as they are complicated to prepare in large scale for 

biophysical studies. The true power of GUVs lies more in methods capable of 

observing them directly, such as fluorescence and light microscopy354. 

To ensure proper lipid mixing, and a subsequent homogeneous lipid composition in 

the generated vesicles, lipids are typically dissolved and mixed in chosen molar or 

mass ratios using organic solvents, such as chloroform, methanol, or mixtures thereof. 

After a desired lipid composition has been obtained, the organic solvent is evaporated 

using a nitrogen stream, followed by freeze-drying for several hours under vacuum. 

In the current study, lipid mixing was always performed in glass vessels to avoid 

plastic contamination in the obtained dry lipid films. After drying, vesicle formation 

can be induced by swelling the dry lipid film in water or in a chosen buffer, by gentle 

inversion over time at a temperature above the Tm. Vortex mixing the suspensions 

breaks down large structures, which can be further subjected to freeze-thaw cycles by 

immersing to a liquid N2 bath and a warm water bath, with a temperature above the 

Tm. Here, the largest lipid structures burst, but the suspension remains heterogeneous 

in terms of vesicle size and the amount of enclosed lamellae355. MLVs, however, can 

be useful in some methods: if a method like differential scanning calorimetry (DSC) 

is used to probe for changes in the behaviour of lipids, due to the fact that MLVs are 

multilamellar, and thus not completely accessible to the used proteins, they can 

contain an ‘internal standard’ of intact bilayers for comparative reasons. On the other 

hand, in such cases, it is imperative to assess several independently prepared lipid 

batches in the chosen experiment to avoid artifacts that arise from batch 

heterogeneity, as MLVs generally are very heterogeneous. 



48 
 

 
 

Unilamellar vesicles can be prepared in several manners, all of which have their 

advantages and drawbacks. In this study, we generated LUVs of an average 100-nm 

diameter using syringe extrusion through polycarbonate filter membranes. SUVs, on 

the other hand, were formed using either strong water bath sonication or tip 

sonication, while avoiding excessive heating, forming vesicles with a diameter below 

100 nm on average356. 

SUVs were used in most experiments due to their easy preparation procedure, also 

maximizing total accessible surface area for proteins and retaining accurate sample 

lipid concentration. LUVs, on the other hand, were only used in surface plasmon 

resonance (SPR) measurements, since extrusion through the membrane filters any 

solid particles out from the suspension. The drawback of extrusion is a decrease in the 

lipid concentration in the suspension. This is not a major issue in SPR, as the accurate 

concentration of immobilized lipids on the sensor chip is not very important, as long 

as surface saturation is reached. Regarding SUVs, their concentration remains known 

after the procedure, assuming that the lipids do not undergo degradation due to 

elevated temperature, and that the lipids do not oxidize due to introduction of 

dissolved O2 in the solvent. Additionally, when using SUVs, it is important that the 

method of interest does not suffer from a slightly wider vesicle size distribution, as 

opposed to using LUVs.  

After vesicle formation, the vesicles were stored unfrozen for a maximum of 1 week 

for DO-based lipids and 2 weeks for DM-based lipids, to avoid any artifacts induced 

by lipid oxidation or degradation. In practice, vesicles were used as fresh as possible 

in each experiment, and ‘base level’ samples were measured in most cases, especially 

during CD measurements, to ensure that the lipids and proteins work as intended. 

These base level samples, in all cases, were MBP and P0ct in the presence and 

absence of DMPC:DMPG (1:1) or DOPC:DOPS (1:1). 

Several approaches in SLB generation exist as well. SLBs can be formed by 

spontaneously bursting vesicles on a solid surface (also known as a ‘substrate’), often 

in the presence of Ca2+ and salt – a useful approach for AFM, as AFM can distinguish 

between single and stacked membranes, as well as membrane-free areas, therefore 
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overcoming the inherent heterogeneous limitations arising from this SLB generation 

method89. Another approach is to dry vesicles on a solid surface and slowly rehydrate 

them in an atmosphere of high relative humidity, often in the presence of saturated 

K2SO4 at 30 °C. This way, depending on lipid amount, multistacked membranes arise, 

which can be advantageous for spectroscopy, albeit the structures in a macroscopic 

scale are heterogeneous357. 

Preparation of a single continuous bilayer is also possible, and the gold standard as a 

preparation method is Langmuir-Schaefer dipping. In this method, lipids in organic 

solvents are gently dispersed on a wave-free aqueous reservoir. When the solvent 

evaporates, the lipids orient themselves on the air-water interface, with lipid 

headgroups pointing down against the solvent and tails pointing up in the air. The 

area, where the lipids are dispersed, can then be compressed using barriers that 

prevent the surface lipids from escaping, which essentially increases the molecular 

surface pressure. At the so-called collapse point, the lipids will form a stable 

monolayer, and if a suitable substrate is pulled in a vertical geometry through this 

monolayer from underneath, while maintaining constant surface pressure, a lipid 

monolayer can deposit on the surface of the substrate358. This process is referred to as 

Langmuir deposition. After this, the coated substrate can be rotated into a horizontal 

orientation, where the deposited lipid monolayer inversely faces the monolayer on the 

reservoir surface, and a Schaefer dipping procedure can be performed: the coated 

substrate is gently lowered through the surface of the reservoir, and the two lipid 

monolayers will come together and form a continuous lipid bilayer359. 

In this study, Langmuir-Schaefer dipping was used for neutron reflectometry (NR), 

where the obtained bilayer-coated SiO2 substrate was assembled into a fluid cell, 

which retains the aqueous solvent within, and can be further used for sample 

injections into the cell360. 

In addition to lipids, the effects of several detergents on the proteins were studied 

(Fig. 10C). Above critical micelle concentrations, detergents self-assemble into 

micelle structures in aqueous solutions. Thus, they lack the complexity of the 

numerous lipid phases, which are discussed later in more detail. However, detergents 
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can be useful in their simplicity: while they mimic strong membrane curvature and 

headgroups that resemble those of certain lipid species, the fact that they retain their 

size and shape can be useful when proteins tend to disturb lipid phases naturally. 

Detergents are enough lipid-like to bind proteins and induce conformational changes 

that would occur during lipid binding, which makes detergents very useful as control 

substances in probing certain, simplified conditions. Micelles are useful in probing 

the effect on proteins induced by micellar size, which is also related to surface 

curvature, as well as the polarity, charge, and complexity of the detergent 

headgroup361. 

Detergents used in this study include sodium dodecyl sulphate (SDS), n-

dodecylphosphocholine (DPC) and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO), 

which all share the same fully saturated 12-carbon dodecyl tail, but differ from one 

another in either headgroup complexity and net charge. SDS is negatively charged in 

aqueous solutions, whereas DPC and LDAO are zwitterionic. In DPC, the oppositely 

charged phosphate and choline moieties are fairly separated from one another, 

whereas in LDAO, the two charges are adjacent, essentially neutralizing their 

electrostatic effects. Additionally, n-octyl β-D-glucopyranoside (OG), which has a 

bulky, polar headgroup that is uncharged in solution and a slightly shorter 8-carbon 

tail, was included in the study (Fig. 10C). The ultimate goal was to exploit the 

detergents in probing for changes in protein conformation in the presence of the 

different headgroup chemistry, without inducing the formation of complex lipid 

structures that have been reported earlier for MBP, for instance204. 
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3.3. GENERAL WORKFLOW 

In order to reach the aims of this study, a plan for a general experimental workflow 

was established, illustrated in Fig. 11. Optimization experiments prior to this work 

had been performed for the relevant proteins, which allowed direct advancement to 

protein expression and purification to obtain enough research material. After initial 

protein purification was completed, series of experiments were performed to learn 

about the general stability and quality of the produced proteins. This initial 

characterization contained methods that ensured quality control (QC) over subsequent 

purifications, which was not only important to achieve unbiased data, but to also 

retain reproducibility between different protein purification batches. 

After this, the experimental focus was shifted to more elaborate methods, which were 

used to study (1) the conformation, (2) the lipid binding and membrane insertion, (3) 

the putative membrane stacking properties of the chosen proteins, using synthetic 

model lipid mixtures and detergents. 

 

Fig. 11. Outline of general workflow. Protein constructs, expression, purification and 
optimization thereof had been performed prior to this study (gray). Preliminary 
characterization (blue) was a QC step used to verify the identity and proper stability of the 
purified proteins. Various functional and structural characterization experiments (dark red) 
were carried out afterwards, providing the vast majority of the relevant experimental data. 
Some experiments for this work were carried out through collaborations (green). 
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3.4. PRELIMINARY CHARACTERIZATION 

Preliminary characterization of proteins was performed to describe their stability, 

purity and monodispersity in solution, prior to more sophisticated experiments. In 

order to gain unbiased data in the main experiments, the purified recombinant 

proteins were subjected to QC to learn about their behaviour in general or at the 

moment after completion of purification. Several of the methods introduced here are 

essentially cross-complementary with each other, as well as with more advanced 

methods described later. 

3.4.1. DENATURING GEL ELECTROPHORESIS 

Gel electrophoresis of proteins under denaturing conditions is commonly performed 

towards the positive anode using a polyacrylamide stationary phase and a mobile 

phase containing high amounts of dissolved glycine, SDS and a slightly alkaline 

buffer. The method is commonly known as SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE)362. The method is by far one of the most globally used ones to check 

protein purity during recombinant protein purification, but it is also useful for other 

purposes. Virtually any sample that contains one or more proteins can be analyzed 

using SDS-PAGE, and in this thesis, it was mostly used to verify the adequate purity 

(>95%) of recombinant proteins for downstream experiments. While SDS-PAGE 

most often cannot be used to analyze monodispersity, except in rare cases of SDS-

resistant oligomers, it does provide an accurate image about the quantitative 

distribution of e.g. a protein and its degradation products, as well as any other 

contaminants. Additionally, after electrophoresis and band visualization, the 

separated protein bands can be isolated, and used further to identify the proteins 

within a single band using mass spectrometry, as explained in Chapter 3.4.2.1. 

When performed correctly, denatured SDS-bound proteins will travel a distance 

through the stationary phase, which is inversely related to the log10 of their molecular 

weight, and by comparing to a standard sample of proteins with known masses, it is 

easy to estimate the molecular weight of each well-separated protein band. 
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3.4.2. MASS SPECTROMETRY 

3.4.2.1. Peptide fingerprinting 

The identity of unknown proteins can be analyzed using peptide fingerprinting: a 

denatured protein is treated with the protease trypsin, which has a very defined 

proteolytic specificity only cutting after Arg and Lys residues that do not border a C-

terminal Pro. A trypsinated protein forms a mixture of ‘tryptic peptides’ with defined 

amino acid compositions. The peptide mixtures can be dried on a solid substrate with 

a suitable matrix compound, like α-cyano-4-hydroxycinnamic acid. The peptides in 

this sample are then ionized and their masses and relative abundances determined 

using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 

spectrometry. The obtained mass spectrum is a ‘tryptic fingerprint’ of the protein, and 

based on the protein sequence, the relative abundance and mass of each tryptic 

peptide can be theoretically calculated and compared to the measured mass spectrum 

to identify the protein of interest. An unknown protein can also be identified, if a 

sequence database, e.g. the Mascot Server363, is used for comparison.  

A typical sample for peptide fingerprinting is an SDS-PAGE polyacrylamide gel 

piece with a stained protein band. Due to the sensitivity of mass spectrometers, only 

marginal amounts of proteins are needed for the analysis. The proteins in the gel 

piece can be destained using an organic solvent and reduced with mercaptans. 

Subsequent Cys alkylation using α-iodoacetamide irreversibly prevents spontaneous 

Cys oxidation. The gel piece is then dried using organic solvents and incubated in a 

trypsin solution that digests the protein. Tryptic peptides can be extracted from the gel 

piece under acidic conditions and directly analyzed using MALDI-TOF mass 

spectrometry. 

In this thesis, the identities of purified MBP (Article I), P0ct (Article II) and the P0ct 

mutants (Article IV) were verified from SDS-PAGE gel pieces. 
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3.4.2.2. Protein mass determination 

A common misconception is that the entire mass of a single protein can be 

determined from a tryptic peptide fingerprint. This is untrue, but luckily, mass 

spectrometry is not only limited to peptides – it can be used to determine the masses 

of undigested proteins. This is particularly useful when one is interested in oxidation, 

degradation, or other covalent modifications. Electrospray ionization (ESI)-coupled 

time-of-flight (TOF) mass spectrometry is useful in this sense: ESI is a rather gentle 

ionization method that does not fragment ions as they are brought to the vacuum 

phase for TOF analysis. ESI, however, does ionize proteins with multiple charges per 

chain, and therefore, the TOF analysis will not provide a single mass per charge ratio 

signal, but several of them, which can be back-calculated to reveal the true mass of 

each mass species. Additionally, since ESI essentially depletes solvent content from 

around the analyte proteins, it is of high likelihood that protein molecules present 

themselves as ion adducts from residual salt in the sample solution. This can be 

avoided by including a desalting step prior to ionization. However, if the resolution of 

the mass analyzer is high enough, this might not present a problem, as proteins with 

ion adducts can be resolved from the ion-free proteins. 

In this thesis, ESI-TOF was used to check the integrities and expected masses of 

MBP, P0ct and the P0ct mutants in Articles I, II and IV. ESI-TOF was performed 

after a high-performance liquid chromatography-coupled desalting step, from which 

the output was directly injected to the mass analyzer. Sample requirements for the 

analysis were generally very small, only around nanomolar protein concentrations in 

analysis volumes ranging between 1 – 5 µl, before the chromatography step. 

 

3.4.3. MONODISPERSITY ANALYSIS 

3.4.3.1. Size-exclusion chromatography 

SEC is a chromatography method that separates particles based on their 

hydrodynamic radius (Rh). A sample of dissolved particles is pushed through a gel 

bed matrix using an isocratic flow. This gel bed is most often composed of 
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carbohydrate-based beads that contain a porous matrix of defined size. Small 

molecules may enter the matrix, which retains them longer in the gel bed, as opposed 

to large particles that cannot enter the beads and simply bypass them. Hence, particles 

become sorted based on their size in the gel bed, large particles eluting faster than 

small ones364. 

SEC is useful for a number of different applications. Firstly, it can fractionate a 

complex sample, separating different oligomers of a protein from one another, or a 

protein from its degradation products or other contaminating proteins. Secondly, 

soluble aggregates, which are immensely large compared to individual protein 

particles, will exit the column material first in the so-called void volume, the volume 

that is completely excluded from the bead pores. Therefore, removal of soluble 

aggregates from the protein of interest is very efficient using SEC. Thirdly, SEC can 

be used to exchange the protein buffer solution quantitatively, either for downstream 

applications or for improved stability. During protein purification, SEC is the ideal 

last step after other chromatographic stages for all three reasons described above364. 

Finally, since SEC separates based on Rh (which, for globular proteins, is strongly 

related to molecular weight), analytical SEC can be used to estimate the mass and 

oligomeric state of a protein in solution, if a series of standard proteins are analyzed 

as well. Disordered proteins behave slightly differently in SEC, as their Rh is larger 

than those of globular proteins, appearing larger in a SEC run. Additionally, SEC can 

be useful in studying protein-protein or protein-nucleic acid interactions, or in 

quantifying the relative abundance of molecular species in solution, for example. 

SEC was used in all protein purifications throughout the thesis work to gain 

monodisperse protein samples. Additionally, and more importantly, SEC was used in 

an analytical setting to display the monodisperse nature of MBP and P0ct in Articles 

I and II, prior to subsequent experiments, as well as for comparing P0ct mutant 

variants to the wild-type protein in Article IV. 
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3.4.3.2. Multi-angle laser light scattering 

If a protein sample is effectively fractionated using SEC, the observed protein peaks 

will momentarily be monodisperse, given high protein purity within the sample. SEC 

can be coupled with multi-angle laser light scattering (SEC-MALS), which introduces 

an analytical method that records the time-averaged scattering of monochromatic 

laser light at different angles. The magnitude of the scattered signal scales with the 

mass of the particle and can be normalized by concentration, which allows the 

determination of the absolute molecular weight of the particle. The concentration of 

the eluted protein at a given time can be determined by measuring ultraviolet (UV) 

absorbance or the refractive index of the solution365. 

SEC-MALS is very useful in determining the oligomeric state of a protein in solution, 

and to complement SAXS data. This is particularly true for more complex mixtures 

with interchanging oligomeric states. Additionally, if several concentration 

determination sources are used, for instance UV spectroscopy and refractometry, 

conjugation analyses for detergent-bound membrane proteins or protein-nucleic acid 

complexes can be performed. With these methods, the mass fractions of each 

molecular species within a monodisperse peak can be obtained366. As opposed to 

regular SEC, SEC-MALS is not limited by protein conformation, and the masses of 

disordered proteins can be accurately determined. 

An important sample requirement is a pure protein sample in solution, or at least a 

sample that will fractionate into separate peaks within the used SEC material. 

Additionally, a matching background buffer needs to be chosen as the mobile phase, 

which has to be extensively degassed to remove dissolved air, especially if refractive 

index measurements are used as a concentration source. These requirements are used 

to ensure a flat baseline in the chromatograms. The required protein amount per 

sample varies with molecular weight, large proteins scattering more light than small 

ones. For P0ct, a protein expected to be ~8 kDa in mass if monomeric, 250 µg of total 

protein was used in Article II in a single SEC-MALS run to gain a light scattering 

signal providing reliable molecular weight determination. 
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3.4.3.3. Dynamic light scattering 

Dynamic light scattering (DLS; also known as quasi-elastic light scattering) is a 

method that measures scattered monochromatic laser light by particles that diffuse in 

solution due to Brownian motion. The scattered light, depending on the positions of 

the diffusing particles over time, can undergo either constructive or destructive 

interference, which manifests as time-dependent intensity fluctuations of the scattered 

light. These fluctuations can be described as an autocorrelation function, which can 

be used to solve the diffusion coefficient of the particle. The rate of diffusion of a 

particle depends on the size of the particle, solvent viscosity, and temperature. 

Therefore, given that the latter two parameters are known, the size of the particle, 

more importantly the Rh, can be solved based on the diffusion coefficient, using the 

Stokes-Einstein equation367. 

DLS is complementary to SEC(-MALS) in determining the monodispersity of protein 

samples, especially the presence of aggregation. Additionally, DLS can complement 

SAXS data (see Chapter 3.5.1.), as Rh and the radius of gyration (Rg) obtained using 

SAXS are related. The Rg/Rh ratio can be used to predict if a protein deviates from 

globularity: a ratio of 0.77 is ideal for a globular particle, whereas an increased ratio 

over 1.00 suggests significant elongation or a disordered chain368.  

A typical DLS sample is a protein solution with a concentration close to 1 mg/ml, and 

depending on the used cuvette, 10 – 50 µl sample volume is required. Due to the 

sensitivity of DLS to the presence of large particles (e.g. dust), samples should be 

either centrifuged or filtered prior to measurements. 

In this thesis, DLS was used to determine protein Rh and monodispersity, particularly 

the absence of aggregates, in MBP and P0ct samples (Articles I and IV). 
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3.5. PROTEIN CONFORMATION 

The conformation of proteins can be considered on several distinct levels: the primary 

structure refers to the sequence of the covalent amino acid chain. Secondary 

structures denote local changes induced by intramolecular hydrogen bonding, such as 

changes in dihedral angles of protein chains seen in helical structures, β-sheets, and 

random coil. Tertiary structure describes the overall fold of a protein chain, regardless 

of secondary structure, at its energy minimum: This most often involves collapsing 

into a globular conformation. Finally, quaternary structure is the homo- or 

heterogenic association of one or more proteins, respectively, which together form a 

physiologically functional unit. 

In this thesis, the tertiary and secondary structures of proteins were examined using 

SAXS and synchrotron radiation circular dichroism spectroscopy (SRCD), 

respectively. 

 

3.5.1. SYNCHROTRON SMALL-ANGLE X-RAY SCATTERING 

SAXS is the measurement of the total X-ray scattering of a sample on an area 

detector, usually from an incident beam with a monochromatic wavelength (λ). In 

these measurements, the scattering intensity is recorded at small scattering angles (θ) 

with regard to the incident beam, hence the name small-angle scattering. Radial 

averaging of this data will produce a scattering curve, which is defined as recorded 

intensity on the Y-axis as a function the momentum transfer vector (s) on the X-axis, 

which has a unit of Å-1 or nm-1: 

𝑠 =
4π sin 𝜃

λ
 

This also means that the recorded scattering is inversely related to resolution, and 

since scattering data at small θ angles are collected, SAXS essentially is a low-

resolution method369. 

In the case of a monodisperse protein sample, total sample scattering can be recorded, 

and the scattering fraction of a matching buffer reference can be subtracted, resulting 
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in the isolated scattering profile of the protein itself. Since X-ray scattering from 

proteins is fairly low in intensity compared to the solvent, high concentrations of 

proteins (2 – 5 mg/ml) need to be used to record scattering data with high accuracy. 

This is especially true for small proteins, as the scattering of X-rays scales with 

molecular weight. Thus, the presence of aggregates is a major issue in SAXS 

measurements, as their molecular weight compared to the particle of interest is 

generally very large370. 

Since synchrotron SAXS involves an intense hard X-ray beam, eventual radiation 

damage to the sample is expected, which can change its scattering properties. 

Therefore, several frames of short illumination periods of the sample are collected, 

compared and averaged. In case of frames showing scattering artifacts from radiation 

damage, the affected frames are discarded from the averaging. In case of a radiation 

damage-resistant sample, low sample concentration can be compensated by acquiring 

more frames for averaging, resulting in better scattering statistics. 

Many choose to use SAXS to measure and analyze the tertiary and quaternary 

structures of proteins in isotropic solutions, which can greatly complement crystal 

structures, CD spectroscopy, NMR spectroscopy and EM369, 371, 372. Since the 

measurements are done in solution, the obtained data often represent the true 

individual oligomeric and conformational states of the monodisperse scattering 

particle, being independent of artificial states induced by e.g. crystal packing. The 

obtained scattering curve can be subjected to Guinier analysis, which provides useful 

parameters, such as the forward scattering intensity, I0, directly related to particle 

molecular weight in solution, and the radius of gyration, Rg, which is the average 

distance of all scattering entities within a single particle from its mass center. Thus, 

Rg is a measure of particle size and shape in solution373. Kratky analysis is useful for 

proteins in particular, as the shape of the rearranged scattering curve, the Kratky plot, 

easily reveals the major conformational states of the protein. Kratky analysis can be 

used to describe whether a protein is folded or extended374. 

The shape of the original scattering curve can be used to extract a size distribution of 

the scattering particle, which can reveal the presence of ordered domains as well as 
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the maximum dimension (Dmax) of the particle375. As SAXS is often used to 

complement other structural methods, several modeling approaches exist for 

modeling globular particles from measured SAXS data, some of which use Dmax as a 

starting parameter376, 377. However, as SAXS measures the average scattering from the 

entire sample over time, it can be also used to study the distribution of different 

conformationally interchanging particles in solution. This is useful for disordered 

proteins, since using advanced ensemble optimization modeling (EOM) approaches, 

the distribution of sizes in a conformational ensemble can be estimated, and 

compared in different conditions and between different proteins347, 378, 379. 

In this thesis, SAXS was used as a control method to characterize MBP, P0ct, and 

P0ct mutants in Articles I, II and IV, to compare their size, oligomeric state and 

conformation in solution. EOM was used to analyze and model conformational 

flexibility in the samples, in addition to more classical ab initio modeling 

approaches379, 380. 

 

3.5.2. SYNCHROTRON RADIATION CIRCULAR DICHROISM SPECTROSCOPY 

3.5.2.1. Isotropic samples 

Chiral molecules exhibit different absorption properties between left- and right-

handed circularly polarized light, compared to achiral molecules or racemic mixtures 

of chiral molecules. The measured absorption difference between the two 

polarizations is called circular dichroism (CD), which can be determined for a sample 

using CD spectroscopy. This is useful for studying proteins, for which most amino 

acids are chiral and absorb left- and right-handed circularly polarized light differently, 

depending on their dihedral angles. The total contribution of these angles, which also 

make up regular secondary structures, affect the differential absorption spectrum for a 

given wavelength range, which is usually between 170 and 280 nm for far-UV CD 

measurements. 

CD is semi-quantitative, albeit exploiting the method of SRCD, not suffering from 

diminished light flux at shorter wavelengths, allows to reach nearly quantitative 
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levels381, 382. Generally, CD and SRCD are considered methods to check for the 

overall presence of protein folding, but their power lies in probing the folding 

differences between different sample conditions. This is especially useful for proteins 

that present a notable gain in regular secondary structure content upon binding to 

lipids or other molecules that induce folding383.  

The drawback of CD is that the applied light tends to get absorbed by high 

concentration of different ions and compounds. Certain compounds are considered 

CD-compatible, and the most commonly used ones are inorganic phosphate as a 

buffer, and F- as an anion to increase ionic strength, typically obtained by including 

KF or NaF in the solution384. Lipids can be troublesome as well, not to mention 

protein-induced lipid aggregation, which generally decreases protein CD signals383. 

Some lipids, like cholesterol, even have a strong intrinsic signal in CD385. Similarly to 

SAXS measurements, a CD spectrum of a single sample is often acquired as several 

scans to check for sample stability over the CD measurement, as some proteins are 

sensitive to temperature- or UV light-induced aggregation, denaturation or 

degradation. In case the scans overlay with each other, they are averaged to reduce 

overall noise in the spectrum. 

A background CD spectrum is measured and subtracted from the sample spectrum to 

correct for the background CD contribution as well as instrumental contributions. The 

obtained CD units, expressed in millidegrees, are converted to a more suitable unit by 

taking into account protein concentration, the molecular weight, and the number of 

amino acid residues. Additionally, the pathlength of the cuvette is taken into account. 

One of the commonly used units is Δε, expressed in M-1 cm-1, which can be directly 

derived from the Lambert-Beer law. Δε describes the difference in the molar 

absorption coefficients per residue for left and right handed circularly polarized light 

at a given wavelength. Software tools have been developed to streamline this 

analysis386, 387.  

The shape of the far-UV CD spectrum contains information about the regular 

secondary structure elements in the studied protein, most notably between random 

coil, α-helices and β-sheets. For detailed information refer to a review by 
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Greenfield384, but briefly put, random coil exhibits a strong negative signal peaking at 

198 nm, whereas α-helical structures generate a strong positive peak at 192 nm and 

two negative peaks of similar magnitude at 208 and 222 nm. β-sheet structures 

generally produce a signal strength lower than that of the two other secondary 

structures, and they present a single positive peak at 196 nm and a single negative 

peak at 216 nm. Mixed secondary structure content blends features from all of the 

above features, and it is important to note that the largest difference between random 

coil and folded secondary structures occurs around 185 – 210 nm, making this area of 

the spectrum very sensitive to changes in secondary structure content. These 

wavelengths are very short, and thus susceptible to noise arising from 

sample/background absorption or low photon flux. Here, the use of short cuvette 

pathlengths and synchrotron light is highly advantageous. 

In this thesis, SRCD was applied in Articles I – IV to study the structural 

composition of proteins in the presence and absence of lipids, detergents, and ionic 

species at various concentrations. Additionally, TFE, a molecule decreasing the 

dielectric environment when it comprises a major solvent fraction of the sample, was 

used to test for any intrinsic folding tendency of the proteins. To avoid buffer-induced 

folding artifacts, namely from the binding of inorganic phosphate to proteins, thereby 

reducing protein-phospholipid interactions, the proteins were studied at dilute 

concentrations (0.1 – 0.5 mg/ml) under unbuffered conditions. A typical sample 

volume was 25 – 40 µl in 100-µm cuvettes (0.3 – 0.5 mg/ml) or 250 µl in 0.5 – 1.0-

mm cuvettes (0.1 mg/ml). 

 

3.5.2.2. Oriented samples 

CD measurements performed for proteins in solution are essentially measured in an 

isotropic setting. Oriented circular dichroism (OCD) spectroscopy is a method that 

can be used to study the orientations of proteins and peptides, and a commonly 

employed system is the use of SLBs with membrane-interacting peptides that adopt 

defined orientations357. When a helical structure is illuminated with circularly 

polarized light in an isotropic sample, a negative minimum at 208 nm is observed. 
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However, an anisotropic sample containing oriented lipid bilayers is illuminated with 

a beam perpendicular to the bilayers. When a membrane-bound helix approaches a 

perpendicular orientation in the membrane, the minimum at 208 nm is lost. This 

allows the screening of peptides and/or membrane compositions to qualitatively 

estimate the tilt angles of peptides in a membrane388. While useful for peptides, the 

method is less useful for proteins that typically contain several secondary structure 

elements in various orientations with respect to each other and the incident beam, 

masking out the anisotropic effect. 

OCD samples are prepared on quartz or CaF2 plates by drying a peptide-lipid mixture, 

typically containing around 10 µg of peptide per sample. The dried film is slowly 

rehydrated at high relative humidity (>97%) to spontaneously form oriented 

membranes. The quartz plate is then mounted perpendicular to the incident beam and 

measured at several rotational angles, which are averaged in the end to correct for 

linear dichroism artifacts. OCD was used in Article II to study the orientation and 

folding of P0ctpept in oriented SLBs. 

 

3.5.2.3. Stopped-flow kinetics 

Due to folded and unfolded proteins producing different CD spectra, monitoring the 

process of (un)folding is technically possible as a function of time, by choosing a 

wavelength, at which a major change in CD signal occurs between the two folded 

states. Such experiments are often performed to follow thermal unfolding, which 

allows the determination of the melting temperature of the protein. 

Monitoring protein (un)folding to uncover kinetic details is also possible, although 

the formation of secondary structures occurs in sub-second time scales. Stopped-flow 

kinetics enable the measurement of such events: the contents of two containers, 

usually syringes, are simultaneously loaded into a mixing chamber, and changes in 

the resulting sample are monitored, in this case the CD signal. The entire loading 

process occurs in a matter of milliseconds389. Possible samples include the mixing of 
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a folded protein with a denaturant, resulting in unfolding, or the mixing of a 

denatured protein with a renaturant, resulting in folding. 

In this work, stopped-flow SRCD measurements were carried out in Article III to 

monitor the folding of MBP and P0ct when interacting with lipids. Unfortunately, the 

folding kinetics were too rapid to be accurately monitored (See Chapter 4.3. and 5.4.), 

but a secondary effect that arose from vesicle aggregation was observed: the CD 

signal decreased strongly upon the nucleation and formation of larger lipid 

aggregates. Fitting of the obtained kinetic data was performed with two-state decay 

functions, from which two kinetic constants could be obtained, describing slow and 

fast processes occurring simultaneously. Therefore, stopped-flow SRCD 

measurements were used to determine the effects of ionic strength and Ca2+ on MBP- 

and P0ct-induced vesicle aggregation kinetics. 

 

3.6. PROTEIN-LIPID INTERACTIONS 

In myelin, several proteins bridge apposing lipid bilayers, which forms the basis of 

compact myelin stability. Such interactions and their strength can be studied in 

controlled systems using various biophysical methods, uncovering the involved 

binding affinities, thermodynamics and molecular distances. 

 

3.6.1. SURFACE PLASMON RESONANCE 

SPR is a method that is popular not only in determining binding constants of different 

interacting molecules, but especially in gaining information about association and 

dissociation mechanisms and rates. A thin gold surface exhibits a surface plasmon 

effect when it encounters light in the infrared-visible wavelength range. The presence 

of the effect is very sensitive to material being deposited on the surface, which 

changes the refractive index of the interface and thus the reflection angle of the 

incident light that travels through a prism. Measuring the change in angle of the 

reflected light essentially measures the amount of material deposited on the surface, 
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and this can be performed as a function of time to monitor association and 

dissociation events.  

SPR is usually carried out in a fluidics system with several channels that can be 

monitored simultaneously, usually on a chip390. Various chips exist, in which the gold 

surfaces are functionalized against the mobile phase with different structures or 

compounds that suit the needs of the experiment. An analyte sample with a known 

concentration is injected with a chosen flow rate and contact time, allowing it to 

associate with the chip and dissociate once the analyte injection ends and a 

continuous flow of the medium is applied. The association and dissociation patterns 

can provide kinetic constants (ka and kd, respectively), which in turn can be used to 

calculate the equilibrium dissociation constant: 

𝐾ௗ =
௞೏

௞ೌ
 . 

Lipid vesicles can be captured to form a lipid-rich surface on an SPR instrument 

sensor chip. The chip is coated with lipophilic compounds attached to a 

carboxymethylated dextran matrix, and it is capable of incorporating lipids with high 

affinity and very slow dissociation kinetics391. By choosing a parallel channel on the 

chip without lipids and by using a suitable blocking procedure, the specific 

association of protein samples onto the lipids can be studied. The sensorgrams from 

the lipid-free channel are subtracted from the lipid channel to cancel out unspecific 

binding. In the case of ambiguous kinetics or irreversible binding, the steady-state 

response levels, where no more protein associates to the surface and the sensorgram 

appears flat, can be recorded. These levels can be plotted against analyte 

concentration to obtain a binding curve, and one of various fits can be performed, 

which can provide Kd.  

In this work, Kd values for different proteins binding to lipid structures were obtained 

using SPR in Articles I, II and IV. It should be noted that in the case of irreversible 

binding, the term ‘dissociation constant’ is misleading, as dissociation phases of MBP 

and P0ct from lipids could not be measured directly. Therefore, an ‘apparent 

dissociation constant’ is discussed in relation to this work. 
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3.6.2. DIFFERENTIAL SCANNING CALORIMETRY 

Calorimetry measures the absorption or release of energy in the form of heat by a 

sample that undergoes a physical or chemical transition. DSC is used to scan a 

temperature range and record exothermal or endothermal events that occur in the 

sample cell as opposed to a reference cell. The measured events are expressed as gain 

or loss in heat capacity. DSC is a useful method to analyze the Tm values of lipids that 

undergo phase transition events, in which they most often either bind or release 

energy when transiting between phases392. Lipids present a fairly strong endothermic 

signal in DSC when heated past their Tm, which allows monitoring of changes in 

phase behaviour induced by proteins. DSC is quite sensitive for lipid-induced heat 

events, and as little as 160 – 320 µM lipid is usable per sample, which corresponds to 

0.1 – 0.2 mg/ml DMPC:DMPG (1:1), for instance. 

In this thesis, DSC was used to probe for any protein-induced changes in Tm or the 

melting landscape of DM-lipids in Articles I, II and IV. A typical sample consists of 

MLVs or LUVs of lipids with added protein at a certain P/L ratio, in this work 

normally between 1:100 – 1:1000. At these P/L values, protein concentrations are 

very low, and any protein denaturation or aggregation events remain undetectable by 

DSC, allowing specific monitoring of the lipids. 

 

3.6.3. LIPID VESICLE TURBIDIMETRY 

Mixing MBP with negatively charged lipids results in vesicle aggregation due to 

MBP bridging the vesicle surfaces together197. This process can be followed with 

methods like turbidimetry or X-ray diffraction in a P/L-dependent manner. 

 

3.6.3.1. Visible-light turbidimetry 

Much like absorption spectroscopy, turbidity, or measurement of optical density, 

measures the amount of transmitted monochromatic light through a sample. The 

presence of particles larger than the wavelength of the used light induces light 

scattering, resulting in lowered transmission and a higher optical density. These larger 
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particles can, for instance, be aggregating vesicles, when a protein or an ion is added. 

While events like aggregation or increase in vesicle size cannot be distinguished from 

each other with this method, it is possible to establish relationships between the 

amount of induced turbidity and the P/L ratio, for instance. Additionally, kinetic 

studies can be performed on samples that display reactions within a timescale of 

minutes to hours. 

In this study, MBP, P0ct, and mutants of P0ct were examined with regard to their 

vesicle aggregation or fusion properties using visible-light turbidimetry in Articles I 

– IV, similarly to what has been reported before94, 96, 197, 243. Care was taken with 

proper sample mixing, as well as to measure all samples in a manner, in which they 

appeared uniformly homogeneous, ensuring independence from the presence of 

substantially large aggregates that accumulate on the bottom of the sample chamber. 

 

3.6.3.2. Synchrotron small-angle X-ray diffraction 

Protein-induced vesicle aggregation and fusion can be studied using SAXD. Like 

SAXS, SAXD measures the position of scattered X-rays on a 2D detector, and the 

recorded images are converted into scattering curves with s as the X-dimension. The 

presence of repetitive structures within the sample, such as a protein bridging lipid 

membranes together, or a protein forming a lattice, results in either constructive or 

destructive interference of the scattered X-rays. In case of high order, these waves 

sum together accordingly to the Fourier transform and produce diffraction rings in the 

scattering image, which result in Bragg peaks in the scattering curve. This is true for a 

uniform sample where the repetitive structure is isotropically present, as opposed to a 

crystal that has a certain orientation, along with the contents of its unit cell, in the 

incident beam. The position of the observed diffraction peaks in s are related to the 

molecular distance d, as described by Bragg’s law, nλ = 2d sin θ, which can be 

reduced to d = 2π/s, since s is described as above. The mean repeat distance d 

corresponds to a repetitive structure in the sample, such as two apposing membranes 

bridged together by a protein. Diffraction can also result from other repetitive 
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structures, such as proteins forming periodic macrostructures or the lipids themselves 

existing in periodic structural phases204, 393, 394. 

In this thesis, SAXD was used in Articles I, II and IV to probe for diffraction peaks 

arising from periodic mean repeat distances in vesicle-aggregated samples, as has 

been performed for MBP and P2 earlier94. 

 

3.6.4. ATOMIC FORCE MICROSCOPY 

AFM is a high-resolution scanning probe method employed in the study of sample 

surface topology and mechanical properties. Unlike light microscopy, AFM is 

independent of the wavelength of light, and examines a surface based on mechanical 

properties using a cantilever, which is either physically in continuous contact with the 

surface or oscillates at a known frequency, tapping the surface. A piezoelectric 

system is used to adjust the position of the sample and the cantilever in a feedback 

loop. A laser is reflected from the back of the cantilever onto a position-sensitive 

photodetector. The deflection signal is used to measure the position of the cantilever 

in the height dimension, as well as the sample interaction itself395. 

AFM can be performed in aqueous conditions to image flat surfaces with SLBs or 

proteins. It is sensitive to height differences and mechanical differences between 

bilayer edges and the underlying substrate, for instance. Therefore, even if a protein 

binding to an SLB would not influence the thickness of the bilayer, changes in the 

stiffness of the surface can be revealed. AFM can complement other methods that 

provide information about layered systems, such as NR, especially since AFM scans 

an area and is, for example, capable of distinguishing lateral inhomogeneity or holes 

in an SLB89, 395.  

AFM was used in Articles I and II to investigate the effect of MBP and P0ct on the 

thickness, mechanical properties and stacking of SLBs. 
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3.6.5. NEUTRON REFLECTOMETRY 

Neutron radiation with a suitable wavelength (range) can be scattered by matter, but 

unlike X-ray scattering from electron clouds, neutrons are scattered by atomic nuclei. 

Scattering length density (SLD) is the propensity of matter to scatter radiation when 

exposed to an incident beam. In the case of X-rays, SLD scales with the amount of 

electrons and is therefore linear as a function of atomic number. Nuclear scattering is 

peculiar in the sense that neutron SLD does not scale in a mathematical pattern. A 

very noteworthy example is hydrogen, as its isotope deuterium has drastically 

different neutron scattering properties. In biology, dominated by aqueous solutions, 

neutron methodology obviously presents a great tool due to the SLD difference 

between water (H2O) and heavy water – deuterium oxide (D2O)396. H2O and D2O can 

be mixed at different volume ratios, resulting in a linear continuum in solvent 

scattering length density. As atomic nuclei present specific SLDs, the atomic 

composition of a molecule, or part of it, defines the SLD of that scattering entity. 

Generally, neutron methods excel compared to X-rays in ‘contrast matching’ – the 

ability to tune the SLD of a given parameter, such as the solvent, with another 

parameter one wants to distinguish from another. In practice, proteins, nucleic acids, 

lipids and detergents all have specific SLDs, and the solvent SLD can be matched 

with these, meaning that the matched parameter will scatter identically to the chosen 

solvent composition. Given the appropriate background and parallel samples, 

individual molecular species and structures can be distinguished from a complex 

system by the use of contrast matching397, 398. 

NR is relatively simple in physical terms, as it is a method that merely records the 

specular scattering of neutrons from a planar, layered sample, as a function of the 

scattering vector qz, expressed as s in SAXS/SAXD. Not only are neutrons excellent 

in distinguishing the interfaces resulting from SLD differences within a layered 

system, but they are highly penetrative and transfer little to no ionizing energy to the 

sample. In general terms, neutrons probe deep into the system without resulting 

radiation damage, which is advantageous considering the long measurement times 

neutron methods generally require360, 399. This is highly useful in case of SLBs and 

bound proteins when the sample is laterally consistent and sample preparation is 



70 
 

 
 

highly reproducible. Therefore, it is advantageous to prepare SLBs using Langmuir-

Schaefer deposition to ensure lateral integrity. 

NR was used in Articles I and IV to determine the layer thickness and coverage of 

membranes and bilayer-adhered MBP and P0ct phases. Different solvent contrasts 

were used in order to distinguish interfaces and the related thickness differences 

accurately. 

 

3.7. EXPERIMENTS PERFORMED IN COLLABORATION 

Whilst the characterization of the proteins described in this thesis could be performed 

in-house or at synchrotron/neutron sources, some experiments were carried out in 

collaboration. This involved the use of TEM in imaging lipid structure behaviour in 

the presence of MBP and P0ct in Articles I, II and IV, as well as cryogenic electron 

microscopy (cryo-EM) to investigate the fine structure of protein-membrane 

adhesions in Articles I and II. Additionally, small-angle neutron scattering (SANS) 

was used to study the detergent-bound structure of MBP, to complement detergent-

free experiments carried out using SAXS in Article I. 

 

3.7.1. ELECTRON MICROSCOPY 

TEM is a method capable of direct imaging of a sample using electrons, providing 

information about the density and structure of the sample. A spray of electrons is 

generated and focused on the sample, and the amount of electrons that are transmitted 

through the sample are measured using an area detector. Negative staining, which 

stains the surroundings of the sample structures of interest, can be used to improve 

the contrast within the sample, as less electrons pass through the negative stain than 

through unstained parts of the sample400. TEM can be used to directly visualize the 

size and morphology of lipid vesicles and other lipid structures. It can also be used to 

image supramolecular complexes, and it can be useful in the case of smaller proteins 

in determining the monodispersity of the sample401. 
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In this thesis, TEM experiments were carried out through collaboration in Articles I, 

II and IV, to observe how MBP, P0ct, and the P0ct mutants aggregate or otherwise 

influence the size and morphology of lipid vesicles. TEM data acquisition was carried 

by Dr. Salla Ruskamo at the Biocenter Oulu Electron Microscopy Core Facility, 

Biocenter Oulu, University of Oulu (Oulu, Finland) and Dr. Julia Kowal at the Center 

for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel (Basel, 

Switzerland). 

Cryo-EM is a method used to obtain high-resolution electron micrographs from 

unstained samples in vitrified ice, usually obtained through sample immersion into 

liquid ethane. By the use of cryogenic temperatures, molecular movement and 

tumbling in samples are slowed down substantially, enabling detailed imaging and 

structural characterization of proteins and other nanoscale structures. The 

development of advanced area detectors with very low noise has allowed the accurate 

detection of transmitted electrons, pushing the resolution limit of TEM even further 

and essentially removed the need for contrast-enhancing agents in sample 

preparation402. 

In this thesis, cryo-EM experiments were performed on lipid-bound MBP and lipid-

reconstituted full-length P0 in Articles I and II. The experiments were carried out by 

Dr. Salla Ruskamo and Dr. Julia Kowal at the Center for Cellular Imaging and 

NanoAnalytics, Biozentrum, University of Basel (Basel, Switzerland). Full-length P0 

isolated from bovine nerves was obtained from Prof. Paolo Riccio, University of 

Basilicata (Potenza, Italy). 

 

3.7.2. SMALL-ANGLE NEUTRON SCATTERING 

Like in SAXS, SANS records the intensity of scattered radiation by particles in 

solution at small θ angles, expressed as a function of momentum transfer, s (or q). 

Neutrons are scattered by atomic nuclei, where the same scattering rules apply as in 

NR. Therefore, SANS measurements can be used to distinguish between the 

protomers or substructures of a complex sample using contrast matching, for instance 
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in determining the conformation of a detergent-bound protein403. By mixing H2O and 

D2O, solvent scattering can be matched to the scattering of the detergent, allowing the 

scattering of the protein to be separated from the detergent scattering. By subtracting 

a background scattering curve, the protein scattering alone can be extracted, and 

subsequently analyzed and used for modeling, similarly to SAXS data. 

In Article I, SANS measurements were carried out for MBP in the presence of DPC. 

The SANS experiment was carried out by Dr. Salla Ruskamo and Dr. Anne Martel at 

Institut Laue-Langevin (Grenoble, France). The obtained scattering curve was used to 

estimate the size distribution of DPC-bound MBP using EOM379. 
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4.1. ARTICLE I 

The study outlined in Article I was undertaken to apply a vast selection of 

biophysical methodology to study MBP and MBP-like proteins. The objective was to 

establish these methods to be used as tools in the characterization of MBP and other 

similar proteins, and to gain a deeper insight into the function of MBP in the stability 

and formation of the MDL and compact myelin, particularly in the CNS. 

An intact MBP construct corresponding to the mouse 18.5–kDa isoform was 

successfully expressed and purified. The construct lacked an affinity tag after the 

final purification steps, as confirmed using mass spectrometry. The initial 

characterization and QC using SDS-PAGE, SEC, DLS, SAXS and SRCD indicated 

that MBP was pure, monomeric, monodisperse and conformationally extended in 

solution, while presenting very low levels of regular secondary structure content 

(Article I, Fig. 1a-c, Supplementary Fig. S1). Further SRCD experiments showed 

that MBP folded in the presence of DPC, SDS and TFE, but not with OG or LDAO, 

indicating a tendency to gain structure when introduced to certain dielectric 

environments (Article I, Supplementary Fig. S1d). EOM analysis of the SAXS data 

showed that the scattering of MBP in solution was best described by a wide ensemble 

of conformational states, rather than a fully elongated random coil (Article I, Fig. 1c, 

Supplementary Table 1). SANS experiments revealed that DPC-bound MBP 

collapsed into a clearly more compact state, but it still remained fairly elongated 

(Article I, Fig. 1d-f). 

To gain an insight into the membrane interaction and subsequent folding of MBP, 

SRCD spectra were measured of MBP mixed with SUVs of various lipid 

compositions. The negative surface net charge of selected lipid compositions, such as 

equimolar mixtures of DMPC:DMPG and DOPC:DOPS, induced folding, whereas 

the net neutral lipids DOPC and DMPC did not, confirming that the membrane 

association is driven by electrostatics. The folding of MBP was slightly favored by 

DM-lipids compared to DO (Article I, Fig. 2a). 

As compact myelin is rich in cholesterol, SM and PE, we studied an equimolar 

DMPC:DMPG mixture with separately supplemented cholesterol, SM and DMPE, 
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but none of the introduced additives affected folding significantly (Article I, Fig. 2b). 

To determine the effect of MBP on the behaviour of lipids themselves, DSC 

measurements were carried out using MLVs of DMPC:DMPG mixtures at 1:1, 4:1 

and 1:0 molar ratios. The presence of MBP affected the phase transition behaviour of 

DM hydrocarbons as a function of temperature, without significantly altering the Tm 

itself. The effect was increased with higher protein concentrations, as well as with 

more negatively charged lipids, and absent in net neutral headgroups (Article I, Fig. 

2d). SRCD temperature scans around the Tm of DMs showed no effect on the 

conformation of MBP, indicating folding independence from the lipid phase itself 

(Article I, Fig. 2c). 

The interaction of MBP with immobilized LUVs of DMPC:DMPG and DOPC:DOPS 

was studied using SPR. MBP irreversibly bound to both lipid compositions. The 

headgroup net charge is the same for both compositions, and similar apparent Kd 

values were obtained in both lipid mixtures. Interestingly, DM-lipids could 

accommodate more bound MBP than DO-lipids, indicating an effect by lipid 

hydrocarbon saturation in the quantity of bound protein (Article I, Fig. 2e, Table 1). 

Noteworthy was that the association phases of binding could not be fitted confidently 

into simple mathematical models, suggesting several surface processes being present 

during binding (Article I, Supplementary Fig. S3). 

As MBP is known to be a classical membrane stacking protein70, its stacking function 

was investigated by imaging MBP-treated DOPC:DOPS SLBs using AFM. The data 

showed that MBP needs to associate with net negatively charged membranes above a 

certain concentration to produce de novo membrane stacks of physiologically relevant 

thickness. Cholesterol was not essentially required for this function89, but including it 

enhanced the stacking effect notably, without influencing the required critical MBP 

concentration (Article I, Fig. 3a). To look into this effect further, turbidity 

measurements were performed using DMPC:DMPG and DOPC:DOPG vesicles with 

and without added cholesterol. The level of SUV aggregation was not significantly 

different between the choice of lipid saturation degree or cholesterol content (Article 

I, Fig. 3b).  
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SAXD data was collected from MBP-aggregated DMPC:DMPG SUVs. A Bragg 

peak at P/L 1:100 (Article I, Fig. 3a), corresponding to a repeat distance of 80 Å, was 

observed. The value is in corroboration with earlier diffraction studies as well as 

dimensions observed cryo-EM micrographs of endogenous myelin42, 45, 94. 

Since AFM and SAXD studies allowed the formation of myelin-like membrane 

stacks using SLBs and SUVs, TEM and cryo-EM imaging were carried out for SUVs 

mixed with MBP. The lipid compositions were chosen to be net negatively charged, 

and aggregated vesicles could be imaged successfully (Article I, Fig. 4a, 

Supplementary Fig. S4). Using MBP-His, the protein could be labeled with 

nanogold and localized between adhered SUV interfaces (Article I, Fig. 4a). Cryo-

EM imaging illustrated that MBP formed a continuous 2.5-nm protein phase between 

two apposed membranes, rather than well-defined, globular protein particles – this 

phase separation had been suggested earlier206. The measured stack thickness was 

similar to that of myelin (Article I, Fig. 4b-c)42. 

Interested in the membrane association mode of MBP, NR studies were carried out on 

an MBP-treated SLB. MBP associated and inserted into a depth of 3 nm within the 

membrane, but formed an additional ~7–8-nm protein layer over the membrane 

surface (Article I, Fig. 5a, Table 2, Supplementary Table 3). The size of DPC-

bound MBP in SANS was similar to this (Article I, Fig. 1f). Time-resolved NR 

measurement series were performed with a similar sample setup, where the 

association of MBP with a membrane, subsequent folding, and finally insertion could 

be observed (Article I, Fig. 5b). 

In conclusion, a biophysical workflow was established to study MBP and proteins of 

similar function in membrane-adhesion and stacking. The study revealed the MBP-

driven molecular landscape of MDL formation: the irreversible lipid association, 

charge neutralization, and folding of MBP into a pre-stack conformation on a single 

membrane leaflet, before further MBP accumulation induced membrane stacking. 
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4.2. ARTICLE II 

In Article II, the established methodology from Article I was implemented in the 

characterization of P0ct as a potential membrane stacker at the MDL. The folding of 

the neuritogenic peptide segment of P0ct in membrane-like environments was 

investigated. Additionally, experiments on full-length P0, purified from bovine 

nerves, were conducted to understand its oligomeric state and molecular architecture 

between adhered membranes in the IPL. 

A P0ct construct that was straightforward to express and purify was generated. The 

protein appeared as a single band in SDS-PAGE. While mass spectrometry confirmed 

the size of P0ct to have the expected mass of 8 kDa, the protein migrated 

ambiguously in SDS-PAGE. Further QC revealed that P0ct was aggregation-free and 

monomeric in solution as shown by SEC-MALS (Article II, Supplementary Fig. 

S1a). 

SAXS and SRCD measurements demonstrated that P0ct was highly extended, lacking 

major regular secondary structure content like MBP in Article I, and behaved like an 

ensemble of disordered chains as suggested by EOM analysis (Article II, Fig. 1, 

Supplementary Fig. S1a-b, Supplementary Table 1). Further SRCD studies 

revealed that increasing TFE content as well as the presence of SDS and DPC 

induced folding, whereas LDAO and OG did not, essentially demonstrating very 

similar behaviour to MBP (Article II, Supplementary Fig. S1b). 

Very similarly to MBP in Article I, P0ct bound irreversibly to negatively charged 

lipid structures with similar affinity as MBP and folded in the process, as shown by 

SPR and SRCD, respectively (Article II, Fig. 2a-b,d, Table 1, Supplementary Fig. 

S2, Supplementary Table 2). The folding of P0ct was influenced by the presence of 

SM and cholesterol, unlike in the case of MBP, suggesting that these lipid types, or 

their phase behaviour, can influence the folding of P0ct (Article II, Fig. 2b). 

P0ct had previously been suggested to form β-sheet-rich structures in myelin244, and 

to investigate this, we studied the folding of P0ct in the presence of native myelin- 

and EAE-like lipid compositions. Neither lipid composition presented the formation 
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of β-sheet-rich structures, but a mixed secondary structure content was observed. The 

folding of P0ct was notably different between the two lipid compositions. 

Importantly, the native-like myelin composition produced a similar SRCD spectrum 

to the ones observed in model lipid compositions, validating the simplified approach 

to study P0ct (Article II, Fig. 2b). 

In DSC, P0ct behaved differently compared to MBP. Addition of P0ct to MLVs 

produced a separate population of lipids that presented a Tm value 1.5 – 2.0 °C lower 

than expected for DMs, depending on P/L ratio. This indicated that P0ct strongly 

interacts with lipids and segregates them in thermodynamic behaviour (Article II, 

Fig. 2e). 

To study the potential membrane stacking function of P0ct, vesicle aggregation 

studies using visible light turbidimetry, SAXD, AFM and TEM were performed. P0ct 

was able to induce turbidification of DOPC:DOPG and DMPC:DMPG vesicles with 

and without 10% cholesterol (Article II, Fig. 3a), but as opposed to MBP (Article I), 

cholesterol seemed to increase the observed level of turbidity. 

SAXD produced two intensive diffraction peaks (peak 1 and 2) when P0ct was mixed 

with DMPC:DMPG SUVs. The diffraction peaks moved as a function of P/L ratio, 

and increasing protein concentration tightened the observed repeat distance. The 

distances varied between 75 – 81 Å, based on peak 1, and peak 2 behaved like a 

harmonic of peak 1 (Article II, Fig. 3b-c). This suggested the presence of 

multilamellar systems, but surprisingly, multilamellar structures could not be detected 

in AFM or TEM (Article II, Fig. 3d, Fig. 4). 

In AFM, P0ct was able to accumulate on the imaged SLBs and increase their 

thickness by up to 2 nm. P0ct also changed the mechanical properties of the 

membrane in thickened patches (Article II, Fig. 3d). In the TEM experiments, SUVs 

treated with P0ct seemed to form larger lipid bodies, indicating that P0ct could induce 

vesicle fusion (Article II, Fig. 4a-f). These lipid bodies sometimes formed loose 

aggregates, but myelin-like multilamellae were not observed unless the P/L ratio was 

1:25 or 1:50, where the protein fractions were an order of magnitude higher than the 



79 
 

 
 

endogenous protein fraction of P0ct. With these observations at hand, P0ct can 

putatively act as a membrane bridging protein, although it does not spontaneously 

form repetitive stacks that were observed with MBP in Article I. 

Interested in the structure of the neuritogenic region in P0ct, the folding of the 

segment was studied through SRCD measurements and molecular modeling of the 

20-residue peptide P0ctpept (Article II, Fig. 5). The peptide was disordered in water, 

but gained helical structure in the presence of TFE, SDS, and DPC (Article II, Fig. 

5b). Interestingly, SDS was able to fold P0ctpept more than 70% TFE, indicating a 

great contribution of charge neutralization in the folding process. Negatively charged 

lipid SUVs induced folding of P0ctpept, whereas net neutral lipid SUVs did not 

(Article II, Fig. 5a). 

The orientation of P0ctpept in SLBs was studied using OCD: P0ctpept adopted a nearly 

perpendicular orientation in the SLBs when negatively charged lipids were present 

(Article II, Fig. 5c). Modeling of P0ctpept resulted with the first eight N-terminal 

residues modelled as a flexible chain, followed by a Pro residue, another eight 

residues that were modelled as an α-helix. The remaining three C-terminal residues 

remained flexible. The N-terminal flexible part was rich in Arg and Lys, and given 

the correct electrostatic environment, such as negatively charged phospholipid 

headgroups, this part may also adopt a helical conformation and reside in the 

headgroup region of a membrane (Article II, Fig. 5d-e). 

Experiments on the oligomeric state and stacking-architecture of full-length bovine 

P0 were performed (Article II, Fig. 6). SEC-MALS experiments uncovered the 

existence of P0 as dimers and tetramers as reported previously236-238. The 

oligomerization depended on the chosen detergent, with DPC inducing 

tetramerization (Article II, Fig. 5b-c, Supplementary Fig. S3). DPC is noteworthy 

as P0ct also gained secondary structure content in the presence of this detergent. P0 

was able to form membrane stacks regardless of the chosen lipid species, and cryo-

EM experiments unraveled an intermembrane zipper composed of Ig-like domains, 

which were either opposite to each other or slightly offset from one another – an 
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arrangement suitable for an earlier proposed homophilic dimerization mechanism 

based on crystal packing227 (Article II, Fig. 5d-f). 

To conclude, P0ct is hereby described as a potential structural factor in myelin, which 

might as such contribute to intermembrane stacking. P0ct might form an ordered 

system within membranes and detergents, contributing to the formation of the 

physiologically relevant oligomeric state of P0 in the IPL. Investigations on P0ctpept 

revealed the folded nature of this segment when bound to lipids, which might have 

relevance in anchoring P0ct tightly to the membrane. The study opens up new 

approaches in the functional characterization of P0 mutations that ultimately cause 

CMT or DSS. 

 

4.3. ARTICLE III 

The effect of ionic content and divalent cations has been shown to influence the 

function of MBP197, 200, 201, and similar effects could potentially be extrapolated to 

P0ct. Hence, in Article III, vesicle aggregation and CD studies were employed in the 

characterization of MBP and P0ct in the presence of various salt and Ca2+ 

concentrations. 

The studies performed in Articles I and II were complemented by performing MBP- 

and P0ct-induced turbidimetry of DMPC:DMPG 1:1, 4:1 and 9:1 SUVs, with 

emphasis on assessing the effects of different concentrations of NaCl, NaF and CaCl2. 

In addition to NaCl, NaF was chosen as a salt due to its compatibility with CD, which 

was carried out later in the study. CaCl2 was included due to the fact that compared to 

other biological compartments, myelin is abundant in Ca2+,35 which is involved in 

signaling404-406 but also likely binds phospholipids due to the crowdedness of 

headgroups in the water-deficient MDL. 

CaCl2 at the used concentrations (0.5, 1.0 and 1.5 mM) was able to induce turbidity in 

lipid samples without proteins, with more CaCl2 being required for turbidity when the 

net charge of vesicles became more negative. Neither NaCl nor NaF induced notable 
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vesicle turbidity at the chosen concentrations of 75, 150 and 300 mM (Article III, 

Fig. 1a-c). 

MBP generally induced higher levels of turbidity than P0ct, especially in the presence 

of NaCl and NaF. The measured P0ct-induced turbidity levels were much less 

boosted by NaCl and NaF compared to salt-free conditions. While the levels observed 

in NaCl and NaF samples were not fully identical, the concentration-dependent trends 

in each lipid composition were the same (Article III, Fig. 1a-c). In DMPC:DMPG 

(9:1), a turbidity boost was only observed in 75 mM salt concentration, whereas 

anything above that plummeted to a level comparable to control samples without 

protein. Additionally, in the absence of salt, P0ct was more efficient in turbidification 

than MBP in this lipid composition (Article III, Fig. 1c).  

The concentration of CaCl2 in the experiments was only a fraction of the other salts, 

but still induced vesicle turbidity compared to salt-free conditions. Significant 

turbidification was present in protein-free samples as well, and the levels of turbidity 

varied between CaCl2 concentration and vesicle net charge (Article III, Fig. 1a-c). 

1.5 mM CaCl2 was required for aggregating DMPC:DMPG (1:1) SUVs, whereas 

(4:1) SUVs were aggregated efficiently at 1.0 and 1.5 mM CaCl2 and (9:1) SUVs 

only aggregated at 0.5 mM CaCl2. The level of aggregation in the latter case was 

much lower than for the other two lipid compositions (Article III, Fig. 1c). 

The turbidity induced by CaCl2 was inhibited by the presence of proteins – and the 

other way around. An almost comparable level of protein-induced turbidity was 

observed in DMPC:DMPG (1:1) regardless of the tested CaCl2 concentrations, and in 

this lipid composition, the turbidity levels were lower than those observed in 1.0 and 

1.5 mM CaCl2 in the absence of protein (Article III, Fig. 1a). In DMPC:DMPG 

(4:1), protein-induced turbidity dropped sharply at 1.5 mM CaCl2 (Article III, Fig. 

1b), and in DMPC:DMPG (9:1), only low turbidity levels were detected, the highest 

at 0.5 mM CaCl2, which was already significantly lower than in salt-free conditions 

(Article III, Fig. 1c). 
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SRCD experiments were performed to investigate the folding of MBP and P0ct in the 

presence of salt and Ca2+. Since similar turbidity levels were observed with NaCl and 

NaF, 150 mM NaF was chosen as the salt to increase ionic strength, as NaCl is 

incompatible with CD. While the CD spectra of MBP and P0ct were unaffected by 

the presence of salt or calcium in the absence of lipids or in the presence of 0.5% SDS 

(Article III, Supplementary Fig. S1), the spectral magnitudes in the presence of 

lipids decreased with the additives (Article III, Fig. 2a-c). The positions of the peaks 

indicated that the folding of the proteins were similar in the different ionic conditions 

within the same lipid compositions, with the exception of DMPC:DMPG (9:1), in 

which the proteins appeared much less folded with salt and Ca2+ (Article III, Fig. 

2c). 

Initially, SRCD-coupled stopped-flow experiments were undertaken to study the 

folding kinetics of MBP and P0ct when encountering SUVs of different 

DMPC:DMPG ratios in the presence of 150 mM NaF or 1 mM CaCl2. Unfortunately, 

these kinetics were too rapid to follow in practice, as the folding was completed 

within the dead time of the used instrument (data not shown). An unexpected kinetic 

behaviour was observed in conditions containing NaF or CaCl2 – a strong decay in 

the CD signal within 5 – 10 s, which in most cases could be fitted into one- or two-

step exponential functions (Article III, Fig. 3, Supplementary Table 1). This was 

speculated to be initial vesicle nucleation, as the measurement wavelength of 195 nm 

was in a similar range to the size of LUVs or small SUV aggregates, and the effect 

occurred with CaCl2 in the absence of proteins as well. 

DMPC:DMPG (1:1) SUVs aggregated slower in the presence of 1 mM CaCl2 than 

DMPC:DMPG 4:1 and 9:1 SUVs, owing to the underlying electrostatics (Article III, 

Supplementary Fig. S2, Supplementary Table 1). In the presence of proteins, the 

fast turbidification process of DMPC:DMPG (1:1) stands out from the other two lipid 

compositions, as the effects of NaF and CaCl2 on k1 increase with the fraction of 

DMPG. In the case of MBP, the ratio of the two obtained rate constants increases in a 

fashion that is nearly linear in all lipid compositions, except DMPC:DMPG (4:1) 
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(Article III, Fig. 3b). Here, the highest ratio arises from the low k2 value (Article III, 

Supplementary Table 1). 

In DMPC:DMPG (9:1), the obtained rate constants were almost equal for samples 

with CaCl2 regardless of the presence of proteins, suggesting a dominant behaviour 

from the cation itself (Article III, Supplementary Fig. S2, Supplementary Table 

1). MBP and P0ct were only able to aggregate vesicles in the absence of any salts, 

and these observations correlate with the steady states observed in turbidimetric 

experiments (Article III, Fig. 1c, 3b). In the other lipid compositions, protein-

induced aggregation was practically absent when compared to background samples 

(Article III, Fig. 3b-c). 

In conclusion, the effect of ionic strength and Ca2+ on MBP and P0ct mediated vesicle 

turbidification and the involved kinetics was studied. It became evident that the 

presence of a monovalent salt enhances the observed turbidification, but only to the 

extent to which protein-lipid charge neutralization can occur to produce protein-

mediated lipid bridging. As apparent from the chosen concentrations, Ca2+ interacts 

much more specifically with the lipids, as concentrations around 1 mM can influence 

the activity of proteins. Similarly, the effect of calcium as a lipid turbidifier is 

influenced by MBP and P0ct.  

A novel SRCD-based method was described in following rapidly forming vesicle 

bodies that cause sample turbidity. While our kinetic data correlates with steady states 

from turbidimetry, what kinds of processes specifically are described by k1 and k2 is 

still uncertain. A notable observation was that k1 changed most between different 

sample setups, whereas k2 remained unchanged. Therefore, k1 values were mostly 

compared (Article III, Fig. 3b, Supplementary Table 1).  
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4.4. ARTICLE IV 

The study undertaken in Article IV was to broaden the existing knowledge stemming 

from Article II to include the known disease point mutations within P0ct, essentially 

to uncover any molecular effects that arise from these mutations and how these 

possibly result in peripheral neuropathies. More specifically, these mutations were the 

six known mutations in P0ct, all related to CMT and DSS332, 334-339: T216ER, A221T, 

D224Y, R227S, K236E, and K236del (Article IV, Fig. 1a).  

Mutations were individually generated using the P0ct construct from Article II via 

site-directed mutagenesis, producing six disease mutant variants. The presence of the 

mutations was verified by DNA sequencing and subsequent mass spectrometric 

characterization after successful protein purification (Article IV, Table 1). All 

mutants but one behaved very similarly to the wild-type protein in terms of 

expression and purification. The outlier, D224Y, had significantly lower expression 

levels and yields (Article IV, Table 1, Supplementary Fig. S1), and appeared to 

undergo minor degradation during expression. More interestingly, the mutant could 

not be subjected to SEC in the standard buffer used for the chromatography of P0ct, 

but instead, a buffer with a higher salt concentration and increased pH was required, 

which influenced the retention time of the mutant variant (Article IV, Fig. 1b). 

Similar QC as described in Articles I and II was performed using SEC, SAXS, DLS 

and SRCD, and freely in solution the mutants were monomeric, monodisperse, and 

disordered, just as the wild-type (Article IV, Fig. 1b-c, Fig. 2, Fig. 3a, 

Supplementary Fig. S2, Supplementary Tables 1-2). SRCD experiments with TFE 

and various detergents demonstrated that all proteins folded in an identical manner to 

the wild-type, with the exception of K236del, which seemed to gain more secondary 

structure content than the other variants in the presence of SDS (Article IV, Fig. 3b-

c, Supplementary Fig. S2). 

We characterized the folding of P0ct wild-type and mutants using SRCD, similarly as 

in Article II. In water, all variants presented an identical level of folding, and in 

DMPC, none of the variants gained secondary structure content. D224Y deviated 

slightly from the other variants, seemingly becoming slightly more disordered in 
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DMPC (Article IV, Fig. 3a, Supplementary Fig. S2g). Notable differences were 

present in lipids with different ratios of DMPC and DMPG. In DMPC:DMPG (1:1), 

the spectra of P0ct wild-type and K236E were slightly more intensive in magnitude 

than the others, but generally all variants had the observed peak minima and maxima 

close to the same wavelength values. D224Y deviated from the other variants 

producing the two minima observed at 208 and 222 nm at almost equal magnitude, 

whereas in the other variants the minimum at 208 was significantly more pronounced 

(Article IV, Fig. 3d). The folding of all variants were more comparable in 

DMPC:DMPG (4:1). Here, the folding of all variants was seemingly the same, with 

D224Y deviating more obviously from the others, presenting a slightly higher degree 

of secondary structure content (Article IV, Fig. 3e). In DMPC:DMPG (9:1), the 

spectral magnitudes varied drastically from one another, with the wild-type and 

K236E again showing the most intensive spectra. The magnitude variation was from 

the inevitable aggregation within samples, resulting in loss of signal due to light 

scattering. This led us to interpret the data cautiously. From the two minima, it 

seemed that D224Y deviated most from the other variants, with T216ER, A221T and 

K236del producing marginally shifted peak minima compared to wild-type, R227S 

and K236E (Article IV, Supplementary Fig. S2h).  

SPR experiments were carried out using DMPC:DMPG (1:1) LUVs, similarly to 

Article II. The obtained Kd values for all variants were in a similar range, but a 

notable difference to the wild-type and other mutants was D224Y, which could 

accumulate in higher amounts to the immobilized lipids (Article IV, Fig. 3f, Table 

2). 

We continued the characterization by performing DSC measurements similarly to our 

past studies. We increased the amount of lipids in the experiment to gain a better 

baseline level and to reduce noise. The trends seen for the P0ct variants were 

reproducible, and a separate lipid population with a Tm formed as in Article II. The 

mutants had minor effects on this behaviour: K236E and K236del reduced the Tm 

marginally more than the wild-type, T216ER, A221T and R227S. D224Y was again 
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different from the others, producing a wider, less symmetric transition, which might 

be a product of several smaller overlapping peaks (Article IV, Fig. 4a). 

Vesicle turbidimetry was carried out to quantify the lipid aggregating/fusing effects 

of the variants. Statistical analysis revealed that at 1:100 P/L, D224Y, R227S and 

K236E produced significantly reduced turbidity (P<0.001) and the effect with 

K236del was slightly reduced (P<0.05). At 1:50 P/L ratio, the only mutant with 

strongly reduced turbidity was still D224Y. K236E also produced a weak but 

statistically significant turbidity reduction (Article IV, Fig. 4b, Supplementary Fig. 

S3). 

To understand the impact of mutations on molecular order in lipid-bound P0ct, 

SAXD measurements were performed similarly to Articles I and II. While all 

variants presented a similar trend of molecular distances as a function of P/L ratio, 

some subtle differences in either the increment rate or distances themselves were 

observed. Most notable ones were D224Y, which presented distances systematically 5 

– 8 Å shorter compared to wild-type. R227S, K236E, and K236del, on the other hand, 

displayed increased distances, indicating looser packing. K236E generally produced 

the most loosened distances across the used P/L range (Article IV, Fig. 4c). 

To directly observe the effect of P0ct variants on vesicles, TEM studies were 

performed. For all variants except D224Y, we observed large lipid bodies that formed 

from SUVs, some of which were loosely attached or aggregated to one another. In the 

presence of D224Y, dense multilamellar structures formed, which resembled those of 

stacked bilayers in compact myelin (Article IV, Fig. 5). These lamellae appeared 

more ordered and denser at increasing lipid fraction, although the measured repeat 

distances evolved oppositely in SAXD (Article IV, Supplementary Fig. S4). 

As in Article III, stopped-flow SRCD kinetics were performed in the presence of 150 

mM NaF for DMPC:DMPG SUVs with P0ct variants at 1:200 P/L (Article IV, Fig. 

6a). The obtained kinetic constants from all experiments were in a similar range for 

all variants, with K236E and K236del presenting k1 values and thus k1/k2 values 

around 20% lower compared to wild-type, suggesting slightly slower kinetics for the 



87 
 

 
 

fast process. D224Y produced a k1 value about 10% higher compared to wild-type 

(Article IV, Fig. 6b, Table 3). Due to an unclear effect, the kinetic starting level of 

K236del was notably higher compared to the other variants, and reproducibly 

remained as such for ~0.3 s. The end level of all variants was identical after the 5 s 

measurement period ended (Article IV, Fig. 6a). 

To investigate the membrane-binding mode of P0ct on a single SLB, NR 

measurements were performed similarly to MBP in Article I (Article IV, Fig. 7a). 

P0ct was observed embed almost entirely in to the membrane, producing only a 

marginal exposed protein layer, unlike MBP. The thickness, roughness, and water 

content of the membrane increased in the presence of P0ct (Article IV, Fig. 7b-c, 

Table 4). The SLB thickened by 2 nm, which corresponded to what was measured in 

AFM (Article II, Fig. 3d). Furthermore, NR data was collected for D224Y, but no 

observable difference to wild-type was present after binding (Article IV, 

Supplementary Fig. S5). 

To conclude, a fully embedded membrane association mode of P0ct has been 

observed, and that the mutations at hand do not seem to affect this. Most mutants 

characterized here behaved much like the wild-type protein, especially T216ER and 

A221T, which suggests their disease mechanisms are not directly related to their 

function in mature compact myelin or its formation.  

Based on this characterization, the functionally most unique mutant, D224Y, is 

capable of forming membrane multilayers efficiently, thus resembling MBP in its 

mode of action rather than P0ct wild-type. 

While the effect of R227S, K236E and K236del were much less dramatic than 

D224Y, we identified Arg227 and Lys236 as potentially important amino acids in the 

function of P0ct. Mutating Lys236 decreased the amount of vesicle turbidity and the 

rate of vesicle aggregation, as well as loosened the molecular order as shown by 

SAXD, with the charge-inverting K236E pronouncing the effect more than the 

deletion of Lys236. 
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5 DISCUSSION 

Compact myelin is novel from a biological perspective. Immensely rich in lipids, the 

unique proteome within and the absence of water make it stand out from other 

systems. The formation and stability of compact myelin needs to be considered if one 

wants to understand demyelinating conditions. MBP is a central protein in the 

formation of the MDL in the CNS, and one of the most abundant myelin proteins in 

general66. In the PNS, P0 makes up the major fractions of all proteins82, and its 

importance in myelin stability is reflected by numerous disease mutations332, 333, 335, 

336. In the current study, MBP and P0ct were studied using a biophysical approach to 

unravel their function and folding in myelin compaction, as well as the effect of ionic 

factors that influence these. Additionally, point mutant variants of P0ct were 

characterized to unravel any determinants in the molecular etiology of CMT. Since a 

strictly biophysical approach was used, the involved methods and samples will be 

discussed, before moving on to more biologically relevant aspects. 

 

5.1. METHODOLOGICAL CONSIDERATIONS 

5.1.1. RESEARCH MATERIAL AND QUALITY CONTROL 

This study focused on the detailed biophysical characterization of biomolecules 

centrally involved in the formation and maintenance of the vertebrate myelin sheath. 

A variety of biophysical techniques were used, and simplified, controlled conditions 

were employed in the experiments. This essentially involved the use of synthetic 

lipids and recombinant proteins, which could be obtained in high amounts. 

The proteins were designed to be label- and tag-free to avoid any artifacts arising 

from these modifications. Especially His-tags can introduce positive charges under 
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certain conditions, which might influence electrostatic binding to phospholipids and 

introduce unwanted metal cation coordination. On the other hand, given the small size 

of P0ct, a His-tag composed of six His residues would increase the length of the 70-

residue construct by almost 10%, which in turn can influence its physical behaviour. 

Solid protein QC throughout the project enabled robust reproducibility of downstream 

experiments. Achieving proper protein integrity, purity, monodispersity, and stability 

was crucial, as the goal was to obtain data that specifically represent the functional 

and structural behaviour of MBP and P0 under controlled conditions. Effects arising 

from aggregation, degradation, or oxidation were minimized. The chosen QC 

methods complement each other in the data they provide: the use of mass 

spectrometry, SDS-PAGE, and SEC(-MALS) supported each other by providing the 

mass and purity of the proteins at different levels of accuracy. Another example is the 

use of DLS, SAXS, and SEC-MALS, which not only provide useful parameters, like 

molecular weight, Rg, and Rh, but they are all especially sensitive in probing 

aggregation within the samples. Therefore, at times when only some of the methods 

were available, other methods were used to gain complementary information 

 

5.1.2. MYELIN BASIC PROTEIN, THE REFERENCE MOLECULE 

The goal of this study was to study the biologically relevant structure-function 

relationships of abundant myelin proteins. This was achieved using a biophysical 

setup that allowed thorough characterization of the lipid binding and membrane 

stacking properties of basic proteins. Decades of work has been devoted to the 

characterization of MBP before the conception of this study, providing a substantial 

amount of reference data, as extensively reviewed before70, 168, 342, 407, 408. 

Based on earlier literature, the tag-free recombinant MBP construct behaved (Article 

I) as expected in AFM89, CD171, turbidimetry197, 210, SAXD94, and SAXS171, 172. This 

increased the confidence in the recombinant protein material and simplified lipid 

compositions, allowing the development of a workflow for the characterization of 

MBP. DSC experiments had been carried out before with MBP for phospholipids and 
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gangliosides409-411, but the impact of MBP on mixtures consisting of net neutral and 

negatively charged lipid species had not been performed. NR had been used to study 

MBP before, but as opposed to the DMPC:DMPG (1:1) SLBs used here, DMPA 

membranes were used412, and no membrane insertion of the protein was observed. 

This may be an artifact of the heavily acidic lipid headgroups – the lipid compositions 

chosen for Article I reflected the expected physiological function of MBP and 

unveiled a substantial insertion of MBP to the SLB. 

In this study, all experiments were performed without protein labeling. This is of 

major importance considering the function and natural environment of myelin 

proteins. The cytoplasmic compartment of compact myelin is very narrow, which 

excludes large tags, such as GFP65. The methods used in the current work follow the 

intrinsic molecular attributes of the proteins and lipids, abolishing the need of tags 

that can interfere with the experiments. 

On the downside, there are certain aspects that can decrease the attractiveness of the 

described methods. One factor is the required protein purity and monodispersity. 

These are absolutely needed if one wants to follow a single attribute in a meaningful 

way, as several methods are based on absorbance, which does not distinguish between 

oligomeric states, and scattering, which is sensitive to molecular size and order. 

Considering the size of the proteins, reasonably high concentrations of purified 

proteins are required for the characterizations at hand – this can be practically 

difficult, especially if the study of PTM variants is desired, most often omitting 

bacterial expression systems. Finally, some methods required fairly concentrated 

samples. SAXS and SANS are notable examples, as the quality of the measured 

scattering pattern improves directly with concentration. The concentrations used in 

experiments may not be physiologically relevant, and this might translate into 

observations that show more compacted protein folds than present in vivo, since 

molecular crowding can affect the folding behaviour of individual proteins413, 414. 

The limiting factor of biophysical studies is often either the stability of the studied 

protein, or its yield per purification. QC was established to rule out sample stability 

issues, leaving purification yield the determining factor of streamlined experiments. 
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Many of the used methods are rather sensitive, allowing characterization of a single 

protein batch using several approaches and controls. For example, with SRCD, the 

purified proteins were always tested for expected folding, usually in water, in the 

presence of a detergent, and with a standard lipid composition. Individual protein 

batches behaved well with respect to each other; more variation was observed 

between lipid batches. Therefore, control experiments were carried out always when 

lipids were used, most notably in CD, in which the observed spectral magnitudes are 

very sensitive to aggregation-induced light scattering415. Such experiments were 

needed to gain high reproducibility, as evident from the small standard deviations in 

Articles I – IV. 

One notable limitation within the study was the employment of PG and PS lipids in a 

mixed fashion. Both lipids are negatively charged at physiological pH, but present 

different headgroup structure. This adds another variable to the sample material. The 

optimal solution would be to employ only PS or PG in all samples, but as explained 

and justified in Chapter 3.2., we included both headgroups as DOPS or DMPG as the 

major negative lipids, partially due to their physiological significance, but also based 

on their physical characteristics. 

 

5.2. THE FORMATION OF THE MAJOR DENSE LINE 

The experiments carried out in Article I allowed to uncover new aspects of MDL 

formation and the pivotal role of MBP therein. Most notably, the involved molecular 

interactions, the role of cholesterol, the conformation of MBP on a single membrane, 

and the MBP concentration dependency in membrane stacking were studied. 

The disordered MBP irreversibly bound negatively charged lipids and folded in the 

process.142, 143, 168-171. In the absence of negative charge components, folding was not 

induced, indicating the absence of binding. This was verified using NR, underlining 

the importance of electrostatic interactions in the activity of MBP. Comparison of 

lipid saturation degree had minimal role in the lipid binding and structure of MBP. In 

myelin, the major fraction of lipids is composed of unsaturated fatty acids, with DOs 
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dominating as the single most abundant fatty acid group55. In saturated lipid 

compositions, however, more MBP could associate with the lipids as shown by SPR. 

DSC revealed an effect on the lipid phase transition behaviour, which indicated that 

MBP could influence the (thermo)dynamic behaviour of the lipid tails, as shown 

before90, 416, 417, possibly through membrane insertion. 

The formed lipid aggregates displayed a repeat distance that corresponded to the 

width of the MDL, around 3 nm43, between bilayers, and this was confirmed using 

AFM where multilayered membranes formed after a sufficient surface-bound MBP 

concentration was reached. The real amount of bound MBP on the membranes is 

difficult to estimate in our experiments, hence, it is difficult to draw conclusions on 

how the surface bound MBP concentration and stacking induction are related in terms 

of the apparent Kd determined using SPR. 

The presence of cholesterol was earlier postulated to be essential for the formation of 

stacked membranes89, but the current study contradicts this, as stacked membranes 

formed in cholesterol-free SLBs as well. However, the past study is not fully 

comparable with the current one since the lipid composition was different, especially 

considering the fraction of negatively charged lipid species89. In the current study, the 

presence of cholesterol did, however, visibly enhance membrane stacking, most likely 

due to altering the fluidity of the membranes. In turbidimetry, inclusion of cholesterol 

did not display a significant effect, suggesting that the enhanced effect of cholesterol 

arises from elsewhere than intermembrane bridging by the protein. In turbidimetry, 

vesicles tumble freely in solution, which means that given enough time, MBP-

decorated membranes will meet due to Brownian motion and become adhered to each 

other. In SLB systems, like in AFM, SLBs were treated with MBP and no excess 

lipids were added after this, which means that any stacks need to form from the pre-

existing SLBs. Thus, a likely explanation for the observed cholesterol-enabled effect 

could be that the fluidity of the SLBs change, allowing MBP to stack lipids easier 

when cholesterol is present. During myelination, cholesterol-modulated membrane 

fluidity might affect the function or segregation of relevant proteins, including 
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MBP60, 61, 350, as cholesterol abundance is crucial for the development of 

oligodendrocytic myelin60. 

Using NR and SANS, a novel conformation of MBP was observed. When MBP binds 

to a single membrane, it partially inserts into a depth of 3 nm and assumes an 

elongated 7–8-nm pre-stacking conformation on top of the membrane. In cryo-EM, a 

dense protein phase in between stacked membranes was observed, rather than 

individual folded MBP particles, which supports the presence of the earlier proposed 

protein meshwork206. During membrane binding, MBP undergoes charge 

neutralization, folding, and insertion to a membrane, but stacking of two membranes 

occurs only when a sufficient concentration of membrane-bound MBP is reached. A 

model outlining the MBP-driven formation of the MDL is proposed (Article I, Fig. 

6), which features the steps described above. 

The proposed model is logical if one considers the translation of MBP, which occurs 

in the vicinity of the membrane during myelin compaction418. As free MBP needs 

binds to the membrane for the entire cascade to proceed spontaneously, the amount of 

MBP is a determining factor in the process. Therefore, the translation of MBP needs 

to be controlled during myelination, and other proteins, most notably the cytoskeleton 

and CNPase, are likely to be involved191, 257, 419, 420. These factors are known to be 

important in the formation of correct myelin morphology102. The proposed model can 

be used to speculate on the development of MS as well, as changes in the translation 

levels, affinity, or folding of MBP will likely affect its association with the 

membranes. The extended MBP conformation in the pre-stack state could leave MBP 

susceptible to proteolysis311, 421, producing peptide fragments displaying antigenic 

properties through molecular mimicry (Fig. 12). The model provides a good starting 

point for further experiments involving citrullination variants of MBP, as well as 

changes in lipid and ionic compositions known to be involved in MS200, 204. 
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Fig. 12. The role of MBP in the formation of membrane stacks and disease. The 
translation levels of MBP (red) govern the fate of MDL formation. The destabilization of 
compact myelin and the formation of an autoimmune response can be speculated to arise 
from a lagging pre-stack state, which does not form stable membrane stacks rapidly enough. 
The effect could stem from lowered MBP translation, from PTMs that reduce the net charge 
of MBP and from changes in ionic and lipid content201, affecting the abundance of active 
membrane-bound MBP. Subsequent proteolysis of exposed MBP could form autoantigenic 
peptides, promoting the formation of an autoimmune response. The related loss-of-MBP 
could additionally decrease the stability of myelin and the rate of myelin formation. 
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5.3. THE STRUCTURE AND FUNCTION OF MYELIN PROTEIN ZERO IN 

PERIPHERAL MYELIN 

The characterization of MBP in Article I is a starting point for expansion to other 

proteins. P0ct was a logical follow-up candidate, since it had been studied in a similar 

fashion by others243-245, and it might stack myelin membranes similarly to MBP. 

An identical characterization was performed for P0ct as for MBP, which essentially 

revealed similarities between the two proteins: P0ct was disordered in solution, 

irreversibly bound negatively charged lipid compositions and various detergents, and 

displayed significant folding in the process. The affinity towards lipids was very 

similar to that of MBP. In DSC, however, P0ct produced a new population of lipids 

with a destabilized gel phase, which was a clear difference to MBP. This hints that 

P0ct can affect the thermodynamics of the lipids it associates with, which might have 

relevance in the partitioning of P0 into lipid rafts422. 

Cholesterol and SM affected the folding of P0ct, which was not observed for MBP. 

This is notable, as some myelin proteins, like PMP22 that is known to interact with 

P0, are dependent of the presence of SM when forming myelin-like membrane 

adhesion structures63, 240, 423, suggesting that the fluidity of the membrane has an 

impact on P0ct. Therefore, P0ct and lipids most likely affect each other in the 

membrane more than in the case of MBP. Very importantly, the folding of P0ct in 

native myelin-like lipids was similar to the used simplified model lipid compositions, 

suggesting that P0ct does not present a β-sheet-rich fold in vivo244.  

The level of order P0ct induced when bound to vesicles was higher than that of MBP, 

as suggested by the diffraction peaks in SAXD. The membrane-stacking activity of 

P0ct remains slightly obscure, as adding P0ct to SLBs in AFM never induced 

stacking, only association and membrane thickening. In these experiments, the 

protein concentrations were an order of magnitude higher than what was performed in 

similar experiments involving MBP. In EM, P0ct caused SUVs to become larger lipid 

bodies, which appeared to loosely associate with each other. This is likely the effect 

observed in turbidity experiments, and while it is tempting to label P0ct as a 

membrane stacker, its stack formation mode differs to that of MBP in Article I, full 
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length P0 in Article II, and P296. More experiments are required to study this aspect: 

microscopy experiments with full length P0 lacking P0ct should be conducted using 

vesicle samples as well as nerve cross-sections from knock out animals. Additionally, 

studying the fine architecture of P0ct-decorated membranes using cryo-EM might be 

advantageous, as TEM using negative staining cannot reach sufficient magnification 

to reveal the interface between P0ct-treated vesicles. While P0ct is small, the putative 

membrane stack it forms is in the same size range as those measured for MBP in 

Article I, which indicates that visualization of P0ct as phase separation or individual 

particles between the membranes should be possible. Given the small size of P0ct, its 

structure elucidation might also be possible through NMR spectroscopy or 

crystallization using lipidic mesophases. To determine whether the observed 

diffraction emerges from P0ct-bridged bilayers or from within a P0ct-embedded 

bilayer itself, grazing-incidence small-angle scattering (GISAS) experiments should 

be performed using a single SLB with bound P0ct. 

P0ct contains a conserved neuritogenic segment which has been previously used as a 

peptide to induce EAE in animals255. This segment was found to fold in net 

negatively charged lipids, similarly to many other peptides that originate from myelin 

proteins324. Differences in folding correlated with the saturation degree of the lipids, 

and the importance of electrostatic neutralization was obvious. OCD showed that in 

the peptide assumes a perpendicular orientation in the membrane. This distinguishes 

P0ct from MBP, for which the known helical segments are thought to insert in a 

horizontal orientation to the myelin membrane, based on their amphipathic character 

observed using helical wheel projections342, 424, 425. The neuritogenic segment might 

function as an important anchor for P0ct in its membrane-bound state, and likely does 

not become exposed to other factors, such as the immune system, in intact, healthy 

myelin. 

Cryo-EM displayed periodic homophilic adhesion between Ig-like domains, which 

was independent of the chosen lipids (Article II, Fig. 2d-f). The spacing between the 

adhered apposing membranes was 5 nm – a physiologically relevant value for the IPL 

– and the adhesions appeared as directly apposing or slightly offset dimers of Ig-like 
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domains in a zipper-like arrangement. The crystal packing of the rat P0 Ig-like 

domain (PDB ID 1NEU227) revealed a possible dimerization mode, in which two β-

strands form a short intermolecular β-sheet (Article II, Fig. 7). In this arrangement, 

the C-terminus of each Ig-like domain points towards the membrane, and the C-

terminus is followed by the transmembrane domain in full length P0. SEC-MALS 

revealed dimers and tetramers of P0, as reported earlier236, 237. The oligomeric state 

depended on the chosen detergent: strikingly, tetrameric P0 was present only in DPC, 

which also induced folding of P0ct, raising an important point: the folding of P0ct 

might affect the oligomerization of P0. 

The model proposed for the organization of P0 in membrane stacks is realistic, based 

on the measured distances, which match those of endogenous myelin42, 43, and the 

packing of the crystal structure227. Since the folding of P0ct seems to be coupled to 

the oligomeric state of P0 itself, the measured distances from SAXD data could also 

represent lateral assemblies of P0ct molecules, rather than bilayer bridging, although 

distinguishing between the two is not possible from the measured data. One might 

speculate that an ordered P0ct assembly locks P0 in place, forcing the Ig-like domains 

to adopt an orientation in the IPL that results in productive homophilic adhesion and 

the observed protein zipper. Nevertheless, P0 must harbor a role in MDL compaction 

as well, as mice lacking both MBP and P2 develop normal myelin in the PNS98, and 

the absence of P0 extensively disrupts myelin formation and morphology279. 

 

5.4. THE IMPACT OF IONIC CONTENT ON THE ACTIVITY OF BASIC PROTEINS 

In the studies carried out in Articles I and II, the effect of ion concentration remained 

unconsidered. In Article III, the effects of salt and Ca2+ on the function of MBP and 

P0ct were studied. 

Turbidimetric studies demonstrated the effect of salt concentration of protein-induced 

vesicle aggregation. While only minor turbidification was observed without salt, 

increasing ionic strength boosted vesicle turbidity and the involved kinetics. The net 

charge of the lipid vesicles influenced the salt concentration where highest turbidity 
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was recorded, with vesicles with less negative net charge being more susceptible to 

salt concentration competing with the proteins. MBP generally produced higher 

turbidity levels than P0ct. 

The effect of Ca2+ seems more specific than that of monovalent ions, as suggested by 

the magnitude of differences and the concentrations used of Ca2+ that were 

substantially lower than NaCl or NaF. Ca2+ could induce vesicle turbidity by itself, 

but in the presence of MBP or P0ct, the turbidity levels fluctuated rather little 

between the three Ca2+ concentrations, although Ca2+ generally lowered turbidity 

levels. In each lipid composition, a certain level of Ca2+ became high enough to block 

protein-induced turbidity. Thus, an optimal level of Ca2+ is expected to carry out its 

function in myelin, at least when it comes to membrane-bridging258, as changes in 

ionic conditions or lipid composition might drive the system towards demyelination, 

as already speculated in Fig. 12. 

The kinetics of vesicle aggregation were studied using SRCD, as following protein 

folding was not possible. Such an approach has not been described before. While it is 

unclear what the two obtained kinetic constants actually represent, comparing the k1 

constant for MBP and P0ct revealed that P0ct generally performs its activity slightly 

faster than MBP. This could be due to the smaller size of P0ct, allowing it to interact 

with phospholipids faster than MBP due to Brownian motion. Additionally, since 

proteins bound on the surface of vesicles change the net charge of the surface, MBP 

due to its larger size and higher positive charge could experience electrostatic 

repulsion, as more protein continues to bind the lipids. 

In the end, the study provides new insights into the roles of ionic strength and 

divalent cations in myelin formation and the molecular amounts involved, and 

provide a solid foundation for further studies focusing on the protein affinity and 

involved kinetics of myelin bilayer bridging. Ca2+ is an important ion in myelin at a 

concentration of 1 mM35, being involved in signaling and myelin development201, 404-

406. While too high Ca2+ amounts can be detrimental for myelin stability199, 201, the 

concentration of Ca2+ in myelination needs to be maintained to promote the formation 

of healthy myelin258. Ca2+ likely modulates the binding of proteins to membranes by 
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direct interaction with both players. Ca2+ is known to bind MBP426, and this study 

highlights the importance of the correct ionic conditions in the activity of MBP and 

P0ct. 

 

5.5. THE EFFECT OF PERIPHERAL NEUROPATHY MUTATIONS ON THE MYELIN 

PROTEIN ZERO C-TERMINAL SEGMENT 

A follow-up study including the known CMT and DSS mutations of P0ct was 

conceived. As in the structural enzymology of CNPase earlier113, 139, 427, 428, the 

established method ensemble was used to study protein variants displaying single-

amino-acid changes compared to the wild-type protein. Many quality control 

experiments produced nearly identical outcomes for the six P0ct mutant variants. The 

lipid binding characterizations produced meaningful differences between the mutants 

and P0ct wild-type. An overview of these is listed in Table II. 

 

Table II. P0ct mutant comparison to wild-type. Various experiment were employed to 
determine the effect of the six chosen point mutations on the function and folding of P0ct. 
An increased or enhanced effect is indicated as one or more plus signs (+), decreases are 
oppositely indicated with minus (–) signs. No change is indicated with a zero (0). Control 
experiments are not included in the table. 

Method T216ER A221T D224Y R227S K236E K236del 
SRCD, SDS 0 0 0 0 0 + 

SRCD, DMPC 0 0 – 0 0 0 

SRCD, DMPC:DMPG 4:1 0 0 + 0 0 0 
SPR, Kd

* + 0 + + + 0 

SPR, Rhi
** 0 0 ++ 0 0 0 

DSC, Tm 0 0 *** 0 + + 
Turbidimetry 0 0 – – – – – – – – 

SAXD, d1 0 0 – + ++ + 

EM 0 0 +++ 0 0 0 

Stopped flow, k1 0 0 + 0 – – 

Yield per l + + – + + + 
*Generally very subtle differences. 
**Maximum response level from fitting. 
***Calorimetric landscape changed. 
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Characterization of the mutant variants identified a mutation distinct from all the 

others: D224Y. While other mutants were similar or almost identical to wild-type 

P0ct in terms of folding, lipid binding affinity, effect on lipid Tm, and vesicle 

aggregation, D224Y stood out with subtle, but meaningful differences. As opposed to 

P0ct and the other mutants, EM imaging revealed that D224Y induced heavy 

membrane stacking, similarly to MBP. This is an important result, as D224Y 

manifests as an abnormal CMT phenotype, displaying abnormally thickened compact 

myelin336. Nearly all studied parameters were changed: turbidimetry displayed a 

decreased level of optical density, most likely due to tighter lipid aggregates. In DSC, 

a wider, multimodal distribution in the thermodynamic landscape of DMPC:DMPG 

(1:1) was observed. In SAXD, molecular repeat distances collapsed by nearly 1 nm. 

The affinity of D224Y was only marginally decreased compared to wild-type P0ct, 

but more D224Y accumulated onto the immobilized lipids, as revealed by the 

increased response levels in SPR. All of these observations were present in 

DMPC:DMPG (1:1), where the folding of D224Y was not notably different from the 

other variants, although in DMPC:DMPG (4:1) it displayed slightly more folding. 

The single amino acid change from Asp to Tyr at this specific position allows P0ct to 

become a hyperactive stacker, capable of inducing multilayer formation and leaning 

towards the known physiological phenotype336. The endogenous effect of D224Y is 

so substantial that P0ct as a part of P0 becomes a determining factor in disease 

etiology. 

The difference to wild-type P0ct displayed by D224Y was substantial, but even 

though some mutants displayed milder effects, functionally important amino acids 

could be identified: Arg227 and Lys236. The changes in these amino acids introduced 

mild, but meaningful effects in lipid-bound P0ct. Lys236 gradually presented 

differences when proceeding from the wild-type to a deletion of Lys236, and finally 

to a charge-inverting mutant, K236E. Vesicle aggregation was most notably affected, 

indicating that Lys236 could be important for a potential vesicle fusion or stacking 

function. The mutation of Arg227 into a Ser deletes a positive charge, indicating that 

Arg227 could carry a role in charge neutralization and subsequent folding, as R227S 

underperformed in turbidity experiments and produced slightly loosened repeat 
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distances in SAXD. The impact of R227S might be independent of UPR activation, as 

R227S has been shown to undergo normal trafficking from the ER to the plasma 

membrane and the disease phenotype arises only when myelin is properly matured429. 

Arg227 and Lys236 could thus be speculated to be involved in forming ionic 

interactions with phospholipid headgroups, driving the charge neutralization, folding 

and membrane insertion of P0ct. 

To elucidate the membrane insertion mechanism of P0ct, NR was performed. A 

striking difference to MBP was the complete insertion of P0ct into the SLB, without 

displaying a major non-inserted protein segment that could participate in 

intermembrane adhesion. Additionally, the binding of P0ct increased the roughness of 

the entire system, indicating notable mobility of the membrane (Fig. 13). This might 

be an effect arising from altered fluidity, which could be linked to the destabilized 

lipid population observed in DSC. 

 

 

Fig. 13. The membrane insertion differences of MBP and P0ct. Based on NR data, the 
membrane association of MBP results in partial protein insertion to the bilayer, slightly 
increasing membrane thickness. A notably thick protein layer forms over the membrane. 
P0ct undergoes nearly complete membrane insertion, also increasing the membrane 
thickness, but as opposed to MBP, only a small portion of P0ct remains on the membrane 
surface. The roughness of the membrane changes drastically, indicating increased lipid 
fluidity and/or membrane undulation. 
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Since P0ct was found to participate in membrane-bridging (Article II), and the MDL 

in the PNS is known to form correctly in the absence of MBP and P298, P0ct is left 

with two options for achievable membrane stacking: either P0ct inserts into a 

membrane and bridges two membranes together across the MDL by interacting with 

another P0ct molecule, or P0ct interacts with or fully inserts into an apposing 

membrane across the MDL, whilst the transmembrane domain remains on the other 

side of the MDL (Fig. 14). At this point, it remains difficult to answer which 

mechanism is correct; logically thinking the latter should be impossible, given that 

P0ct is attracted to a phospholipid membrane directly after translation. Additionally, 

P0ct becomes fatty acylated at Cys182247, 248, which anchors into a membrane. Given 

that P0ct is translated together with full length P0, its membrane-bound state is 

destined before it reaches the stacked compact myelin, as will be described below. As 

shown by NR, D224Y and P0ct wild-type appeared identical on a single SLB, which 

indicates that the mutation does not influence the insertion of P0ct into a single 

membrane directly, but it is likely to enable specific interactions that result in tightly 

stacked membranes. These interactions remain to be further elucidated. 

 

Fig. 14. Possible membrane stacking modes of P0ct. The P0ct-mediated bridging of two 
apposing membranes together in MDL formation/stability can be speculated to occur through 
several different arrangements. Homophilic stacking involves either P0ct being fully present 
in one membrane and weakly interacting with an apposing P0ct molecule (1) or spanning the 
MDL, forming an oligomer with an apposing P0ct molecule (2). Another possibility is 
unimolecular stacking, which lacks the formation of oligomeric states. These could occur 
through P0ct directly interacting with the apposing membrane (3) or by fully inserting into 
the apposing membrane (4). P0ct is shown in red and the transmembrane helix of P0 is 
shown in copper. For clarity, the Ig-like domain has not been drawn. 
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Compared to wild-type P0ct, the results appear mild for all other mutants except 

D224Y. It should be acknowledged that the characterization in this study is limited, 

as the samples involve only the cytoplasmic ‘soluble’ part of P0 instead of the full-

length protein. The transmembrane segment that could largely influence the 

conformation and/or depth of P0ct in the membrane is absent. Obviously, P0ct is not 

translated alone in vivo, but as a part of P0 that needs to be inserted into the ER 

membrane before undergoing PTMs and trafficking to the plasma membrane via the 

Golgi apparatus256, 430. 

Model lipid compositions were employed in this study, which work well with the 

chosen methods but might influence the behaviour of the proteins. In a native myelin 

lipid composition, differences between the mutant variants may be larger. 

Additionally, the membrane lipid composition changes when transiting from the ER 

to the Golgi apparatus and finally to the plasma membrane431. The lipid composition 

of the ER should be included in the study of these particular mutants, as many of 

them have been reported to induce UPR340. Misfolded P0ct in the ER membrane 

might cause the aggregation and/or unfolding of P0, resulting in ER stress. Disease 

mechanisms possibly arising from P0 trafficking, such as directly removing or 

modifying the YAML-motif as in the case of A221T256, are not covered in this study, 

nor is the activation of the unfolded protein response. These remain possible 

scenarios in CMT disease etiology involving the mutants at hand. This being stated, 

future studies should involve animal and cell culture studies that allow the 

pinpointing of P0 and P0ct in mutant models432, combined with structural studies 

from nerve sections. 
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5.6. FUTURE CONSIDERATIONS 

The ensemble of methods described in this thesis is useful for probing the 

conformation and lipid-binding properties of basic proteins, assuming adequate QC. 

This biophysical approach would benefit from the inclusion of several other methods 

as well as complementation using cell culture studies and experiments on natural 

myelin extracts. Nevertheless, the study paves way for the characterization of other 

proteins, domains, and peptides that harbour similar molecular characteristics as MBP 

and P0ct, as well as the expansion of the study on these two proteins. 

As the methodology is now established, it will be straightforward to include more 

lipid compositions. The use of PEs as phospholipids or plasmalogens would make the 

lipid composition more physiologically relevant. As shown by the SRCD experiments 

on P0ct in Article II, myelin- and EAE-like phospholipid compositions can be 

included. It is worth mentioning that similar compositions were also used for MBP, 

but the data were deemed unusable due to the strong CD signal of cholesterol and 

light scattering arising from vesicle aggregation (data not shown). Studies with more 

physiologically relevant lipid compositions are required, and notable progress has 

been made recently200, 204. More complex sample compositions will not only change 

the ratios of lipids in vesicles or SLBs, but are also likely to introduce various phase 

domains to the system via lipid segregation and internal interactions in the lipid 

structures62, 350, 351. In such cases, AFM could prove to be useful, as it is capable of 

distinguishing rafts and patches of different lipid phases in a membrane sample395. 

An addition that could complement AFM studies in distinguishing the time-resolved 

formation of lipid domains or changes in a membrane structure is Brewster angle 

microscopy433. The method is often used together with NR, as NR is unable to 

distinguish lateral heterogeneity in the sample434. The use of a quartz crystal 

microbalance with dissipation, which complements SPR by providing association and 

dissociation data of proteins binding to supported lipid structures, can provide 

additional information about the stiffness and thickness of the studied system435. 

GISAS using neutrons and X-rays could help in uncovering lateral organization in a 

protein-SLB system436. These point-collimated methods would be greatly 
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complemented by methods providing a picture of lateral surface structures, like AFM 

and the above-mentioned Brewster angle microscopy. Additionally, infrared 

spectroscopy could allow in situ spectroscopic characterization of protein-lipid 

systems in SLB samples simultaneously to NR or GISAS measurements437, 438, and 

solid-state NMR spectroscopy439 could prove extremely useful for uncovering the 

molecular determinants in protein-lipid samples described in this thesis. While NMR 

spectroscopy is not a new method in the characterization of MBP70, P0ct has not been 

studied with NMR, and its small size would definitely enable such experiments. 

Hydrogen-deuterium exchange of lipid-bound MBP and P0ct might provide useful 

information about solvent-exposed surfaces440 and intein-mediated coupling of 

protein segments could be used to produce partially labeled full-length proteins441, 

introducing contrast variation in methods like NR. Single-residue labeling in proteins 

and peptide fragments might enable the probing of orientational parameters of 

specific protein segments. Such experiments have been performed for integral 

membrane proteins and amphipathic peptides using 19F labels and solid-state NMR 

spectroscopy442, 443. Similar SLB experiments as described here using NR should be 

pursued to uncover which peptide segment(s) of MBP initially insert into the 

membrane to produce the pre-stack state342. 

A logical step further would be to screen different ionic conditions and their impact 

on the activity of MBP and P0ct. K+ is an abundant ion in myelin35. The results of 

Article III suggest that the choice of monovalent anion, in this case Cl- vs. F-, has 

negligible impact on protein function, but similar comparative experiments remain to 

be performed for monovalent cations. An attractive choice of divalent cation to 

include in follow-up studies is Zn2+, the most abundant trace element in myelin34. 

Zn2+ has relevance in demyelinating conditions444, 445 and has been shown to interact 

with MBP171, 446-450. In compact myelin, Zn2+ is likely to interact with phospholipid 

headgroups within the tight cytoplasmic compartment451, 452. 

As already discussed above, the inclusion of more relevant lipid compositions should 

be done eventually – especially the presence of cholesterol is highly desired60, 61, 197, 

198, 453. The unique lipid composition of the cytoplasmic myelin monolayer, and the 
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related changes in lipid proportions in disease57, 58, presents a putative disease-

inducing mechanism, especially when combined with amino acid changes in myelin 

proteins, such as mutations or PTMs. The impact on protein binding by individual 

lipid components, such as PE, has been demonstrated by others197, 198. 

Protein modifications involved in demyelinating conditions212, 407 should also be 

characterized. While a substantial amount of literature is available regarding the 

impact of citrullination on MBP and its function210, 211, 225, 407, 454, 455, membrane-

binding characterizations involving phosphorylated variants or phosphomimicking 

mutants is lacking. Phosphorylation has a similar impact on the net charge of MBP as 

citrullination, but the reversibility of phosphorylation allows natural regulatory 

mechanisms to exist. When disturbed, however, similar consequences that stem from 

heavy citrullination could be speculated to surface in the form of demyelination, 

especially since MBP-phosphorylation levels are known to be age-dependent and 

altered in MS212, 456. 

Proteins involved in myelination, myelin maintenance, and demyelination are all 

attractive characterization targets, MOBP being a very notable candidate. The true 

function of MOBP in myelin is not known, but it MOBP is likely to be partially 

unfolded, since it possesses similar amino acid content as MBP73. MOBP has a 

putative FYVE-domain76, implying Zn2+ binding and interactions with PIs457, thus 

possibly harboring a segregation role for lipids and Zn2+. 

The study of isolated peptide segments is also of interest, including the intracellular 

loops of the tetraspan protein PLP324, as well as smaller other segments of PLP or 

PMP22. Both proteins are among some of the most hydrophobic proteins in 

humans458, 459, which is a reason why high resolution structural data remains 

unavailable86, not to mention the structural relationship to the (putative) function of 

these integral transmembrane proteins. 

Multiprotein systems should be pursued to uncover any synergistic and competitive 

systems. MBP and P2 have been demonstrated to work together89, and the 

involvement of PLP, PMP22 and P0 should be studied as well, since interactions 
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between these proteins are known to exist240. To conclude, it cannot be stressed 

enough that basic research involving biophysical approaches is required to understand 

disease conditions, especially arising from a biological environment of such a unique 

molecular composition as that found in myelin. 
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6 CONCLUDING REMARKS 

A biophysical characterization of MBP, P0ct, and its disease mutants has been 

performed in this thesis. Through an in vitro characterization, the structure-function 

relationships of MBP and P0ct in the MDL are starting to unravel. MBP, a classical 

membrane-stacker in compact myelin cytoplasm, appears to be heavily dependent on 

its translation and modification levels, as a pre-stack state, which might be a key 

factor in the molecular etiology of demyelination, precedes the formation of the 

MDL. This pre-stack state is likely to be influenced by the ionic content and lipid 

composition present at a given time, as changes in these two parameters have been 

shown to be altered in MS-like conditions. Indeed, the characterization described here 

raises an important factor in MBP-mediated membrane stacking outside of PTMs: the 

charge-balance arising from general ionic content, the presence of divalent cations, 

and phospholipid net charge. 

P0ct is the short cytoplasmic domain of P0 – a poorly characterized segment that 

shares many similarities to MBP in terms of folding and function. The importance of 

P0ct might very well be in MDL formation, especially since MBP, which is very 

abundant in the CNS, is not as prominent in the PNS and is not required for MDL 

formation in vivo98. The true membrane-bridging mode of P0ct remains to be 

determined, but putative models have been proposed for achieving the stable MDL 

ultrastructure in the PNS, where P0 dominates over all other proteins in terms of 

quantity. These proteins include P2, which does harbour membrane stacking 

properties but appears to be redundant in mice when the formation of peripheral 

myelin is followed98. The current study shows that some mutations in P0ct have 

relevance in CMT pathology outside of UPR induction, most notably explaining the 

hypermyelinating activity of the mutant D224Y, which presents a unique phenotype 
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on the cellular level336. Key amino acids relevant for the folding and membrane 

stacking function of P0ct have also been identified. 

To conclude, the current study evokes new directions in the study of myelin proteins. 

Biophysical studies are a necessity to understand the structure-function relationships 

of proteins on the biomolecular level, especially in a biologically unique, lipid-rich 

environment such as myelin. The approach described here enables strict control over 

the studied proteins and conditions, and robust, established systems can be further 

expanded to more physiologically relevant conditions that allow the dissection of 

molecular fundamentals of myelin formation and stability in health and disease. 

Incurable demyelinating diseases remain as such until novel remedies are developed, 

and such developments cannot be performed without adequate basic characterizations 

of the affected biological systems. 
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The Membrane Association Landscape of Myelin Basic Protein Portrays 

Formation of the Myelin Major Dense Line at the Molecular Level. 

Raasakka A., Ruskamo S., Kowal J., Barker R., Baumann A., Martel A., Tuusa J., Myllykoski M., 

Bürck J., Ulrich A.S., Stahlberg H. & Kursula P. 

Scientific Reports 7(1):4974. DOI: 10.1038/s41598-017-05364-3. (2017) 

 

Abstract 

Compact myelin comprises most of the dry weight of myelin, and its insulative nature is the 

basis for saltatory conduction of nerve impulses. The major dense line (MDL) is a 3-nm 

compartment between two cytoplasmic leaflets of stacked myelin membranes, mostly 

occupied by a myelin basic protein (MBP) phase. MBP is an abundant myelin protein 

involved in demyelinating diseases, such as multiple sclerosis. The association of MBP with 

lipid membranes has been studied for decades, but the MBP-driven formation of the MDL 

remains elusive at the biomolecular level. We employed complementary biophysical 

methods, including atomic force microscopy, cryo-electron microscopy, and neutron 

scattering, to investigate the formation of membrane stacks all the way from MBP binding 

onto a single membrane leaflet to the organisation of a stable MDL. Our results support the 

formation of an amorphous protein phase of MBP between two membrane bilayers and 

provide a molecular model for MDL formation during myelination, which is of importance 

when understanding myelin assembly and demyelinating conditions. 
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Membrane Association Landscape 
of Myelin Basic Protein Portrays 
Formation of the Myelin Major 
Dense Line
Arne Raasakka1,2, Salla Ruskamo2, Julia Kowal3, Robert Barker4,5, Anne Baumann1,6,  
Anne Martel   5, Jussi Tuusa2, Matti Myllykoski2, Jochen Bürck7, Anne S. Ulrich7,8,  
Henning Stahlberg   3 & Petri Kursula   1,2

Compact myelin comprises most of the dry weight of myelin, and its insulative nature is the basis for 
saltatory conduction of nerve impulses. The major dense line (MDL) is a 3-nm compartment between 
two cytoplasmic leaflets of stacked myelin membranes, mostly occupied by a myelin basic protein 
(MBP) phase. MBP is an abundant myelin protein involved in demyelinating diseases, such as multiple 
sclerosis. The association of MBP with lipid membranes has been studied for decades, but the MBP-
driven formation of the MDL remains elusive at the biomolecular level. We employed complementary 
biophysical methods, including atomic force microscopy, cryo-electron microscopy, and neutron 
scattering, to investigate the formation of membrane stacks all the way from MBP binding onto a 
single membrane leaflet to the organisation of a stable MDL. Our results support the formation of an 
amorphous protein phase of MBP between two membrane bilayers and provide a molecular model for 
MDL formation during myelination, which is of importance when understanding myelin assembly and 
demyelinating conditions.

Compact myelin (CM) is the most important and abundant structure of the vertebrate myelin sheath in both the 
central and peripheral nervous systems (CNS and PNS, respectively). The foundation of myelin-accelerated sal-
tatory conduction lies in the insulative nature of CM, which can be disturbed by damage caused by de- or dysmy-
elination, as well as in the myelin-guided distribution of ion channels on the axonal plasma membrane. Myelin 
damage often results in chronic neurological conditions, such as multiple sclerosis (MS), Charcot-Marie-Tooth 
disease, or Dejerine-Sottas syndrome, all of which display a broad spectrum of symptoms, have at least a partial 
genetic background, and remain difficult to treat, even at an early onset1, 2.

Myelin basic protein (MBP) is one of the crucial factors in CM membrane stacking in the CNS, its 
18.5-kDa isoform being most abundant3. The presence of many MBP isoforms is further complicated through 
post-translational modifications, including deimination, which produces a pool of citrullinated variants with 
decreased net charge4. The high positive net charge of MBP is related to the intrinsically disordered conforma-
tion of MBP in solution; on the other hand, it allows MBP to interact with the phospholipid-rich cytoplasmic 
face of myelin membranes. This close interaction results in charge neutralisation, folding, and partial membrane 
insertion5. MBP promotes myelin membrane stacking and the formation of the major dense line (MDL), which is 
disturbed in demyelinating conditions, including MS and demyelinating neuropathies6, 7.

MBP is known for its autoantigenic properties in MS, and the major immunodominant epitope of MBP bound 
to a T-cell receptor complex has been structurally characterised5, 8. The autoantigenic character may arise from the 
susceptibility of MBP to proteolysis in a lipid composition-dependent manner5, 9. Additionally, deimination alters 
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the structure and function of MBP, promoting lowered CM stability and increased protease susceptibility10, 11.  
Hence, the membrane association mode, structure, and stability of MBP must be considered when investigating 
the molecular mechanisms of MBP-related diseases.

MBP has been suggested to form an ordered, self-assembled protein meshwork of either anti-parallel or 
stacked MBP molecules with confined degrees of freedom between myelin cytoplasmic leaflets9, 12, 13. This protein 
meshwork stabilises CM, while other factors, such as the myelin protein P2, may be involved in the process14, 15. 
The surface adsorption behaviour of MBP has been intensively studied, and it was proposed that MBP associates 
with the membrane surface prior to folding to its adhesive conformation16. This model, based on hard model 
surfaces, is in corroboration with earlier studies on lipid bilayers17, and a mostly disordered intermediate MBP 
folding state has been proposed based on titration experiments and modelling under conditions with decreasing 
dielectric constant18.

To elucidate the membrane association mechanisms of MBP, we performed a comprehensive characterisation 
of recombinant tag-free MBP (rMBP) binding to model membranes. Our combined approach using electron 
microscopy (EM), atomic force microscopy (AFM), and neutron reflectometry (NR) provides evidence for the 
formation of a dense protein phase on a single membrane leaflet, suggesting the existence of a protein meshwork13 
that forms above a critical MBP concentration. Our results illustrate a step-wise formation of the MDL at the 
biomolecular scale.

Results
Although much is known about the molecular properties of MBP and its interaction with membranes, a com-
prehensive picture of different steps in the process of myelin membrane compaction has been lacking. We set 
out to investigate the fine details of MBP-membrane interactions using a panel of biophysical methods to follow 
membrane binding, protein embedding, and bilayer stacking.

Characterisation of untagged rMBP.  A notable amount of past MBP research has been performed using 
C-terminally His6-tagged recombinant MBP (MBP-His)12, 14, 15, 19, 20 or MBP purified from nerve tissue4, 9, 10, 16, 17, 21.  
To overcome problems arising from construct design or contaminants and heterogeneity in tissue extracts, we 
used untagged recombinant murine MBP (rMBP) corresponding to the major 18.5-kDa isoform, similarly to 
other recent studies18, 22–24. rMBP appeared as a single band in denaturing gel electrophoresis (SDS-PAGE) and 
monomeric and monodisperse in size-exclusion chromatography (SEC) and dynamic light scattering (DLS), with 
a hydrodynamic radius (Rh) of 3.5 nm (Supplementary Fig. S1). The identity of rMBP was confirmed using tryptic 
peptide mass analysis, and the molecular weight of pure rMBP was as expected (18544 Da).

In the absence of additives, rMBP was always disordered in aqueous solution according to synchro-
tron radiation circular dichroism (SRCD) spectroscopy, which further revealed moderate helical folding in 
2,2,2-trifluoroethanol (TFE) as well as with negatively charged sodium dodecyl sulphate (SDS) and several neutral 
detergent micelles (Supplementary Fig. S1). Using synchrotron small-angle X-ray scattering (SAXS), we found 
that rMBP was monomeric and highly elongated in solution (Fig. 1a, Supplementary Fig. S1, Supplementary 
Table S1). This explains the obtained radius of gyration (Rg; 3.7–4.0 nm, depending on method) being higher 
than the measured Rh; this is typical for particles deviating significantly from globularity25. The ab initio model 
(Fig. 1b) is elongated and similar to previously described models20, 21. Ensemble optimisation analysis (EOM) 
revealed distinct subpopulations of both Rg and maximum particle dimension (Dmax), suggesting the presence 
of different rMBP conformational species in solution (Fig. 1c). rMBP mostly adopts a reasonably compact con-
formation, close to that expected for a random polymer, instead of being fully extended (Fig. 1c, Supplementary 
Table S1). To study this further, we collected small-angle neutron scattering (SANS) data of rMBP in the absence 
and presence of n-dodecylphosphocholine (DPC) micelles (Fig. 1d, Supplementary Fig. S2, Supplementary 
Table S1). Size comparison of a computationally modelled DPC micelle26 and a single rMBP conformer sug-
gests that each micelle can most likely only embed a single rMBP molecule (Fig. 1e), as suggested earlier19. It is 
noteworthy that the number of detergent molecules can vary within DPC micelles, with effects on micellar size 
and surface curvature26. Micellar scattering was masked using the contrast match-point of DPC, which allowed 
us to focus on the scattering of rMBP alone: EOM analysis of the SANS data revealed that DPC-bound rMBP 
shifted quantitatively to the more compact population, with a sharpened Rg distribution of 2.6–3.8 nm and a Dmax 
distribution of 8–12 nm (Fig. 1f, Supplementary Table S1). Whilst being still relatively elongated, the data fit to 
a scenario where part of rMBP is embedded within a DPC micelle and partially folded, which is also supported 
by SRCD experiments (Supplementary Fig. S1) as well as SANS data analysis (Supplementary Fig. S2) using the 
Porod-Debye law27.

Membrane interaction and folding of rMBP.  We next investigated the membrane association of rMBP. 
For rapid screening of interactions, we used solution-state SRCD, as MBP gains secondary structure upon lipid 
binding20. rMBP reproducibly presented a clear increase in α-helical content with negatively charged small unila-
mellar vesicles (SUVs), with a slightly higher increase in the presence of saturated (dimyristoylphosphatidylcho-
line (DMPC): dimyristoylphosphatidylglycerol (DMPG)) than unsaturated lipids (dioleylphosphatidylcholine 
(DOPC): dioleylphosphatidylserine (DOPS)) (Fig. 2a). The importance of membrane surface charge is very clear, 
as rMBP does not undergo conformational changes with net neutral phosphatidylcholine lipids, indicating abol-
ished, or at least altered or weakened, binding, as described previously28. To assess the effect of the abundant mye-
lin lipids cholesterol, sphingomyelin, and phosphatidylethanolamine (DMPE) on folding, we included 10% (w/w) 
of each lipid separately in a standard DMPC:DMPG (1:1) mixture (Fig. 2b). None of these additives significantly 
affected the rMBP helical content, indicating that the surface net charge of the membrane dominates over lipid 
fluidity or hydrocarbon tails in initiating MBP folding.
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Figure 1.  rMBP conformation in solution. (a) rMBP is significantly elongated based on SAXS data. GASBOR 
and EOM fits have been plotted over the raw data with their respective χ2 values indicated. (b) The GASBOR ab 
initio model is elongated, with a maximum dimension around 12 nm. (c) EOM analysis of rMBP reveals wide 
Rg and Dmax populations in an ensemble that represents the measured SAXS data. Selected models from EOM 
analysis (right) with their mass fractions within the total population are indicated. The coloured arrows denote 
the Rg and Dmax of each model within the distributions. (d) SANS curves of rMBP in the absence and presence of 
DPC micelles (black and magenta, respectively). The EOM fits have been plotted over the data. (e) Stereoscopic 
image illustrating the size of an rMBP conformer and a DPC micelle of 54 detergent molecules26. (f) SANS EOM 
distributions of rMBP in the absence and presence of DPC micelles (solid and dashed lines, respectively). In the 
presence of DPC micelles (grey sphere), a distinct compacted population dominates (magenta cartoon) over the 
mixed elongated and compacted populations (black cartoons).
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The SRCD experiments provided evidence for membrane binding being mostly affected by electrostatics. 
Since the effect was practically the same with different lipid tails, we employed other strategies to observe possible 
membrane insertion. Differential scanning calorimetry (DSC) allows the determination of lipid phase transition 
temperatures, which reflect the conformational freedom of the lipid hydrocarbon tails. As a function of increasing 
temperature, dimyristoyl lipids present a small endothermic pre-transition (Tp) from the planar gel phase (Lβ′) 
to the rippled gel phase (Pβ′), which is shortly followed by a major endothermic transition (Tm) from Pβ′ to the 
liquid crystalline phase (Lα) typically at +23–+24 °C29. We screened several protein-to-lipid (P/L) ratios of rMBP 
against DMPC:DMPG multilamellar vesicles (MLVs) with varying net negative surface charges using DSC, mon-
itoring any rMBP-induced effects on the observed lipid Tm (Fig. 2d). Upon increasing the concentrations of rMBP, 
the endothermic main phase transition signal of negatively charged lipid membranes was broadened. Net neutral 
DMPC showed no difference in phase transition behaviour in the presence of rMBP. The data suggest MBP mem-
brane insertion after charge neutralisation, supporting the conclusions from SRCD data.

DSC suggested lipid tail interactions with rMBP, even though the observed changes in rMBP conformation in 
SRCD with different lipid tails were minor. Next, we followed the conformation of rMBP in DMPC:DMPG (1:1) 
vesicles as a function of temperature (Fig. 2c). Scanning around the apparent Tm of dimyristoyl tails did not alter 
the conformation of rMBP, suggesting that lipid tail phase behaviour does not notably affect folding after rMBP has 
bound, but the dielectric environment inside the membrane is a maintaining factor for folding. To shed light on 
factors affecting binding affinity, we performed binding experiments of rMBP to immobilised DOPC:DOPS (1:1) 
and DMPC:DMPG (1:1) large unilamellar vesicles (LUVs) using surface plasmon resonance (SPR) (Fig. 2e). In a 
previous study20, we used SPR to address MBP-His binding to PC membranes in the presence of phosphoinositides, 
and we observed more binding with increased negative membrane charge, as well as a sigmoidal dependence of 
binding on MBP concentration. The association of rMBP with lipid vesicles was irreversible, as reported before for 

Figure 2.  Lipid interactions of rMBP. (a) rMBP gains secondary structure in the presence of liposomes with 
increasing net negative surface charge, whereas it remains unfolded with net neutral lipids. (b) Cholesterol, 
sphingomyelin, or DMPE do not alter the secondary structure content of rMBP in net negatively charged 
DMPC:DMPG (1:1) vesicles. (c) Scanning around the lipid tail phase transition temperature does not affect the 
folding of MBP (right). (d) rMBP changes the lipid tail endothermic phase transition behaviour only when the 
MLV surface charge is net negative. (e) The association of rMBP with immobilised lipid vesicles probed using 
SPR. Error bars represent standard deviations.
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MBP-His20, since we observed essentially no rMBP dissociation from the lipids (data not shown). This suggests that 
the conformational change from disordered to helical structure occurs after initial electrostatic binding and anchors 
rMBP tightly onto the lipid surface. We performed saturation experiments by rMBP titration, which allowed the 
acquisition of key parameters of membrane binding (Fig. 2e, Table 1). While dimyristoyl-based lipids generally had 
higher responses (Rhi) upon rMBP injection, the obtained saturation midpoint concentrations (A1), which can be 
considered apparent dissociation constants (Kd), were similar for both DOPC:DOPS (1:1) and DMPC:DMPG (1:1), 
sharing the same surface net charge (Table 1). We performed a kinetic analysis by fitting the association phases of 
rMBP binding into a one-phase exponential association model (Supplementary Fig. S3). While the calculated kon 
values are similar for both lipid compositions (Supplementary Table S2), the one-phase association model does not 
fit our data well enough to draw solid conclusions regarding association kinetics, and therefore, we conclude that 
MBP binding to a membrane surface is a complex binding event. It is clear that the initial association of rMBP onto 
a membrane surface is mostly governed by surface electrostatics, but the lipid tails do influence the amount of rMBP 
that can be integrated into liposomal bilayers, with a minimal effect on binding affinity or folding. Our results thus 
far clearly indicate rMBP membrane insertion and folding upon membrane binding.

Effect of membrane fluidity and rMBP concentration on membrane stacking.  We have earlier 
shown spontaneous bilayer stacking by MBP and myelin protein P2 using AFM14. To observe this process in more 
detail, we prepared oriented DOPC:DOPS (1:1) bilayers with and without 10% (w/w) cholesterol on mica, and 
different concentrations of rMBP were added. After removal of unbound rMBP, the samples were imaged. rMBP 
bound onto the membrane surface and reproducibly induced membrane stacking, but the presence of cholesterol 
was not essential. However, the inclusion of cholesterol did cause the stacked membrane patches to appear larger 
and more uniform (Fig. 3a), suggesting that membrane fluidity plays a major role in stack formation, as demon-
strated earlier using vesicle experiments30. We tested several concentrations of rMBP and found that a critical 
amount of rMBP has to accumulate onto the membranes before stacks emerge spontaneously: at 0.9 µM rMBP, 
membrane stacks were not typically observed, but at 1.8 µM, multilayers were always visible (Fig. 3a). Cholesterol 
did not affect this trend. In our earlier study, 1.8 µM MBP-His caused only minimal stacking of brain lipids, while 
extensive stacking was present at higher concentrations14. It is noteworthy that the observed critical concentration 
for membrane stacking in AFM corresponds to the rMBP concentration after reaching plateau for membrane 
surface binding in SPR. Thus, membrane stacking apparently requires surface saturation with MBP.

We next assessed the effect of lipid tail saturation and cholesterol on vesicle aggregation, similarly to our earlier 
experiments on P231. The aggregation behaviour was the same for both DMPC:DMPG (1:1) and DOPC:DOPG 
(1:1), both with and without 10% (w/w) cholesterol (Fig. 3b), implying that the association of protein-decorated 
membranes is not dependent on cholesterol or lipid tail saturation. The differences in membrane fluidity result-
ing from cholesterol are most likely the reason to the observed stacking behaviour differences in AFM, as the 
presence of 10% (w/w) cholesterol did not notably affect the folding of rMBP either. Finally, we investigated 
whether rMBP produces vesicle aggregates with a distinct repeat distance. A Bragg peak corresponding to a 
mean repeat distance of 80 Å was present in our small-angle X-ray diffraction (SAXD) data from rMBP bound 
to DMPC:DMPG (1:1) vesicles (Fig. 3c). Bragg diffraction has been observed before from model vesicles and 
membranes as well as myelinated tissue9, 15, 31, 32. The result confirms the induction of ordered membrane stacks by 
rMBP, which were further used in imaging experiments.

A membrane stack is uniformly occupied by a gel-like rMBP phase.  To gain more detailed infor-
mation about the assembly of MBP within membrane stacks, we studied MBP-aggregated vesicle samples using 
EM. As shown by nanogold labelling, in vesicle aggregates, MBP-His expectedly resided mostly between vesicle 
surfaces (Fig. 4a), as demonstrated earlier33, 34.

We investigated rMBP assembly between membranes using cryo-EM. We imaged rMBP-adhered vesicle 
membrane stacks and picked images of MBP between membranes for single particle analysis (Fig. 4b,c). rMBP 
settled tightly between the membranes and formed stacks with a total thickness of 11–13 nm (two 5-nm bilayers 
with a 1–3-nm protein phase between them). Particle analysis revealed that, as opposed to the membranes with-
out rMBP that presented a loose space with a varying distance between apposing membranes, the intermembrane 
space in the presence of rMBP was occupied by a narrow uniform protein phase with no distinct globular particles. 
The space between lipid membranes was ~1 nm, with protein present both between and inside the membranes. 
Distances of ~2.5 nm between MBP molecules can be estimated, but the distances vary and the proteins are not 
clearly visible. This resembles the cohesive MBP meshwork proposed earlier13. Thus, further particle averaging and 
higher-resolution structure determination were not carried out. Despite the lipid bilayers in these experiments being 
symmetric, unlike in myelin, it is noteworthy that in cryo-EM, we only observed protein-containing stacks of two 
apposing lipid bilayers (Fig. 4b,c). This suggests that once MBP inserts into the membrane, it changes the membrane 
properties and can prevent further MBP insertion from the opposite side, unless a great excess of MBP is present. 
As shown by neutron scattering, the molecular dynamics of a lipid bilayer are affected by MBP 15, 35, 36. MBP can thus 
alter the overall structural and dynamical properties of an entire lipid bilayer, driving it towards asymmetric behav-
iour even when the lipid composition is symmetric. The molecular details of this asymmetry are currently unknown.

Rhi Rlo A1 A2 R2

DOPC:DOPS (1:1) 5751 ± 79.84 −3.647 ± 48.78 389.5 ± 10.77 2.374 ± 0.1117 0.9978

DMPC:DMPG (1:1) 7624 ± 118.1 85.57 ± 73.49 455.5 ± 12.36 3.061 ± 02189 0.9968

Table 1.  Surface plasmon resonance fitting parameters.
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Figure 3.  Membrane-stacking properties of rMBP. (a) In AFM, rMBP binds to supported DOPC:DOPS (1:1) 
lipid bilayers and spontaneously produces bilayer stacks after reaching sufficient protein concentration. The 
quality and area of the observed membrane stacks are influenced by the presence of cholesterol, without a 
significant effect on the measured stack thickness. Red lines denote the walk sections in the images, for which 
height diagrams have been plotted below. The walks from the cholesterol images have been extracted from 5-µm 
image insets for better quality. A single bilayer and stack are ~4 and 12 nm in height, respectively. (b) Turbidity 
measurements show that the tendency of rMBP to aggregate vesicles remains mostly unaffected by the lipid tail 
saturation degree or the presence of cholesterol. Error bars represent standard deviations. (c) rMBP mixed with 
DMPC:DMPG (1:1) SUVs displays a Bragg peak in SAXD that corresponds to a mean repeat distance of 80 Å at 
1:100 molar P/L. A running average (black line) has been added for clarity over the raw measurement data (grey 
circles).
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Figure 4.  Architecture of rMBP in membrane stacks. (a) MBP aggregates vesicles and settles between 
membranes. rMBP-His was labelled with nanogold particles to localise the protein between vesicles (black 
arrow). (b) In cryo-EM, membrane stacking by MBP is evident when mixed with lipid vesicles (white asterisks). 
MBP also slightly flattens the membrane curvature of vesicles when more than one stack builds up (white 
arrows). (c) Particle analysis of cryo-EM imaged vesicles unveils an intermembrane compartment occupied by a 
uniform rMBP phase devoid of clear single particle boundaries, which brings the two apposing membranes into 
close vicinity to each other. The space between adjacent vesicle bilayers in the absence of rMBP is notably wider. 
(d) MBP coats GalCer-DOGS-NTA-Ni2+ nanotubes, displaying an extended conformation (white arrow). MBP 
also aggregates nanotubes, as evident from negatively stained samples (right).
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For observing concentration dependence of MBP-induced membrane stacking, we imaged vesicles with var-
ying amounts of rMBP (Supplementary Fig. S4). While membrane multilayers were present in vesicle mixtures at 
high rMBP concentrations, stacking was lost as rMBP concentration decreased. Despite a different sample setup 
(freely tumbling vesicles) compared to AFM experiments (supported lipid bilayers), these observations do again 
suggest a critical MBP concentration for inducing membrane stacking.

We also imaged rMBP binding to lipidic nanotubes (Fig. 4d). rMBP bound nanotubes together, which was 
visible both with negatively stained samples as well as in cryo-EM. Compared to vesicles, nanotubes have different 
membrane fluidity, composition, and curvature. Importantly, we also observed the accumulation of rMBP onto 
nanotube exposed surfaces without stacking, corresponding to the accumulation of MBP onto a single membrane 
surface. As opposed to the more compact confinement within membrane stacks formed from vesicles, MBP 
appeared elongated when bound to nanotubes, similarly to DPC-bound rMBP in SANS.

The formation of a protein phase on a single bilayer prior to stacking.  The EM experiments raised 
a question regarding the conformation of rMBP on lipid bilayers prior to stacking. This is likely a physiologically 
relevant state during myelination; AFM demonstrated concentration dependence upon stack induction, and MBP 
can insert into membranes. Does MBP insert into a single membrane before a stack forms, and will MBP fold into 
a compact conformation before stacking? To answer these questions, we carried out NR experiments on uniform 
proteinous lipid bilayer samples.

The Langmuir-Blodgett/Schaefer approach to depositing lipid bilayers on solid substrates involves the sequen-
tial transfer of lipids from a Langmuir monolayer, with controlled area per molecule, by first slowly pulling the 
substrate out through the monolayer, with the interface perpendicular to the water surface (Langmuir-Blodgett) 
and then rotating the substrate by 90°, so that the interface is parallel to the water surface, and slowly pushing the 
substrate through the monolayer to deposit the outer leaflet of the bilayer (Langmuir-Schaefer). This approach 
allows precise control of the composition and coverage of both leaflets of the lipid bilayer independently, ensuring 
a high-coverage bilayer across the entirety of the large substrate surfaces necessary for NR measurements. NR is 
an excellent tool for studying in-situ the structure, perpendicular to the surface, of buried, hydrated thin films of 
biological and soft-matter molecules at the solid–liquid interface. The large penetrability of neutrons, combined 
with their high sensitivity to hydrogenated and deuterated materials, makes NR an ideal probe of interactions 
between proteins and biomembranes, simultaneously providing information on the interaction both at the sur-
face and buried within the membrane.

Using the Langmuir-Blodgett/Schaefer technique, we prepared uniform lipid bilayers of hydrogenated and 
perdeuterated DMPC:DMPG (1:1) on Si-crystal substrates with water as a subphase solvent. A flow cell setup 
allowed us to exchange the bulk solvent to buffers and to characterize the membranes with different solvent 
contrasts, as well as to inject rMBP inside the cell and follow its association as a function of time (Fig. 5a,b). 
Based on SPR and AFM, we chose to add rMBP onto the membrane at 0.5 µM, which retained the integrity of 
the membrane and did not induce spontaneous stacking (Fig. 5a). Initially, we observed that after injecting the 
protein, there was a time window that presented a rearrangement within the sample (Fig. 5b). After stabilisation 
of the sample and washing out unbound protein, the resulting reflectivity curve was best fitted to a model with a 
uniform protein layer, having a defined thickness and low roughness, on top of the existing DMPC:DMPG (1:1) 
bilayer, with full insertion of the protein into the outer leaflet of the bilayer, potentially displacing both lipid and 
water molecules from this leaflet (Fig. 5a, Table 2). Similar behaviour was observed with both hydrogenated 
and perdeuterated lipids (Fig. 5a, Supplementary Fig. S5), but not with DMPC alone (Supplementary Fig. S5), 
again demonstrating the importance of membrane surface charge. The parameters used to describe the best fit to 
each set of data clearly show that the protein layer covered ~25% of the membrane surface and was 7.5–8.5 nm 
thick. An additional ~3 nm of the protein was inserted within the outer leaflet of the bilayer, displacing ~40% of 
the lipids in this leaflet and leading to a rearrangement of the membrane to support this. The analysis suggests 
compaction compared to the most elongated conformers suggested by SAXS, fitting well to the narrowed EOM 
population observed by SANS for DPC-bound rMBP. The protein layer, however, does not represent a completely 
collapsed MBP, thought to reside within the mature bilayer stack5, but a previously undetected pre-stack MBP 
conformation: a brush-like layer of mostly disordered protein, anchored onto the membrane most likely via one 
or more helical segments. The introduction of another membrane leaflet could result in a second insertion event, 
followed by protein folding and compaction, a single MBP molecule potentially penetrating both bilayer surfaces. 
The protein meshwork has been suggested to be composed of laterally self-assembled12 or dimeric MBP12. Taking 
into account our observations and earlier data, it is obvious that MBP forms a protein phase onto a membrane 
surface, and this process involves also self-association. However, we find it unlikely that MBP would, even when 
bound to membranes within compact myelin, fold into structurally highly ordered assemblies with a well-defined 
oligomeric state.

To further study the protein-membrane association, we added 0.5 µM rMBP to a membrane in a time-resolved 
NR experiment (Fig. 5b, Supplementary Table S3). While this concentration is not high enough to provide infor-
mation about stacking, we could observe the entire association process of rMBP. It should be noted that this 
experiment was carried out with a single contrast, increasing the uncertainty in the fitted parameters. However, 
clear trends were still seen, as the association took place on a reasonably long time scale, during which three 
distinct phases could be resolved: initially a 7-nm thick, diffuse protein layer formed on the membrane, with a 
very high roughness, indicating high heterogeneity and no insertion into the membrane. Next, this layer col-
lapsed into a denser, more homogeneous layer with some insertion into the headgroup region of the bilayer 
outer leaflet. Only after this, one can observe full membrane insertion, displacing lipids from the outer leaflet of 
the bilayer, which suggests that rMBP has to accumulate and fold onto the membrane prior to embedding. The 
coverage of the protein was very high during these time-resolved measurements, up to 50%, as opposed to the 
buffer-exchanged sample (~25%; Table 2), with less displacement of lipid from the outer leaflet, indicating that 
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the rinsing of the membrane may remove some additional lipid molecules along with excess protein. The third 
phase in our time-resolved measurement was essentially the steady state, and the system remained stable beyond 
this time point (phases 4 & 5 in Fig. 5b).

Discussion
Using a recombinant form of MBP accurately mimicking the major 18.5-kDa isoform, we have provided a full 
physicochemical picture of MBP-induced stacking of lipid bilayers. MBP is an intrinsically disordered protein in 
solution, which after lipid membrane binding gains secondary structure and embeds deep into the bilayer. On 
top of the membrane, an amorphous protein brush is formed, which is likely to be of high importance, when an 
apposing membrane is bound. A fully compacted MBP conformation is only present between two bilayers. Our 
results provide a comprehensive molecular framework for membrane binding and stacking by MBP, which is a 
peripheral membrane protein with unique molecular properties.

Our extensive characterisation of tag-free rMBP shows that MBP is disordered in solution and binds lipid 
membranes through electrostatic interactions. While the lipid composition of myelin is more complex than that 
used in the current study, we decided here to focus on simple lipid mixtures that generally behave well in various 
biophysical techniques and can be used to screen for basic membrane properties, including surface charge, lipid 
headgroup, level of saturation, and fluidity. While the lipid hydrocarbon tails do not affect the binding affinity, 
kinetics, or folding of MBP substantially, the dynamic freedom and spatial occupation of the tails define how 
much MBP can bind to saturate the membrane surface. MBP also affects the biophysical properties of the entire 
lipid bilayer, as for example highlighted by the observation of MBP-induced stacks of only two, but not more, 
bilayers in cryo-EM, as well as previous studies with cultured oligodendrocytes37, 38. The importance of both the 
lipid and protein components in affecting the dynamics and function of each other has been highlighted earlier 
for both MBP17, 35, 36, 39 and myelin protein P240, 41.

Figure 5.  Accumulation of rMBP onto lipid bilayers. Data and fits are plotted on the left and scattering 
length density (ρ) profiles on the right. All reflectivity curves have been offset for clarity. (a) Steady-state NR 
experiment of DMPC:DMPG lipid bilayers with and without rMBP at different solvent contrasts. (b) Time-
resolved NR experiment. The phases represent 15-min time-slices of rMBP associating with a d54-DMPC:d54-
DMPG bilayer in an H2O contrast. The fitting curve for phase 3 has also been overlaid with phases 4 and 5, 
demonstrating steady state. The error bars represent standard deviations.
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Our results demonstrate that charge neutralisation is a key event before MBP folding and membrane insertion 
can take place. Once charge neutralisation and membrane saturation with MBP occur, a string of downstream 
events is triggered, ultimately leading to stable myelin-like membrane stacks. Based on our observations, and 
considering earlier literature, we now propose a molecular mechanism for the stepwise, MBP-driven formation 
of the MDL (Fig. 6).

In the initial step, the highly positively charged, disordered MBP is attracted to a negatively charged mem-
brane surface by electrostatic interactions, which starts the association cascade. When encountering the mem-
brane surface, MBP binds through electrostatics, and opposite charges are neutralised – this allows other factors, 
such as hydrogen bonding and the hydrophobic effect, to take over and causes MBP to fold and subsequently 
insert deeper into the inner membrane leaflet, and even partially into the outer, as proposed already decades 
ago30. The process occurs in a fairly small volume: only partial protein insertion and folding occurs, while most 
of MBP remains elongated outside the membrane, maintaining a positive net charge. This is plausible, as several 
distinct segments of MBP have been shown to have propensity to fold independently upon interacting with lipids/
detergents42–46. This initial association, however, may already be essentially irreversible12, 20, 42, although it is likely 
that there are folded species in the system that present weak affinity and are removable, possibly due to electro-
static repulsion.

Next, given the fairly confined electrostatic field of the lipid bilayer, which gets neutralised by the embedded 
protein, more MBP continues to bind and integrate within the single membrane leaflet. A fairly thick amorphous 
peripheral protein phase emerges, which translates into a strong accumulation of positive charge covering the 
membrane surface. This protein layer is likely to represent the distinct MBP protein phase described earlier13. 
Brush-like phases consisting of disordered proteins and peptides have been recently reported47, 48. Our SANS 
data in the presence of detergent micelles provide evidence for a brush-like property for membrane-bound MBP, 
although the detailed organisation of this protein phase currently remains unknown. This phase was also visual-
ised by cryo-EM on the surface of lipid nanotubes, providing a starting point for further studies into its molecular 
details.

Finally, when a critical surface-bound MBP concentration has been reached, the soft protein brush adheres to 
a second membrane leaflet, resulting in full charge neutralisation. MBP undergoes a second compaction event to 
fit into the confined space between the two bilayers, forming a meshwork of extraordinary stability between the 
two cytoplasmic membrane leaflets. It is likely that this phase transition is governed by specific aromatic residues 
in MBP13. The meshwork may involve lateral MBP assembly9, 12, and the 3-nm MDL can easily be spanned by a 
single MBP monomer, as suggested earlier5, 16, 17, 49. During myelination, both membrane bilayers involved in stack 
formation are likely to accumulate MBP continuously. Since the membranes are in close proximity to each other, 
the stacking could proceed via a zipper-like mechanism, whereby only the leading part of accumulated MBP 
reaches the critical concentration at a given time and effectively transitions into a molecular adhesive. Interactions 
of MBP with cytosolic proteins, such as calmodulin20, 50 or the cytoskeleton19, 51, may regulate this process.

The above string of events is a feasible molecular model for myelin membrane stacking, assuming enough 
MBP is available locally. During CNS myelination, MBP is translated in the vicinity of the growing mem-
brane from transported mRNA52. The local synthesis of MBP is likely to be a key triggering factor for mye-
lin membrane compaction. In myelin formation and maintenance, cytoskeletal networks and other proteins, 
such as 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), play central roles53. An interplay between MBP 
and membrane-bound CNPase may be important, as both CNPase and MBP bind microtubules and actin19, 51. 
Recent data also suggest that myelin formation is driven by cytoskeletal disassembly54, in addition to proteo-
lipid protein-driven myelin formation55–57. CNPase overexpression inhibits MBP-based myelin compaction and 
causes aberrations in the periaxonal membrane58. A model outlining the interplay between CNPase and MBP 

Parameters

DMPC:DMPG (1:1) d54-DMPC:d54-DMPG (1:1)

Bilayer alone With rMBP Bilayer alone With rMBP

Substrate

Oxide thickness (Å) 14 ± 1 10 ± 1

Oxide coverage (%) 75 ± 1 90 ± 4

Oxide roughness (Å) 3 ± 1 3 ± 2

Hydration layer between oxide and bilayer (Å) 5 ± 1 5 ± 2 20 ± 5 25 ± 6

Bilayer

Bilayer area-per-molecule (Å2/molecule) 60 ± 4 45 ± 3 63 ± 8 52 ± 10

Water molecules per lipid head 3 ± 1 10 ± 2 3 ± 1 10 ± 1

Water molecules per lipid tail 4 ± 2 17 ± 3 6 ± 2 17 ± 2

Global bilayer roughness (Å) 5 ± 1 8 ± 1 18 ± 6 22 ± 3

Local bilayer inner roughness (Å)
3 ± 1

4 ± 2
3 ± 2

5 ± 1

Local bilayer outer roughness (Å) 11 ± 2 0 ± 3

rMBP

MBP in outer leaflet (%) 39 ± 7 44 ± 9

MBP layer thickness (Å) 84 ± 2 75 ± 4

MBP layer coverage (%) 26 ± 1 23 ± 3

MBP layer roughness (Å) 3 ± 2 10 ± 4

Table 2.  Neutron reflectometry parameters.
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in maintaining the interface and balance between CM and cytosolic channels was recently proposed, showing 
antagonistic effects of CNPase and MBP on channel formation59.

Changes in the expression patterns of key proteins (e.g. CNPase) during myelination and in mature myelin 
could switch the formation and stability of the MDL to a point where MBP is re-exposed to the cytosol, making it 
susceptible to proteolysis. While we do not yet know enough about the reversibility of myelination at the molec-
ular level, MBP accumulated on a single membrane surface is a more suitable substrate for proteases and other 
modifying enzymes than a folded, membrane-embedded MBP. This could further decrease the stability of the 
MDL through disruption of the MBP meshwork, setting out a rolling wheel that may eventually result in a neuro-
logical condition, possibly by exposing autoimmune epitopes of MBP and other myelin proteins. Autoantigenic 
MBP peptides, as well as molecular mimics thereof, have been discovered and characterised60. These could be 
disease-triggering or even preventive factors when modified correctly61, 62, the underlying mechanisms currently 
being unclear. Picturing the above molecular steps of MDL formation should allow to better understand the mye-
lination process as well as demyelinating disorders.

Stability of the proteolipid membrane multilayer is a key factor for keeping myelin healthy. Initial interactions 
between MBP and lipid membranes are mostly electrostatic, and deiminated charge variants of MBP have been 
linked to MS4. Decreased positive charge on MBP leads to weaker membrane interactions20, 42, 63. Modified var-
iants could affect myelin stability through slight structural, functional, and compositional differences, as well as 
susceptibility to proteolysis10, 11, 20. The concentration of divalent ions, most importantly Ca2+ and Zn2+, is likely 
to influence the formation and stability of compact myelin64. An obvious factor to consider is the membrane lipid 

Figure 6.  The association landscape of MBP with myelin membranes leads to the formation of MDL. MBP 
(red) in solution is disordered and approaches the cytoplasmic membrane surface through electrostatic 
interactions (1), which eventually leads to charge neutralisation, subsequent folding, and membrane insertion 
(2). Membrane-adhered MBP accumulates on the surface, which increases the binding propensity of a second 
membrane leaflet (3). Once a critical surface occupancy is reached, another insertion and possible folding event 
occurs, resulting in a dense protein phase that forms the 3-nm MDL within the 12-nm membrane stack (4). 
CM, compact myelin; N, non-compact myelin; P, periaxonal space; MDL, major dense line; IPL, intraperiod 
line.
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composition; the negatively charged cytoplasmic leaflet and the high cholesterol content of myelin are most prob-
ably in a delicate balance with the rest of the different lipid species, as shown by experimental disease models9, 49, 65.  
The high abundance of cholesterol has a major impact on membrane fluidity as well as myelin development30, 66, 67,  
likely being a key requirement together with various phosphoinositides68–70 to provide a suitable physiological 
medium for membrane-embedded proteins, including MBP. The stability of the MDL, the condition of MBP 
within it, and the post-natal myelinating machinery should be taken into account when it comes to understand-
ing and possibly treating demyelinating diseases.

To conclude, through the use of multidisciplinary methodologies, the structural importance of MBP as a 
multifunctional compact myelin protein is unfolding. An MBP-driven scheme outlining the formation and sta-
bility of the myelin MDL unravels, while the MDL remains a poorly understood compartment of developmental, 
functional, and medical importance. The molecular steps of formation of the myelin MDL rely on an equilibrium 
between electrostatic and hydrophobic interactions, protein concentration, membrane association, and charge 
accumulation to form the final product: a stable, dense protein phase that occupies the MDL and binds lipid bilay-
ers tightly together. The elucidation of the molecular foundation of MBP-mediated membrane stacking allows 
us to better understand this intriguing biological system, and it could act as a key to unlock the discovery of 
remedies to conditions that present aberrant myelination and disturbed myelin ultrastructure. To further refine 
the model, more complex molecular systems should be studied, such as multiprotein systems including integral 
membrane proteins of myelin. Other myelin proteins, e.g. the cytoplasmic extension of myelin protein zero71 and 
P214, 15, 31, function similarly to MBP, likely leading to functional synergies and possibly competition. Once the 
underlying detailed kinetics and the effects of other molecular components of myelin, including proteins and 
ionic species, on proteolipid membrane association and stacking are deciphered, we can truly understand the 
complexity of myelination in a logical, structured manner.

Methods
Cloning, expression, and purification.  A synthetic gene encoding the 18.5-kDa isoform of mouse MBP 
(DNA2.0) was subcloned into the Gateway donor vector pDONR221 (Life Technologies). A Tobacco Etch Virus 
(TEV) protease digestion site (ENLYFQG) was added before the gene, and attB1 and attB2 recombination sites 
before and after the gene, respectively. This entry clone was used to generate an expression clone in the pTH27 
vector72, which codes for an N-terminally His6-tagged protein (His-rMBP).

The expression of His-rMBP was performed in the E. coli BL21(DE3)pLysS RARE strain in LB medium at 
+37 °C using a 2-h induction with 1 mM isopropyl β-D-1-thiogalactopyranoside, after an initial culture OD600 
of 0.3 had been reached. After harvesting, cell pellets were re-suspended into 50 mM HEPES (pH 7.5), 500 mM 
NaCl, 6 M urea, 20 mM imidazole, 1 mM phenylmethylsulphonyl fluoride, with added EDTA-free protease inhib-
itors (Roche), and lysed by ultrasonication. His-rMBP was purified using Ni-NTA chromatography. Elution was 
done using 40 mM HEPES (pH 7.5), 400 mM NaCl, 4.8 M urea, 500 mM imidazole, and the elution fraction was 
dialysed sequentially against several dialysis reservoirs, lowering the urea content in a stepwise manner from 4.8 
to 2 M. After this, recombinant TEV protease was added to digest the N-terminal His6-tag of His-rMBP, resulting 
in a near-native 18.5-kDa rMBP with one extra N-terminal Gly residue from the TEV digestion site. Cleavage 
was carried out overnight at +4 °C, while dialyzing against 40 mM HEPES (pH 7.5), 400 mM NaCl, 1 M urea. 
The digested protein was dialysed back into 50 mM HEPES (pH 7.5), 500 mM NaCl, 6 M urea, 20 mM imidazole, 
and another Ni-NTA purification was performed. The unbound and wash fractions were combined and dialysed 
against 40 mM HEPES (pH 7.5), 400 mM NaCl overnight. After the final dialysis step, protein was concentrated 
and subjected SEC on a Superdex 75 pg column (GE Healthcare). Either HBS (10 mM HEPES, 150 mM NaCl, 
pH 7.5) or 20 mM HEPES (pH 7.5), 300 mM NaCl, 1% (w/v) glycerol was used as the running buffer, depending 
on downstream experiments. The purity of the protein was checked using SDS-PAGE and DLS using a Malvern 
Zetasizer Nano ZS instrument. The SEC fractions containing pure rMBP were snap-frozen using liquid N2 and 
stored at −80 °C. The protein fractions were thawed, pooled, and concentrated immediately before downstream 
experiments.

C-terminally His-tagged MBP (MBP-His20) was expressed and purified similarly to rMBP, omitting TEV 
digestion and the second Ni-NTA step. After the first Ni-NTA step and stepwise dialysis, the protein was imme-
diately subjected to SEC, and the fractions containing pure MBP-His were snap-frozen.

Mass spectrometry.  The accurate molecular mass of rMBP was determined using liquid 
chromatography-coupled electrospray ionisation time-of-flight mass spectrometry in positive ion mode, using 
a Waters Acquity UPLC-coupled Synapt G2 mass analyser with a Z-Spray ESI source. The identity of rMBP was 
further verified using peptide fingerprinting by in-gel trypsin proteolysis and matrix-assisted laser desorption/
ionisation time-of-flight mass spectrometry with a Bruker Ultra fleXtreme mass analyser. The peptide finger-
prints were compared directly against theoretical peptides from the protein sequence.

Small-angle scattering.  SAXS data for rMBP were collected from samples at 1–4 mg ml−1 on the EMBL 
P12 beamline, DESY (Hamburg, Germany). The buffer contained 20 mM HEPES (pH 7.5), 300 mM NaCl, and 1% 
(w/v) glycerol. Monomeric bovine serum albumin was used as a molecular weight standard. See Supplementary 
Table S1 for further details.

SANS data for 2.3 mg ml−1 (124 µM) MBP in the absence and presence of 0.25% (7.1 mM) DPC micelles were 
collected on the D22 beamline, ILL (Grenoble, France) using a 1-mm pathlength Hellma 100-QS quartz cuvette 
at +10 °C with a 1-h exposure time. The used buffer was 20 mM Tris-HCl (pH 7.5), 150 mM NaCl. The measure-
ments were carried out at 4-m collimation and sample-detector distances, using a monochromatic neutron wave-
length of 6 Å ± 10%. Data were corrected for the transmission, the pathlength, the empty cell, and the blocked 
beam, and scaled to absolute intensity using the measurement of beam flux at the sample position. Neutron 
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scattering data for 5 mg ml−1 DPC micelles in 100, 80, 60, 40, 20, and 0% D2O were collected, and a contrast match 
point of DPC was determined to be 9% D2O, as previously described73. The used D2O solvent contrasts were 9% 
and 98% for MBP with and without DPC, respectively. Initial data processing was done using GRASP (www.ill.
eu/instruments-support/instruments-groups/groups/lss/grasp/home/) and NCNR SANS reduction macros for 
Igor74.

Data were processed and analysed using the ATSAS package75. GNOM was used to calculate distance distri-
bution functions76, and ab initio modelling was performed using GASBOR77. Ensemble optimisation analysis was 
performed using EOM78.

Liposome preparation.  Cholesterol, DMPC, DMPE, DMPG, dioleylphosphatidylglycerol (DOPG), 
DOPC, and sphingomyelin were from Larodan Fine Chemicals AB (Malmö, Sweden). DOPS and the deuterated 
d54-DMPC and d54-DMPG were from Avanti Polar Lipids (Alabaster, Alabama, USA).

Lipid stocks were prepared by dissolving dry lipids in chloroform or chloroform:methanol (1:1 v/v) at 
5–10 mg ml−1. Mixtures were prepared from the stocks at desired ratios, followed by solvent evaporation under a 
gentle stream of N2 and freeze-drying for at least 4 h at −52 °C under vacuum. The dried lipids were either stored 
air-tight at −20 °C or used directly to prepare liposomes.

Liposomes were prepared by adding either deionised water or HBS to the dried lipids to reach a final concen-
tration of 2–10 mg ml−1, followed by vigorous mixing and gentle sonication for 15 min in a water bath sonicator at 
ambient temperature, to ensure that no unsuspended lipids remained in the vessel. MLVs were prepared by seven 
cycles of freeze-thawing using liquid N2 and a warm water bath, with vigorous vortexing after each cycle. LUVs 
were prepared by extruding MLVs 11 times through a 0.1-µm membrane on a +40 °C heat block and used imme-
diately in experiments. SUVs were prepared using sonication of MLVs. Either probe tip sonicators (a Branson 
Model 450 and a Sonics & Materials Inc. Vibra-Cell VC-130) or a strong water bath sonicator with temperature 
control (UTR200, Hielscher, Germany) were used to clarify the liposome suspensions, while avoiding overheat-
ing. The SUVs were immediately used in experiments.

Synchrotron radiation circular dichroism spectroscopy.  SRCD data were collected from 0.3–
0.5 mg ml−1 protein samples in water on the UV-CD12 beamline at ANKA (KIT, Karlsruhe, Germany)79 and the 
AU-CD beamline at ASTRID2 (ISA, Aarhus, Denmark). Samples with lipids were prepared on-site by mixing 
rMBP and freshly sonicated SUVs, followed by 5–10 min of degassing using a water bath sonicator at ambient 
temperature. 100-µm pathlength closed circular cells (Suprasil, Hellma Analytics) were used. SRCD spectra were 
measured from 170 to 280 nm at +30 °C, and the raw CD units were converted to Δε (M−1 cm−1), using rMBP 
concentration determined from absorbance at 280 nm. SDS and TFE were purchased from Sigma-Aldrich and the 
detergents LDAO, OG, and DPC from Affymetrix. The unfolded nature of rMBP, as well as its tendency to fold in 
DMPC:DMPG (1:1) and DOPC:DOPS (1:1), were reproducible between beamtime sessions.

Differential scanning calorimetry.  Various concentrations of rMBP were mixed with MLVs in HBS 
containing 160 µM of either DMPC, DMPC:DMPG (4:1), or DMPC:DMPG (1:1), in a final volume of 700 µl. 
Lipid samples without added rMBP were prepared as controls. The P/L ratio was 1:250–1:1000. The samples 
were incubated at +37 °C for 10 min to ensure thorough protein association with the vesicles, and degassed in a 
vacuum with stirring at +10 °C prior to measurements. All samples were prepared and measured in duplicate, the 
observed trends being reproducible.

DSC was performed using a MicroCal VP-DSC with a cell volume of 500 µl. A HBS reference was used for all 
samples. Each calorimetric cycle (one per sample) was performed from +10 to +50 to +10 °C with 1 °C min−1 
increments. Baselines were corrected and zeroed at +20 °C to make cross-comparison straightforward.

Surface plasmon resonance.  SPR was performed on a Biacore T200 system (GE Healthcare). According 
to the manufacturer’s protocol, 100-nm LUVs of 1 mM DMPC:DMPG (1:1) and 1 mM DOPC:DOPS (1:1) were 
immobilised on separate channels on an L1 sensor chip (GE Healthcare) in 20 mM HEPES (pH 7.5), 150 mM 
NaCl, followed by the injection of rMBP. Chip regeneration was done with a 2:3 (v:v) mixture of 2-propanol and 
50 mM NaOH. rMBP was at 20–2000 nM in the running buffer, and a single concentration per each lipid capture 
was studied; all samples were performed in duplicate, with one sample in each series measured twice to rule out 
instrumental artifacts or deviations. The binding response as a function of protein concentration was plotted and 
fitted to the 4-parameter model
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to gain information about association affinity. For kinetic analyses, all association phases (180 s after injection 
of rMBP) were individually fitted to a one-phase exponential association model using GraphPad Prism 7. The 
obtained kobs values were plotted against rMBP concentration and fitted using linear regression to determine kon 
(slope of the curve) and koff (Y-intercept of the curve). The latter values were extracted from two individually fitted 
datasets: one containing all data (Fitting set 1) as well as one omitting data points below 500 nM rMBP (Fitting 
set 2).

Vesicle aggregation and small-angle X-ray diffraction.  SUVs of 0.5 mM DOPC:DOPG (1:1) and 
DMPC:DMPG (1:1), both with and without supplemented 10% (w/w) cholesterol, were mixed with 0.5–10 µM 
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rMBP in duplicate. Turbidity was recorded at 450 nm for 10 min at +25 °C using a Tecan M1000Pro plate reader. 
The results were analysed after turbidity was stable.

SAXD was performed to find the mean repeat distance of rMBP-stacked multilayers in aggregated lipid vesicle 
samples. 2–20 µM MBP was mixed with SUVs of 1–3 mM DMPC:DMPG (1:1) in HBS at ambient temperature 
and analysed at +25 °C on the EMBL P12 BioSAXS beamline, DESY (Hamburg, Germany). Buffer references 
were subtracted from the data. Lipid samples without added rMBP were used to verify the absence of Bragg peaks. 
The peak positions of momentum transfer, s, in rMBP-lipid samples were used to calculate the mean repeat dis-
tance, d, in a proteolipid multilayer, using the equation

π
= =

π θ
λ

.d
s
2 , where s 4 sin
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Atomic force microscopy.  Fresh DOPC:DOPS (1:1) and DOPC:DOPS (1:1), 10% (w/w) cholesterol SUVs 
were unrolled on freshly cleaved mica (∅ 1.2 cm) in HBS-Ca (10 mM HEPES, 150 mM NaCl, 2 mM CaCl2, pH 
7.5), by covering the mica entirely with 0.2 mg ml−1 SUVs, incubating for 20 min at +30 °C, and washing twice 
with HBS-Ca.

Freshly prepared samples were imaged in HBS at ambient temperature using an Asylum Research MFP-3D 
Bio instrument and TR800PSA cantilevers (Olympus; spring constant (k) range 0.59–0.68 N m−1, resonance fre-
quency 77 kHz) in alternative current (AC) mode. Square 256 × 256 pixel scans were acquired from areas of 
5–20 µm, with a 90° scanning angle and a scan speed of 0.6–0.8 Hz. The resulting scan images were processed 
with Igor Pro 6.37.

After confirming the presence of lipid bilayers, 0.5–3.6 µM MBP was added onto the bilayer samples in 
HBS. The samples were incubated for 15 min at ambient temperature, washed twice with HBS, and scanned as 
above. For every protein concentration, 2–6 samples were prepared and scanned with excellent reproducibility. 
Scans from at least 3 different areas for each sample were acquired to rule out artifacts originating from sample 
heterogeneity.

Electron microscopy.  Protein reconstitution into lipid vesicles.  The lipid mixture contained polar brain 
lipid extract (Avanti), palmitoyloleoylphosphatidylcholine (POPC, Avanti), and cholesterol (Anatrace) in the 
ratio 3:1:1. Vesicles were prepared as above, except that organic solvent was evaporated under argon and the 
sample vacuum-dried at room temperature, prior to resuspending in aqueous solvents. For EM experiments, 
0.4 mg ml−1 of rMBP was mixed with 0.4 mg ml−1 polar brain lipid:POPC:cholesterol vesicles in a buffer contain-
ing 20 mM Tris pH 7.5, 200 mM NaCl, 1% glycerol, and the sample was incubated for 24 h at room temperature. 
For negatively stained EM imaging of lipid vesicles, samples containing 730 µM DMPC:DMPG (1:1) SUVs were 
prepared with 0–7.3 µM rMBP, to achieve different P/L ratios. The samples were incubated for 1 h at room tem-
perature before grid preparation.

Negative stain EM.  For negatively stained EM, the sample was applied to glow-discharged, thin carbon 
film-coated copper EM grids and incubated for 1 min. The grid was then blotted with paper, washed with 4 drops 
of H2O, and negatively stained with 2 drops of 2% uranyl acetate. Grids were imaged on Philips CM200 TEM 
operated at 200 keV or a Tecnai G2 Spirit 120 kV instrument equipped with a Quamesa CCD camera (Olympus 
Soft Imaging Solutions).

MBP-His reconstituted into lipid vesicles (brain lipids:POPC:cholesterol) was labelled with 5 nm 
Ni-NTA-Nanogold particles (Nanoprobe). The sample was immobilised on a glow-discharged, carbon-coated 
electron microscopy grid prior to labelling. The grid was incubated 30 min upside-down on a droplet of 
0.02 × Nanogold label solution on parafilm. The grid was washed twice with a buffer containing 20 mM Tris pH 
7.5, 200 mM NaCl, 1% glycerol, and 100 mM imidazole, and negatively stained with 2% uranyl acetate.

Nanotube preparation.  GalCer-DOGS-NTA-Ni nanotubes were generated as previously described80. MBP-His 
and rMBP (0.4 mg ml−1) were incubated for 1 h with 0.2 nmol ml−1 nanotubes. Samples were imaged with nega-
tive stain or cryoEM.

Cryo EM grid preparation, imaging, and processing.  Approximately 3 µl of the samples (~0.4 mg ml−1) were 
applied to glow-discharged Quantifoil holey carbon grids (R 1.2/1.3, R 2/2, or R3.5/1, Cu 400 mesh, Quantifoil 
Micro Tools GmbH, Germany). After 2-s blotting, grids were flash frozen in liquid ethane, using an FEI Vitrobot 
IV (Vitrobot, Maastricht Instruments) with the environmental chamber set at 90% humidity and a temperature 
of 20 °C. Samples were imaged with FEI Titan Krios TEM operated at 300 keV, and images were recorded using 
a Gatan K2-Summit direct electron detector. Images were collected manually in electron-counting mode at a 
nominal magnification of ×22,500 and a calibrated pixel size of 1.3 Å. Each image was dose-fractionated to 40 
frames (8 s in total, 0.2-s frames, dose rate 6–7 e−/pixel/s). Movie frames were aligned with MotionCorr81 and 
preprocessed on the fly with 2dx_automator82. Particles were boxed using e2boxer.py in EMAN283 and further 
processed by SPRING84. In total, from 20 aligned images, 9000 overlapping, CTF-corrected segments with a size 
of 190 Å × 190 Å were used to calculate 2D class averages.

Neutron reflectometry.  Supported lipid bilayers were prepared onto flat 80 mm × 50 mm × 15 mm 
Si-crystal blocks (polished by Sil’tronix Silicon Technologies, Archamps, France to a 5 Å RMS roughness 
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tolerance). Three samples were prepared from chloroform-methanol stocks of 1 mg ml−1:DMPC, DMPC:DMPG 
(1:1), and d54-DMPC:d54-DMPG (1:1). The two leaflets of the bilayer were deposited sequentially using the 
Langmuir-Blodgett and Langmuir-Schaefer techniques. Deposition was carried out at a surface pressure held 
constant at 30 mN m−1, following the procedure described previously for mixed, charged lipid systems85, 86. The 
blocks were assembled into low-volume measurement flow cells, to enable the in situ exchange of solvent and 
injection of protein samples87, and transferred directly to the neutron reflectometer for measurement.

Each data point was collected at incident angles of 0.8° and 3.2°, on the D17 neutron reflectometer at the 
ILL (Grenoble, France)88. A slit geometry was used such that full use could be made of the coherent summing 
method for processing the data89, maximizing both intensity and resolution during time-resolved measurements. 
The sample temperature was kept at a constant +30 °C throughout. HBS buffer was used for all measurements, 
prepared at a final concentration of 95% (v/v) deuterium oxide (D2O, Sigma-Aldrich) and in H2O. The bilayers 
were characterised, before and after the introduction of rMBP, at three different solvent contrasts, varying the 
D2O-H2O volume fraction introduced into the sample cell: (1) 95% D2O, (2) water contrast-matched to Si (SMW; 
38-to-62 volume ratio of D2O/H2O), and (3) 100% H2O. During the injection of rMBP, in H2O, time-resolved 
measurements were carried out, cycling between the two angles to give a time resolution of ~15 minutes. rMBP 
was allowed to interact with the membrane for 3 h, until no further changes were seen in the reflectivity. Any 
excess rMBP was then washed out from the bulk solution by pumping solvent slowly through the sample cell, 
until the cell volume had been exchanged 20 times.

Data analysis was carried out using custom procedures with the RasCAL software package (https://source-
forge.net/p/rscl/wiki/Home/). A complete description of the theory and procedures involved in neutron reflec-
tivity analysis for biomembrane systems involving small molecule interactions is discussed elsewhere85. Briefly, 
all equilibrium measurements for one sample, before and after addition of rMBP, were fitted simultaneously with 
the parameters used to describe the silicon oxide thickness, coverage, and interfacial roughness held constant 
between all the contrasts. The lipid bilayers were analysed using just five parameters, using scattering length 
densities and a custom-built model, as described previously in detail86. The parameters used were; area per lipid 
molecule (APM), the number of water molecules associated with the headgroups (H2Ohead) and the tails (H2Otail) 
of each lipid molecule, and the roughness of the system (both local and global). To account for the interaction of 
rMBP with the bilayer after injection, four different models were used to try and fit the data: (1) A layer of MBP 
on top of the membrane but with no penetration in to the bilayer; (2) A layer of MBP on top of the membrane 
and penetrating into the lipid ‘headgroups’ in the outer leaflet of the bilayer, displacing water molecules; (3) A 
layer of MBP on top of the membrane and full insertion in to the outer leaflet of the bilayer, potentially displacing 
both lipid and water molecules from this leaflet; (4) A layer of MBP on top of the membrane and full insertion 
into both leaflets of the bilayer, potentially displacing water and lipid molecules from both. These displacement/
insertion models were set up as quantified and described in earlier work90; in all cases, a new ‘local outer leaflet’ 
roughness was introduced to describe the interface between the lipid heads and the MBP layer. The uncertainty 
on the value of each parameter used to fit the data was calculated by ‘bootstrapping’, a Monte Carlo error analysis 
approach built in to RasCAL, taking into account the error and instrumental resolution per data point91. This 
error estimation provides an indication of the uniqueness of the applied model within the error bars of the data.

Data availability.  The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request.
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Supplementary Fig. 1. The purity, monodispersity, and folding of rMBP. (a) The purity of rMBP 
as determined by SDS-PAGE. (b) Size-exclusion chromatogram of rMBP when analysed using a 
Superdex 75 pg 10/300GL column. (c) Size distribution of rMBP in DLS. (d) The conformational 
changes of rMBP in TFE and various detergents were followed by CD spectroscopy. (e) rMBP 
appears mostly elongated based on SAXS data, when plotted in a Kratky plot.	



 

Supplementary Fig. 2. SANS data analysis. (a) Neutron scattering data of rMBP and DPC-bound 
rMBP. (b) Guinier analysis. (c) Kratky plot. (d) Porod-Debye plot. Comparison of the two datasets 
suggests that in the presence of DPC, rMBP forms a partially folded structure that represents a 
micelle-embedded segment, while still remaining mostly extended. 

  



 

Supplementary Fig. 3. Kinetic analysis of SPR data. The association data (solid lines) of rMBP 

binding to DOPC:DOPS (a) and DMPC:DMPG (b) vesicles were fitted individually to an exponential 

one-phase association binding model (dashed lines). The derived kobs values were plotted against 

rMBP concentration, and the apparent kon and koff values were extracted (see Supplementary Table 2) 

for DOPC:DOPS and DMPC:DMPG by fitting linear functions to the entire data (c) as well as 

omitting all datapoints prior to the critical binding concentration of rMBP (d), which results in a better 

linear function. 



 

Supplementary Fig. 4. Concentration dependence of membrane stacking induced by rMBP 
studied by EM. Vesicle aggregation and membrane stacking is very pronounced when rMBP is 
abundant and gradually decreases together with the concentration of rMBP, as demonstrated by the 
P/L ratios 1:100 (a), 1:200 (b), 1:500 (c), and 1:1000 (d). Empty vesicles are devoid of aggregation (e). 
Scale bar: 100 nm. 



 

Supplementary Fig. 5. NR control binding experiments. (a) rMBP binds perdeuterated d54-
DMPC:d54-DMPG membranes similarly to the hydrogenated membranes. (b) The addition of rMBP to 
DMPC membranes displays reflectograms that are nearly identical to the naked bilayer, indicating that 
rMBP is not binding. Data and fits are plotted on the left. All reflectivity curves have been offset for 
clarity. Scattering length density (ρ) profiles are plotted on the right. The error bars correspond to 
standard deviation.  

	

	

  



Supplementary Table 1. Small-angle scattering data collection and analysis.		

Data	collection	parameters	
Method;	dataset	 SAXS;	MBP	 SANS;	MBP	 SANS;	MBP	+	0.25%	DPC	
Instrument	 P12,	PETRAIII,	DESY	 D22,	ILL	 D22,	ILL	
Wavelength	(nm)	 0.124	 0.6	 0.6	
Angular	range	(nm-1)	 0.027	-	4.801	 0.12	–	2.364	 0.12	–	2.364	
Exposure	time	(s)	 0.045	 3600	 3600	
Concentration	range	(mg	ml-1)	 1.1	-	4.4	 2.3	 2.3	
Temperature	(°C)	 20	 10	 10	
D2O	contrast	(%,	v/v)	 0	 98	 9	
	Structural	parameters	
I0	(relative)	[from	p(r)]	 5687	 	 	
Rg	(nm)	[from	p(r)]	 4.02	 	 	
I0	(relative)	[from	Guinier]	 5582.53	 0.0178	 0.022	
Rg	(nm)	[from	Guinier]	 3.68	 3.3	 3.5	
Rg	(nm)	[from	EOM	ensemble]	 3.96	 4.4	 3.5	
Dmax	(nm)	[from	GNOM]	 17.82	 12.0	 10.0	
Dmax	(nm)	[from	EOM	ensemble]	 12.92	 13.8	 11.2	
Molecular	mass	determination	
Molecular	mass	Mr	(kDa)	[from	I0	using	p(r)]	 25.8	 	 	
Molecular	mass	Mr	(kDa)	[from	I0	using	Guinier]	 25.4	 	 	
Theoretical	Mr	from	sequence	(kDa)	 18.5	 18.5	 18.5	
	Software	
Primary	data	reduction	 PRIMUS	 GRASP,	NCNR	SANS	 GRASP,	NCNR	SANS	
Data	processing	 PRIMUS	 PRIMUS	 PRIMUS	
Ab	initio	analysis	 GASBOR	 	 	
Conformational	ensemble	analysis	 EOM	 EOM	 EOM	
Validation	and	averaging	 PRIMUS	 PRIMUS	 PRIMUS	
Three-dimensional	graphics	representation	 PyMOL	 	 	
	EOM	model	parameters	
Conformer	#1	
Rg	(nm)	 5.72	 3.38	 3.14	
Dmax	(nm)	 17.81	 10.87	 9.91	
Mass	fraction	 0.07	 0.273	 0.647	
Conformer	#2	
Rg	(nm)	 4.51	 4.75	 5.09	
Dmax	(nm)	 13.31	 13.25	 14.37	
Mass	fraction	 0.14	 0.091	 0.182	
Conformer	#3	
Rg	(nm)	 4.45	 6.42	 3.39	
Dmax	(nm)	 14.20	 19.47	 11.43	
Mass	fraction	 0.07	 0.364	 0.182	
Conformer	#4	
Rg	(nm)	 3.14	 3.57	 	
Dmax	(nm)	 9.34	 12.30	 	
Mass	fraction	 0.07	 0.091	 	
Conformer	#5	
Rg	(nm)	 3.14	 2.92	 	
Dmax	(nm)	 9.47	 9.47	 	
Mass	fraction	 0.36	 0.182	 	
Conformer	#6	
Rg	(nm)	 3.51	 	 	
Dmax	(nm)	 11.82	 	 	
Mass	fraction	 0.14	 	 	
Conformer	#7	
Rg	(nm)	 4.26	 	 	
Dmax	(nm)	 12.83	 	 	
Mass	fraction	 0.07	 	 	
Conformer	#8	
Rg	(nm)	 6.41	 	 	
Dmax	(nm)	 18.65	 	 	
Mass	fraction	 0.07	 	 	
Total	mass	fraction	of	main	conformers	 0.99	 1.00	 1.00	
	

	 	



	

Supplementary Table 2. Kinetic parameters derived from rMBP association phase with vesicles. 

Vesicle	composition	
Fitting	set	1	a	 Fitting	set	2	a	

kon	(nM
-1	s-1)	(×	105)	b	 koff	(s

-1)	(×	102)	c	 R2	 kon	(nM
-1	s-1)	(×	105)	b	 koff	(s

-1)	(×	102)	c	 R2	

DOPC:DOPS	(1:1)	 4.0		±	0.54	 0.76	±	0.52	 0.77	 5.6	±	0.45	 -1.4	±	0.58	 0.95	

DMPC:DMPG	(1:1)	 3.8	±	0.27	 -0.066	±	0.26	 0.92	 5.0	±	0.23	 -1.8	±		0.30	 0.98	
a Fitting set 1 contains all data points from the linear fit, whereas data points below 500 nM were omitted from 
Fitting set 2. 
b Slope of the linear fit function to kobs(on) vs. [rMBP]. 
c Y-axis intercept of the linear fit function to kobs(on) vs. [rMBP] 

 

 

 

Supplementary Table 3. Time-resolved neutron reflectometry parameters. 

Parameters	 d54-DMPC:d54-DMPG	(1:1)	

Phase	1	 Phase	2	 Phase	3	
Substrate	 Oxide	thickness	(Å)	 10	±	1	

Oxide	coverage	(%)	 90	±	4	
Oxide	roughness	(Å)	 3	±	1	
Hydration	layer	between	oxide	and	
bilayer	(Å)	

25	±	6	

Bilayer	 Bilayer	area	per	molecule	(Å2/molecule)	 59	±	7	 58	±	6	 53	±	2	
Water	per	lipid	head	 10	±	2	 10	±	5	 10	±	2	
Water	per	lipid	tail	 6	±	3	 7	±	1	 8	±	2	
Global	bilayer	roughness	(Å)	 20	±	5	 24	±	2	 24	±	2	
Local	bilayer	inner	roughness	(Å)	 5	±	3	 8	±	1	 12	±	1	
Local	bilayer	outer	roughness	(Å)	 1	±	2	 6	±	2	 1	±	1	

rMBP	 rMBP	in	outer	heads	(%)	 0	 28	±	10	 48	±12	
rMBP	in	outer	tails	(%)	 0	 0	 20	±	5	
rMBP	layer	thickness	(Å)	 70	±	20	 56	±	3	 52	±	3	
rMBP	layer	coverage	(%)	 25	±	7	 47	±	10	 37	±	6	
rMBP	layer	roughness	(Å)	 58	±	20	 8	±	3	 7	±	5	
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Abstract 

Compact myelin forms the basis of nerve insulation essential for higher vertebrates. Dozens 

of myelin membrane bilayers undergo tight stacking, and in the peripheral nervous system, 

this is partially enabled by myelin protein zero (P0). Consisting of an immunoglobulin (Ig)-

like extracellular domain, a single transmembrane helix, and a cytoplasmic extension (P0ct), 

P0 harbours an important task in ensuring the integrity of compact myelin in the extracellular 

compartment, referred to as the intraperiod line. Several disease mutations resulting in 

peripheral neuropathies have been identified for P0, reflecting its physiological importance, 

but the arrangement of P0 within the myelin ultrastructure remains obscure. We performed a 

biophysical characterization of recombinant P0ct. P0ct contributes to the binding affinity 

between apposed cytoplasmic myelin membrane leaflets, which not only results in changes 

of the bilayer properties, but also potentially involves the arrangement of the Ig-like domains 

in a manner that stabilizes the intraperiod line. Transmission electron cryomicroscopy of 

native full-length P0 showed that P0 stacks lipid membranes by forming antiparallel dimers 

between the extracellular Ig-like domains. The zipper-like arrangement of the P0 

extracellular domains between two membranes explains the double structure of the myelin 

intraperiod line. Our results contribute to the understanding of PNS myelin, the role of P0 

therein, and the underlying molecular foundation of compact myelin stability in health and 

disease. 
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Molecular structure and function 
of myelin protein P0 in membrane 
stacking
Arne Raasakka   1,2, Salla Ruskamo   2, Julia Kowal3,4, Huijong Han2, Anne Baumann1,5, 
Matti Myllykoski2, Anna Fasano6, Rocco Rossano7, Paolo Riccio7, Jochen Bürck   8, 
Anne S. Ulrich8,9, Henning Stahlberg   3 & Petri Kursula   1,2

Compact myelin forms the basis of nerve insulation essential for higher vertebrates. Dozens of myelin 
membrane bilayers undergo tight stacking, and in the peripheral nervous system, this is partially 
enabled by myelin protein zero (P0). Consisting of an immunoglobulin (Ig)-like extracellular domain, 
a single transmembrane helix, and a cytoplasmic extension (P0ct), P0 harbours an important task 
in ensuring the integrity of compact myelin in the extracellular compartment, referred to as the 
intraperiod line. Several disease mutations resulting in peripheral neuropathies have been identified for 
P0, reflecting its physiological importance, but the arrangement of P0 within the myelin ultrastructure 
remains obscure. We performed a biophysical characterization of recombinant P0ct. P0ct contributes 
to the binding affinity between apposed cytoplasmic myelin membrane leaflets, which not only 
results in changes of the bilayer properties, but also potentially involves the arrangement of the Ig-
like domains in a manner that stabilizes the intraperiod line. Transmission electron cryomicroscopy of 
native full-length P0 showed that P0 stacks lipid membranes by forming antiparallel dimers between 
the extracellular Ig-like domains. The zipper-like arrangement of the P0 extracellular domains between 
two membranes explains the double structure of the myelin intraperiod line. Our results contribute to 
the understanding of PNS myelin, the role of P0 therein, and the underlying molecular foundation of 
compact myelin stability in health and disease.

Myelin enwraps axonal segments in the vertebrate nervous system, accelerating nerve impulse propagation as well 
as providing trophic and mechanical support to fragile neuronal processes1. The insulative nature of myelin arises 
from its water-deficient structure, compact myelin, where layers of the plasma membrane are stacked upon each 
other and adhered together by specific proteins2. This array of proteins partially differs between the central and 
peripheral nervous systems (CNS and PNS, respectively), and the disruption of PNS compact myelin has a severe 
effect on action potential velocity3. This manifests as a set of medical conditions, including the peripheral neu-
ropathies Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS). Such diseases are incurable 
and difficult to treat, and they show significant genetic background, resulting from mutations in proteins that 
affect the formation or stability of myelin, either directly or indirectly4–7. The development of eventual CMT/
DSS-targeting remedies is hindered by the lack of basic molecular structural knowledge on the formation and 
eventual disruption of PNS myelin8.

Myelin protein zero (P0; also known as MPZ) is the most abundant protein in PNS myelin9. It resides in 
compact myelin and spans the myelin membrane via a single transmembrane helix with an N-terminal immuno-
globulin (Ig)-like domain on the extracellular side of the membrane. A short cytoplasmic tail (P0ct) follows the 
transmembrane domain3. Point mutations in P0 account for 10–12% of all dominant demyelinating CMT type 
1 cases10.
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The extracellular Ig-like domain of P0 is a major contributor to the formation of the myelin intraperiod line11. 
Crystal structures of this domain have provided clues about details of membrane adhesion, and one theory 
involves oligomerization of Ig-like domains from two apposing membranes12,13. This would explain the roughly 
5-nm spacing of the intraperiod line in compact myelin, compared to the 3-nm cytoplasmic compartment, or the 
major dense line, between two cytoplasmic membrane leaflets14–16. Dozens of CMT- and DSS-linked mutations 
have been reported for the Ig-like domain, signifying its importance in myelination17.

At physiological pH, P0ct is a positively charged segment of 69 amino acids, predicted to be disordered in 
solution3. The central part of P0ct (amino acids 180–199 of mature human P0 isoform 1) contains an immu-
nodominant, neuritogenic segment, which can be used to generate animal models with experimental autoim-
mune neuritis (EAN)18. It is noteworthy that most CMT-linked point mutations in P0ct are localized in this 
region17,19–22. P0ct interacts with lipid membranes, and it gains a significant amount of secondary structure upon 
binding23–25. P0ct aggregates negatively charged lipid vesicles23, suggesting that P0ct might harbour a similar 
membrane-stacking function as myelin basic protein (MBP)16 and peripheral myelin protein 2 (P2)26. However, 
the tertiary conformation of P0ct and details of its lipid binding are not fully understood, and the potential func-
tion of P0ct in membrane stacking remains to be further elucidated.

We characterized human P0ct using several complementary methods, to gain a structural insight into its 
membrane binding, insertion, and contribution to myelin membrane stacking. Using electron cryomicros-
copy (cryo-EM), we observed a zipper-like assembly of bovine full-length P0 in reconstituted membranes. 
Additionally, we investigated a synthetic P0ct-derived peptide (P0ctpept), corresponding to the neuritogenic 
sequence, under membrane-mimicking conditions using synchrotron radiation circular dichroism spectroscopy 
(SRCD) and computational predictions. Our results show that P0ct is likely to be involved in maintaining the 
stability of compact PNS myelin together with other cytosolic PNS myelin proteins. A combined approach of EM, 
small-angle X-ray diffraction (SAXD), atomic force microscopy (AFM), and differential scanning calorimetric 
(DSC) suggests that P0ct may have a role in regulating the lateral structure within the membrane, together with 
the ultrastructure formed by the Ig-like domains in the extracellular compartment.

Results
To study the putative function of P0ct as a classical membrane stacking protein, we performed a biophysical char-
acterization, as well as binding experiments with lipids, similarly to our earlier study on MBP16. Additionally, we 
investigated the stacking behaviour of full-length P0 using cryo-EM, and the folding and orientation of P0ctpept 
in membranes with SRCD.

Characterization of P0ct.  We purified P0ct to homogeneity using a two-step purification process. P0ct 
appeared as a single band on SDS-PAGE, presenting a monodisperse profile in size exclusion chromatography 
(SEC) with a monomeric mass in solution, as shown with SEC-coupled multi-angle light scattering (SEC-MALS), 
despite its unusual migration in SDS-PAGE (Supplementary Fig. S1a). The obtained mass (7.5 kDa) was very close 
to the one determined using mass spectrometry (7991 Da), matching the expected mass based on the primary 
structure (7990.25 Da).

The folding of P0ct was studied in the presence of different additives using SRCD. The results were as 
expected based on earlier investigations24. P0ct was mostly disordered in solution and gained significant sec-
ondary structure content, when introduced to increasing concentrations of 2,2,2,-trifluoroethanol (TFE), as well 
as n-dodecylphosphocholine (DPC) or sodium dodecyl sulphate (SDS) micelles, but not with n-octylglucoside 
(OG) or lauryldimethylamine N-oxide (LDAO) (Supplementary Fig. S1b).

To investigate the solution behaviour of P0ct, we used small-angle X-ray scattering (SAXS) to reveal that 
P0ct is monomeric and extended (Fig. 1a,b, Supplementary Fig. S1c, Supplementary Table S1), which was best 
explained by a dynamic ensemble of elongated conformers, as observed for MBP (Fig. 1c)16. Similarly to MBP, 
P0ct appeared to favour a slightly compacted conformation over a completely extended one.

P0ct binds irreversibly to lipid structures and influences their properties.  A gain in helical struc-
ture of P0ct was observed earlier in membrane-mimicking conditions, including neutral and charged deter-
gent micelles, TFE, and different lipids24. This could represent a physiologically relevant state of folding, which 
prompted us to investigate the lipid interaction propensity of P0ct in the presence of various lipid compositions 
by SRCD (Fig. 2a–c). Magnitude differences in the CD signals were detected between different samples, which 
most likely arose from lipid batch heterogeneity and the resulting differences in protein-lipid turbidity, causing 
light scattering and lowered signal intensity. This did not compromise data interpretation, as the relevant data for 
each comparison were acquired at the same time. Therefore, the SRCD traces in Fig. 2a–c should be compared 
only within panels. We observed a high degree of P0ct folding in the presence of negatively charged small uni-
lamellar vesicles (SUVs), whereas neutral SUVs displayed no gain in secondary structure content compared to 
P0ct in water (Fig. 2a). A 1:1 molar mixture of the fully saturated lipids dimyristoylphosphatidylcholine (DMPC) 
and dimyristoylphosphatidylglycerol (DMPG), enhanced the folding notably compared to a 1:1 mixture of 
dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylserine (DOPS), indicating a specific effect by the 
lipid tails, and/or a difference between the negatively charged PG and PS headgroups. The dimyristoyl lipids were 
compared to dioleoyl lipids due to the fact that the bilayer thickness in these cases is nearly identical. Importantly, 
SPR experiments (see below) indicated similar affinities towards both lipid mixtures. To check whether other 
lipid species could influence the folding, we included 10% (w/w) cholesterol, dimyristoylphosphatidylethanola-
mine (DMPE), or sphingomyelin (SM) in DMPC:DMPG (1:1) (Fig. 2b). Cholesterol and SM appeared to slightly 
favour folding, suggesting that P0ct is sensitive to fluidity differences within the membrane, as reported earlier24. 
Additionally, these interactions seem specific from a molecular point of view, as changing between the gel and 
liquid disordered phases of DMPC:DMPG (1:1) via temperature scanning did not influence P0ct folding (Fig. 2c). 
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SM and cholesterol are known to interact27, and together, they contribute to the formation of lipid rafts, in which 
major PNS myelin proteins localize28. These include P0, as well as its known interaction partner peripheral myelin 
protein 22 (PMP22)29,30, for which the presence of SM is absolutely required for reconstitution into functional 
model systems31.

In our model lipid compositions, we did not observe structures rich in β-sheets, and to study more phys-
iologically relevant conditions, we measured SRCD spectra of P0ct in the presence of a native myelin-like 
cytoplasmic leaflet composition, DMPC:dimyristoylphosphatidylserine (DMPS):DMPE:SM:cholesterol 
(25.9:7:29:6.2:31.6), as well as an experimental autoimmune encephalomyelitis (EAE)-like composition, 
DMPC:DMPS:DMPE:SM:cholesterol (20.1:7.4:32.9:2.2:37.4) (Fig. 2b)32. P0ct gained a high amount of second-
ary structure in the presence of native myelin-like lipids, but did not display enriched amounts of β-structure. 
The mixed secondary structure content had a high proportion of α-helix, as evident from the observed double 
minima at 208 and 222 nm. Predominantly β-sheet-rich structures would form a single minimum at 215 nm33. 
The folding was clearly diminished in EAE-like lipids, and a key influencing factor might be the different phase 
behaviour of the two lipid compositions; the EAE lipid composition, which mimics a pathogenic myelin composi-
tion, has been demonstrated to co-exist as mixed lamellar and hexagonal phases in vitro, as opposed to the native 
myelin-like composition, which forms a completely lamellar lipid phase34. Considering the composition, the 
largest relative difference is the much lower fraction of SM in the EAE-like lipids. Judging from the intensity of the 
observed double minima at 209 and 222 nm, the helical folding of P0ct in our model lipids matches the native-like 
lipid composition better than the EAE composition, validating our simplified model system for further studies.

Figure 1.  SAXS analysis of P0ct. (a) SAXS data reveals the elongated nature of P0ct. GASBOR and EOM fits are 
plotted over the entire measurement data with their respective χ2 values indicated. (b) The GASBOR ab initio 
model is clearly elongated, measuring up to 8 nm in length. (c) An ensemble of dynamic conformers in solution, 
presenting wide Rg and Dmax populations (left), satisfy the SAXS data well. Most abundant conformers by mass 
are presented as models (right; colored arrows denote the Rg and Dmax values within the analyzed distributions 
from EOM).
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The folding of P0ct in the presence of lipid vesicles is a strong indicator of binding, which prompted us to 
study the binding kinetics and affinity using surface plasmon resonance (SPR; Fig. 2d). P0ct irreversibly associ-
ated with immobilized large unilamellar lipid vesicles (LUVs), and comparison of saturated and unsaturated lipid 
tails only revealed differences in maximum response, reflecting the amount of bound P0ct, while the affinity (Kd) 
remained similar (Table 1). These results suggest that the saturated lipids DMPC:DMPG can incorporate more 
P0ct than DOPC:DOPS; furthermore, P0ct gained more secondary structure in the presence of DMPC:DMPG 
(Fig. 2a). We were interested in the underlying kinetics of association; similarly to MBP, we observed a complex 
association pattern16, which could not be analyzed confidently using simple binding models. Data are provided 
here for comparison with earlier data from MBP (Supplementary Fig. S2, Supplementary Table S2). Additional 
studies will be required to shed light on the details of membrane association kinetics of both P0ct, MBP, and other 
myelin proteins.

Having observed a similar lipid-dependent binding behaviour for P0ct as for MBP, we employed differ-
ential scanning calorimetry (DSC) to check for any thermodynamic changes in lipid tail behaviour of large 

Figure 2.  Folding and lipid binding properties of P0ct. (a) While P0ct remains disordered in the presence of 
neutral lipid bodies, a large gain in regular secondary structure content is evident especially in the presence 
of DMPC:DMPG (1:1). (b) P0ct appears to fold slightly differently in the presence of vesicles containing 
cholesterol or SM when mixed with a DMPC:DMPG (1:1) composition. Native and EAE-like lipid compositions 
(compositions based on previously published data32) present a different degree of folding. (c) P0ct retains its 
folding in SRCD around the typical DMPC:DMPG (1:1) lipid phase transition temperature. (d) P0ct binds 
immobilized lipid vesicles in SPR. Error bars represent standard deviation. (e) The lipid tails of LMVs with a 
strong negative surface net charge exhibit a second endothermic transition at 22.5 °C upon the addition of P0ct.

Lipid composition Rhi Rlo A1 A2 R2

DOPC:DOPS (1:1) 2617 ± 80.9 29.1 ± 64.7 337.2 ± 20.7 2.44 ± 0.31 0.9800

DMPC:DMPG (1:1) 3309 ± 71.4 19.8 ± 58.4 363.0 ± 15.0 2.76 ± 0.26 0.9893

Table 1.  SPR fitting parameters.
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multilamellar vesicles (LMVs) in the presence of P0ct (Fig. 2e). While the phase behaviour of neutral lipids 
remained unaffected by the presence of P0ct, displaying only the ~24 °C peak typical for dimyristoyl com-
pounds35, the inclusion of the negatively charged DMPG allowed us to observe an additional endothermic phase 
transition peak around 22.5 °C. The lipid phase transition at 22.5 °C increased in intensity with the addition of 
more P0ct, indicating direct binding to vesicles and concentration dependency. Note that P0ct did not display 
folding differences at temperatures around the observed phase transitions (Fig. 2c), suggesting that P0ct does 
not exist in several temperature-dependent conformational states. P0ct seems to directly interact with lipid tails, 
being capable of affecting the lipid phase behaviour by lowering the phase transition temperature.

P0ct induces the formation of an ordered proteolipid membrane.  Since we confirmed the binding 
of P0ct to lipid structures, the next step was to investigate its putative membrane stacking function, as the biologi-
cal function of many myelin proteins relates to multilayer formation. We used turbidimetry to indirectly quantify 
vesicle aggregation by P0ct (Fig. 3a). P0ct induced turbidity in the presence of several lipid mixtures with net 
negative surface charge.

The turbidimetric experiments strongly indicated that P0ct induced vesicle aggregation. To further eluci-
date the level of order within the system, we subjected protein-lipid samples to small-angle X-ray diffraction 
(SAXD) (Fig. 3b,c). While vesicles alone did not show Bragg peaks in the X-ray scattering profile (not shown), 
P0ct induced two intensive Bragg peaks, which changed their position in momentum transfer (s) in a nearly linear 
fashion as a function of protein-to-lipid (P/L) ratio, indicating concentration dependency in the formation of 
order and membrane spacing.

While the vesicle-based experiments provided indirect evidence of membrane stacking, we used atomic 
force microscopy (AFM) to determine whether P0ct can spontaneously stack membranes, similarly to MBP and 
P226 (Fig. 3d). However, under the experimental conditions we employed, P0ct did not form detectable stacked 
systems even at relatively high concentrations, rather appearing to accumulate on membranes, increasing their 
thickness and changing their mechanical properties. The morphology of the membranes changed in the presence 
of P0ct. The smooth, round edges of lipid bilayers appeared much less regular when P0ct accumulated on the 
membrane (Fig. 3c). P0ct seemed to concentrate at the edges of membranes (Fig. 3d), leaving some central parts 
of the SLBs less abundant in P0ct, as suggested by the thickness and rigidity of these regions being similar to SLBs 
not treated with P0ct.

We further exploited EM to check, whether aggregated vesicles form in the presence of P0ct (Fig. 4a–d). 
Surprisingly, the EM data revealed an absence of both vesicle aggregation and well-defined membrane stacks; the 
difference to control lipid samples was the formation of large vesicular bodies in the presence of P0ct, possibly 
formed through P0ct-mediated fusion, at most tested P/L ratios. At high protein concentrations, we observed 
10–20-nm thick filament/tubule-like assemblies, seemingly formed of tightly adhered membranes. This is an 
indication of ordered protein-membrane structures, although such filamentous structures are not present in 
endogenous myelin. It appears that high enough P0ct concentrations may affect membrane bilayer curvature, 
which could be relevant for myelination. It should be noted that in these experiments, the required P/L ratio for 
P0ct to form any kind of visibly stacked systems was roughly an order of magnitude higher compared to MBP16. 
In PNS myelin, full-length P0 can be estimated to comprise up to ~10% of the membrane dry weight. This would 
correspond to a P/L ratio of ~1:300. The concentration of P0 in PNS compact myelin is several-fold higher than 
that of MBP, and P0ct could be functional in membrane stacking in vivo. The large vesicular structures sug-
gest an unexpected mechanism, which does explain the observed turbidity at moderate P/L ratios; at the same 
time, the Bragg peaks in SAXD indicate the presence of well-defined repeat distances, possibly originating from 
local patches of adhered membranes. It is noteworthy that at P/L ratios of 1:50 and 1:100, the Bragg peaks are 
most intensive, and the repeat distance plateaus at 75.0 Å, suggesting that the most condensed structure has been 
reached. A repeat distance of 75 Å is in good corroboration with the thickness of cytoplasmic membrane stacks 
in myelin15; this distance is shorter than that observed with MBP and P2 earlier. These results indicate that P0ct 
can function as a membrane-stacking molecule. Taking all of our results together, the contribution of P0ct in 
membrane stacking per se is most likely low; however, in myelin, P0ct is not free but anchored to the cytoplasmic 
face of the membrane, which could affect its biophysical properties in vivo.

The folding and orientation of P0ctpept in membranes.  The P0ctpept peptide has been used to induce 
EAN in animal models18. To shed light on its membrane association and conformation, we studied P0ctpept 
using SRCD and oriented SRCD (OCD). P0ctpept was disordered in solution and gained secondary structure 
in the presence of TFE or negatively charged detergent micelles, and somewhat less in negatively charged lipids 
(Fig. 5a,b). P0ctpept did not fold with neutral lipids, and relatively weakly with negatively charged lipids, except 
with DMPC:DMPG (1:1). In the latter composition, the gain in secondary structure was notable, and the CD 
spectrum does not directly resemble classical α-helical or β-sheet lineshape: the observed maximum and min-
imum at 188 nm and 205 nm, respectively, are close to typical π → π* transitions observed in peptides and pro-
teins with mostly α-helical structures. However, the n → π* band, normally observed as a minimum at 222 nm 
in α-helices, is poorly resolved. While P0ctpept did not gain significant structure in DPC, the negatively charged 
detergent SDS induced higher secondary structure gain than 70% TFE, in contrast to P0ct and several other pro-
teins16,36,37, suggesting a role for electrostatic neutralization in the folding of P0ctpept.

To shed light on the orientation of P0ctpept in membranes, we prepared stacked membranes with P0ctpept on 
planar quartz glass substrates at high relative humidity (>97%). The samples were oriented perpendicular to the 
incident synchrotron radiation beam, and we collected OCD spectra of P0ctpept in DMPC and DMPC:DMPG 
(1:1) membranes (Fig. 5c), which allows the investigation of helix orientation within oriented membranes38,39. 
Comparison of the OCD spectra with isotropic spectra revealed folding in both cases. The OCD spectrum in 
DMPC is weak, but presents helical content, with both minima typical for in-plane helices in bilayers present; 
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Figure 3.  P0ct modulates the properties of lipid structures. (a) The turbidity caused by the presence of P0ct in 
SUVs somewhat changes depending on the lipid tail saturation degree or the presence of cholesterol. Error bars 
represent standard deviation. Asterisk: P/L ratio of 1:200. (b) Mixing P0ct with DMPC:DMPG (1:1) SUVs result 
in X-ray diffraction patterns that display two major Bragg peaks per dataset within the measured s-range. Added 
P0ct concentrations of 10 and 20 µM are shown as open and filled markers, respectively. A moving average 
(black line) has been plotted over each dataset, all of which have been offset for clarity. None of the data has been 
scaled in respect to one another. (c) The mean repeat distances, calculated from the s-values corresponding to 
the intensity summit of each Bragg peak, plotted as a function of P/L ratio. Linear fits are shown as solid lines for 
both d1 and d2 distributions. (d) In AFM, P0ct accumulates into supported DOPC:DOPS (1:1) bilayers without 
spontaneous induction of myelin-like membrane stacking, but increases the local thickness of the membrane by 
as much as 2 nm. This is evident especially at the edges of the membranes, where the membrane morphology is 
also changed. The phase difference of the membrane indicates that the mechanical properties of the membrane 
change in these areas, with a larger change at the edges of the membrane, where P0ct is supposedly most 
abundant. Height and phase difference graphs are plotted below the images, with the walk path indicated in red. 
Annotations in phase image walk graphs: m, mica; u, lipid bilayer; p, P0ct-embedded bilayer. Dashed horizontal 
and vertical dividers have been added to aid comparison.
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compared to the isotropic spectrum, this reflects the fact that in OCD, there is much less free water phase and the 
peptide is forced to bind to DMPC. In DMPC:DMPG (1:1), the spectral intensity is higher, and the minimum typ-
ically observed at 208 nm is weakened, indicating that the helical segment of P0ctpept is in a tilted orientation with 
respect to the lipid surface, although the shift is not strong enough to represent a completely perpendicular helix.

We generated models of P0ctpept to learn more about its potential conformation. The N-terminal, basic half 
of P0ctpept is likely flexible, whereas the more hydrophobic segment, corresponding to residues 189–199, folds 
into a well-defined helix (Fig. 5d,e). Linking the models to the observed OCD spectra, the peptide most likely 
adopts mixed orientations in DMPC, whereas in the presence of negatively charged headgroups, the N-terminal 
half of P0ctpept can form ionic interactions. This could result in charge neutralization and induce folding into a 
second helical segment, which would adopt a more perpendicular orientation, explaining the measured OCD 
spectrum. The central Pro residue breaks the helix and could allows the two halves to adopt different orientations 
with respect to one another and the membrane. It is possible that as least the central helical segment of P0ct is 
‘anchored’ at the level of the charged headgroups, and as such, is likely to give P0ct a specific orientation in the 
cytoplasmic leaflet of the myelin membrane.

P0 forms an intermembrane zipper composed of Ig-like domains.  To complement the character-
ization of P0ct, we investigated membrane stacking by full-length P0, purified from the raft fraction of bovine 
peripheral myelin40. During purification, the protein was embedded in SDS micelles, and after exchange into 
n-decyl-β-D-maltopyranoside (DM), the protein was monodisperse based on negative stain EM (Fig. 6a). SRCD 
investigations of P0 in detergents or net negatively charged lipids showed high structural content (Fig. 6b), and 
monodispersity was further analyzed using SEC-MALS (Fig. 6c, Supplementary Fig. S3). The oligomeric status 

Figure 4.  Vesicle fusion and membrane insertion of P0ct. EM concentration series of (a) 1:25, (b) 1:50, (c) 
1:100, (d) 1:250 and (e) 1:500 P/L P0ct in the presence of DMPC:DMPG (1:1) vesicles shows the absence of 
membrane stacks, oppositely to the case of MBP16. The effect resembles vesicle fusion and the formation of large 
lipid bodies. (f) Vesicle control in the absence of P0ct.
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of full-length P0 depended on detergent, and in accordance with earlier studies41,42, both tetrameric and dimeric 
species were observed. The main species in DPC was tetrameric, while LDAO showed the presence of dimeric 
full-length P0. It is noteworthy that the folding of P0ct was different in these two detergents (Supplementary 
Fig. S1b), suggesting a possible involvement of P0ct in the oligomerization of P0.

We reconstituted P0 into SUVs prepared from both DOPC and E. coli polar lipids and imaged the samples 
using cryo-EM. We observed similar membrane stacking in both lipid compositions, suggesting that, under these 
conditions, the lipid composition plays a minor role in membrane stacking by full-length P0 (Fig. 6d–f).

The extracellular domain of P0 was organized between the two apposing lipid bilayers, forming a tightly 
packed zipper consisting of monomers from both apposed membranes (Fig. 6d–f). The thickness of the zipper 
determined the spatial width, measuring 50 ± 10 Å, between the membrane leaflets – a physiologically relevant 
value present in natural myelin, as shown by X-ray diffraction of myelin extracts14,15. Each bilayer measured a 
typical 45-Å thickness. The distance between the apposing P0 monomers was 10–15 Å, if not in direct contact, 
whereas the spacing between lateral P0 monomers was 25–30 Å. It is realistic to assume that similar distances 
are present in native myelin, P0 constituting up to 50% of total protein in myelin. The tightly packed, uniform, 
zipper-like arrangement suggests that even though the underlying intermolecular interactions might be rela-
tively weak at the level of single molecules, the large surface interaction area formed by a P0-enriched membrane 
can generate a strong force for keeping apposed membranes tightly together, both on the extracellular and 
cytosolic sides.

Figure 5.  Folding of P0ctpept. (a) SRCD data show that P0ctpept only displays folding with negatively charged 
SUVs. The most notable spectrum is the DMPC:DMPG (1:1) spectrum, which does not resemble classical 
helical content, nor β-sheets. (b) The effect of TFE and detergents on the conformation of P0ctpept. While P0ctpept 
only displays marginal folding with DPC, SDS induces an even higher secondary structure gain than 70% TFE, 
indicating the major importance of electrostatics in the folding of P0ctpept. (c) OCD data of P0ctpept in DMPC 
and DMPC:DMPG (1:1). Isotropic spectra are shown for reference. The DMPC OCD data is weak, typical for 
an aggregated sample, while also showing traces of helical content. The DMPC:DMPG (1:1) data displays clear 
folding and a more perpendicular orientation within the membrane. A simple cartoon has been drawn for 
clarity for both OCD datasets. Colors match the shown data. (d) Superposition of five predicted structures of 
P0ctpept reveal the N-terminus likely to be disordered, followed by a kinking Pro (black asterisk), and a helical 
C-terminal segment. (e) Helical wheel projections of the basic N-terminal half (left) and the hydrophobic 
half (right) of P0ctpept. The residues are colored based on chemical properties with matched indications in the 
peptide sequence (down). The underlined segments are shown in the projections. The potentially helix-breaking 
Pro has been indicated with an asterisk.
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Discussion
The cytoplasmic domain of P0 is disordered in solution, and once it irreversibly interacts with negatively charged 
lipids, it folds and becomes embedded, influencing the physical behaviour of the lipids within the membrane, but 
also potentially inducing larger-scale structural membrane reorganization. P0ct gains helical secondary structure 
with lipids, rather than the β-sheet-rich structures suggested earlier24. This was notable also in a lipid composition 
that resembles the cytoplasmic leaflet of myelin, and the degree of folding was diminished in an EAE-like lipid 
composition.

Similarly to MBP16, the initial association of P0ct with lipids is governed by electrostatics, suggesting that 
P0ct possesses similar physicochemical properties as MBP within the myelin environment. However, due to the 
folding differences observed in SRCD with different lipid tails, correlated with amount of protein bound in SPR, 
one can speculate that the membrane-bound concentration of P0ct may influence its overall folding population. 
Already early studies in the 1930s and 1940s have shown that native myelin is an ordered structure diffracting 
X-rays43,44. P0ct stacks membranes at such a level of order that X-ray diffraction bands are observed, and a repeat 
distance of 75 Å can be deduced in the multilayers. Lipid-bound MBP, having a high content of PE and low 

Figure 6.  Full-length P0 in a membrane environment. (a) Cryo-EM of full length P0 displays good 
monodispersity in 0.4% DM. (b) SCRD spectra of full length P0 in detergents and lipids. (c) Analysis of full-
length P0 monodispersity and oligomeric state using SEC-MALS. Shown are data measured in DPC. The 
Rayleigh ratio is shown (black) together with the total mass (gray dash), protein mass (red) and detergent 
mass for each peak (gray solid). (d) P0 reconstituted into DOPC and E. coli polar lipid extract vesicles 
result in membrane stacks that resemble myelin. (e) Cryo-EM micrographs of E. coli polar lipid extract 
with reconstituted P0. Both curved loosened and planar tight bilayer adhesions are present. In the latter, a 
significantly higher protein density between the membranes is evident. The loose and tight areas are marked 
with red arrows and white asterisks, respectively. (f) 2D class averages generated from the tight adhesions of P0 
in E. coli polar lipids sample cryo-EM micrographs display a zipper of apposing Ig-like domains that interact 
with each other and settle between the two lipid bilayers.
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content of bound cholesterol and SM, was shown to similarly generate stacked multilayers with repeat distances 
between 70–85 Å45. Our study provides evidence that P0ct may not harbour a similar role in the formation of 
the major dense line as MBP, although it is definitely able to bridge charged membranes together at high protein 
concentrations in vitro. In this respect, it is important to remember that in vivo, P0ct is an extension of the trans-
membrane domain of P0, and solidly anchored to the membrane surface, possibly allowing stronger effects on 
membrane stacking than observed with the P0ct in isolation.

Our cryo-EM experiments on full-length P0 reconstituted into bilayers answer an important question regard-
ing the arrangement of the intraperiod line: the Ig-like domains of P0 organize into apposed dimers, forming a 
zipper between the two membranes. This is apparently independent of lipid composition, and the interaction is 
mediated directly through the Ig-like domains. The data clearly indicate that the Ig-like domain of P0 from one 
membrane does not bind directly to the apposing membrane, but two rows of Ig-like domains are present in the 
extracellular compartment. This arrangement explains the double structure observed at the intraperiod line in 
high-resolution electron micrographs46. Full-length P0 from the raft fraction, purified with the protocol used in 
our experiments, contains lipids typical of raft microdomains, including cholesterol and sphingomyelin, as well as 
N-linked glycan structures belonging to hybrid types40. The glycan moieties present in P0 were in an earlier study 
suggested to play a role in the assembly of complex structures and different populations of P0 partitioning in and 
outside the raft microdomains of PNS myelin40. The latter suggestion stems from the varying glycan content of P0 
extracted from different myelin membrane subdomains.

From our data, it is not yet possible to observe atomic resolution details of dimerization. To understand P0 
assembly in myelin, the crystal structure of the P0 extracellular domain can be used. As discussed in the original 
publication12, the packing of the P0 Ig-like domain in the crystal state provides a potential dimerization scheme 
with one N-terminal β-strand of each apposing dimer forming an antiparallel β sheet (Fig. 7). In this assembly, the 
C terminus of each Ig domain monomer, near the start of the transmembrane helix, would directly face a mem-
brane surface. The single 26-residue transmembrane helix of P0 is predicted to be roughly 4.5 nm long, spanning 
a single lipid bilayer.

While P0 dimerizes through apposing Ig-like domain monomers, the adjacent dimers in the lateral dimension 
are separated from one another, forming a uniformly spaced, lattice-like structure. Therefore, the lateral archi-
tecture is likely to be achieved by other factors than the Ig-like domains alone, perhaps through contributions 
by P0ct on the cytoplasmic face. Our diffraction studies suggest that P0ct is capable of forming higher order 
structures with membranes, indicating stable molecular interactions (Fig. 7). One can speculate that the function 
of P0ct is twofold: Firstly, P0ct may affect the lateral organization of P0 molecules in a manner that spaces the Ig 

Figure 7.  Model for the ultrastructure of the intraperiod line. Potential arrangement of P0 in the intraperiod 
line and lipid bilayers. Antiparallel apposing Ig-like domains interact weakly with each other through a β-strand 
stretch (red dotted circle; based on crystal contacts in PDB ID 1neu12) and form the basis of membrane stacking 
in the extracellular space. This arrangement results in the C-terminal end of the crystal structure to face the 
membrane, which logically would continue into the subsequent transmembrane helix. Additionally, the size of 
the antiparallel dimer is similar to the width of the intraperiod line. While the lateral Ig-like domain monomers 
are not necessarily in close contact with one another, P0ct anchors onto the cytoplasmic phospholipid 
headgroups through electrostatic interactions, gaining folding and potentially forming a stable, ordered protein 
lattice within the membrane, which forces P0 molecules to adjacency, including the extracellular domains. 
Additionally, P0ct changes the phase transition properties of the lipid bilayer, potentially influencing the 
stiffness and stability of PNS compact myelin, given that P0ct is capable of changing the mechanical properties 
of membranes in its bilayer-bound state. The given lengths in brackets match the measured dimensions from the 
crystal structure, cryo-EM micrographs, and SAXD.
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domains on the extracellular side in a manner productive for membrane stacking. The formation of organized 
P0-rich areas could provide a strong enough interaction surface to keep the apposing bilayers together. This 
apposition would be primarily mediated by the orientation and even spacing of the Ig-like domains to allow the 
subsequent ‘zipper structure’; this arrangement of P0 could be affected by attractive and/or repulsive interac-
tions between P0ct moieties on the cytoplasmic leaflet. The details of such interactions remain to be determined. 
Secondly, P0ct influences the phase behaviour of the membrane itself by destabilizing the gel phase by lowering 
the Tm, potentially by directly associating with certain lipid species, including saturated lipid tails, cholesterol, 
and SM, which influence lipid behaviour that favours productive stacking and the stability of myelin. This could 
also contribute to the lateral organization of P0 and its interaction partners, such as PMP2229,30. Similarly to P0, 
mutations in PMP22, many of which are located in transmembrane helices, are hallmark features of CMT and 
DSS47. Changes in the properties and conformation of proteins inside the myelin membrane can have a significant 
impact on myelin morphology and disease etiology.

Our studies involving the folding of P0ct and P0ctpept suggest a strong influence of lipid electrostatics. While 
both display folding in the presence of negatively charged lipids, P0ctpept appears to gain a tilted orientation in 
the membrane upon charge neutralization. This neuritogenic segment of P0ct can directly interact with lipid 
headgroups and fold into a rigid segment, and as the cytoplasmic side of the lipid bilayer is negatively charged, 
P0ct could adopt a defined orientation within the membrane. Other positively charged regions of P0ct might 
function in a similar manner. The adoption of a specific orientation in a membrane would aid in the formation of 
higher-order structures, which in turn could alter the behaviour, morphology, and rigidity of the membrane per se 
–as exemplified by our EM results at high protein concentrations. In general, membrane curving has been linked 
to phenomena highly relevant to P0 behaviour observed here at the molecular level; these include the asymmetric 
insertion of proteins to membrane leaflets, as well as the oligomerization of protein monomers into structures 
stabilizing a curved membrane shape48.

The current study sheds light on the role of P0 at both the major dense line and the intraperiod line. If P0ct 
stabilizes the arrangement of P0 within a membrane, its importance for the integrity of myelin becomes obvious, 
and hints of potential molecular disease mechanisms arising from mutations within P0ct, many of which are spe-
cifically located within the neuritogenic helical sequence. The impact of these mutations has not yet been studied 
at the molecular level. Once the molecular basis of the disease mutations in P0ct has been solved, more functional 
aspects of P0ct will unravel, contributing to a better understanding of PNS compact myelin and its relation to 
CMT disease etiology.

Experimental Procedures
Cloning, protein expression, and Purification.  A synthetic gene encoding for the 69 C-terminal res-
idues (amino acids 151–219) of mature human myelin protein zero isoform 1 (UniProt ID: P25189) was trans-
ferred into the Gateway donor vector pDONR221 (Life Technologies). A tobacco etch virus (TEV) protease 
digestion site (ENLYFQG) was added before the gene, and the required attB1 and attB2 recombination sites 
before and after the gene, respectively. This entry clone was used to generate an expression clone in the pHMGWA 
vector49, which encodes for an N-terminal His6-tag, followed by a segment encoding for maltose-binding pro-
tein (MaBP), and finally followed by the inserted P0ct gene itself (His-MaBP-P0ct). A Cys153Leu mutation was 
included in the construct for two reasons: this cysteine is known to be palmitoylated in vivo, and free cysteines 
in small, disordered proteins are reactive and can easily result in unwanted intermolecular disulfides37. While 
the introduced Leu residue is not comparable to native palmitoylation, it does manifest as a bulky hydrophobic 
residue, whilst keeping the protein in a soluble state.

His-MaBP-P0ct was expressed in Escherichia coli BL21(DE3) using 0.4 mM IPTG induction for 3 hours in 
LB medium, at 37 °C. After expression, the cells were collected using centrifugation, broken by ultrasonication 
in Ni-NTA washing buffer (40 mM HEPES, 400 mM NaCl, 20 mM imidazole, pH 7.5) supplemented with an 
EDTA-free protease inhibitor cocktail (Roche). Purification was performed using Ni-NTA affinity chromatogra-
phy using standard procedures. Elution was performed using 32 mM HEPES, 320 mM NaCl, 500 mM imidazole, 
pH 7.5. The eluted protein was pre-dialyzed at 4 °C with constant stirring against 40 mM Tris-HCl, 400 mM NaCl, 
1 mM DTT, pH 8.5, before addition of recombinant TEV protease for His-MaBP tag removal50. Quantitative 
proteolysis was achieved by overnight dialysis, which resulted in cleaved P0ct with an additional N-terminal Gly 
residue. After this, sequential SEC using a HiLoad Superdex 75 pg 16/60 column (GE Healthcare) was used to 
separate the cleaved protein from any contaminants, TEV protease, and the cleaved tag, resulting in pure, mon-
odisperse P0ct. Depending on downstream application, either 20 mM HEPES, 300 mM NaCl, 1% (w/v) glycerol, 
pH 7.5 (SEC buffer) or 20 mM HEPES, 150 mM NaCl, pH 7.5 (HBS) was used as size-exclusion buffer.

Full length P0 was obtained from the raft fraction of bovine nerves as described40. The SDS extract was 
lyophilized until use. The protein was redissolved in water to regain the original buffer conditions and recon-
stituted into lipid membranes or other detergents through extensive dialysis. For EM imaging, control samples 
were taken from redissolved, non-reconsituted samples to control for the presence of putative membranes and 
multilayers from the original tissue source.

Mass spectrometry.  The identity and accurate molecular weight of P0ct were verified by mass spectrometry. 
In short, the undigested mass of P0ct was determined using ultra-performance liquid chromatography (UPLC) 
coupled electrospray ionization (ESI) time-of-flight mass spectrometry in positive ion mode using a Waters 
Acquity UPLC-coupled Synapt G2 mass analyzer with a Z-Spray ESI source. The identity of P0ct was determined 
using peptide fingerprinting as described earlier for MBP16.
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Multi-angle light scattering.  SEC-MALS was used to determine the monodispersity and molecular weight 
of P0ct in solution. Chromatography was performed using an Äkta Purifier (GE Healthcare) and a Superdex 75 pg 
10/300GL (GE Healthcare) column with 20 mM HEPES, 300 mM NaCl, pH 7.5 as mobile phase. A 250-µg P0ct 
sample was injected into the column at an isocratic flow of 0.4 ml/min, and light scattering recorded using a Wyatt 
miniDAWN TREOS instrument. The UV signal recorded at 280 nm was used as concentration source using the 
extinction coefficient of P0ct (Abs 0.1% = 1.061) calculated using ProtParam51. Data were analyzed using the 
ASTRA software (Wyatt).

Full length P0 was similarly run on SEC-MALS in the presence of different detergent micelles. The run-
ning buffer contained 250 mM sodium phosphate (pH 8.0), 1 mM EDTA, and 0.1% of either DPC or LDAO. A 
Superdex 200 column was used in the experiment. The protein conjugate analysis routine in the ASTRA software 
was used to obtain the molecular weight of P0 and the detergent in the separated peaks.

Small-angle X-ray scattering.  SAXS data for P0ct were collected from samples at 1.1–4.2 mg ml−1 in SEC 
buffer on the EMBL P12 beamline, DESY (Hamburg, Germany). Monomeric bovine serum albumin was used as 
a molecular weight standard. See Supplementary Table 1 for further details. Data were processed and analyzed 
using the ATSAS package52. GNOM was used to calculate distance distribution functions53, and ab initio model-
ling was performed using GASBOR54. Ensemble optimization analysis was performed using EOM55.

Vesicle preparation.  Cholesterol, DMPC, DMPG, DMPS, DOPC, DOPG and SM were purchased from 
Larodan Fine Chemicals AB (Malmö, Sweden). DMPE, DOPS and the deuterated d54-DMPC and d54-DMPG 
were purchased from Avanti Polar Lipids (Alabaster, Alabama, USA).

Lipid stocks were prepared by dissolving the dry lipids in chloroform or chloroform:methanol (1:1 v/v) at 
10 mg ml−1. All mixtures were prepared from the stocks at desired molar or mass ratios, followed by solvent evap-
oration under an N2 stream and freeze-drying for at least 4 h at −52 °C under vacuum. The dried lipids were either 
stored air-tight at −20 °C or used directly to prepare liposomes.

Liposomes were prepared by agitating dried lipids with either water or HBS at a concentration of 2–10 mg ml−1, 
followed by inverting at ambient temperature, to ensure that no unsuspended lipids remained in the vessel. MLVs 
were subjected to freeze-thawing using liquid N2 and a warm water bath, with vigorous vortexing afterwards. 
Such a cycle was performed 7 times. LUVs were prepared by passing fresh MLVs through a 0.1-µm membrane 11 
times on a 40 °C heat block. SUVs were prepared by sonicating fresh MLVs. Either probe tip sonicators (a Branson 
Model 450 and a Sonics & Materials Inc. Vibra-Cell VC-130) or a water bath sonicator with temperature control 
(UTR200, Hielscher, Germany) were used to clarify the liposome suspensions, while avoiding overheating. All 
lipid preparations were immediately used for the designated experiments.

Synchrotron radiation circular dichroism spectroscopy.  The synthetic P0ctpept peptide (NH2- 
ASKRGRQTPVLYAMLDHSRS-COOH) was ordered from GenScript as 5 mg lyophilized aliquots, which were 
dissolved directly in water. Folding predictions of P0ctpept were generated using PEP-FOLD56.

Full-length P0 was studied with SDS, LDAO, and DOPC:DOPS. For preparing P0 in detergents, the sample 
from purification was dialyzed against 10 mM sodium phosphate buffer (pH 8.0) containing either 0.1% SDS or 
0.1% LDAO. For reconstitution into lipids, DOPC:DOPS (1:1) were added to 1 mg/ml, and dialysis was carried 
out against 10 mM sodium phosphate buffer (pH 8.0).

Isotropic SRCD data were collected from 0.2–0.5 mg ml−1 protein and peptide samples in water on the 
UV-CD12 beamline at KARA (KIT, Karlsruhe, Germany)39 and the AU-CD beamline at ASTRID2 (ISA, Aarhus, 
Denmark). We used unbuffered conditions to exclude any unwanted effects, like the electrostatic binding of inor-
ganic phosphate to P0ct, which could interfere with protein binding to detergents and phospholipids. Samples 
containing lipids were prepared right before measurement by mixing P0ct (P/L ratio 1:200) or P0ctpept (P/L ratio 
1:25) with freshly sonicated SUVs, followed by degassing in a water bath sonicator at ambient temperature for 
5–10 min. 100-µm pathlength closed cylindrical cells (Suprasil, Hellma Analytics) were used for the measure-
ments. Spectra were recorded from 170 to 280 nm at 30 °C and truncated based on detector voltage levels as well 
as noise. After baseline subtraction, CD units were converted to Δε (M−1 cm−1), using P0 and P0ct concentration 
determined from absorbance at 280 nm, or by calculating from the stock concentration of the peptide. SDS and 
TFE were purchased from Sigma-Aldrich and the detergents LDAO, OG, DM, and DPC from Affymetrix. P0ct 
and P0ctpept were measured several times in the absence of additives, as well as with DOPC:DOPS (1:1) and 
DMPC:DMPG (1:1) and the observed spectra were deemed reproducible – the observed trends were always the 
same and the spectral maxima and minima were accurately present at their typically observed wavelengths.

OCD spectra were measured at the UV-CD12 beamline at KARA (KIT, Karlsruhe, Germany)39. 10 µg of P0ct 
was mixed with 200 µg DMPC or DMPC:DMPG (1:1) SUVs to yield 1:50 P/L samples in water, which were care-
fully dispensed on quartz glass plates (Suprasil QS, Hellma Optik GmbH, Jena, Germany) within a circular (∅ 
1.2 cm) area and allowed to dry at ambient temperature. A background sample without peptide was also prepared. 
The samples were assembled into humidifier chambers containing a saturated K2SO4 solution, and allowed to 
swell for 16 hours at 30 °C and over 97% relative humidity. After the swelling-induced formation of oriented lipid 
bilayers, the sample chambers were mounted on the beamline (swelled sample perpendicular to the incident 
beam) and allowed to equilibrate to the original 30 °C temperature and >97% relative humidity. Single-scan spec-
tra were recorded from 170 to 280 nm in 0.5 nm steps at sample rotation angles 0, 45, 90, 135, 180, 225, 270, 315°. 
The eight spectra were averaged and the lipid background spectrum was subtracted from the sample spectrum.

Differential scanning calorimetry.  P0ct was mixed with MLVs in HBS at several protein-to-lipid ratios 
(1:250–1:1000), always containing 160 µM of either DMPC, DMPC:DMPG (4:1), or DMPC:DMPG (1:1), in final 
volumes of 700 µl. Lipid samples without P0ct were prepared as controls. The samples were incubated at 37 °C for 
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10 min to ensure thorough protein association with the vesicles, and degassed for 10 min in vacuum with stirring 
at 10 °C before measurements.

DSC was performed using a MicroCal VP-DSC calorimeter with a cell volume of 527.4 µl. The reference 
cell was filled with HBS. Each sample was scanned from 10 to 50 °C and again back to 10 °C in 1 °C min−1 
increments. Baselines were subtracted from sample curves and zeroed between 15 and 20 °C to enable easier 
cross-comparison. All samples were prepared and measured twice, with the underlying trends being reproducible.

Surface plasmon resonance.  SPR was performed on a Biacore T200 system (GE Healthcare). According 
to the manufacturer’s instructions, 100-nm LUVs of 1 mM DMPC:DMPG (1:1) and 1 mM DOPC:DOPS (1:1) 
were immobilized on separate channels on an L1 sensor chip (GE Healthcare) in HBS, followed by the injection 
of P0ct. Chip regeneration was performed using a 2:3 (v:v) mixture of 2-propanol and 50 mM NaOH. The used 
P0ct concentrations were 20–2000 nM in HBS, and a single concentration per each lipid capture was studied; all 
samples were prepared and measured in duplicate. In each run, a single sample was measured twice to rule out 
instrumental deviation. The binding response as a function of protein concentration was plotted and fitted to the 
4-parameter model,
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to gain information about association affinity. For kinetic analyses, all association phases (180 s after injection 
of P0ct) were individually fitted to a one-phase exponential association model using GraphPad Prism 7. The 
determined kobs values were plotted against P0ct concentration and fitted using linear regression to determine kon 
(slope of the curve) and koff (Y-intercept of the curve). The values were extracted from two individually fitted data-
sets: one containing all data (Fitting set 1) as well as one omitting all data points below 350 nM P0ct (Fitting set 2).

Vesicle turbidimetry and X-ray diffraction.  For turbidimetric measurements, SUVs of 0.5 mM 
DOPC:DOPG (1:1) and DMPC:DMPG (1:1), both with and without supplemented 10% (w/w) cholesterol, were 
mixed with 0.5–10 µM P0ct in duplicate. Light scattering was recorded at 450 nm for 10 min at 25 °C using a Tecan 
M1000Pro plate reader. The results were analyzed after the observed optical density per time had stabilized.

SAXD experiments were performed to investigate any repetitive structures in turbid samples. 10 and 20 µM 
P0ct was mixed with SUVs of 1–3 mM DMPC:DMPG (1:1) in HBS at ambient temperature and exposed at 25 °C 
on the EMBL P12 BioSAXS beamline, DESY (Hamburg, Germany). A HBS buffer reference was subtracted from 
the data. Lipid samples without added P0ct were devoid of Bragg peaks. The peak positions of momentum trans-
fer, s, in P0ct-lipid samples were used to calculate mean real-space repeat distances, d, in proteolipid structures, 
using the equation

π
= = =

π θ
λ

.d
s

2 , where s 4 sin

Atomic force microscopy.  Fresh DOPC:DOPS (1:1) SUVs were unrolled on freshly cleaved mica (∅ 
1.2 cm) in HBS-Ca (10 mM HEPES, 150 mM NaCl, 2 mM CaCl2, pH 7.5), by covering the mica entirely with 
0.2 mg ml−1 SUVs, followed by a 20-min incubation at 30 °C, and washing twice with HBS-Ca.

The samples were imaged immediately in HBS at ambient temperature using an Asylum Research MFP-3D 
Bio instrument. TR800PSA cantilevers (Olympus; spring constant (k) range 0.59–0.68 N m−1, resonance fre-
quency 77 kHz) were used in alternative current (AC) mode. Square 256 × 256 pixel scans were acquired from 
areas between 5–20 µm, using a 90° scanning angle and a 0.6–0.8 Hz scan speed. The resulting scan images were 
processed in Igor Pro 6.37.

After confirming the presence of lipid bilayers, 1.8–10 µM P0ct was added onto the bilayer samples in HBS. 
After a 15-min incubation period at ambient temperature, the bilayers were washed twice with HBS, and imaged 
as above. For each protein concentration, 2 samples were prepared and scanned with identical results. At least 3 
different parts per sample were scanned to gain an insight into any sample heterogeneity.

Electron microscopy.  For negative stain EM, 740 µM DMPC:DMPG (1:1) SUVs were mixed with P0ct using 
protein-to-lipid ratios of 1:25, 1:50, 1:100, 1:200 and 1:500 and incubated at 22 °C for 1 h. EM grids with P0ct or 
full-length P0 samples were then prepared, stained, and imaged as described7,16.

For cryo-EM, full-length P0 (0.9 mg/ml) was reconstituted into lipid membranes, after dissolving the 
lyophilized protein extract in 10 mM sodium phosphate (pH 8.0), 0.4% DM. P0 was mixed with E. coli polar lipids 
or DOPC (both at 5 mg/ml in 2% DM) at lipid-to-protein ratio of 0.5 (w/w) and dialyzed against 10 mM sodium 
phosphate (pH 8.0) for 5 days at 37 °C. The total ternary mixture volume was 65 µl.

Approximately 3 µl of the P0 reconstituted into E.coli polar lipids (~0.65 mg ml−1) were applied onto 
glow-discharged Quantifoil holey carbon grids (R 1.2/1.3, R 2/2, or R3.5/1, Cu 400 mesh, Quantifoil Micro 
Tools GmbH, Germany). After 2-s blotting, grids were flash frozen in liquid ethane, using an FEI Vitrobot IV 
(Vitrobot, Maastricht Instruments) with the environmental chamber set at 90% humidity and a temperature 
of 20 °C. Samples were imaged with FEI Titan Krios TEM operated at 300 keV, and images were recorded using 
a Gatan K2-Summit direct electron detector. Images were collected manually in electron-counting mode at a 
nominal magnification of ×22,500 and a calibrated pixel size of 1.3 Å. Each image was dose-fractionated to 40 
frames (8 s in total, 0.2-s frames, dose rate 6-7 e−/pixel/s). Movie frames were aligned with MotionCorr57 and pre-
processed on the fly with 2dx_automator58. For image processing were used 20 drift-corrected cryo-EM images. 
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Particles were boxed and segmented using e2boxer.py in EMAN259. From all images more than 9000 overlapping, 
CTF-corrected, segments with size of 160 × 160 pixels (208 Å × 208 Å) were selected. 2D class averages of P0 
between lipid bilayers were calculated with SPRING software60.

Data Availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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Supplementary Fig. S1. The purity, monodispersity, and folding of P0ct. (a) SEC-MALS 

profile of P0ct displays a mostly monodisperse preparation, with a single major peak 

corresponding to P0ct when eluting from a Superdex 75 10/300GL column. The calculated 

mass (7.5 kDa) matches that of a P0ct monomer. SDS-PAGE analysis of the purity of P0ct 

fractionated with a Superdex 75 16/60 HiLoad SEC column is shown as inset. (b) P0ct gains 

significant secondary structure content in TFE, DPC and SDS, but not in LDAO or OG, as 

shown using CD spectroscopy. (c) The Kratky plot displays the highly elongated nature of 

P0ct. (d) The SRCD spectra of P0ct in DMPC:DMPG (1:1) display different degrees of 

folding at different P/L ratios, 1:200 producing the strongest signal. 

  



 

Supplementary Fig. S2. Kinetic analysis of SPR association data. The data (solid lines) of 

irreversible P0ct association with DOPC:DOPS (1:1) and DMPC:DMPG (1:1) (shown as 

panels a and b, respectively) vesicles fitted individually to an exponential one-phase binding 

model (dashed lines). (c) The derived kobs values plotted against P0ct concentration, with the 

DOPC:DOPS (1:1) and DMPC:DMPG (1:1) data fitted to linear functions (see 

Supplementary Table 2 for the extracted kon and koff values). (d) Same data but all data points 

below the critical binding concentration have been omitted, resulting in a better linear fit. 

  



 

Supplementary Fig. S3. SEC-MALS of P0 in LDAO. Analysis of full-length P0 

monodispersity and oligomeric state using SEC-MALS in LDAO. The Rayleigh ratio is 

shown (black) together with the total mass (gray dash), protein mass (red) and detergent mass 

for each peak (gray solid). 

  



Supplementary Table S1. SAXS parameters.  
 
Data collection parameters 
Instrument P12, PETRAIII, DESY 
Wavelength (nm) 0.124 
Angular range (nm-1) 0.027 - 4.801 
Exposure time (s) 0.045 
Concentration range (mg ml-1) 1.1 - 4.2 
Temperature (°C) 20 
Structural parameters 
I0 (relative) [from p(r)] 1882 
Rg (nm) [from p(r) ] 2.67 
I0 (relative) [from Guinier] 1892 
Rg (nm) [from Guinier] 2.46 
Rg (nm) [from EOM ensemble] 2.69 
Dmax (nm) [from GNOM] 11.06 
Dmax (nm) [from EOM ensemble] 8.03 
Molecular mass determination 
Molecular mass Mr (kDa) [from I0 using p(r)] 8.4 
Molecular mass Mr (kDa) [from I0 using Guinier] 8.4 
Theoretical Mr from sequence (kDa) 7.99 
 Software 
Primary data reduction PRIMUS 
Data processing PRIMUS 
Ab initio analysis GASBOR 
Conformational ensemble analysis EOM 
Validation and averaging PRIMUS 
Three-dimensional graphics representation PyMOL 
 EOM model parameters 
Conformer #1 
Rg (nm) 2.488 
Dmax (nm) 7.904 
Mass fraction 0.182 
Conformer #2 
Rg (nm) 2.867 
Dmax (nm) 8.264 
Mass fraction 0.182 
Conformer #3 
Rg (nm) 3.946 
Dmax (nm) 12.73 
Mass fraction 0.182 
Conformer #4 
Rg (nm) 2.068 
Dmax (nm) 6.14 
Mass fraction 0.364 
Conformer #5 
Rg (nm) 2.954 
Dmax (nm) 9.862 
Mass fraction 0.090 
Total mass fraction of main conformers 1.000 
  



Supplementary Table S2. Kinetic parameters derived from P0ct association phase with 

vesicles. 

Vesicle composition 
Fitting set 1a Fitting set 2a 

kon (nM-1 s-1)b × 105 koff (s-1)c × 102 R2 kon (nM-1 s-1)b × 105 koff (s-1)c × 102 R2 

DOPC:DOPS (1:1) 6.994 ± 0.1978 -0.4874 ± 0.1827 0.9812 7.873 ± 0.1629 -1.655 ± 0.1629 0.9940 

DMPC:DMPG (1:1) 5.657 ± 0.2326 -0.5059 ± 0.2148 0.9610 6.804 ± 0.1252 -2.042 ± 0.1468 0.9953 
a Fitting set 1 contains all data points from the linear fit, whereas all data points below 350 

nM were omitted from Fitting set 2. 
b Slope of the linear fit function to kobs(on) vs. [P0ct]. 
c Y-axis intercept of the linear fit function to kobs(on) vs. [P0ct] 
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Abstract 

The formation of a mature myelin sheath in the vertebrate nervous system requires specific 

protein membrane interactions. Several myelin-specific proteins are involved in the stacking 

of lipid membranes into multilayered structures around neuronal axons, and misregulation of 

these processes may contribute to chronic demyelinating diseases. Two key proteins 

functioning in myelin membrane binding and stacking are the myelin basic protein (MBP) 

and protein zero (P0). Other factors, including Ca2+, are important for the regulation of 

myelination. Here, we studied the effects of ionic strength and Ca2+ on the direct molecular 

membrane interactions of MBP and the cytoplasmic domain of P0 (P0ct). While both MBP 

and P0ct bound and aggregated negatively charged lipid vesicles, while simultaneously 

folding, both ionic strength and calcium had systematic effects on these interactions. 

Especially when decreasing membrane net negative charge, the level and kinetics of vesicle 

aggregation, which is a functional assay for myelin membrane stacking proteins, were 

affected by both salt and Ca2+. The results indicate that the effects on lipid membrane 

surfaces by ions can directly affect myelin protein-membrane interactions at the molecular 

level, in addition to signalling effects in myelinating glia. 
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Abstract 1 

The formation of a mature myelin sheath in the vertebrate nervous system requires specific protein-2 

membrane interactions. Several myelin-specific proteins are involved in the stacking of lipid membranes into 3 

multilayered structures around neuronal axons, and misregulation of these processes may contribute to 4 

chronic demyelinating diseases. Two key proteins functioning in myelin membrane binding and stacking are 5 

the myelin basic protein (MBP) and protein zero (P0). Other factors, including Ca2+, are important for the 6 

regulation of myelination. Here, we studied the effects of ionic strength and Ca2+ on the direct molecular 7 

membrane interactions of MBP and the cytoplasmic domain of P0 (P0ct). While both MBP and P0ct bound 8 

and aggregated negatively charged lipid vesicles, while simultaneously folding, both ionic strength and 9 

calcium had systematic effects on these interactions. Especially when decreasing membrane net negative 10 

charge, the level and kinetics of vesicle aggregation, which is a functional assay for myelin membrane-11 

stacking proteins, were affected by both salt and Ca2+. The results indicate that the effects on lipid membrane 12 

surfaces by ions can directly affect myelin protein-membrane interactions at the molecular level, in addition 13 

to signalling effects in myelinating glia. 14 

15 

Keywords 16 

Myelin basic protein; myelin protein zero; intrinsically disordered protein; protein folding; lipid binding; 17 

calcium; ionic strength 18 

19 

20 
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3 

Introduction 1 

Myelin contributes greatly to the efficiency of both the central and peripheral nervous system (CNS and PNS 2 

respectively) via axonal insulation and trophic support (1,2). Comprised of tightly stacked lipid membranes, 3 

held together by a specific assortment of proteins, compact myelin (CM) – a water-deficient structure – 4 

insulates selected axonal segments and enables fast saltatory nerve impulse conduction. While neuronal 5 

axons undergo frequent membrane depolarization, and [K+] and [Na+] vary upon action potential firing, the 6 

ionic conditions in myelinating glia remain fairly constant, with higher [K+] and [Na+] compared to neurons 7 

in general (3). 8 

In myelinating cells, [Ca2+] and [Zn2+] (1 mM and 50 µM, respectively) are relatively high compared to 9 

many other cell types (3,4). This signifies the importance of the underlying Ca2+ signalling (5–7); due to the 10 

narrow bilayer spacing and low water content in CM, intracellular divalent cations must be subjects of 11 

attractive and repulsive interactions. These involve negatively charged and zwitterionic phospholipid 12 

headgroups, as well as myelin proteins, which are often highly positively charged and directly participate in 13 

interactions with other proteins and lipids. Both Ca2+ and Zn2+ have been studied with respect to 14 

autoinflammatory diseases and pathogenesis (5,8–10), and intracellular Ca2+ levels and changes therein have 15 

been directly linked to the correct development of myelin (11–14). 16 

Myelin basic protein (MBP) plays a fundamental role in forming and maintaining stable myelin membrane 17 

stacks, defining the boundaries between CM and non-compact myelin (15–18). MBP is involved in multiple 18 

sclerosis (MS) (19–21), being an intrinsically disordered protein (IDP) that folds upon lipid binding-induced 19 

charge neutralization (16,22,23). MBP is highly positively charged and manifests as a pool of post-20 

translationally citrullinated variants with differing net charges (24). MBP requires negatively charged lipids 21 

for membrane adhesion, but correct myelin morphology is also dependent on the presence of other lipids and 22 

a controlled ionic content (14,16,25). MBP interacts with divalent cations (26–30), with the underlying 23 

mechanisms being very specific; one would expect electrostatic repulsion due to its unusually high positive 24 

net charge. MBP binds to calmodulin in a Ca2+-dependent manner (27,31–33), and the pool of different MBP 25 

isoforms has been shown to regulate oligodendroglial Ca2+ influx (34,35). Concentration-dependent binding 26 

of divalent cations to different MBP variants could, together with altered membrane compositions, influence 27 

their in vivo functions, having implications in MS etiology and the stability of CM (6,14,27,36). 28 

Myelin protein zero (P0) is a transmembrane protein in PNS myelin, with relevance in human peripheral 29 

neuropathies and animal models (37–39). It consists of an extracellular domain with an immunoglobulin-like 30 

fold (40), a single transmembrane helix, and a short cytoplasmic segment (P0ct) involved in the regulation of 31 

membrane fluidity (41). Similarly to MBP, P0ct is highly positively charged and directly interacts with 32 

phospholipids through electrostatics, gaining secondary structure in the process (41,42), which might make it 33 

susceptible to effects caused by cationic species. 34 
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4 

In this study, the effects of ionic strength and Ca2+ on the structural and functional properties of recombinant 1 

MBP and P0ct binding to lipid membranes were studied using different biophysical techniques. The results 2 

shed new light on the interplay between ions and proteins in CM and support the proposed role of Ca2+ as a 3 

regulator of the bilayer-MBP interaction (14,36,43). 4 

5 

6 
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5 

Experimental procedures 1 

Protein expression and purification 2 

Mouse MBP and human P0ct were expressed and purified as described (16,41). The final size-exclusion 3 

chromatography after affinity purification and tag removal was performed using Superdex75 16/60 HiLoad 4 

and Superdex75 increase 10/300GL columns (GE Healthcare) with 20 mM HEPES, 150 mM NaCl, pH 7.5 5 

(HBS) as mobile phase. When required, the buffer was exchanged to water by sequential dialysis. The 6 

purified proteins were either used fresh or snap-frozen in liquid N2 and stored at -80 °C for later use. 7 

Vesicle preparation 8 

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-9 

glycerol) (Na-salt) (DMPG), and the deuterated d54-DMPC, d54-DMPG, and d7-cholesterol were from Avanti 10 

Polar Lipids (Alabaster, Alabama, USA). The detergent n-dodecylphosphocholine (DPC) was from 11 

Affymetrix. 12 

Lipid stocks were prepared by dissolving the dry lipids in chloroform or chloroform:methanol (9:1 v/v) at 10 13 

– 30 mM. All mixtures were prepared from the stocks at desired molar ratios, followed by solvent14 

evaporation under an N2 stream and freeze-drying overnight at -52 °C under vacuum. The dried lipids were 15 

either stored air-tight at -20 °C or used fresh for liposome preparation. 16 

Liposomes were prepared by agitating dried lipids with either water or HBS at a concentration 10 – 15 mM, 17 

followed by gentle mixing at ambient temperature, to ensure that no unsuspended lipids remained in the 18 

vessel. MLVs were prepared by freeze-thawing using liquid N2 and a warm water bath, with vigorous 19 

vortexing afterwards. Such a cycle was performed 7 times. SUVs were prepared by sonicating fresh MLVs 20 

using a probe tip sonicator (Materials Inc. Vibra-Cell VC-130) until clear, while avoiding overheating. All 21 

lipid preparations were immediately used for experiments. 22 

Vesicle turbidimetry 23 

For turbidimetric measurements, samples containing 0.5 mM DMPC:DMPG (1:1) SUVs were prepared with 24 

2.5 µM P0ct or MBP in duplicate at 150 µl final volume on a Greiner 655161 96-well plate. Optical density 25 

at 450 nm was recorded immediately after thorough mixing at 25 °C using a Tecan Spark 20M plate reader. 26 

Synchrotron radiation circular dichroism spectroscopy 27 

SRCD data were collected from 0.1–0.4 mg ml-1 protein samples in water or 0.5% SDS on the AU-CD 28 

beamline at ASTRID2 (ISA, Aarhus, Denmark). Samples containing lipids were prepared immediately 29 

before measurement by mixing P0ct (P/L ratio 1:200) or MBP (P/L ratio 1:300) with freshly sonicated 30 

SUVs. 100-µm and 1-mm pathlength closed circular cells (Suprasil, Hellma Analytics) were used for the 31 
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measurements, and SRCD spectra were recorded from 170 to 280 nm at 30 °C and truncated based on 1 

detector voltage levels as well as noise. Baseline spectra were subtracted from sample spectra, and CD units 2 

were converted to Δε (M-1 cm-1) using CDtoolX (44). 3 

Stopped-flow SRCD 4 

Rapid kinetic SRCD data were collected using an SX-20 stopped-flow instrument (Applied Photophysics) 5 

mounted on the AU-AMO beamline at ASTRID2 (ISA, Aarhus, Denmark) at 30 °C. Acquisition of kinetic 6 

data comprised of 6–10 shots (160-µl total volume per shot) per sample. The two 1-ml syringes were loaded 7 

as follows: syringe 1 contained 0.1 mg/ml protein and syringe 2 a lipid solution (final molar P/L ratios of 8 

1:200 and 1:300 for P0ct and MBP, respectively). The contents per each shot were rapidly mixed (2 ms dead 9 

time) before injection into the measurement cell (2-mm pathlength). Change in CD signal (mdeg) was 10 

monitored at 195 nm for 5 s per shot. The successful overlaying shots were averaged into a single curve for 11 

each sample. All sample sets were prepared and measured in duplicate. Water baselines were subtracted from 12 

sample curves, and data were analyzed in GraphPad Prism 7 using single- and two-phase exponential decay 13 

functions to obtain rate constants. 14 

15 
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7 

Results 1 

In the current project, the folding and lipid membrane aggregation of MBP and P0ct were studied. Optical 2 

density measurements were used to observe the aggregation of lipid vesicles in the presence of proteins and 3 

different ionic species. The studies were expanded to different ratios of DMPC:DMPG, which affects the 4 

surface net charge of the SUVs. Using SRCD spectroscopy, the folding of the two proteins was probed, and 5 

time-resolved experiments provided data on membrane aggregation kinetics. 6 

The effect of ionic content on myelin protein-induced vesicle turbidity 7 

As a functional assay for MBP and P0ct, turbidimetric experiments on SUVs were carried out. In our earlier 8 

studies, we concluded that in the presence of MBP, net negatively charged lipid vesicles aggregate and 9 

subsequently form myelin-like bilayer stacks, resulting in sample turbidity (16). P0ct, on the other hand, can 10 

cause SUVs to undergo fusion events to produce large aggregated lipid bodies (41), which may cause 11 

additional sample turbidity. 12 

The turbidity induced by the proteins for 1:1, 4:1, and 9:1 DMPC:DMPG SUVs, at a 1:200 protein-to-lipid 13 

(P/L) ratio, was determined. The experiments were carried out at various concentrations of NaCl, NaF, and 14 

CaCl2. Since ionic species, especially multivalent cations, are known to induce lipid aggregation in the 15 

absence of proteins (45), control samples without proteins were included (Fig. 1). Protein-free sample 16 

turbidity was observed mostly in the presence of CaCl2, with more CaCl2 needed for induction, when the net 17 

charge of the lipids became more negative. The effect of monovalent ions as inducers of turbidity per se in 18 

protein-free samples was low. 19 

NaCl and NaF boosted the measured turbidity levels in all lipid mixtures at least to some extent. The 20 

turbidity induced by MBP was higher than that of P0ct, with the exception of DMPC:DMPG (9:1), in which 21 

P0ct was surprisingly more efficient than MBP. In the presence of either protein, the induced turbidity 22 

systematically increased with salt concentration DMPC:DMPG (1:1) (Fig. 1A). In DMPC:DMPG (4:1) and 23 

(9:1) the turbidity decreased above a certain ionic strength (Fig. 1B,C), indicating that the balance between 24 

ionic strength and the net charge of the lipids plays a role in protein-induced membrane aggregation. The 25 

turbidification of DMPC:DMPG (9:1) was completely abolished at ionic concentrations of 150 mM or 26 

above. In all three lipid mixtures, both proteins in the presence of NaCl and NaF produced roughly the same 27 

levels of turbidity, or at least the observed concentration-dependent trends were identical. This indicates that 28 

the choice of monovalent anion matters little in the level of induced turbidity. 29 

In order to follow the physiological concentration regime in myelinating glia, CaCl2 was included at much 30 

lower concentration than NaCl and NaF, but the increased turbidity was still observed. CaCl2 alone was able 31 

to induce lipid turbidity in the absence of protein; the levels varied as a function of concentration. Calcium-32 

induced turbidity showed differences between the three DMPC:DMPG ratios: the turbidification of 33 
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8 

DMPC:DMPG (1:1) vesicles was more resistant to increased CaCl2 concentration than 4:1 and 9:1 mixtures 1 

(Fig. 1). 2 

CaCl2 changed the turbidity induced by MBP and P0ct, depending on the membrane composition. In 3 

DMPC:DMPG (1:1), turbidity was higher than in the other two lipid mixtures, being at a similar level to that 4 

induced by the presence of salt (Fig. 1A). DMPC:DMPG (9:1) showed the least turbidity, and high calcium 5 

concentrations brought OD to the baseline level (Fig. 1C). Interestingly, in DMPC:DMPG (4:1), the presence 6 

of 0.5 mM and 1 mM CaCl2 showed a great difference in turbidity in the absence of proteins, but when 7 

proteins were included the turbidity levels were almost identical, indicating that the proteins could override 8 

the aggregating effect of CaCl2 at moderate concentrations (Fig. 1B). Increasing CaCl2 to 1.5 mM diminished 9 

the turbidity induced by MBP or P0ct in all membrane compositions. Taking all these results together, it is 10 

evident that while salt can influence the interactions between proteins and lipids, and protein-decorated 11 

vesicles with each other, the effect of Ca2+ with phospholipid headgroups is rather specific. Even small 12 

changes in divalent cation levels, in the range 0.5-1.5 mM, can alter the protein-lipid interactions required for 13 

vesicle aggregation and fusion, given that negatively charged lipid species do not dominate in abundance 14 

over neutral/zwitterionic lipids. 15 

Folding of lipid-bound MBP and P0ct 16 

We observed lipid-induced increase in secondary structure content for both MBP and P0ct in our earlier 17 

studies, in the absence of salt (16,41). To investigate the effect of ionic strength and divalent cations on 18 

protein folding, SRCD was carried out with 150 mM NaF and 1 mM CaCl2. NaF was used due to the high 19 

UV absorbance of Cl-. NaF had a very similar concentration-dependent behavior to NaCl in turbidimetric 20 

studies (Fig. 1). 21 

NaF and CaCl2 had no effect on MBP or P0ct overall folding in water and 0.5% SDS (Supplementary Fig. 22 

S1). The SRCD spectra acquired for proteins in the presence lipids often suffer from turbidity-induced light 23 

scattering, here, especially at 1:1 and 4:1 DMPC:DMPG ratios in the presence of CaCl2 (Fig. 2A,B). Under 24 

such conditions, the positions of the spectral peaks can be used to detect the presence of secondary structure. 25 

The observed changes in conformation correspond well to the turbidimetry assays under the same conditions, 26 

whereby the negative peak in SRCD at 200 nm is indicative of unfolded structure and possibly lack of 27 

membrane binding. 28 

Without additives, MBP reached a similar secondary structure content in all lipid compositions (Fig. 2). In 29 

DMPC:DMPG (9:1), the presence of NaF or CaCl2 decreased MBP helical content, potentially indicating 30 

less binding to lipids (Fig. 2C). Also P0ct obtained secondary structure in lipid mixtures, and the decrease of 31 

membrane negative charge (DMPG) correlated with the loss of P0ct helical structure - as seen through the 32 

movement of the main spectral minimum towards 200 nm (Fig. 2). NaF had a small unfolding effect on the 33 

P0ct secondary structure with all lipid mixtures. 34 
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9 

The kinetics of initial vesicle nucleation 1 

To visualize the underlying kinetics involved in MBP and P0ct binding to lipid vesicles, stopped flow 2 

measurements were carried out using an SRCD setup. The original goal was to study the folding kinetics of 3 

MBP and P0ct when encountering lipid membranes, but initial measurements and optimization attempts 4 

revealed that the proteins gained their folding completely within the dead time of the instrument (~2 ms), 5 

which made the underlying kinetics practically impossible to follow. 6 

Despite the setback with protein folding kinetics, a strong decay in SRCD signal was observed within a 5-10 7 

s measurement window (before the onset of induced photodegradation; data not shown), when proteins were 8 

mixed with lipids in the presence of 150 mM NaF or 1 mM CaCl2 (Fig. 3A). This resembled exponential 9 

decay and could be described with two potentially independent rate constants (Supplementary Table 1). 10 

Since we observed similar behaviour in the absence of proteins (Supplementary Fig. S2, Supplementary 11 

Table 1), the effect does not stem from changes in protein folding. Considering the wavelength of the used 12 

monochromatic beam (195 nm), which is in the size range of large vesicular lipid bodies, and the strength of 13 

the decay (spanning tens of mdeg), the effect is caused by light scattering from initial vesicle fusion and/or 14 

aggregation, especially since the lipid mixtures and ionic conditions correlate with the observed steady states 15 

in turbidimetry (Fig. 1). 16 

While lipids mixed with CaCl2 alone produced quite noisy data with individual shots and replicates not 17 

overlaying very well, all protein samples had excellent reproducibility both in terms of shot quality and 18 

between replicates, which is evident from the small standard deviations. The data could be fitted with 19 

confidence, and in most cases, two rate constants were obtained: k1, which describes a fast event (> 2 s-1), 20 

and k2, for a slower event (< 1 s-1). The obtained rate constants in the presence of proteins vary between the 21 

three different lipid compositions (Fig. 3B). The accuracy of k2 is rather low, given the limited time window 22 

used in the experiments. 23 

In the absence of proteins, the turbidity kinetics induced by Ca2+ were similar in DMPC:DMPG (4:1) and 24 

(9:1), and clearly slower in DMPC:DMPG (1:1) (Supplementary Fig. S2, Supplementary Table 1), 25 

suggesting that electrostatic repulsion plays a role in the observed effect. Considering the fact that the two 26 

less charged lipid compositions aggregate with roughly the same rate, the latter effect is more likely to occur 27 

due to saturation of the surface with Ca2+, although more experiments are required to fully understand the 28 

mechanism. It should be noted that the concentration of CaCl2 in these experiments was 1 mM, while the 29 

total concentration of negative headgroups in the lipid mixtures was either 0.25, 0.1, or 0.05 mM. It appears 30 

that the membranes with less charge are fully neutralized, while the neutralization might be partial for the 1:1 31 

mixture. 32 
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10 

In protein-lipid samples, in the presence of NaF and CaCl2, DMPC:DMPG (1:1) presents a higher k1 value 1 

than the other two lipid compositions. The effects of the two salts on k1 on turbidity increase with the molar 2 

percentage of DMPG (Fig. 3B, Supplementary Table 1). 3 

Interestingly, in DMPC:DMPG (9:1), the aggregation effect was dominated by the 1 mM CaCl2 over proteins 4 

(Supplementary Table 1); this correlates with the steady-state turbidity under the same condition (Fig. 1C). 5 

The rate constants are similar regardless of the presence of protein, indicating that the aggregation behaviour 6 

under this condition is governed by the cation. On the other hand, 150 mM NaF inhibits aggregation of 7 

DMPC:DMPG (9:1) vesicles (Fig. 1C, Supplementary Table 1), and in salt-free conditions, the proteins 8 

display aggregation, which was not the case for the other two vesicle compositions (Fig. 3A). Taken 9 

together, the kinetics measurements correlate well with the results from turbidimetry, providing further 10 

insights into determinants of membrane binding and stacking. 11 

12 

13 
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11 

Discussion 1 

Myelination requires a delicate balance between myelin protein expression, protein-membrane interactions, 2 

and additional regulatory factors, such as calcium (6,13). Both MBP and P0ct are IDPs in aqueous solution, 3 

but upon binding to lipid membranes, they fold into helical structures, at the same time altering the physical 4 

properties of the membrane (16,18,23,33,41). The salt sensitivity of the protein-membrane interactions 5 

supports the role of electrostatic interactions in these processes, and the effects of calcium on the molecular 6 

interactions are reflective of more specific mechanisms of regulation. 7 

Phospholipid vesicle aggregation was followed using optical density methods as well as SRCD to see how 8 

salt content and Ca2+ influence the activity and folding of MBP and P0ct. Our results show that while vesicle 9 

turbidity increases with ionic strength, both in the steady state and in initial kinetics, the effect of salt varies 10 

with membrane surface net charge. Considering the combination of ionic strength and membrane charge, it 11 

seems clear that high salt concentrations effectively screen the protein-membrane interactions, while lower 12 

concentrations, in fact, have an inducing effect. The results are in line with earlier data on extractability of 13 

MBP from myelin and myelin swelling under different conditions (46–48). 14 

The effects of calcium are likely to be more specific than the electrostatic competition caused by near-15 

physiological ionic strength per se. Ca2+ alone induces spontaneous vesicle turbidity, showing that it affects 16 

the surface properties of the membrane. Calcium influences both the steady-state levels and the kinetics of 17 

MBP- and P0ct-mediated vesicle aggregation. The binding of divalent cations by MBP has been observed in 18 

earlier studies (26,28,29), and calcium is known to affect both MBP solubility in purified myelin as well as 19 

myelin membrane spacing (48,49). It, thus, appears that calcium might be able to affect the surface of both 20 

the protein and the membrane in a manner that can regulate the direct molecular interaction. 21 

A new SRCD-based time-resolved technique was used to follow the kinetics of vesicle aggregation by MBP 22 

and P0ct, as well as by Ca2+ alone. While it is at the moment unclear what the rate constants actually 23 

represent, some conditions are physiologically relevant, and the observed differences in kinetics may be 24 

relevant to myelin membrane stacking. Considering the k1 values alone, P0ct is faster than MBP at inducing 25 

turbidity. The difference could arise from the smaller size of P0ct, which potentially both tumbles in solution 26 

faster than MBP and folds/neutralizes more easily upon membrane interaction. Due to its larger size, MBP 27 

will experience more steric and repulsive effects from protein molecules already bound to the membrane. 28 

The smaller P0ct may possess higher accessibility to the vesicle surface. 29 

Several studies have highlighted calcium as a major regulator of proper myelination (5,6,11,12,36,50), and in 30 

addition to being crucial for signalling and cellular homeostasis, it has been suggested to directly affect 31 

MBP-membrane interactions (14,36,48). Phosphoinositides are important constituents of the myelin 32 

membrane, involved in MBP-membrane interactions regulated by Ca2+(36). Various mechanisms have been 33 

proposed for the effects of calcium on myelin structure and formation; these include activation of calpains, 34 
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possibly degrading MBP, the involvement of calmodulin, signalling pathways, cytoskeletal events, as well as 1 

effects on protein-lipid interactions (6,11–14,36). 2 

It was proposed that a "sweet spot" concentration of calcium exists during myelination, which promotes 3 

normal myelin formation (13). Deviations from this range might be relevant for dys/demyelination. In fact, 4 

similar effects have been observed in early studies on MBP extraction from nerve tissue (43,48). Here, 5 

concentrations around the physiological [Ca2+] were used to follow myelin protein-membrane interactions, 6 

and indeed, concentration dependence around 1 mM [Ca2+] is evident. Together with the membrane surface 7 

charge, calcium may either promote or inhibit lipid membrane stacking induced by myelin proteins. The 8 

obvious next steps would involve studies on the effects of calcium on myelin protein-membrane interactions 9 

in more physiological lipid compositions corresponding to the myelin cytoplasmic leaflet; the experiments 10 

here using simplified lipid mixtures pave the way for these studies. 11 

MBP and P0 are not related by sequence; however, as shown by us and others, the physicochemical 12 

properties of MBP and the P0 cytoplasmic domain are very similar (16,18,23,33,41,42). Both bind to 13 

membrane surfaces through electrostatic interactions, get embedded and fold, and affect properties of the 14 

lipid bilayer. Functional similarity is also true considering the effects of ionic strength and calcium studied 15 

here. In addition, other myelin proteins, such as P2 in the PNS and PLP in the CNS (51–54), have likely 16 

roles in membrane stacking and will have to work in synergy with MBP and P0 during myelination. Our 17 

observations point towards common regulatory mechanisms for the function of different myelin proteins in 18 

membrane stacking during myelin maturation and maintenance. 19 

20 
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Figure legends 1 

Fig. 1. Vesicle turbidimetry. MBP (red) and P0ct (blue)-induced turbidity was studied in (A) 1:1, (B) 4:1, 2 

and (C) 9:1 DMPC:DMPG vesicles under different salt conditions. Each condition in the absence of protein 3 

is shown for reference (gray). Error bars represent standard deviation. 4 

Fig. 2. Lipid-induced protein folding in the presence of salt and divalent cations. SRCD experiments reveal 5 

differences in the folding of MBP and P0ct in different lipid compositions. Trace explanations: no additive 6 

(green); 150 mM NaF (blue); 1 mM CaCl2 (red). Protein controls without additives or lipids in water (black) 7 

are plotted for reference in each panel. 8 

Fig. 3. Rapid kinetics of protein-induced lipid turbidity. A. The SRCD signal at 195 nm was monitored for 5 9 

s using stopped-flow measurements. Proteins were mixed with lipids in the absence (green) and presence of 10 

150 mM NaF (blue) and 1 mM CaCl2 (red). Error bars represent standard deviation. Fits (dashed black) are 11 

shown where data fitting was successful. B. Comparison of kinetic parameters. Evolution of the determined 12 

rate constants (k1, solid markers; k2, open markers) as a function of DMPC:DMPG molar ratio in 150 mM 13 

NaF (black) and 1 mM CaCl2 (red). The values for MBP and P0ct are shown as circles and squares, 14 

respectively. Error bars represent standard deviation. See Supplementary Table 1 for all rate constants. 15 

16 

17 

18 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/529586doi: bioRxiv preprint first posted online Jan. 24, 2019; 



15 

References 1 

1. Hartline DK. What is myelin? Neuron Glia Biol (2008) 4, 153-163. 2 
2. Nave KA. Myelination and the trophic support of long axons. Nat Rev Neurosci (2010) 11, 275-283. 3 
3. Stys PK, Lehning E, Saubermann AJ, LoPachin RM. Intracellular concentrations of major ions in rat myelinated 4 

axons and glia: calculations based on electron probe X-ray microanalyses. J Neurochem (1997) 68, 1920-1928. 5 
4. Bourre JM, Cloez I, Galliot M, Buisine A, Dumont O, Piciotti M, et al. Occurrence of manganese, copper and 6 

zinc in myelin. Alterations in the peripheral nervous system of dysmyelinating trembler mutant are at variance 7 
with brain mutants (quaking and shiverer). Neurochem Int (1987) 10, 281-286. 8 

5. Blank WF, Bunge MB, Bunge RP. The sensitivity of the myelin sheath, particularly the Schwann cell-axolemmal 9 
junction, to lowered calcium levels in cultured sensory ganglia. Brain Res (1974) 67, 503-518. 10 

6. Friess M, Hammann J, Unichenko P, Luhmann HJ, White R, Kirischuk S. Intracellular ion signaling influences 11 
myelin basic protein synthesis in oligodendrocyte precursor cells. Cell Calcium (2016) 60, 322-330. 12 

7. Haak LL, Grimaldi M, Russell JT. Mitochondria in myelinating cells: calcium signaling in oligodendrocyte 13 
precursor cells. Cell Calcium (2000) 28, 297-306. 14 

8. Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. 15 
Autoimmun Rev (2015) 14, 277-285. 16 

9. Choi BY, Jung JW, Suh SW. The Emerging Role of Zinc in the Pathogenesis of Multiple Sclerosis. Int J Mol Sci 17 
(2017) 18,  18 

10. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, et al. NMDA receptors mediate calcium19 
accumulation in myelin during chemical ischaemia. Nature (2006) 439, 988-992. 20 

11. Baraban M, Koudelka S, Lyons DA. Ca 2+ activity signatures of myelin sheath formation and growth in vivo. Nat21 
Neurosci (2018) 21, 19-23. 22 

12. Krasnow AM, Ford MC, Valdivia LE, Wilson SW, Attwell D. Regulation of developing myelin sheath23 
elongation by oligodendrocyte calcium transients in vivo. Nat Neurosci (2018) 21, 24-28. 24 

13. Miller RH. Calcium control of myelin sheath growth. Nat Neurosci (2018) 21, 2-3.25 
14. Weil MT, Möbius W, Winkler A, Ruhwedel T, Wrzos C, Romanelli E, et al. Loss of Myelin Basic Protein26 

Function Triggers Myelin Breakdown in Models of Demyelinating Diseases. Cell Rep (2016) 16, 314-322. 27 
15. Aggarwal S, Snaidero N, Pähler G, Frey S, Sánchez P, Zweckstetter M, et al. Myelin membrane assembly is28 

driven by a phase transition of myelin basic proteins into a cohesive protein meshwork. PLoS Biol (2013) 11, 29 
e1001577. 30 

16. Raasakka A, Ruskamo S, Kowal J, Barker R, Baumann A, Martel A, et al. Membrane Association Landscape of31 
Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Sci Rep (2017) 7, 4974. 32 

17. Snaidero N, Velte C, Myllykoski M, Raasakka A, Ignatev A, Werner HB, et al. Antagonistic Functions of MBP33 
and CNP Establish Cytosolic Channels in CNS Myelin. Cell Rep (2017) 18, 314-323. 34 

18. Vassall KA, Bamm VV, Harauz G. MyelStones: the executive roles of myelin basic protein in myelin assembly35 
and destabilization in multiple sclerosis. Biochem J (2015) 472, 17-32. 36 

19. Li Y, Huang Y, Lue J, Quandt JA, Martin R, Mariuzza RA. Structure of a human autoimmune TCR bound to a37 
myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J (2005) 24, 38 
2968-2979. 39 

20. Sospedra M, Martin R. Immunology of Multiple Sclerosis. Semin Neurol (2016) 36, 115-127.40 
21. Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system.41 

Cell (1996) 85, 299-302. 42 
22. Mendz GL, Miller DJ, Ralston GB. Interactions of myelin basic protein with palmitoyllysophosphatidylcholine:43 

characterization of the complexes and conformations of the protein. Eur Biophys J (1995) 24, 39-53. 44 
23. Polverini E, Fasano A, Zito F, Riccio P, Cavatorta P. Conformation of bovine myelin basic protein purified with45 

bound lipids. Eur Biophys J (1999) 28, 351-355. 46 
24. Harauz G, Musse AA. A tale of two citrullines--structural and functional aspects of myelin basic protein47 

deimination in health and disease. Neurochem Res (2007) 32, 137-158. 48 
25. Widder K, Träger J, Kerth A, Harauz G, Hinderberger D. Interaction of Myelin Basic Protein with Myelin-like49 

Lipid Monolayers at Air-Water Interface. Langmuir (2018) 34, 6095-6108. 50 
26. Baran C, Smith GS, Bamm VV, Harauz G, Lee JS. Divalent cations induce a compaction of intrinsically51 

disordered myelin basic protein. Biochem Biophys Res Commun (2010) 391, 224-229. 52 
27. Majava V, Wang C, Myllykoski M, Kangas SM, Kang SU, Hayashi N, et al. Structural analysis of the complex53 

between calmodulin and full-length myelin basic protein, an intrinsically disordered molecule. Amino Acids 54 
(2010) 39, 59-71. 55 

28. Riccio P, Giovannelli S, Bobba A, Romito E, Fasano A, Bleve-Zacheo T, et al. Specificity of zinc binding to56 
myelin basic protein. Neurochem Res (1995) 20, 1107-1113. 57 

29. Smith GS, Chen L, Bamm VV, Dutcher JR, Harauz G. The interaction of zinc with membrane-associated 18.558 
kDa myelin basic protein: an attenuated total reflectance-Fourier transform infrared spectroscopic study. Amino 59 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/529586doi: bioRxiv preprint first posted online Jan. 24, 2019; 



16 

Acids (2010) 39, 739-750. 1 
30. Tsang D, Tsang YS, Ho WK, Wong RN. Myelin basic protein is a zinc-binding protein in brain: possible role in2 

myelin compaction. Neurochem Res (1997) 22, 811-819. 3 
31. Chan KF, Robb ND, Chen WH. Myelin basic protein: interaction with calmodulin and gangliosides. J Neurosci4 

Res (1990) 25, 535-544. 5 
32. Libich DS, Hill CM, Haines JD, Harauz G. Myelin basic protein has multiple calmodulin-binding sites. Biochem6 

Biophys Res Commun (2003) 308, 313-319. 7 
33. Wang C, Neugebauer U, Bürck J, Myllykoski M, Baumgärtel P, Popp J, et al. Charge isomers of myelin basic8 

protein: structure and interactions with membranes, nucleotide analogues, and calmodulin. PLoS One (2011) 6, 9 
e19915. 10 

34. Paez PM, Spreuer V, Handley V, Feng JM, Campagnoni C, Campagnoni AT. Increased expression of golli11 
myelin basic proteins enhances calcium influx into oligodendroglial cells. J Neurosci (2007) 27, 12690-12699. 12 

35. Smith GS, Paez PM, Spreuer V, Campagnoni CW, Boggs JM, Campagnoni AT, et al. Classical 18.5-and 21.5-13 
kDa isoforms of myelin basic protein inhibit calcium influx into oligodendroglial cells, in contrast to golli 14 
isoforms. J Neurosci Res (2011) 89, 467-480. 15 

36. Nawaz S, Kippert A, Saab AS, Werner HB, Lang T, Nave KA, et al. Phosphatidylinositol 4,5-bisphosphate-16 
dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid 17 
perturbation by elevated calcium. J Neurosci (2009) 29, 4794-4807. 18 

37. de Sèze J, Kremer L, Alves do Rego C, Taleb O, Lam D, Beiano W, et al. Chronic inflammatory demyelinating19 
polyradiculoneuropathy: A new animal model for new therapeutic targets. Rev Neurol (Paris) (2016) 172, 767-20 
769. 21 

38. Mandich P, Fossa P, Capponi S, Geroldi A, Acquaviva M, Gulli R, et al. Clinical features and molecular22 
modelling of novel MPZ mutations in demyelinating and axonal neuropathies. Eur J Hum Genet (2009) 17, 23 
1129-1134. 24 

39. Shy ME, Jáni A, Krajewski K, Grandis M, Lewis RA, Li J, et al. Phenotypic clustering in MPZ mutations. Brain25 
(2004) 127, 371-384. 26 

40. Shapiro L, Doyle JP, Hensley P, Colman DR, Hendrickson WA. Crystal structure of the extracellular domain27 
from P0, the major structural protein of peripheral nerve myelin. Neuron (1996) 17, 435-449. 28 

41. Raasakka A, Ruskamo S, Kowal J, Han H, Baumann A, Myllykoski M, et al. Molecular structure and function of29 
myelin protein P0 in membrane stacking. Sci Rep (2019) 9, 642. 30 

42. Luo X, Sharma D, Inouye H, Lee D, Avila RL, Salmona M, et al. Cytoplasmic domain of human myelin protein31 
zero likely folded as beta-structure in compact myelin. Biophys J (2007) 92, 1585-1597. 32 

43. Glynn P, Chantry A, Groome N, Cuzner ML. Basic protein dissociating from myelin membranes at physiological33 
ionic strength and pH is cleaved into three major fragments. J Neurochem (1987) 48, 752-759. 34 

44. Miles AJ, Wallace BA. CDtoolX, a downloadable software package for processing and analyses of circular35 
dichroism spectroscopic data. Protein Sci (2018) 27, 1717-1722. 36 

45. Ohki S, Düzgüneş N, Leonards K. Phospholipid vesicle aggregation: effect of monovalent and divalent ions.37 
Biochemistry (1982) 21, 2127-2133. 38 

46. Caspar DL, Melchior V, Hollingshead CJ, Kirschner DA. Dynamics of myelin membrane contacts. Soc Gen39 
Physiol Ser (1980) 34, 195-211. 40 

47. Hollingshead CJ, Caspar DL, Melchior V, Kirschner DA. Compaction and particle segregation in myelin41 
membrane arrays. J Cell Biol (1981) 89, 631-644. 42 

48. Johnson D, Toms R, Weiner H. Studies on myelin breakdown in vitro. In: Kim SU, ed. Myelination and43 
demyelination - Implications for multiple sclerosis. Springer (1989). 219-236. 44 

49. Padrón R, Mateu L, Kirschner DA. X-ray diffraction study of the kinetics of myelin lattice swelling. Effect of45 
divalent cations. Biophys J (1979) 28, 231-239. 46 

50. Cheli VT, Santiago González DA, Namgyal Lama T, Spreuer V, Handley V, Murphy GG, et al. Conditional47 
Deletion of the L-Type Calcium Channel Cav1.2 in Oligodendrocyte Progenitor Cells Affects Postnatal 48 
Myelination in Mice. J Neurosci (2016) 36, 10853-10869. 49 

51. Palaniyar N, Semotok JL, Wood DD, Moscarello MA, Harauz G. Human proteolipid protein (PLP) mediates50 
winding and adhesion of phospholipid membranes but prevents their fusion. Biochim Biophys Acta (1998) 1415, 51 
85-100.52 

52. Ruskamo S, Yadav RP, Sharma S, Lehtimäki M, Laulumaa S, Aggarwal S, et al. Atomic resolution view into the53 
structure-function relationships of the human myelin peripheral membrane protein P2. Acta Crystallogr D Biol 54 
Crystallogr (2014) 70, 165-176. 55 

53. Ruskamo S, Nieminen T, Kristiansen CK, Vatne GH, Baumann A, Hallin EI, et al. Molecular mechanisms of56 
Charcot-Marie-Tooth neuropathy linked to mutations in human myelin protein P2. Sci Rep (2017) 7, 6510. 57 

54. Sinoway MP, Kitagawa K, Timsit S, Hashim GA, Colman DR. Proteolipid protein interactions in transfectants:58 
implications for myelin assembly. J Neurosci Res (1994) 37, 551-562. 59 

60 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/529586doi: bioRxiv preprint first posted online Jan. 24, 2019; 



Fig.1 



 

 

Fig. 2  



 

 

Fig. 3





Supplementary information 

Supplementary Fig. S1. SRCD control experiments. The folding of MBP and P0ct in the 

absence (top) and presence (bottom) of 0.5% SDS as determined by SRCD spectroscopy. No 

additive (green); 150 mM NaF (blue); 1 mM CaCl2 (red). Protein controls without additives 

or detergents in water (black) are plotted for reference in each panel. 



 

 

 

 

Supplementary Fig. S2. Rapid kinetics of Ca2+-induced initial lipid turbidity. Evolution 

of the SRCD signal at 195 nm was monitored for 5 s using stopped flow measurements. For 

clarity, linear (top) and logarithmic (bottom) time scales are shown. Ca2+ was mixed at a final 

concentration of 1 mM with 2.5 mM DMPC:DMPG 1:1 (green), 4:1 (blue), and 9:1 (red) 

molar lipid ratios. Error bars represent standard deviation. Fits (dashed black) are shown; see 

Supplementary Table 1 for rate constants. 

 

  



Supplementary Table 1. Two-phase exponential decay rate order parameters from 

rapid kinetics SRCD experiments. Values marked with a dash could not be fitted, as the CD 

signal decayed very little, if at all, within the measurement time window. All errors represent 

standard deviation.  

Protein DMP

C:DM

PG 

ratio 

No additive 150 mM NaF 1 mM CaCl2 

k1 (s
-1) k2 (s

-1) k1/k2 R2 k1 (s
-1) k2 (s

-1) k1/k2 R2 k1 (s
-1) k2 (s

-1) k1/k2 R2 

No 

protein 

1:1 - - - - - - - - 0.29 ± 

0.04a 

- - 0.625

0a 

4:1 - - - - - - - - 3.23 ± 1.38 0.20 ± 

0.03 

15.89 ± 

5.09 

0.929

1 

9:1 - - - - - - - - 4.20 ± 0.78 0.39 ± 

0.03 

10.89 ± 

1.56 

0.956

4 

MBP 1:1 - - - - 10.59 ± 

0.29 

0.73 ± 

0.02 

14.55 ± 

0.37 

0.98

00 

11.65 ± 

0.26b 

0.76 ± 

0.01b 

15.23 ± 

0.30 

0.987

8b 

4:1 - - - - 7.95 ± 

0.24 

0.93 ± 

0.02 

8.59 ± 

0.20 

0.98

68 

6.84 ± 0.17 0.27 ± 

0.01 

25.34 ± 

0.62 

0.993

4 

9:1 8.52 ± 

0.25 

0.56 ± 

0.01 

15.13 ± 

0.36 

0.99

27 

2.53 ± 

0.46 

0.54 ± 

0.09 

4.68 ± 

0.41 

0.93

76 

5.24 ± 0.11 0.58 ± 

0.02 

9.04 ± 

0.18 

0.992

4 

P0ct 1:1 - - - - 20.14 ± 

0.25 

1.12 ± 

0.01 

17.96 ± 

0.22 

0.99

34 

18.77 ± 

0.36 

0.67 ± 

0.01 

27.95 ± 

0.61 

0.983

7 

4:1 - - - - 14.03 ± 

0.36 

1.58 ± 

0.03 

8.89 ± 

0.18 

0.98

93 

8.30 ± 0.16 0.57 ± 

0.01 

14.50 ± 

0.23 

0.995

4 

9:1 7.79 ± 

0.61 

0.53 ± 

0.01 

14.59 ± 

0.97 

0.97

85 

- - - - 6.03 ± 0.09 0.57 ± 

0.01 

10.57 ± 

0.13 

0.996

3 

a Data fit best into one-phase exponential decay function, but the change in SRCD signal 

overall is very small. 

b Dataset is visibly more complicated that what can be described with two rate constants. 
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ARTICLE IV 

 

Neuropathy-related mutations alter the membrane binding properties of the 

human myelin protein P0 cytoplasmic tail. 

Raasakka A., Ruskamo S., Barker R., Krokengen O.C., Vatne G.H., Kristiansen C.K., Hallin E.I., 

Skoda M.W.A., Bergmann U., Wacklin-Knecht H., Jones N.C., Hoffmann S.V. & Kursula P. 

bioRxiv 535013. DOI: 10.1101/535013. (2019) 

 

Abstract 

Schwann cells myelinate selected axons in the peripheral nervous system (PNS) and 

contribute to fast saltatory conduction via the formation of compact myelin, in which water 

is excluded from between tightly adhered lipid bilayers. Peripheral neuropathies, such as 

Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS), are incurable 

demyelinating conditions that result in pain, decrease in muscle mass, and functional 

impairment. Many Schwann cell proteins, which are directly involved in the stability of 

compact myelin or its development, are subject to mutations linked to these neuropathies. 

The most abundant PNS myelin protein is protein zero (P0); point mutations in this 

transmembrane protein cause CMT subtype 1B and DSS. P0 tethers apposing lipid bilayers 

together through its extracellular immunoglobulin-like domain. Additionally, P0 contains a 

cytoplasmic tail (P0ct), which is membrane-associated and contributes to the physical 

properties of the lipid membrane. Six CMT- and DSS-associated missense mutations have 

been reported in P0ct. We generated recombinant disease mutant variants of P0ct and 

characterized them using biophysical methods. Compared to wild-type P0ct, some mutants 

have negligible differences in function and folding, while others highlight functionally 

important amino acids within P0ct. For example, the D224Y variant of P0ct induced tight 

membrane multilayer stacking. Our results show a putative molecular basis for the 

hypermyelinating phenotype observed in patients with this particular mutation and provide 

overall information on the effects of disease-linked mutations in a flexible, membrane-

binding protein segment. 
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Abstract  1 

Schwann cells myelinate selected axons in the peripheral nervous system (PNS) and contribute to fast 2 

saltatory conduction via the formation of compact myelin, in which water is excluded from between tightly 3 

adhered lipid bilayers. Peripheral neuropathies, such as Charcot-Marie-Tooth disease (CMT) and Dejerine-4 

Sottas syndrome (DSS), are incurable demyelinating conditions that result in pain, decrease in muscle mass, 5 

and functional impairment. Many Schwann cell proteins, which are directly involved in the stability of 6 

compact myelin or its development, are subject to mutations linked to these neuropathies. The most abundant 7 

PNS myelin protein is protein zero (P0); point mutations in this transmembrane protein cause CMT subtype 8 

1B and DSS. P0 tethers apposing lipid bilayers together through its extracellular immunoglobulin-like 9 

domain. Additionally, P0 contains a cytoplasmic tail (P0ct), which is membrane-associated and contributes 10 

to the physical properties of the lipid membrane. Six CMT- and DSS-associated missense mutations have 11 

been reported in P0ct. We generated recombinant disease mutant variants of P0ct and characterized them 12 

using biophysical methods. Compared to wild-type P0ct, some mutants have negligible differences in 13 

function and folding, while others highlight functionally important amino acids within P0ct. For example, the 14 

D224Y variant of P0ct induced tight membrane multilayer stacking. Our results show a putative molecular 15 

basis for the hypermyelinating phenotype observed in patients with this particular mutation and provide 16 

overall information on the effects of disease-linked mutations in a flexible, membrane-binding protein 17 

segment. 18 

19 

Keywords 20 

Myelin protein zero; membrane binding; peripheral neuropathy; CMT; DSS; disease mutation; gain of 21 

function 22 
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Introduction 1 

Fast saltatory nerve impulse conduction requires myelin, a structure composed of tightly stacked lipid 2 

bilayers that wrap around selected axonal segments in the central and peripheral nervous systems (CNS and 3 

PNS, respectively). The insulative nature of myelin enables efficient nerve impulse propagation, and the 4 

destruction of myelin, demyelination, underlies a range of chronic diseases. In the PNS, peripheral 5 

neuropathies affect Schwann cell compact myelin. These include Charcot-Marie-Tooth disease (CMT) and 6 

its more severe, rapidly progressive form known as Dejerine-Sottas syndrome (DSS), which cause incurable 7 

chronic disability (Hartline 2008; Stassart et al. 2018). CMT and DSS manifest through both dominant and 8 

recessive inheritance, and they harbour a strong genetic component, typically caused by mutations in 9 

proteins relevant for the formation and stability of PNS myelin, while axonal forms also exist. 10 

Myelin protein zero (P0) is a type I transmembrane protein consisting of an extracellular immunoglobulin 11 

(Ig)-like domain (Shapiro et al. 1996), a single transmembrane helix, and a 69-residue C-terminal 12 

cytoplasmic tail (P0ct). P0ct is likely to be involved in the regulation of myelin membrane behaviour, 13 

supporting the arrangement of the P0 Ig-like domains in the extracellular space upon the formation of the 14 

myelin intraperiod line (Luo et al. 2007; Raasakka et al. 2019b; Wong and Filbin 1994). P0ct contains a 15 

neuritogenic segment, which can be used to induce experimental autoimmune neuritis (EAN) in animal 16 

models (de Sèze et al. 2016). In vitro, P0ct is disordered in aqueous solution, gaining secondary structure 17 

upon binding to negatively charged phospholipids (Luo et al. 2007; Raasakka et al. 2019b). In its lipid-18 

bound state, P0ct affects the phase behaviour of lipids and promotes the fusion of lipid vesicles. High-degree 19 

molecular order, most likely from stacked lipid bilayers, can be detected via X-ray diffraction of P0ct-bound 20 

membranes (Raasakka et al. 2019b). This suggests that P0ct harbours a structural role in mature myelin. 21 

Dozens of mutations have been identified in P0, most of which affect the Ig-like domain. These mutations 22 

affect myelin morphology and integrity, leading to the development of peripheral neuropathies (Mandich et 23 

al. 2009; Shy et al. 2004). Six known missense mutations are located within P0ct, of which four cause 24 

dominant demyelinating CMT type 1B (CMT1B). These include T216ER (Su et al. 1993), D224Y (also 25 

referred to as D195Y and D234Y) (Fabrizi et al. 2006; Miltenberger-Miltenyi et al. 2009; Schneider-Gold et 26 

al. 2010), R227S (Shy et al. 2004), and the deletion of Lys236 (K236del) (Street et al. 2002). In addition, 27 

K236E has been linked to dominant axonal CMT type 2I (CMT2I) (Choi et al. 2004), and A221T, which was 28 

discovered as a co-mutation together with the deletion of Val42 in the Ig-like domain, was identified in a 29 

patient with DSS (Planté-Bordeneuve et al. 2001). How these mutations relate to CMT/DSS etiology is not 30 

known, although P0 mutations have been linked to the unfolded protein response (UPR) (Bai et al. 2013; Bai 31 

et al. 2018; Wrabetz et al. 2006), indicating issues in either translation or folding that induce stress within the 32 

endoplasmic reticulum (ER).  33 

Considering the small size of P0ct and the nature of the disease mutations in it, many of which change its 34 

electrostatic charge, impairment in the function of P0ct as a membrane binding/stabilizing segment is a 35 
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possible functional mechanism. We used methodologies established earlier for myelin basic protein (MBP) 1 

(Raasakka et al. 2017) and wild-type P0ct (wt-P0ct) (Raasakka et al. 2019a; Raasakka et al. 2019b) to 2 

characterize structure-function relationships of the CMT- and DSS-related P0ct variants. Our results suggest 3 

that D224Y is a hypermyelinating gain-of-function mutation, which is in line with the clinically relevant 4 

phenotype of abnormally thickened myelin sheaths (Fabrizi et al. 2006). 5 

6 

7 
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Results 1 

We have earlier studied the binding of MBP and P0ct to model lipid membranes (Raasakka et al. 2017; 2 

Raasakka et al. 2019a; Raasakka et al. 2019b), using a biophysical workflow that allows the determination of 3 

binding affinity, gain in folding, alteration of lipid phase behaviour, quantification and visualization of 4 

vesicle aggregation and fusion, and supported lipid bilayer (SLB) stacking. In the current study, we 5 

examined whether and how CMT and DSS mutations within P0ct influence its structure and function. For 6 

this purpose, we expressed and purified the wild-type protein and six mutant variants, each harbouring one of 7 

the following amino acid changes: T216ER, A221T, D224Y, R227S, K236E, and K236del. 8 

9 

Characterization of P0ct CMT mutants 10 

wt-P0ct and the six CMT variants were purified to homogeneity. Most mutants were straightforward to 11 

purify, showing identical behaviour to wt-P0ct in size-exclusion chromatography (SEC) (Fig. 1b). D224Y, 12 

on the other hand, had to be gel filtrated at a higher pH and salt concentration than the others, and while 13 

yields were generally lower, minor amounts of degradation were present and the migration in SEC was 14 

altered, albeit not in denaturing gel electrophoresis (SDS-PAGE) (Fig. 1b. Supplementary Fig. S1). In 15 

dynamic light scattering (DLS), all variants displayed a similar hydrodynamic radius (Rh) and an absence of 16 

aggregation (Fig. 1c, Supplementary Table 1). All of the variants showed high apparent molecular weight in 17 

SDS-PAGE, which reflects the intrinsically disordered nature of P0ct (Raasakka et al. 2019b). The molecular 18 

weight and the presence of the mutations were confirmed using mass spectrometry (Table 1). The total yields 19 

of the purified mutant proteins were different from wt-P0ct (Supplementary Fig. S1, Table 1), most mutants 20 

giving larger yields, with the exception of D224Y. It should be noted that all mutants were expressed as 21 

maltose-binding protein fusions. Thus, mutations, which represent small changes in the overall sequence and 22 

size of the fusion protein, can affect the expression and purification behaviour.  23 

Small-angle X-ray scattering (SAXS) verified that for most variants, both the size and behaviour in solution 24 

were nearly identical, with radius of gyration (Rg) and maximum dimension (Dmax) at 2.4 - 2.7 nm and 9.0 – 25 

10.7 nm, respectively, and molecular masses matching monomeric protein based on I0 values (Fig. 2, 26 

Supplementary Table 2). D224Y presented a marginally larger Dmax (11.6 nm) compared to the other 27 

variants, but all variants were flexible and extended in solution, as evident from the Kratky plot (Fig. 2d). 28 

29 

The folding and lipid binding properties of P0ct CMT mutants 30 

To compare the conformation of the P0ct variants, we carried out a series of synchrotron radiation circular 31 

dichroism (SRCD) spectroscopic experiments in the absence and presence of different lipid compositions, 32 

detergents, and 2,2,2-trifluoroethanol (TFE), as previously described for wt-P0ct (Raasakka et al. 2019b). 33 

P0ct is disordered in solution and gains a significant amount of secondary structure upon binding to small 34 
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unilamellar vesicles (SUV) with a net negative surface charge (Luo et al. 2007; Raasakka et al. 2019b). In 1 

water, all mutants were disordered as expected, with D224Y having less secondary structure than the others 2 

(Fig. 3). This is in agreement with the longer Dmax determined using SAXS. All mutants closely resembled 3 

wt-P0ct in TFE and the detergents sodium dodecyl sulphate (SDS), n-dodecylphosphocholine (DPC), 4 

lauryldimethylamine N-oxide (LDAO), and n-octyl glucoside (OG), while K236del was more α-helical than 5 

the other variants in the presence of SDS (Fig. 3, Supplementary Fig. S2). 6 

Addition of DMPC retained the proteins in a disordered state, with D224Y deviating slightly (Supplementary 7 

Fig. S2). In the presence of net negatively charged SUVs composed of DMPC:DMPG ratios of 1:1, 4:1, and 8 

9:1, the variants presented some folding differences (Fig. 3, Supplementary Fig. S2). Overall, most folding 9 

was observed in 1:1 DMPC:DMPG, and the degree of folding decreased with decreasing fraction of DMPG, 10 

i.e. negative charge. In DMPC:DMPG (1:1), a small shift to the right of the maximum at 188 nm was evident11 

for D224Y and K236del, indicating slightly increased folding, although the two minima at 208 and 222 nm, 12 

typical for helical content, remained the same for all variants (Fig. 3d). In DMPC:DMPG (4:1), this effect 13 

was only observed for D224Y (Fig. 3e). In DMPC:DMPG (9:1), the differences in signal magnitude were 14 

large, reflecting different levels of turbidity (Supplementary Fig. S2). It can be assumed that the variants 15 

showing high turbidity under this condition are membrane-bound, while the ones giving strong CD signal of 16 

an unfolded protein do not bind to 9:1 DMPC:DMPG.  17 

The affinity of P0ct variants towards immobilized DMPC:DMPG (1:1) SUVs was investigated using surface 18 

plasmon resonance (SPR). All variants bound to lipids with similar kinetic parameters (Fig. 3f, Table 2), 19 

including the A1 value, which corresponds to the apparent Kd, of 0.35-0.4 µM. This value in the same range 20 

with those obtained earlier for wt-P0ct, MBP, and P2 (Raasakka et al. 2017; Raasakka et al. 2019b; 21 

Ruskamo et al. 2014; Wang et al. 2011). While the differences in Kd were minor, the behaviour of D224Y 22 

was unique: the observed maximal response level was higher compared to the other variants. This suggests 23 

that the D224Y variant can either accumulate onto immobilized vesicles in higher amounts, or it induces a 24 

change on the surface that affects the measurement, such as the fusion, swelling, or aggregation of lipid 25 

vesicles. 26 

27 

Effect of CMT mutations on lipid membrane properties 28 

To determine the effect of the mutations on lipid structure, experiments probing changes in the 29 

thermodynamic and structural properties of lipid membranes were carried out. As shown before (Raasakka et 30 

al. 2019b), the presence of P0ct changes the melting behaviour of dimyristoyl lipid tails, inducing a 31 

population that melts 0.9 °C below the major phase transition temperature of 23.8 °C. The presence of the 32 

mutations altered this effect mildly (Fig. 4a), with T216ER and R227S behaving similarly to wt-P0ct. The 33 

Lys236 mutations deviated from wt-P0ct, with a decreased temperature for the emerged population; K236E 34 

and K236del showed lipid phase transition temperatures of 22.7 and 22.8 °C, respectively. A221T presented 35 
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7

slightly higher temperature for phase transition compared to wt-P0ct, with the major peak at 23.0 °C. Based 1 

on the shape of the calorimetric landscape, D224Y was clearly different from the rest, as the new population 2 

did not appear as a single, symmetric peak, but was rather formed of several overlapping peaks.  3 

Similarly to MBP and P2 (Raasakka et al. 2017; Ruskamo et al. 2014), P0ct is capable of inducing 4 

concentration-dependent solution turbidification, when mixed with lipid vesicles of net negative charge 5 

(Raasakka et al. 2019b). The turbidity can arise from vesicle fusion and/or aggregation, and different 6 

processes may be dominant in different samples with respect to the measured signal. To determine the effect 7 

of P0ct CMT mutations on this function, turbidity experiments were carried out with the different variants. 8 

T216ER and A221T produced turbidity levels similar to wt-P0ct (Fig. 4b, Supplementary Fig. S3a). At 1:100 9 

P/L ratio, D224Y, R227S, K236E, and K236del all had decreased turbidity. At a P/L ratio of 1:50, however, 10 

only D224Y had a significant inhibitory effect on turbidity. This result highlights that the D224Y mutant 11 

protein may function differently from the other variants, when it binds to and aggregates vesicles.  12 

To shed further light on the protein-induced changes in membrane structure, small-angle X-ray diffraction 13 

(SAXD) experiments were performed on P0ct-membrane mixtures. In our earlier study, wt-P0ct mixed with 14 

lipids produced two strong Bragg peaks, and the corresponding repeat distance evolved as a function of the 15 

P/L ratio (Raasakka et al. 2019b). Here, we observed that in all cases, the repeat distance increased when 16 

protein concentration in the sample decreased (Fig. 4c, Supplementary Fig. S3b). Each variant presented a 17 

minimum repeat distance, which was reached at and above a P/L ratio of 1:100. The repeat distance for wt-18 

P0ct was ~7.5 nm, while D224Y produced a spacing of <7.0 nm. R224S, K236E, and K236del had looser 19 

packing than wt-P0ct. K236E had a minimum repeat distance of ~8.0 nm at the highest protein 20 

concentration.   21 

To understand the effect of the mutations on the function of P0ct, and the origin of the high molecular order 22 

reflected by X-ray diffraction, electron microscopy imaging was performed. Most mutants functioned in a 23 

manner similar to wt-P0ct, producing large vesicular structures with a spread-out morphology (Fig. 5), with 24 

occasional regions indicative of bilayer stacking. D224Y showed a clear difference to wt-P0ct, producing 25 

strongly stacked myelin-like membranes in a manner resembling MBP (Raasakka et al. 2017). This gain of 26 

function was reproducible over a wide range of P/L ratios (Supplementary Fig. S4) and a unique feature 27 

among the six mutant P0ct variants. The results confirm that the Bragg peaks seen in SAXD, indeed, 28 

originate from repeat distances in membrane multilayers, identically to two other PNS myelin peripheral 29 

membrane proteins, MBP and P2 (Raasakka et al. 2017; Ruskamo et al. 2014; Sedzik et al. 1985). The 30 

observed bilayer spacing for the D224Y mutant in EM was narrow and in general better defined than seen 31 

for MBP (Raasakka et al. 2017), suggesting that P0ct forms a tight structure within and/or between the 32 

membranes. Based on SAXD, the intermembrane spacing is ~3 nm, a value in close relation to the 33 

dimensions of the major dense line (MDL) in myelin.  34 
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To gain an insight into the kinetic aspects of P0ct-induced lipid fusion/aggregation, stopped-flow kinetics 1 

experiments were performed using SRCD (Fig. 6, Table 3) (Raasakka et al. 2019a). All variants followed a 2 

similar kinetic pattern as wt-P0ct and could be best fitted to a two-phase exponential decay with two rate 3 

constants (k1, fast and k2, slow). Rather minor differences were present: k2 values were very similar in all 4 

cases, and while D224Y presented 10% higher k1 and k1/k2 compared to wt-P0ct and most other variants, 5 

both K236E and K236del displayed k1 and k1/k2 20% lower than for wt-P0ct, indicating slower kinetics (Fig. 6 

6b). While all variants produced a similar end-level CD value around -100 mdeg, the starting level of 7 

K236del was higher than for any other variant, and remained so until ~0.3 s, before settling on a similar level 8 

to other variants. It is currently unclear whether this is due to an increased level of protein folding or less 9 

scattered light from fused or aggregated vesicles. 10 

11 

The membrane insertion mode of P0ct 12 

To understand the membrane insertion of P0ct, how it compares to MBP (Raasakka et al. 2017), and how it 13 

might be related to disease mutations, we performed neutron reflectometry (NR) experiments (Fig. 7, Table 14 

4). The insertion of P0ct to a DMPC:DMPG SLB was quite different to that of MBP. P0ct inserted 15 

completely into the membrane, thickening it by 2 nm and increasing its roughness, most likely due to 16 

increased bilayer mobility, as the hydration layer below the membrane became thicker (Fig. 7b,c). P0ct was 17 

present in the acyl tail fraction of the membrane, as well as the outer headgroup fraction. The data could not 18 

be fitted with only these parameters, but a very rough, narrow layer of protein had to be considered on top of 19 

the membrane. Unfortunately, the roughness and high solvation fraction of this layer did not allow for 20 

precise thickness determination: the layer was modelled to be between 5 – 15 Å thick within the fit to the 21 

data. To investigate the effect of the D224Y mutation on P0ct membrane association, NR data were collected 22 

for SLB-bound D224Y, which appeared identical to wt-P0ct (Supplementary Fig. S5). 23 

24 

25 
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Discussion 1 

The formation of compact myelin and the major dense line requires an interplay of myelin molecules, many 2 

of which have similar functional properties despite lack of sequence homology. Considering the MDL of 3 

PNS compact myelin, the major protein components according to current knowledge are MBP, P2, P0ct, and 4 

cytosolic loops of PMP-22. We characterized the potential functional anomalies of P0ct CMT mutants in 5 

membrane binding using earlier established biophysical strategies (Raasakka et al. 2017; Raasakka et al. 6 

2019a; Raasakka et al. 2019b).  7 

The six mutations reported in P0ct are clustered within or near the neuritogenic segment. Most of them 8 

reside in the vicinity of putatively phosphorylated Ser residues (Fig. 1a), which have been speculated to be 9 

affected by P0ct mutations (Su et al. 1993; Xu et al. 2001). Many P0 mutations have been suggested to lead 10 

to UPR activation (Bai et al. 2013; Bai et al. 2018; Wrabetz et al. 2006), indicating problems with translation 11 

rate, folding, and/or membrane insertion. Given the fact that P0ct is known to interact with lipid membrane 12 

surfaces (Luo et al. 2007; Raasakka et al. 2019b; Raasakka et al. 2019a), these mutations could also have 13 

direct effects on the formation of mature compact myelin at the molecular level.  14 

Mechanism of P0ct binding to membranes 15 

In order to fully understand the effects of P0ct mutations on its structure and function, detailed knowledge 16 

about P0ct binding to lipid membranes, and the effects thereof on multilayered membrane stacks, are 17 

required. NR allowed us to gain a picture of P0ct in a lipid bilayer. P0ct inserts deep into a membrane, with 18 

only a small fraction remaining solvent-exposed on the membrane surface. This is a clear difference to MBP, 19 

which forms a brush-like protein phase on top of the membrane surface, while being partially embedded into 20 

the bilayer (Raasakka et al. 2017). After undergoing charge neutralization and folding, P0ct seems to 21 

collapse into a tight conformation and remain stable. The compact, deep conformation of P0ct suggests that 22 

instead of directly embedding into two bilayers, which is the working model for e.g. MBP-induced stacking 23 

(Raasakka et al. 2017; Vassall et al. 2015), P0ct may change the surface properties of the membrane in a 24 

way that supports apposing bilayer surface adhesion. It could also regulate membrane curvature and the 25 

twining of lipid bilayers around the axon.  26 

At the level of full-length P0, P0ct is a direct extension of the transmembrane segment, and hence, anchored 27 

permanently to a membrane surface at its beginning. Membrane stacking could involve the insertion of P0ct 28 

across the MDL into an apposing membrane leaflet, which is only 3 nm away. Considering this scenario, P0 29 

is basally expressed in Schwann cells even before myelination occurs (Lee et al. 1997). Moreover, P0 is 30 

translated and inserted into the ER membrane and trafficked through the trans-Golgi network to the plasma 31 

membrane after the Ig-like domain has been post-translationally modified (Eichberg 2002; Lemke and Axel 32 

1985). If P0ct were to enter an apposing membrane during the formation of compact myelin, it would have to 33 

remain in a disordered state until another membrane is present. On the other hand, if P0ct is embedded in the 34 
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membrane after translation, it might afterwards be able to dissociate and enter the apposing leaflet within 1 

compact myelin. Considering the attractive phospholipid bilayer around the transmembrane helix, and the 2 

fact that P0ct binds negatively charged lipids essentially irreversibly in vitro 5, both mechanisms described 3 

above are unlikely to exist. Thus, the role of P0ct in membrane adhesion is likely to be based on altered lipid 4 

membrane properties, as opposed to MBP and P2, which directly interact with two membrane surfaces. 5 

While P2 and MBP were observed to synergistically stack lipid bilayers in vitro (Suresh et al. 2010), mice 6 

lacking both proteins formed apparently normal and functional myelin (Zenker et al. 2014). Hence, multiple 7 

factors must participate in the correct formation of compact myelin; these include both lipid components of 8 

the myelin membrane, different myelin proteins, as well as signalling molecules and inorganic ions. Hence, 9 

further experiments in more complex sample environments are required to decipher the details of the 10 

molecular interplay between these factors in PNS myelin MDL formation.   11 

P0ct mutations and membrane interactions 12 

Compared to wt-P0ct, we observed only subtle differences for two mutants: T216ER and A221T. While 13 

T216ER behaved very similarly to wt-P0ct, its role in CMT etiology could be of another origin than related 14 

to protein-membrane binding. A221T, on the other hand, resides in the YAML-motif, which directs the 15 

trafficking of P0 (Kidd et al. 2006) and might compromise the function of P0 even without inducing changes 16 

in membrane binding, especially when combined with a second mutation in the extracellular domain, such as 17 

the deletion of Val42 (Planté-Bordeneuve et al. 2001).  18 

Functionally the most interesting mutant studied here is D224Y, which now has been described in at least 3 19 

studies (Fabrizi et al. 2006; Miltenberger-Miltenyi et al. 2009; Schneider-Gold et al. 2010). It is a gain-of-20 

function mutant, inducing ordered lipid bilayer stacks in vitro, which are more tightly packed than those 21 

formed by wt-P0ct or the other variants. The results correlate well the hypermyelinating disease phenotype 22 

(Fabrizi et al. 2006). Neutron reflectometry produced a nearly identical result for D224Y compared to wt-23 

P0ct, which together with the SRCD experiments indicates that the conformation of wt-P0ct and D224Y is 24 

similar in the membrane. The change of an acidic to an aromatic residue near the lipid bilayer surface most 25 

likely enables a specific interaction between surfaces that results in the observed gain of function.  26 

P0 is the most abundant protein in PNS myelin (Greenfield et al. 1973; Patzig et al. 2011), contributing 27 

primarily to the formation of the intraperiod line (Filbin et al. 1990), and molecular mechanisms of D224Y-28 

induced tight stacking could be two-fold. Firstly, with its short repeat distance – 1-2 nm smaller compared to 29 

MBP and P2 based on SAXD (Raasakka et al. 2019b; Ruskamo et al. 2014; Sedzik et al. 1985) – and active 30 

membrane binding, as evident from SPR, the mutant might cause size exclusion of P2 and other factors out 31 

of the cytoplasmic stack, leading to defective compact myelin maintenance. In PNS compact myelin, P2 is 32 

even more abundant in the cytoplasmic compartment than MBP, can form membrane stacks, and harbours a 33 

maintenance role in myelin homeostasis as a lipid carrier (Ruskamo et al. 2014; Zenker et al. 2014). 34 

Secondly, the tendency of D224Y to form such ordered, tight systems might affect the Ig-like domains on the 35 
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extracellular side. In the hypermyelinating phenotype of D224Y patients, membrane stacking seems 1 

condensed and regular, without abnormally loosened myelin (Fabrizi et al. 2006). SPR indicates that more 2 

D224Y can accumulate on membranes, and full-length P0 D224Y could accumulate and tighten up within 3 

the membrane, causing also the intraperiod line to become more crowded and/or structured. The original 4 

discovery of the D224Y mutation (Fabrizi et al. 2006) suggested that it has a gene dosage effect, since 5 

heterozygous carriers presented little to no symptoms. Hence, the presence of wild-type P0 can rescue the 6 

effects of the mutation. Correct gene dosage of P0 is important for normal myelination in animal models as 7 

well as CMT patients (Fabrizi et al. 2006; Maeda et al. 2012; Martini et al. 1995; Quattrini et al. 1999; 8 

Speevak and Farrell 2013; Wrabetz et al. 2000). The molecular details of the involved mechanisms are 9 

currently lacking. Further studies on the D224Y mutation in vitro and in vivo could help in understanding 10 

molecular aspects of both normal and abnormal myelination.  11 

Lys236 appears to be a functionally important amino acid in P0ct. In its membrane-bound state, P0ct is likely 12 

to have Lys236 close to the lipid headgroups, and altering the charge in this environment might influence 13 

folding and the global positioning of P0ct on the membrane. Indeed, a gradual effect in membrane packing 14 

was observed in SAXD; the repeat structure loosens, as residue 236 neutralizes (K236del) and turns to 15 

negative (K236E). Turbidimetry also indicated a clear effect of charge reversal at residue 236. The Lys236 16 

mutants folded to a similar degree as wt-P0ct, which suggests that the role of Lys236 is in packing, rather 17 

than folding. This is supported by the slower kinetic parameters for Lys236 mutants in stopped-flow 18 

measurements.  19 

Similarly to Lys236, Arg227 could harbour a role in membrane packing. In our experiments, R227S is one of 20 

the mutants that appeared to induce weaker adhesion than the wild-type protein. The mutation results in a 21 

loosened repeat structure without a major impact on protein folding. Arg227 might be involved in 22 

electrostatic anchoring of the protein to the lipid headgroups – the R227S mutation likely has low impact on 23 

ER stress and UPR, as mutated P0 correctly localizes to the plasma membrane (Lee et al. 2010). 24 

Concluding remarks  25 

To a large extent, the P0ct CMT variants studied here perform similarly to wt-P0ct in controlled simple 26 

environments. This might differ in vivo, where other components are present and P0 is present in its full-27 

length form. Our characterization is focused on protein-lipid interactions and does not take into account 28 

possible protein-protein interactions with MBP, P2, or PMP22, which might be relevant for myelination and 29 

disease phenotypes. Nevertheless, we have uncovered critical amino acids in P0 that may contribute to the 30 

formation of healthy myelin and be involved in disease mechanisms. These include Arg227, Lys236, and 31 

Asp224. Our results shed light on the molecular fundamentals of myelination in the PNS, but more 32 

comprehensive studies in biological model systems, as well as on molecular structure and dynamics of 33 

native-like myelin, are needed for deciphering the mechanisms of the P0ct mutations causing human 34 

neuropathy.  35 
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Experimental procedures 1 

Bioinformatics, mutagenesis, protein expression & purification 2 

Secondary structure prediction for P0ct was performed using JPred (Drozdetskiy et al. 2015). Mutations 3 

were generated in the P0ct pHMGWA expression vector (Busso et al. 2005; Raasakka et al. 2019b) by PCR 4 

using Phusion High-Fidelity DNA polymerase (Thermo Fisher Scientific) with 5′-phosphorylated primers 5 

that introduced the desired point mutations. The samples were treated with DpnI (New England Biolabs) to 6 

digest template DNA and linear vectors circularized using T4 DNA ligase (New England Biolabs), followed 7 

by transformation and plasmid isolation. The presence of mutations and integrity of the constructs was 8 

verified using DNA sequencing. 9 

Protein expression and purification were carried out in E. coli BL21(DE3) as described for wt-P0ct 10 

(Raasakka et al. 2019b), with the exception of an added amylose-resin affinity step between Ni-NTA and 11 

size-exclusion chromatography. The step was introduced to remove any contaminating maltose-binding 12 

protein tags from the tobacco etch virus protease-digested recombinant proteins. Size exclusion 13 

chromatography was carried out using Superdex S75 16/60 HiLoad and Superdex 75 10/300GL columns 14 

(GE Healthcare) with 20 mM HEPES, 150 mM NaCl, pH 7.5 (HBS) as mobile phase, with the exception of 15 

D224Y, where a 20 mM Tris-HCl, 300 mM NaCl, pH 8.5 (TBS) solution was used. The monodispersity and 16 

Rh of all proteins were checked from filtered 1 mg/ml samples using a Malvern Zetasizer ZS DLS 17 

instrument. The D224Y mutant was then dialyzed into HBS. Additionally, all proteins were dialyzed into 18 

water prior to SRCD experiments. 19 

20 

Mass spectrometry 21 

The molecular weight and identity of the purified proteins were verified by mass spectrometry. In short, the 22 

proteins were subjected to ultra-performance liquid chromatography (UPLC) coupled electrospray ionization 23 

(ESI) time-of-flight mass spectrometry in positive ion mode, using a Waters Acquity UPLC-coupled Synapt 24 

G2 mass analyzer with a Z-Spray ESI source. This allowed us to determine the undigested masses of each 25 

purified P0ct variant. Protein identity and the presence of the desired mutations were confirmed from 26 

peptides extracted after in-gel tryptic proteolysis, using a Bruker Ultra fleXtreme matrix-assisted laser 27 

desorption/ionization time-of-flight (MALDI-TOF) mass analyzer. 28 

29 

Small-angle X-ray scattering 30 

SAXS data were collected from protein samples at 0.3 – 12.9 mg/ml in HBS and TBS on the EMBL P12 31 

beamline, PETRA III (Hamburg, Germany) (Blanchet et al. 2015). Monomeric bovine serum albumin (Mr = 32 

66.7 kDa; I0 = 499.0) was used as a molecular weight standard. Data were processed and analyzed using the 33 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/535013doi: bioRxiv preprint first posted online Jan. 30, 2019; 



13

ATSAS package (Franke et al. 2017), and GNOM was used to calculate distance distribution functions 1 

(Svergun 1992). See Supplementary Table 2 for further details. 2 

3 

Vesicle preparation 4 

DMPC, DMPG, and DOPC were purchased from Larodan Fine Chemicals AB (Malmö, Sweden). DOPS and 5 

the deuterated d54-DMPC and d54-DMPG were purchased from Avanti Polar Lipids (Alabaster, Alabama, 6 

USA). 7 

Lipid stocks were prepared by dissolving dry lipids in chloroform or chloroform:methanol (9:1 v/v) at 10-30 8 

mM. Mixtures were prepared from stocks at the desired molar ratios, followed by solvent evaporation under 9 

a stream of nitrogen and lyophilizing overnight at -52 °C. The dried lipids were stored at -20 °C or used 10 

directly for liposome preparation. 11 

Liposomes were prepared by mixing dried lipids with water or HBS at 10-15 mM, followed by inverting at 12 

ambient temperature for at least 3 h. Multilamellar vesicles (MLV) were prepared by freeze-thaw cycles in 13 

liquid N2 and a warm water bath and vortexing. The cycle was performed 7 times in total. Large unilamellar 14 

vesicles (LUV) were prepared by passing fresh MLVs through a 0.1-µm membrane 11 times at 40 °C. SUVs 15 

were prepared by ultrasonication of fresh MLVs using a probe tip sonicator (Sonics & Materials Inc. Vibra-16 

Cell VC-130) until clarified. All lipid preparations were immediately used in experiments. 17 

18 

Synchrotron radiation circular dichroism spectroscopy 19 

SRCD spectra were collected from 0.1 – 0.5 mg/ml protein samples in water on the AU-CD beamline at 20 

ASTRID2 synchrotron (ISA, Aarhus, Denmark). Samples containing lipids were prepared right before 21 

measurement by mixing proteins (P/L ratio 1:200) with SUVs. 100-µm pathlength closed circular cells 22 

(Suprasil, Hellma Analytics) were used for the measurements. Spectra were recorded from 170 to 280 nm at 23 

30 °C. Baselines were subtracted and CD units converted to Δε (M-1 cm-1) in CDtoolX (Miles and Wallace 24 

2018). SDS and TFE were from Sigma-Aldrich and the detergents LDAO, OG, DM, and DPC from 25 

Affymetrix. 26 

Rapid kinetic SRCD data were collected as described (Raasakka et al. 2019a). In short, an SX-20 stopped-27 

flow instrument (Applied Photophysics) mounted on the AU-rSRCD branch line of the AU-AMO beamline 28 

at ASTRID2 (ISA, Aarhus, Denmark) at was used for data collection at 10 °C. 1-to-1 mixing of a 0.1 mg/ml 29 

protein solution and a DMPC:DMPG (1:1) SUV solution (at P/L ratios 1:200) was achieved using a mixer (2 30 

ms dead time) before injection into the measurement cell (160 µl total volume, 2-mm pathlength) per shot. 31 

The CD signal (mdeg) was monitored at a fixed wavelength of 195 nm for 5 s with a total of 5 – 10 repeat 32 

shots per sample, which were averaged into a single curve. Each sample was prepared and measured in 33 
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duplicate. Water baselines were subtracted from sample data. The data were fitted to different exponential 1 

functions using GraphPad Prism 7. 2 

3 

Surface plasmon resonance 4 

SPR was performed on a Biacore T200 system (GE Healthcare). According to the manufacturer’s 5 

instructions, 100-nm LUVs of 1 mM DMPC:DMPG (1:1) were immobilized on an L1 sensor chip (GE 6 

Healthcare) in HBS, followed by the injection of protein solutions. Chip regeneration was performed using a 7 

2:3 (v:v) mixture of 2-propanol and 50 mM NaOH. The protein concentration was 20 – 2000 nM in HBS, 8 

and a single concentration per lipid capture was studied; all samples were prepared and measured in 9 

duplicate. In each run, one sample was measured twice to rule out instrumental deviation. The binding 10 

response as a function of protein concentration was plotted and fitted to the 4-parameter model, 11 

 � � ��� �
�������

�������	

��

�
�


 , 12 

to gain information about association affinity. 13 

14 

Differential scanning calorimetry 15 

Proteins were mixed with MLVs in HBS at a protein-to-lipid ratio of 1:100 or 1:250, always containing 350 16 

µM of DMPC:DMPG (1:1) in a final volume of 700 µl. Lipid samples without proteins were prepared as 17 

controls. The samples were degassed for 10 min under vacuum with stirring at 10 °C before measurements. 18 

DSC was performed using a MicroCal VP-DSC calorimeter with a cell volume of 527.4 µl. The reference 19 

cell was filled with HBS. Each sample was scanned from 10 to 40 °C and back to 10 °C in 1 °C/min 20 

increments. Baselines were subtracted from sample curves and zeroed between 15 & 20 °C to enable 21 

straightforward comparison between samples. All samples were prepared and measured twice, with the 22 

observed trends being reproducible. 23 

24 

Vesicle turbidimetry and X-ray diffraction experiments 25 

For turbidimetric measurements, SUVs of DMPC:DMPG (1:1) were mixed with 0.5 – 10 µM protein in 26 

duplicate and mixed thoroughly. Turbidity was recorded at 450 nm at 30 °C using a Tecan Spark 20M plate 27 

reader. Turbidity of protein-free SUVs was subtracted from the protein samples, and statistical analysis was 28 

performed using GraphPad Prism 7.  29 

SAXD experiments were performed to investigate repetitive structures in the turbid samples. 10 and 20 µM 30 

proteins were mixed with SUVs of 1 – 3 mM DMPC:DMPG (1:1) in HBS at ambient temperature and 31 
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exposed at 25 °C on the EMBL P12 BioSAXS beamline, DESY (Hamburg, Germany). A HBS buffer 1 

reference was subtracted from the data. Lipid samples without added protein did not produce Bragg peaks. 2 

The peak positions of momentum transfer, s, in all measured samples were used to calculate mean repeat 3 

distances, d, in proteolipid structures, using the equation  4 

� �
	

� , where s �  

�
����
� . 5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

Electron microscopy 

For negatively stained EM, 740 µM DMPC:DMPG (1:1) SUVs were mixed with proteins using protein-

to-lipid ratios of 1:58, 1:100, 1:200, and 1:500 and incubated at 22 °C for 1 h. EM grids were then 

prepared, stained and imaged as described before (Raasakka et al. 2017; Raasakka et al. 2019b; 

Ruskamo et al. 2017). 

Neutron reflectometry 

Supported lipid bilayers were prepared onto flat (5 Å RMS roughness tolerance) 80 mm × 50 mm ×15 mm 

Si-crystal blocks (Sil’tronix Silicon Technologies, Archamps, France). Samples were prepared from a 

chloroform-methanol stock of 1 mg/ml DMPC:DMPG (1:1). Using Langmuir-Blodgett and Langmuir-

Schaefer techniques, the two membrane leaflets of the bilayers were deposited sequentially. The surface 

pressure was kept at a constant 30 mN m-1 during the deposition, as described previously (Barker et al. 2016; 

Hubbard et al. 2017; Raasakka et al. 2017). All sample blocks were assembled into low-volume 

measurement flow cells, which were used for in situ exchange of solvent and injection of protein samples 

between reflectometric data collections (Junghans et al. 2015). 

Neutron reflectometric measurements for wt-P0ct were performed as described (Raasakka et al. 2017). In 

short, the D17 neutron reflectometer at the Institut Laue-Langevin (Grenoble, France) was used for data 

collection at two incident angles (0.8° and 3.2°) (Cubitt and Fragneto 2002). All samples were kept at 30 °C 

with HBS buffer as the liquid phase, prepared at a final concentration of 95% (v/v) deuterium oxide (D2O, 

Sigma-Aldrich) and in H2O. The deposited bilayers were characterized, before and after the injection of P0ct, 

at three different solvent contrasts, varying the volume ratio of D2O and H2O in to the sample cell: (1) 95% 

D2O, (2) Si-matched water (SMW; 38% (v/v) D2O, 62% (v/v) H2O), and (3) 100% H2O. A 0.5 µM P0ct 

solution was allowed to interact with the membrane for 3 h whilst monitoring reflectivity, until no further 

changes were observed. Any excess P0ct was washed out from the bulk solution by exchanging 20 cell 

volumes of solvent slowly through the sample cell. Fitting was performed using Motofit in Igor Pro 7 

(Nelson 2006). 32 
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The scattering length densities of the phospholipids were calculated from volume fractions of the lipid 1 

components obtained from molecular dynamics simulations (Armen et al. 1998), and for the proteins, they 2 

were calculated from the sequences and amino acid volumes (Zamyatnin 1972). The P0ct scattering length 3 

density, assuming 90% labile hydrogen exchange, was 3.227, 2.324, and 1.722 x 10-6 Å-2 in 95%, 38%, and 4 

0% D2O, respectively. The errors in the structural parameters for each sublayer were derived from the 5 

maximum acceptable variation in the fitted thickness and lipid volume fraction that allowed a fit to be 6 

maintained, subject to a constant molecular area constraint required to maintain a planar bilayer geometry. 7 

Details of the analysis of supported lipid membrane structure (Vacklin et al. 2005) and interaction with 8 

soluble proteins (Wacklin et al. 2016) using time-of-flight neutron reflection have been described previously.  9 

The fraction of P0 in the lipid bilayers was determined by a simultaneous fit to all contrasts, taking into 10 

account the change in protein scattering length density with solvent contrast due to H/D exchange of protons 11 

on polar residues with the solvent. 12 

For mutant comparison to wt-P0ct, NR data for wt-P0ct and D224Y were collected on the INTER neutron 13 

reflectometer at ISIS Neutron and Muon Source (Didcot, United Kingdom) at two incident angles  (0.7° and 14 

2.3°) (Webster et al. 2006) covering a total q-range from 0.01 to 0.34 Å-1, with a resolution of Δq/q=0.03. 15 

The samples were prepared and handled as above. 16 

17 

18 
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Figure legends 1 

Fig. 1. Overview of P0ct mutations. (a) The primary sequence of the wt-P0ct construct, corresponding to 2 

amino acids 180 – 248 of the human P0 precursor, with an extra N-terminal Gly residue (gray) left behind 3 

from affinity tag cleavage. The Cys182 palmitoylation site was mutated into a Leu (green) in all constructs. 4 

Putative serine phosphorylation sites are indicated with asterisks. Residues affected by disease mutations are 5 

in bold. CMT1B, CMT2I, and DSS point mutations are shown in blue, red, and orange, respectively. The 6 

sequence highlighted in yellow corresponds to the neuritogenic segment used in EAN models (de Sèze et al. 7 

2016). Secondary structure prediction is shown below. (b) SEC traces of wt-P0ct and mutants as determined 8 

using a Superdex 75 10/300GL column. Note the slightly earlier retention volume of D224Y, for which the 9 

chromatography had to be performed with a different running buffer than for the other variants. The 10 

degradation products (red asterisk) present with D224Y could be completely removed using SEC. The final 11 

purity of each P0ct variant (4 µg per lane) as determined using SDS-PAGE is shown as inset. (c) DLS data 12 

of P0ct variants display good monodispersity with minimal variation in Rh.  13 

14 

Fig. 2. SAXS analysis of P0ct in solution. (a) SAXS data for P0ct variants. The scattering curves have been 15 

offset for clarity. (b) Guinier fits based on SAXS data. Data range is shown within each graph. (c) Distance 16 

distributions. (d) Kratky plots. P0ct variant data point coloring is consistent throughout the figure. GNOM 17 

fits to the data are shown as black lines in panels (a) and (c). 18 

19 

Fig. 3. Folding and lipid binding analysis of P0ct variants. The folding of wt-P0ct and mutants was 20 

studied using SRCD spectropolarimetry in (a) water, (b) 30% TFE, (c) 0.5% SDS, (d) DMPC:DMPG (1:1), 21 

and  (e) DMPC:DMPG (4:1) at 1:200 P/L ratio in each lipid condition. Additional spectra are presented in 22 

Supplementary Fig. S2. (f) SPR measurements were used to determine the affinity of each P0ct variant to 23 

immobilized DMPC:DMPG (1:1) vesicles. The colour coding legend in panel (a) for each mutant trace also 24 

corresponds to all other traces in subsequent panels. 25 

26 

Fig. 4. Analysis of protein-induced lipid structure behavior. (a) DSC analysis of lipid tail transition 27 

behaviour. (b) Turbidimetric analysis of 0.5 mM DMPC:DMPG (1:1) at 5 µM (gray) and 10 µM protein 28 

concentration (dark red). These proteins concentrations translate to 1:100 and 1:50 P/L ratios, respectively. 29 

Error bars represent standard deviation. Statistical analysis was performed using one-way analysis of 30 

variance (ANOVA) followed by Dunnett’s multiple comparisons test to wt-P0ct turbidity within the same 31 

protein concentration series (* : P < 0.05; *** : P < 0.001). (c) SAXD analysis reveals that D224Y displays a 32 
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significantly tighter mean repeat distances compared to wt-P0ct, whereas K236E is most loose. The traces 1 

have identical colouring to (a).  2 

3 

Fig. 5. EM analysis of P0ct mutants. Negatively stained samples of DMPC:DMPG (1:1) vesicles (a) alone, 4 

and with (b) wt-P0ct, (c) T216ER, (d) A221T, (e) D224Y, (f) R227S, (g) K236E, and (h) K236del were 5 

imaged at 1:200 P/L ratio. D224Y forms multilayered lipid structures that are absent for wt-P0ct. 6 

7 

Fig. 6. SRCD stopped-flow kinetics of protein-induced initial lipid turbidification. (a) The SRCD signal 8 

evolution was monitored using rapid kinetics at 195 nm for 5 sec. wt-P0ct and mutants were mixed with 9 

DMPC:DMPG (1:1) lipids at 1:200 P/L ratio in the presence of 150 mM NaF. Fits (dashed lines) are plotted 10 

over the measurement points. Error bars represent standard deviation. See Table 4 for fitting results. (b) 11 

Graphical comparison of the obtained k1 values.  12 

13 

Fig. 7. NR data and fitting. (a) NR data of a supported DMPC:DMPG (1:1) bilayer before (open markers) 14 

and after incubation with wt-P0ct (closed markers). The used solvent contrasts were 95% D2O (red), Si-15 

matched water (SMW, 38% D2O; green) and 100% H2O (blue). Fits are shown as dashed and solid lines for 16 

the bilayer before and after addition of wt-P0ct, respectively. (b) Scattering length density (ρ) profiles 17 

obtained from the fitting. The error bars denote standard deviation. (c) Model for the P0ct-bound membrane. 18 

The protein-free membrane is shown in light gray on the background.  19 

20 

21 
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Tables 1 

2 

Table 1. Recombinant protein characterization. 3 

Purification Molecular weight determination Peptide fingerprinting 
Variant* Condition pI** Yield*** Solubility Measured Theoretical** Difference Mutation confirmed 
wt-P0ct - 11.11 2.1 ± 0.4 ++ 7989.0 7990.35 -1.35 - 

T216ER CMT1 11.08 4.2 ± 0.4 +++ 8173.0 8174.54 -1.54 yes 

A221T DSS 11.11 5.0 ± 0.7 +++ 8018.0 8020.37 -2.37 yes 
D224Y CMT1 11.12 0.8 ± 0.3 + 8037.0 8038.43 -1.43 yes

R227S CMT1 10.89 6.1 ± 2.0 +++ 7919.0 7921.24 -2.24 yes 

K236E CMT2 10.85 5.1 ± 1.8 +++ 7989.0 7991.29 -2.29 yes 

K236del CMT1 11.09 5.2 ± 1.0 +++ 7860.0 7862.17 -2.17 yes 
*All proteins, including wt-P0ct, contain the C182L mutation.4 
**Values determined from protein sequences using ProtParam5 
***Expressed as mg protein obtained on average per liter culture. See Supplementary Fig. 1 for graphical6 

representation.7 

8 

Table 2. SPR fitting parameters. 9 

Variant Rhi Rlo A1 A2 R2 

wt-P0ct 2975 ± 79 -69.10 ± 61.54 363.2 ± 15.1 3.237 ± 0.411 0.9858 

T216ER 3123 ± 86 -44.63 ± 64.19 375.1 ± 15.6 3.173 ± 0.409 0.9854 

A221T 3061 ± 82 -44.81 ± 62.30 357.0 ± 15.5 2.973 ± 0.363 0.9863 

D224Y 3811 ± 81 11.30 ± 66.26 385.2 ± 11.3 4.416 ± 0.540 0.9886 

R227S 2798 ± 78 -39.52 ± 55.20 384.9 ± 16.0 2.936 ± 0.361 0.9864 

K236E 2671 ± 92 -49.48 ± 60.00 380.8 ± 20.0 2.526 ± 0.340 0.9831 

K236del 2880 ± 79 -33.85 ± 58.90 356.1 ± 16.0 2.852 ± 0.347 0.9862 
10 

11 

12 

Table 3. Kinetic constants for protein-induced vesicle turbidity. The kinetic constants were obtained by 13 

fitting the data to a two-phase exponential decay function. All errors represent standard deviation. 14 

15 

Variant k1 (s
-1) k2 (s

-1) k1/k2 R2 

wt-P0ct 20.14 ± 0.25 1.12 ± 0.01 17.96 ± 0.22 0.9934 

T216ER 19.54 ± 0.28 1.18 ± 0.02 16.63 ± 0.25 0.9908 

A221T 19.15 ± 0.21 1.14 ± 0.01 16.76 ± 0.20 0.9943 

D224Y 22.11 ± 0.28 1.19 ± 0.02 18.53 ± 0.25 0.9923 

R227S 19.35 ± 0.27 1.08 ± 0.02 17.95 ± 0.26 0.9916 

K236E 14.98 ± 0.12 1.02 ± 0.01 14.64 ± 0.13 0.9969 

K236del 14.25 ± 0.12 1.05 ± 0.01 13.54 ± 0.13 0.9967 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/535013doi: bioRxiv preprint first posted online Jan. 30, 2019; 



20

1 

2 

Table 4. NR parameters. 3 

Bilayer alone Bilayer with 0.5 µM wt-P0ct 

Substrate Oxide thickness (Å) 10.6 11 

Oxide solvation (%) 0 0 

Oxide roughness (Å) 4 4 

Hydration layer between oxide and bilayer (Å) 4.6 12 

Hydration layer roughness (Å) 3 6 

Bilayer Bilayer area-per-molecule (Å2/molecule) 60 70

Inner headgroups thickness (Å) 8.3 8 

Inner headgroups roughness (Å) 3.6 8.1 

Inner headgroups solvation (%) 35 45 

Acyl tails thickness (Å) 28.8 32 

Acyl tails roughness (Å) 3.8 13.3 

Acyl tails hydration (%) 0 17 

Outer headgroups thickness (Å) 8.8 8 

Outer headgroups roughness (Å) 4.9 9.5 

Outer headgroups solvation (%) 35 53.5 

wt-P0ct Protein in inner headgroups (%) 0 

Protein in acyl tails (%) 10 

Protein in outer headgroups (%) 20 

Protein layer thickness (Å) 7 

Protein layer roughness (Å) 15 

Protein layer solvation (%) 86 
4 

5 

6 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/535013doi: bioRxiv preprint first posted online Jan. 30, 2019; 



21

References 1 

Armen R.S., Uitto O.D. and Feller S.E. (1998) Phospholipid component volumes: determination 2 
and application to bilayer structure calculations. Biophys J 75, 734-744. 3 

Bai Y., Patzko A. and Shy M.E. (2013) Unfolded protein response, treatment and CMT1B. Rare 4 
Dis 1, e24049. 5 

Bai Y., Wu X., Brennan K.M., Wang D.S., D'Antonio M., Moran J., Svaren J. and Shy M.E. (2018) 6 
Myelin protein zero mutations and the unfolded protein response in Charcot Marie Tooth 7 
disease type 1B. Ann Clin Transl Neurol 5, 445-455. 8 

Barker R.D., McKinley L.E. and Titmuss S. (2016) Neutron Reflectivity as a Tool for Physics-9 
Based Studies of Model Bacterial Membranes. Adv Exp Med Biol 915, 261-282. 10 

Blanchet C.E., Spilotros A., Schwemmer F., Graewert M.A., Kikhney A., Jeffries C.M., Franke D., 11 
Mark D., Zengerle R., Cipriani F., Fiedler S., Roessle M. and Svergun D.I. (2015) Versatile 12 
sample environments and automation for biological solution X-ray scattering experiments at 13 
the P12 beamline (PETRA III, DESY). J Appl Crystallogr 48, 431-443. 14 

Busso D., Delagoutte-Busso B. and Moras D. (2005) Construction of a set Gateway-based 15 
destination vectors for high-throughput cloning and expression screening in Escherichia coli. 16 
Anal Biochem 343, 313-321. 17 

Choi B.O., Lee M.S., Shin S.H., Hwang J.H., Choi K.G., Kim W.K., Sunwoo I.N., Kim N.K. and 18 
Chung K.W. (2004) Mutational analysis of PMP22, MPZ, GJB1, EGR2 and NEFL in Korean 19 
Charcot-Marie-Tooth neuropathy patients. Hum Mutat 24, 185-186. 20 

Cubitt R. and Fragneto G. (2002) D17: the new reflectometer at the ILL. Applied Physics A 74, 21 
s329-s331. 22 

de Sèze J., Kremer L., Alves do Rego C., Taleb O., Lam D., Beiano W., Mensah-Nyagan G., 23 
Trifilieff E. and Brun S. (2016) Chronic inflammatory demyelinating polyradiculoneuropathy: 24 
A new animal model for new therapeutic targets. Rev Neurol (Paris) 172, 767-769. 25 

Drozdetskiy A., Cole C., Procter J. and Barton G.J. (2015) JPred4: a protein secondary structure 26 
prediction server. Nucleic Acids Res 43, W389-94. 27 

Eichberg J. (2002) Myelin P0: new knowledge and new roles. Neurochem Res 27, 1331-1340. 28 
Fabrizi G.M., Pellegrini M., Angiari C., Cavallaro T., Morini A., Taioli F., Cabrini I., Orrico D. and 29 

Rizzuto N. (2006) Gene dosage sensitivity of a novel mutation in the intracellular domain of 30 
P0 associated with Charcot-Marie-Tooth disease type 1B. Neuromuscul Disord 16, 183-187. 31 

Filbin M.T., Walsh F.S., Trapp B.D., Pizzey J.A. and Tennekoon G.I. (1990) Role of myelin P0 32 
protein as a homophilic adhesion molecule. Nature 344, 871-872. 33 

Franke D., Petoukhov M.V., Konarev P.V., Panjkovich A., Tuukkanen A., Mertens H.D.T., 34 
Kikhney A.G., Hajizadeh N.R., Franklin J.M., Jeffries C.M. and Svergun D.I. (2017) ATSAS 35 
2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular 36 
solutions. J Appl Crystallogr 50, 1212-1225. 37 

Greenfield S., Brostoff S., Eylar E.H. and Morell P. (1973) Protein composition of myelin of the 38 
peripheral nervous system. J Neurochem 20, 1207-1216. 39 

Hartline D.K. (2008) What is myelin? Neuron Glia Biol 4, 153-163. 40 
Hubbard A.T., Barker R., Rehal R., Vandera K.A., Harvey R.D. and Coates A.R. (2017) 41 

Mechanism of Action of a Membrane-Active Quinoline-Based Antimicrobial on Natural and 42 
Model Bacterial Membranes. Biochemistry 56, 1163-1174. 43 

Junghans A., Watkins E.B., Barker R.D., Singh S., Waltman M.J., Smith H.L., Pocivavsek L. and 44 
Majewski J. (2015) Analysis of biosurfaces by neutron reflectometry: from simple to complex 45 
interfaces. Biointerphases 10, 019014. 46 

Kidd G.J., Yadav V.K., Huang P., Brand S.L., Low S.H., Weimbs T. and Trapp B.D. (2006) A dual 47 
tyrosine-leucine motif mediates myelin protein P0 targeting in MDCK cells. Glia 54, 135-145. 48 

Lee M., Brennan A., Blanchard A., Zoidl G., Dong Z., Tabernero A., Zoidl C., Dent M.A., Jessen 49 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/535013doi: bioRxiv preprint first posted online Jan. 30, 2019; 



22

K.R. and Mirsky R. (1997) P0 is constitutively expressed in the rat neural crest and embryonic 1 
nerves and is negatively and positively regulated by axons to generate non-myelin-forming 2 
and myelin-forming Schwann cells, respectively. Mol Cell Neurosci 8, 336-350. 3 

Lee Y.C., Lin K.P., Chang M.H., Liao Y.C., Tsai C.P., Liao K.K. and Soong B.W. (2010) Cellular 4 
characterization of MPZ mutations presenting with diverse clinical phenotypes. J Neurol 257, 5 
1661-1668. 6 

Lemke G. and Axel R. (1985) Isolation and sequence of a cDNA encoding the major structural 7 
protein of peripheral myelin. Cell 40, 501-508. 8 

Luo X., Sharma D., Inouye H., Lee D., Avila R.L., Salmona M. and Kirschner D.A. (2007) 9 
Cytoplasmic domain of human myelin protein zero likely folded as beta-structure in compact 10 
myelin. Biophys J 92, 1585-1597. 11 

Maeda M.H., Mitsui J., Soong B.W., Takahashi Y., Ishiura H., Hayashi S., Shirota Y., Ichikawa Y., 12 
Matsumoto H., Arai M., Okamoto T., Miyama S., Shimizu J., Inazawa J., Goto J. and Tsuji S. 13 
(2012) Increased gene dosage of myelin protein zero causes Charcot-Marie-Tooth disease. 14 
Ann Neurol 71, 84-92. 15 

Mandich P., Fossa P., Capponi S., Geroldi A., Acquaviva M., Gulli R., Ciotti P., Manganelli F., 16 
Grandis M. and Bellone E. (2009) Clinical features and molecular modelling of novel MPZ 17 
mutations in demyelinating and axonal neuropathies. Eur J Hum Genet 17, 1129-1134. 18 

Martini R., Zielasek J., Toyka K.V., Giese K.P. and Schachner M. (1995) Protein zero (P0)-19 
deficient mice show myelin degeneration in peripheral nerves characteristic of inherited 20 
human neuropathies. Nat Genet 11, 281-286. 21 

Miles A.J. and Wallace B.A. (2018) CDtoolX, a downloadable software package for processing and 22 
analyses of circular dichroism spectroscopic data. Protein Sci 27, 1717-1722. 23 

Miltenberger-Miltenyi G., Schwarzbraun T., Löscher W.N., Wanschitz J., Windpassinger C., Duba 24 
H.C., Seidl R., Albrecht G., Weirich-Schwaiger H., Zoller H., Utermann G., Auer-Grumbach25 
M. and Janecke A.R. (2009) Identification and in silico analysis of 14 novel GJB1, MPZ and26 
PMP22 gene mutations. Eur J Hum Genet 17, 1154-1159.27 

Nelson A. (2006) Co-refinement of multiple-contrast neutron/X-ray reflectivity data using 28 
MOTOFIT. J Appl Crystallogr 39, 273-276. 29 

Patzig J., Jahn O., Tenzer S., Wichert S.P., de Monasterio-Schrader P., Rosfa S., Kuharev J., Yan 30 
K., Bormuth I., Bremer J., Aguzzi A., Orfaniotou F., Hesse D., Schwab M.H., Möbius W., 31 
Nave K.A. and Werner H.B. (2011) Quantitative and integrative proteome analysis of 32 
peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J 33 
Neurosci 31, 16369-16386. 34 

Planté-Bordeneuve V., Parman Y., Guiochon-Mantel A., Alj Y., Deymeer F., Serdaroglu P., 35 
Eraksoy M. and Said G. (2001) The range of chronic demyelinating neuropathy of infancy: a 36 
clinico-pathological and genetic study of 15 unrelated cases. J Neurol 248, 795-803. 37 

Quattrini A., Feltri M.L., Previtali S., Fasolini M., Messing A. and Wrabetz L. (1999) Peripheral 38 
nerve dysmyelination due to P0 glycoprotein overexpression is dose-dependent. Ann N Y 39 
Acad Sci 883, 294-301. 40 

Raasakka A., Jones N.C., Hoffmann S.V. and Kursula P. (2019a) Ionic strength and calcium 41 
regulate the membrane interactions of myelin basic protein and the cytoplasmic domain of 42 
myelin protein zero. bioRxiv 529586. 43 

Raasakka A., Ruskamo S., Kowal J., Barker R., Baumann A., Martel A., Tuusa J., Myllykoski M., 44 
Bürck J., Ulrich A.S., Stahlberg H. and Kursula P. (2017) Membrane Association Landscape 45 
of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Sci Rep 7, 46 
4974. 47 

Raasakka A., Ruskamo S., Kowal J., Han H., Baumann A., Myllykoski M., Fasano A., Rossano R., 48 
Riccio P., Bürck J., Ulrich A.S., Stahlberg H., Kursula P. and (2019b) Molecular structure and 49 
function of myelin protein P0 in membrane stacking. Sci Rep 9, 642. 50 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/535013doi: bioRxiv preprint first posted online Jan. 30, 2019; 



23

Ruskamo S., Nieminen T., Kristiansen C.K., Vatne G.H., Baumann A., Hallin E.I., Raasakka A., 1 
Joensuu P., Bergmann U., Vattulainen I. and Kursula P. (2017) Molecular mechanisms of 2 
Charcot-Marie-Tooth neuropathy linked to mutations in human myelin protein P2. Sci Rep 7, 3 
6510. 4 

Ruskamo S., Yadav R.P., Sharma S., Lehtimäki M., Laulumaa S., Aggarwal S., Simons M., Bürck 5 
J., Ulrich A.S., Juffer A.H., Kursula I. and Kursula P. (2014) Atomic resolution view into the 6 
structure-function relationships of the human myelin peripheral membrane protein P2. Acta 7 
Crystallogr D Biol Crystallogr 70, 165-176. 8 

Schneider-Gold C., Kötting J., Epplen J.T., Gold R. and Gerding W.M. (2010) Unusual Charcot-9 
Marie-Tooth phenotype due to a mutation within the intracellular domain of myelin protein 10 
zero. Muscle Nerve 41, 550-554. 11 

Sedzik J., Blaurock A.E. and Hoechli M. (1985) Reconstituted P2/myelin-lipid multilayers. J 12 
Neurochem 45, 844-852. 13 

Shapiro L., Doyle J.P., Hensley P., Colman D.R. and Hendrickson W.A. (1996) Crystal structure of 14 
the extracellular domain from P0, the major structural protein of peripheral nerve myelin. 15 
Neuron 17, 435-449. 16 

Shy M.E., Jáni A., Krajewski K., Grandis M., Lewis R.A., Li J., Shy R.R., Balsamo J., Lilien J., 17 
Garbern J.Y. and Kamholz J. (2004) Phenotypic clustering in MPZ mutations. Brain 127, 371-18 
384. 19 

Speevak M.D. and Farrell S.A. (2013) Charcot-Marie-Tooth 1B caused by expansion of a familial 20 
myelin protein zero (MPZ) gene duplication. Eur J Med Genet 56, 566-569. 21 

Stassart R.M., Möbius W., Nave K.A. and Edgar J.M. (2018) The Axon-Myelin Unit in 22 
Development and Degenerative Disease. Front Neurosci 12, 467. 23 

Street V.A., Meekins G., Lipe H.P., Seltzer W.K., Carter G.T., Kraft G.H. and Bird T.D. (2002) 24 
Charcot-Marie-Tooth neuropathy: clinical phenotypes of four novel mutations in the MPZ and 25 
Cx 32 genes. Neuromuscul Disord 12, 643-650. 26 

Su Y., Brooks D.G., Li L., Lepercq J., Trofatter J.A., Ravetch J.V. and Lebo R.V. (1993) Myelin 27 
protein zero gene mutated in Charcot-Marie-tooth type 1B patients. Proc Natl Acad Sci U S A 28 
90, 10856-10860. 29 

Suresh S., Wang C., Nanekar R., Kursula P. and Edwardson J.M. (2010) Myelin basic protein and 30 
myelin protein 2 act synergistically to cause stacking of lipid bilayers. Biochemistry 49, 3456-31 
3463. 32 

Svergun D.I. (1992) Determination of the regularization parameter in indirect-transform methods 33 
using perceptual criteria. J Appl Cryst 25, 495-503. 34 

Vacklin H.P., Tiberg F., Fragneto G. and Thomas R.K. (2005) Composition of supported model 35 
membranes determined by neutron reflection. Langmuir 21, 2827-2837. 36 

Vassall K.A., Bamm V.V. and Harauz G. (2015) MyelStones: the executive roles of myelin basic 37 
protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 472, 17-32. 38 

Wacklin H.P., Bremec B.B., Moulin M., Rojko N., Haertlein M., Forsyth T., Anderluh G. and 39 
Norton R.S. (2016) Neutron reflection study of the interaction of the eukaryotic pore-forming 40 
actinoporin equinatoxin II with lipid membranes reveals intermediate states in pore formation. 41 
Biochim Biophys Acta 1858, 640-652. 42 

Wang C., Neugebauer U., Bürck J., Myllykoski M., Baumgärtel P., Popp J. and Kursula P. (2011) 43 
Charge isomers of myelin basic protein: structure and interactions with membranes, 44 
nucleotide analogues, and calmodulin. PLoS One 6, e19915. 45 

Webster J., Holt S. and Dalgliesh R. (2006) INTER the chemical interfaces reflectometer on target 46 
station 2 at ISIS. Physica B: Condensed Matter 385, 1164-1166. 47 

Wong M.H. and Filbin M.T. (1994) The cytoplasmic domain of the myelin P0 protein influences 48 
the adhesive interactions of its extracellular domain. J Cell Biol 126, 1089-1097. 49 

Wrabetz L., D'Antonio M., Pennuto M., Dati G., Tinelli E., Fratta P., Previtali S., Imperiale D., 50 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/535013doi: bioRxiv preprint first posted online Jan. 30, 2019; 



24

Zielasek J., Toyka K., Avila R.L., Kirschner D.A., Messing A., Feltri M.L. and Quattrini A. 1 
(2006) Different intracellular pathomechanisms produce diverse Myelin Protein Zero 2 
neuropathies in transgenic mice. J Neurosci 26, 2358-2368. 3 

Wrabetz L., Feltri M.L., Quattrini A., Imperiale D., Previtali S., D'Antonio M., Martini R., Yin X., 4 
Trapp B.D., Zhou L., Chiu S.Y. and Messing A. (2000) P(0) glycoprotein overexpression 5 
causes congenital hypomyelination of peripheral nerves. J Cell Biol 148, 1021-1034. 6 

Xu W., Shy M., Kamholz J., Elferink L., Xu G., Lilien J. and Balsamo J. (2001) Mutations in the 7 
cytoplasmic domain of P0 reveal a role for PKC-mediated phosphorylation in adhesion and 8 
myelination. J Cell Biol 155, 439-446. 9 

Zamyatnin A.A. (1972) Protein volume in solution. Prog Biophys Mol Biol 24, 107-123. 10 
Zenker J., Stettner M., Ruskamo S., Domènech-Estévez E., Baloui H., Médard J.J., Verheijen M.H., 11 

Brouwers J.F., Kursula P., Kieseier B.C. and Chrast R. (2014) A role of peripheral myelin 12 
protein 2 in lipid homeostasis of myelinating Schwann cells. Glia 62, 1502-1512. 13 

14 

15 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/535013doi: bioRxiv preprint first posted online Jan. 30, 2019; 



25

Acknowledgements 1 

This work was financially supported by the Academy of Finland (Finland), the Jane and Aatos Erkko 2 

Foundation (Finland), and the Norwegian Research Council (SYNKNØYT program). This work has been 3 

supported by iNEXT, grant number 653706, funded by the Horizon 2020 programme of the European 4 

Commission. The research leading to this result has been supported by the project CALIPSOplus under the 5 

Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 6 

2020. We gratefully acknowledge the synchrotron radiation facilities and the beamline support at ASTRID2 7 

and EMBL/DESY, as well as the ILL (Proposal No. 8-02-745) and STFC/ISIS (Proposal No. 1620422; 8 

doi:10.5286/ISIS.E.95673822). We express our gratitude towards the Biocenter Oulu Proteomics and Protein 9 

Analysis Core Facility for providing access to mass spectrometric instrumentation, as well as the Biophysics, 10 

Structural Biology, and Screening (BiSS) facilities at the University of Bergen. Finally, we thank Anushik 11 

Safaryan for practical help with liposome preparation. 12 

13 

Author contributions 14 

Original text and figures: A.R., P.K. 15 

Prepared mutant constructs: A.R., C.K.K., G.H.V., E.I.H. 16 

Protein expression and purification: A.R., O.C.K. 17 

Prepared samples and performed experiments: A.R., S.R., R.B., M.W.A.S., U.B. 18 

Processed and analyzed data: A.R., R.B., U.B., H.W., N.J., S.V.H., P.K. 19 

Study design: A.R., S.R., P.K. 20 

Review & editing: A.R., S.R., R.B., H.W., N.J., S.V.H, P.K. 21 

Supervision: P.K. 22 

23 

Competing financial interests 24 

The authors declare no competing financial interests. 25 

26 

Data availability 27 

The datasets generated and analyzed during the current study are available from the corresponding author on 28 

reasonable request. 29 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/535013doi: bioRxiv preprint first posted online Jan. 30, 2019; 



26

Supplementary information 1 

2 

Supplementary Fig. S1. Protein yield. The purified protein amount from E. coli expression, shown as mg 3 

of protein obtained per 1 l of culture. 4 

5 

Supplementary Fig. S2. The folding of P0ct variants in TFE, detergents, and poorly binding 6 

membrane compositions. The folding of wt-P0ct and mutants was studied using SRCD spectropolarimetry 7 

in (a) 10% TFE, (b) 50% TFE, (c) 70% TFE, (d) 0.1% DPC, (e) 1% LDAO, (f) 1% OG, (g) DMPC, and (h) 8 

9:1 DMPC:DMPG. The colour coding legend in panel (a) for each mutant trace also corresponds to all other 9 

traces in subsequent panels. 10 

11 

Supplementary Fig. S3. P0ct variant-induced turbidimetry and diffraction. (a) Turbidimetric analysis of 12 

0.5 mM DMPC:DMPG (1:1) vesicles in the presence of 0 – 10 µM wt-P0ct and mutants. BSA was included 13 

as negative control. Error bars represent standard deviation. (b) Examples of Bragg peaks from the P0ct 14 

samples mixed with DMPC:DMPG (1:1) vesicles. 15 

16 

Supplementary Fig. S4. EM analysis of P0ct D224Y. Negatively stained samples of DMPC:DMPG (1:1) 17 

vesicles mixed with P0ct D224Y at (a) 1:100, (b) 1:200, and (c) 1:500 P/L ratios all display multilayered 18 

lipid structures. 19 

20 

Supplementary Fig. S5. NR data of wt-P0ct and D224Y. NR data for DMPC:DMPG (1:1)-bound wt-P0ct 21 

and D224Y. The data have been offset for clarity. Solvent contrasts are indicated for each trace on their right 22 

hand side. The D224Y H2O data is incomplete as reflectivity was collected at only one measurement angle 23 

(0.7°). The error bars denote standard deviation. 24 
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Supplementary Table 1. DLS parameters. 1 

Protein variant wt-P0ct T216ER A221T D224Y R227S K236E K236del 
Sample buffer* HBS HBS HBS TBS HBS HBS HBS
Rh (nm) 2.96 2.87 2.72 2.26 2.93 2.88 2.80
*HBS, 20 mM HEPES, 150 mM NaCl, pH 7.5; TBS, 20 mM Tris-HCl, 300 mM NaCl, pH 8.5. 2 

3 

Supplementary Table 2. SAXS parameters.  4 

Data collection parameters 
Instrument P12, PETRAIII, DESY 
Wavelength (nm) 0.124 
Angular range (nm-1) 0.0403 - 7.3195 
Exposure time (s) 0.045 
Measurement temperature (°C) 10 
Protein variant wt-P0ct T216ER A221T D224Y R227S K236E K236del 
Concentration range (mg ml-1) 0.3 - 1.2 1.0 - 3.8 2.0 - 8.0 0.5 - 2.1 1.7 - 6.8 3.5 - 12.9 2.3 - 9.3 
Sample buffer* HBS HBS HBS TBS HBS HBS HBS 
Structural parameters 
I0 (relative) [from p(r)] 58.90 64.72 59.06 58.27 56.14 62.73 58.17 
Rg (nm) [from p(r) ] 2.57 2.50 2.40 2.73 2.42 2.41 2.41 
I0 (relative) [from Guinier] 58.25 63.87 58.35 57.38 55.21 61.61 57.30 
Rg (nm) [from Guinier] 2.39 2.33 2.26 2.43 2.25 2.23 2.23 
Dmax (nm) [from GNOM] 9.59 9.21 9.59 11.57 8.96 10.34 10.69 
Molecular mass determination 
Molecular mass Mr (kDa) [from I0 using p(r)] 7.87 8.65 7.89 7.79 7.50 8.38 7.78
Molecular mass Mr (kDa) [from I0 using Guinier] 7.79 8.54 7.80 7.67 7.38 8.24 7.66 
Theoretical Mr from sequence (kDa) 7.99 8.17 8.02 8.04 7.92 7.99 7.86
Software 
Primary data reduction & processing PRIMUS 
*HBS, 20 mM HEPES, 150 mM NaCl, pH 7.5; TBS, 20 mM Tris-HCl, 300 mM NaCl, pH 8.5. 5 
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