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Abstract

Numerical methods for solving partial differential equations is an important field of

study, as it helps us to describe many different processes in the world. An impor-

tant property of a numerical method, is that it should be a stable approximation

of the governing differential equation. For numerical approximations that satisfy a

summation-by-parts rule, and that are combined with the simultaneous approxima-

tion term technique at the boundaries, energy estimates can be derived to prove

stability. The Summation-By-Parts Simultaneous Approximation Term (SBP-SAT)

technique was first developed in the context of the finite difference method. More

recently, it has been shown that other numerical methods, such as the finite volume

method, also can be formulated in the SBP framework.

The finite volume method is a popular numerical method, as it can be formulated

on unstructured grids. However, Svärd et al. showed in [SGN07] that some approx-

imations of the second derivative are in fact inconsistent on such grids. Consistency

is another key feature of a numerical method. The method should be consistent in

order for us to know that we are solving the correct equation.

In this thesis, we study the extension of the SBP-SAT technique to the finite vol-

ume method. We introduce a methodology for implementing a second derivative

approximation on general unstructured grids by including a transformation to a

computational domain, where accuracy is expected to be recovered. The numerical

experiments demonstrate that full accuracy is not obtained when including the trans-

formation. There are still nodes along and near the boundary that are inconsistent.

However, numerical experiments indicate that we have convergence.
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Notation

The following notation will be used throughout the thesis.

Capital letters (A): Matrices (if not otherwise stated)

Bold letters (u): Vectors

u
(n)
p : nth derivative of u with respect to variable p

O: Big O notation

Abbreviations

PDE - Partial Differential Equation

CFD - Computational Fluid Dynamics

IBVP - Initial-Boundary-Value Problem

FDM - Finite Difference Method

FVM - Finite Volume Method

SBP - Summation-By-Parts

SAT - Simultaneous Approximation Term
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Chapter 1

Introduction

1.1 Introduction

Partial Differential Equations (PDEs) are of great importance in several fields of

research, among which Computational Fluid Dynamics (CFD) is one. Since a large

class of these equations cannot be solved analytically, numerical methods are re-

quired to obtain solutions to the PDEs. The foundation of a numerical method is

the discretisation of the given domain, which can be either structured or unstruc-

tured. Thereafter, a numerical method is formulated on the discrete grid. One such

numerical method that will be used in this thesis, is the Finite Difference Method

(FDM). This method starts with the given equation in differential form, and the

derivatives in the governing equations are approximated by finite differences, usu-

ally obtained using Taylor series expansions. Its simplicity, and the ease at which

it is to obtain higher-order approximations, are advantages of this method. The

finite difference method is often used in the CFD community, and for problems

that are to be solved over long time intervals or that require small errors in the

solutions, high-order approximations are favoured. However, the treatment of the

boundaries for such approximations can be complicated, and they must be handled

in a way that leads to stable schemes. (For more information about the FDM, see

e.g. [Bla07, FP99, KCDT16, GKO95, Gus08]). Stability in the numerical analysis

is the analogous concept to well-posedness in the continuous setting. If the problem
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is well-posed, and the numerical method is a consistent and stable approximation of

it, then the Lax-Richtmyer Equivalence Theorem ([LR56]) guarantees that the nu-

merical solution will converge to the true solution. However, demonstrating that the

numerical scheme is in fact stable, need not be a trivial task, especially for high-order

finite difference methods. This changed with the introduction of the Summation-

By-Parts Simultaneous Approximation Term (SBP-SAT) schemes, which are finite

difference schemes combined with a weak enforcement of the boundary conditions.

The SBP operators were first derived by Kreiss and Scherer in [KS74]. These op-

erators mimic the continuous integration-by-parts rule, which plays a central role

in the derivation of energy estimates, and are constructed in a way that resembles

the energy loss at outflow boundaries for the equation (see [Gus08]). Nevertheless,

the operators alone only allow for stability proofs for simple problems, but with

the establishment of the SAT technique near the boundaries, one can now prove

stability for more complicated problems. The SAT procedure was first developed in

[CGA94] by Carpenter, Gottlieb and Abarbanel. The SAT enforces the boundary

conditions in a weak way, by introducing a penalty term to the scheme. For a more

comprehensive summary of the history of the SBP-SAT technique, see [SN14] and

[DRFHZ14].

Even though the SBP operators were constructed in the framework of the finite

difference method, these operators have more recently been formulated in the context

of other numerical methods as well. Examples here are the Finite Volume Method

(FVM) (see e.g. [NB01, NFAE03, SN04]) and the spectral collocation methods (see

e.g. [Gas13, DRFBZ14, CFNF14]). In this thesis, our main focus will be the SBP-

SAT technique formulated using the finite volume method. An advantage of this

method, is that it, in contrast to the finite difference method, can be formulated

on unstructured grids. Another distinction between the finite difference and the

finite volume method, is that the latter is based on the integral form of the given

PDE. After the domain is discretised into a set of non-overlapping sub-domains,

called dual volumes (or grid cells), the equation is integrated over each such volume.

From here, we derive discrete approximations of the average value of the solution

in each grid cell. Some of the integrals are converted into line (or surface) integrals

(using for example Green’s theorem or the divergence theorem). These integrals

represents fluxes that can be approximated as the sum of fluxes over each edge in



3

a dual volume. The fluxes are often assumed to be constant along a grid face, and

evaluated at the midpoint of the edge (for a more complete introduction to the FVM,

see for example [DB16, FP99, Lev02, Bla07, KCDT16]). As it can be formulated

on unstructured grids, the finite volume method is also a popular method in the

CFD community. Nevertheless, it has been shown in [SGN07] that care must be

taken when approximating the second derivative using this method. In this article,

it was demonstrated that two commonly used approximations of the Laplacian are

inconsistent on general meshes.

As a demonstration of the SBP-SAT technique, we will in this thesis first discretise

the second-order wave equation (in one space dimension) using a high order SBP fi-

nite difference operator, where the boundaries are treated using the SAT procedure.

Next, the SBP-SAT technique is formulated in the context of the finite volume

method. We consider a first-derivative approximation from [NFAE03], and investi-

gate if second-order accuracy is obtained by transforming the physical domain into

equilateral triangles. We propose stable schemes for the advection equation on both

single-block and multi-block domains. Lastly, we discretise the second-order wave

equation in two space dimensions using the first-derivative approximation twice, and

investigate if the transformation of the physical domain leads to a consistent scheme.

One immediate advantage of including the transformation, is that the implementa-

tion makes mesh refinement an easy task, as a number of grid points along the

boundary is specified for refinement within the elements. In the interest of solving

CFD problems using higher (than one) order approximations on complex geome-

tries, the overall goal of the project is to derive a methodology for implementing the

considered second-derivative approximation on general unstructured grids. Then we

can supplement high-order finite difference approximations with the finite volume

method to handle the complex geometries of the mesh. In order to obtain a more

structured derivation, this thesis considers simpler problems than those often solved

in CFD.
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1.2 Thesis outline

In the next chapter, some preliminary theory regarding well-posedness of initial-

boundary-value problems, and the basic idea of the SBP-SAT technique, are intro-

duced. In Chapter 3, we analyse the second-order wave equation in one space di-

mension and discretise it using a high-order finite difference SBP operator combined

with the SAT procedure at the boundaries. We investigate stability of the scheme

and discuss convergence. Chapter 4 presents an extension of the SBP-SAT theory in

the framework of the finite volume method. We verify an approximation for the first

derivative, and introduce stable schemes for domains with and without interfaces.

Furthermore, we investigate if the first-derivative approximation applied twice yields

a consistent second-derivative approximation, and propose a stable scheme for the

implementation of the second-order wave equation in two space dimension. We also

discuss the expected covergence rates, and present the results obtained from the nu-

merical experiments. Lastly, Chapter 5 provides conclusions of this work and some

possible directions of further work.

All numerical schemes that are proposed in this thesis were coded from scratch in

MATLAB (except the SBP operator used in Chapter 3).
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Chapter 2

Preliminaries

Before proceeding to the main topics, we introduce some definitions that will be

used throughout the thesis. Since all parts of this project have been twofold, one

part concerning the continuous problem and the other the semi-discrete problem,

we will divide this chapter in the same way.

2.1 Preliminaries for the continuous analysis

The starting point of every section in this project will be to demonstrate that the

given problem is well-posed. We now introduce some theory concerning this prop-

erty.

Consider the following general Initial-Boundary-Value Problem (IBVP)

ut = P (x, ∂x, t)u+ F (x, t), 0 ≤ x ≤ 1, t ≥ 0,

L0(∂x, t)u(0, t) = g0(t),

L1(∂x, t)u(1, t) = g1(t),

u(x, 0) = f(x),

(2.1)

where P is a differential operator; F (x, t) is a forcing function; L0 and L1 are
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differential operators acting on the boundary, and g0(t), g1(t) and f(x) are the

boundary and initial data ([SN14]). We introduce the following definition.

Definition 2.1 ([Gus08]). The IBVP (2.1) is well-posed if for F = 0, g0 = 0 and

g1 = 0, there is a unique solution that satisfies the estimate

‖u(·, t)‖ ≤ Keαt ‖f(·)‖ ,

where K and α are constants independent of f . y

The norm appearing in Definition 2.1 is the L2-norm induced by the L2-inner prod-

uct, defined as

〈u, v〉 =

∫ 1

0

uv dx, ‖u‖2 = 〈u, u〉 =

∫ 1

0

u2 dx.

For problems with nonzero forcing function, F 6= 0, the following definition from

[KL89] applies.

Definition 2.2. The IBVP (2.1) is well-posed if for g0 = 0 and g1 = 0, there is a

unique smooth solution that satisfies the estimate

‖u(·, t)‖2 ≤ K(t)

(
‖f(·)‖2 +

∫ t

0

‖F (·, τ)‖2 dτ

)
,

where K is a function of t, but does not depend on the problem data. y

This means that the forcing function can be neglected to simplify the analysis, since

both the problem with and without this term is well-posed ([Gus08]).

Both the above definitions require zero boundary data, but we would like to consider

problems with inhomogeneous boundary data as well. This is possible if we make a
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transformation ũ = u−ψ that yields homogeneous boundary data (see e.g. [SN14]).

The forthcoming proposition demonstrates that the problem with inhomogeneous

data is indeed well-posed.

Proposition 2.3. The IBVP (2.1) is well-posed for F (x, t) 6= 0, g0(t) 6= 0 and

g1(t) 6= 0, with g0 and g1 differentiable, if the corresponding problem with homoge-

neous data is well-posed.

Proof. We make the transformation mentioned above, ũ = u − ψ, where ψ is suffi-

ciently smooth and bounded, and is chosen such that it satisfies

ψ(x, 0) = f(x),

L0(∂x, t)ψ(0, t) = g0(t),

L1(∂x, t)ψ(1, t) = g1(t).

(2.2)

By inserting u = ũ+ ψ in Equation (2.1), we obtain

ut = (ũ+ ψ)t = ũt + ψt,

Pu+ F (x, t) = P (ũ+ ψ) + F (x, t) = Pũ+ Pψ + F (x, t),

ũt = Pũ+ Pψ + F (x, t)− ψt = Pũ+ F1(x, t),

where F1(x, t) = F (x, t) + Pψ− ψt. However, we know from Definition 2.2 that the

forcing function can be disregarded in the analysis, so for simplicity we neglect F1.

We then obtain the following problem

ũt = Pũ,

ũ(x, 0) = 0,

L0(∂x, t)ũ(0, t) = 0,

L1(∂x, t)ũ(1, t) = 0.

(2.3)

If this problem is well-posed, it satisfies the estimate in Definition 2.1, i.e.,
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‖ũ(·, t)‖ ≤ Keαt ‖f(·)‖ ,

and since f(x) = 0, it follows that ‖ũ(·, t)‖ = 0. We now make use of the fact that

ũ = u− ψ to obtain an estimate for u. Using the triangle inequality yields

‖u(·, t)‖ = ‖ũ(·, t) + ψ(·, t)‖ ≤ ‖ũ(·, t)‖+ ‖ψ(·, t)‖ ,

which implies

‖u(·, t)‖ ≤ ‖ψ(·, t)‖ .

This estimate holds as long as the data g0(t) and g1(t) is sufficiently differentiable

in time such that the conditions (2.2) hold. Hence, well-posedness of the problem

(2.3) with homogeneous data implies well-posedness for the problem (2.1) with in-

homogeneous data.

The above proposition together with the fact that any forcing function can be ne-

glected, allows us to simplify the analysis of problems with inhomogeneous data, by

setting boundary and forcing data to zero.

For some problems, it is possible to obtain a stronger estimate for the solution. This

is the case when the estimate also involves the boundary data. Problems for which

the following estimate holds, are called strongly well-posed in [Gus08].

Definition 2.4 ([Gus08]). The IBVP (2.1) is strongly well-posed if there is a

unique solution that satisfies the estimate

‖u(·, t)‖2 ≤ Keαt
(
‖f(·)‖2 +

∫ t

0

‖F (·, τ)‖2 + |g0(τ)|2 + |g1(τ)|2 dτ
)
,
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where K and α are constants independent of f , F , g0 and g1. y

Throughout this thesis, we will derive estimates such as the ones above for demon-

strating well-posedness for every problem considered. These estimates can be ob-

tained by using the energy method. We will demonstrate this method in Example

2.9 below.

Remark. The above definitions involve the condition that there exists a solution. In

[GKO95] the authors provide an explanation of how to prove existence of solutions

given that we can obtain an energy estimate. We will not discuss this any further,

since it is well-known that every problem considered in this project has a solution.

2.2 Preliminaries for the discrete analysis

We now turn to the case of semi-discrete approximations of the general initial-

boundary-value problem (2.1). Throughout this project, we will not consider fully-

discrete approximations in the analyses of the problems. This is of course needed

for the implementation of the schemes. However, Kreiss and Wu demonstrated in

[KW93] that if the semi-discrete approximation is stable, then, given that certain

conditions are met, the fully-discrete approximation is stable if we discretise time

using an appropriate Runge-Kutta method. We therefore focus our attention on the

analyses of the semi-discrete approximations.

To introduce the approximation of the general problem (2.1), we first divide the

spatial domain into n + 1 grid points with equal distance h. The ith grid point is

denoted xi = ih, where i = 0, 1, ..., n. Then the semi-discretisation of the IBVP

(2.1) can be written

ut = D(x, t)u+ F (x, t),

B0(t)u0(t) = g0(t),

B1(t)un(t) = g1(t),

u(0) = f ,

(2.4)
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where D is an approximation of the differential operator P ; B0 and B1 are approx-

imations of the differential operators L0 and L1, and F (x, t), g0, g1 and f are the

forcing, boundary and initial data, respectively. x = (x0, x1, ..., xn) is a vector with

the grid points as its elements.

The corresponding concept of well-posedness in the semi-discrete analysis is stability.

We now introduce the analogous definitions to the continuous case.

Definition 2.5 ([Gus08]). The approximation (2.4) of the IBVP (2.1) is stable if

for F = 0, g0 = 0 and g1 = 0, the solution satisfies the estimate

‖u(t)‖h ≤ Keαt ‖f‖h ,

where K and α are constants independent of f and h. y

The constants K and α appearing in Definition 2.5 are generally different from the re-

spective constants in the continuous case. The norm ‖·‖h is a discrete L2-equivalent

norm. As shown in Proposition 2.3 for the continuous case, we can extend the

stability definition to problems with inhomogeneous data by a transformation of

the problem into one with homogeneous data ([SN14]). However, for some approx-

imations, it is possible to obtain a stronger estimate that includes the forcing and

boundary data. Such approximations are called strongly stable, which is defined in

[Gus08] as follows.

Definition 2.6 ([Gus08]). The approximation (2.4) of the IBVP (2.1) is strongly

stable if there is a unique solution that satisfies the estimate

‖u(t)‖2
h ≤ Keαt

(
‖f‖2

h +

∫ t

0

‖F (τ)‖2
h + |g0(τ)|2 + |g1(τ)|2 dτ

)
,

where K and α are constants independent of f , F , g0, g1 and h. y
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In a similar manner as the continuous case, such estimates can be obtained by using

the discrete energy method, as will be demonstrated in Example 2.9 below.

SBP operators

The approximations of the differential operators used in this thesis are so-called

Summation-By-Parts (SBP) operators. These are operators that mimic the contin-

uous integration-by-parts rule, which is an essential part in the derivation of energy

estimates. In this chapter, some general definitions of these operators are introduced,

while their specific form will be explained in more detail in Chapter 4 and Appendix

B. We use the definitions found in [SN17] (for similar definitions, see for example

[SN14]).

Definition 2.7 ([SN17]). An SBP-operator for the first derivative is defined by

D1u = P−1Qu,

where Q+QT = B = diag(−1, 0, . . . , 0, 1). P is a symmetric positive-definite matrix

with elements of size O(h), where h is the grid spacing. P also defines an inner

product 〈u,v〉 = uTPv, and an L2-equivalent norm ‖u‖2 = 〈u,u〉. P is diagonal

in the interior, but can have blocks of elements near the boundary. y

Definition 2.8 ([SN17]). An SBP-operator for the second derivative is defined by

D2u = P−1 (−A+BS)u,

where A is a symmetric positive semi-definite matrix and Su is a first derivative

approximation. y

For the finite volume method in two space dimensions, the relation Q + QT =

diag(−1, 0, . . . , 0, 1) will not hold. However, a similar property applies in this case,

as will be demonstrated in Chapter 4.

To illustrate how the analyses of the continuous and semi-discrete problems are

handled in a similar manner, we consider an example with a first derivative SBP-
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operator for the advection equation in one space dimension, as is often done in the

literature. Stability directly from the use of SBP-operators is only possible to obtain

for simple problems, and therefore they are often coupled with the Simultaneous

Approximation Term (SAT). These are penalty terms that impose the boundary

conditions weakly (see [SN14] and [DRFHZ14] for further discussion). The example

below will also include a demonstration of the SAT procedure.

Example 2.9. Consider the advection equation in one space dimension

ut + aux = 0, 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = f(x).
(2.5)

If a > 0, we have the boundary condition u(0, t) = g(t), and if a < 0, we have the

boundary condition u(1, t) = g(t).

We now demonstrate that the problem is well-posed. Using the energy method,

multiply Equation (2.5) by u, and integrate over the domain.

∫ 1

0

uut dx = −
∫ 1

0

auux dx.

The integrand on the left-hand side can be written 1
2
d
dt
‖u(·, t)‖2, and by splitting

the integral on the right-hand side into two equal parts and applying the integration-

by-parts rule on one of them, we obtain

1

2

d

dt
‖u(·, t)‖2 = −1

2
au2(x, t)|x=1

x=0,

d

dt
‖u(·, t)‖2 = −a(u2(1, t)− u2(0, t)).

Depending on the sign of a, either −au2(1, t) ≥ 0 or au2(0, t) ≥ 0. However, the

term that will contribute to a growth in the norm is the one with the boundary

condition. We let a > 0 for the rest of the derivation (the case with a < 0 could be

treated in the same way). From Proposition 2.3, we can set boundary data to zero
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without loss of well-posedness. By doing this, the estimate reads

d

dt
‖u(·, t)‖2 = −au2(1, t).

Since a > 0, −au2(1, t) ≤ 0, and we get d
dt
‖u(·, t)‖ ≤ 0. Integration in time yields

the final estimate

‖u(·, t)‖ ≤ ‖f(·)‖ ,

which proves well-posedness of problem (2.5) in the sense of Definition 2.1.

We now consider the following approximation of problem (2.5)

ut + aP−1Qu = τP−1(u0 − g0(t))v, a > 0, t ≥ 0,

u(0) = f ,
(2.6)

where P−1Q is an SBP operator with diagonal P . The term on the right-hand side

of the equation is the SAT, where τ is a parameter to be determined for stability

reasons, and we have defined v = (1, 0, . . . , 0)T .

Using the discrete energy method, multiply Equation (2.6) by uTP and add the

transpose to obtain

uTPut + uTt Pu = −auTQu− auTQTu+ τuT (u0 − g0(t))v + τvT (u0 − g0(t))u,

d

dt
‖u(t)‖2 = −auT (Q+QT )u+ 2τuT (u0 − g0(t))v.

Recall from Definition 2.7 that Q+QT = B = diag(−1, 0, ..., 0, 1). Using this yields
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d

dt
‖u(t)‖2 = −a(u2

N − u2
0) + 2τu2

0 − 2τu0g0(t).

We see that the SBP operator produces boundary terms analogous to the continuous

integration-by-parts rule.

In the same way as for the continuous case, we can set the boundary data to zero

without loosing stability. The estimate then becomes d
dt
‖u‖2 = −au2

N + (a+ 2τ)u2
0.

The parameter τ must be chosen such that τ ≤ −a
2

holds, in order for the scheme to

be stable. We then have d
dt
‖u‖2 ≤ 0. Integration in time yields the final estimate

‖u(t)‖ ≤ ‖u(0)‖ = ‖f‖ .

y

Remark. In the above derivation of stability of the numerical scheme, we could

have shown strong stability by adding the terms τ2

(a+2τ)
g2(t)− τ2

(a+2τ)
g2(t) = 0, which

would have resulted in the estimate ‖u‖2 ≤ ‖f‖2 − τ2

a+2τ

∫ t
0
g2(T ) dT . This requires

a stronger restriction on τ , namely that it should satisfy τ < −a
2
.

The example concludes this chapter. In the following two chapters, numerical

schemes such as the one above will be further introduced.
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Chapter 3

Finite differences and the

SBP-SAT technique

As an introduction for the main investigations to be carried out in this project, we

consider a finite difference SBP operator to discretise the wave equation in one space

dimension.

3.1 Continuous analysis for the wave equation

Consider the second-order wave equation in one space dimension with homogeneous

Dirichlet boundary conditions.

utt = uxx, 0 ≤ x ≤ 1, t ≥ 0,

u(0, t) = 0,

u(1, t) = 0,

u(x, 0) = f(x),

ut(x, 0) = g(x).

(3.1)

Using the energy method, multiply the equation in problem (3.1) by ut and integrate
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over the domain to obtain

∫ 1

0

ututt dx =

∫ 1

0

utuxx dx.

We recognize the left-hand side as a time derivative of the norm ‖ut‖. We can

therefore write the above equation as

1

2

d

dt
‖ut‖2 =

∫ 1

0

utuxx dx.

If we now apply the integration-by-parts rule on the right-hand side of the equation,

we have

1

2

d

dt
‖ut‖2 = utux|x=1

x=0 −
∫ 1

0

utxux dx,

= −
∫ 1

0

1

2

∂

∂t
(ux)

2 dx,

d

dt

(
‖ut‖2 + ‖ux‖2) = 0.

Integration in time results in

‖ut(·, t)‖2 + ‖ux(·, t)‖2 = ‖g(·)‖2 + ‖fx(·)‖2 .

To obtain a bound on u itself, we use a technique proposed in [WK17].

d

dt
‖u‖2 = 2 ‖u‖ d

dt
‖u‖ ,

d

dt
‖u‖2 =

∫ 1

0

u2 dx =

∫ 1

0

2uut dx = 2〈u, ut〉 ≤ 2 ‖u‖ ‖ut‖ .
(3.2)
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Consequently, we have

d

dt
‖u‖ ≤ ‖ut‖ . ‖ut‖2 + ‖ux‖2 ,

which leads to

d

dt
‖u‖ ≤ ‖g(·)‖2 + ‖fx(·)‖2 .

Integration in time yields the final result

‖u(·, t)‖2 ≤ ‖f(·)‖2 +

∫ t

0

‖g(·)‖2 + ‖fx(·)‖2 dτ,

which demonstrates well-posedness of the problem (3.1) in the sense of Definition

2.4.

3.2 Discrete analysis for the wave equation

We consider the following semi-discretisation of problem (3.1) from [SN17] (also

found in [WK17]), where we also include the right boundary.

utt = D2u+ P−1
(
−STE0 −

τ1

h
E0

)
u+ P−1

(
STEN −

τ2

h
EN

)
u. (3.3)

Here, E0 and EN are matrices with zero elements everywhere except in the upper

left and lower right corner, respectively; P is a diagonal matrix and τ1 and τ2 are

parameters to be determined for stability reasons. Recall that the second-derivative

operator has the form D2 = P−1 (−A+BS).
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Before demonstrating stability of the above scheme, we introduce a lemma from

[MHI08] that will be used in the analysis. This lemma applies to our problem, since

according to the paper, our operator D2 is a narrow-diagonal second derivative SBP

operator, which is defined as follows.

Definition 3.1 ([MHI08]). An explicit pth-order accurate finite difference scheme

with minimal stencil width of a Cauchy problem, is called a pth-order accurate narrow

stencil. y

Lemma 3.2 ([MHI08]). The dissipative part A of a narrow-diagonal second deriva-

tive SBP operator has the property

uTAu = hα(BSu)2
0 + hα(BSu)2

N + uT Ãu,

where Ã is a symmetric and positive semi-definite matrix, and α is a positive constant

independent of h.

For the proof, see [MHI08], where also the different values of α are listed for the

second, fourth and sixth-order accurate second derivative SBP operators.

We now turn to the demonstration of stability. We begin by multiplying Equation

(3.3) by uTt P and adding the transpose. We then have

uTt Putt + uTttPut = uTt (−A+BS)u+ uT (−A+BS)Tut

+ uTt

(
−STE0 −

τ1

h
E0

)
u+ uT

(
−STE0 −

τ1

h
E0

)T
ut

+ uTt

(
STEN −

τ2

h
EN

)
u+ uT

(
STEN −

τ2

h
EN

)T
ut.

(3.4)

The left-hand side can be recognized as d
dt
‖ut‖2. For convenience, we split the right-

hand side into three components and consider them separately.
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Component 1: The terms from the second derivative approximation

These are the first two terms on the right-hand side in the above equation. By

rearranging terms, we obtain

uTt (−A+BS)u+ uT (−A+BS)Tut = −uTt Au− uTATut + uTt BSu+ uT (BS)Tut,

= − d

dt

(
uTAu− uT (BSu)

)
.

We now apply Lemma 3.2, which yields

uTt (−A+BS)u+ uT (−A+BS)Tut =

− d

dt

(
uT Ãu+ hα(BSu)2

0 + hα(BSu)2
N − uT (BSu)

)
.

(3.5)

Component 2: The left SAT

These are the terms uTt
(
−STE0 − τ1

h
E0

)
u + uT

(
−STE0 − τ1

h
E0

)T
ut in Equation

(3.4). Writing them out, we obtain after some manipulations

uTt

(
−STE0 −

τ1

h
E0

)
u+ uT

(
−STE0 −

τ1

h
E0

)T
ut =

−uTt STE0u−
τ1

h
uTt E0u− uT (STE0)Tut −

τ1

h
uTET

0 ut =

−2(Sut)0u0 − 2
τ1

h
(ut)0u0.

(3.6)

The resulting terms can be recognized as time derivatives, and we have

uTt

(
−STE0 −

τ1

h
E0

)
u+ uT

(
−STE0 −

τ1

h
E0

)T
ut =

− d

dt

(
(Su)0u0 +

τ1

h
u2

0

)
.

(3.7)
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Component 3: The right SAT

We consider now the two last terms of Equation (3.4). In the same fashion as for

the left SAT, we obtain the following.

uTt

(
STEN −

τ2

h
EN

)
u+ uT

(
STEN −

τ2

h
EN

)T
ut = 2(Sut)NuN − 2

τ2

h
(ut)NuN ,

=
d

dt

(
(Su)NuN −

τ2

h
u2
N

)
.

Combining the three components (3.5)-(3.7), Equation (3.4) reads

d

dt
‖ut‖2 =

− d

dt

(
uT Ãu+ hα(Su)2

0 + hα(Su)2
N + 2u0(Su)0 − 2uN(Su)N +

τ1

h
u2

0 +
τ2

h
u2
N

)
.

By rearranging terms and writing the resulting right-hand side on matrix form, we

obtain

d

dt

(
‖ut‖2 + ‖u‖2

Ã

)
=

d

dt

((Su)0

u0

)T (
hα 1

1 τ1
h

)(
(Su0)

u0

)

+

(
(Su)N

uN

)T (
hα −1

−1 τ2
h

)(
(Su)N

uN

)

We define v0 =

(
(Su)0

u0

)
, M0 =

(
hα 1

1 τ1
h

)
, vN =

(
(Su)N

uN

)
andMN =

(
hα −1

−1 τ2
h

)
.

Consequently, the above equation can be written as

d

dt

(
‖ut‖2 + ‖u‖2

Ã

)
= − d

dt

(
vT0M0v0 + vTNMNvN

)
.
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Integration in time leads to

‖ut(t)‖2 + ‖u(t)‖2
Ã = −vT0M0v0|t0 − vTNMNvN |t0 + ‖ut(0)‖2 + ‖u(0)‖2

Ã ,

= vT0 (0)M0v0(0) + vTN(0)MNvN(0)− vT0 (t)M0v0(t)

− vTN(t)MNvN(t) + ‖g‖2 + ‖f‖2
Ã .

For the scheme to be stable, we require that M0 and MN are positive semi-definite.

This yields the conditions τ1, τ2 ≥ 1
α

. We then have

‖ut(t)‖2 + ‖u(t)‖2
Ã ≤ v

T
0 (0)M0v0(0) + vTN(0)MNvN(0) + ‖g‖2 + ‖f‖2

Ã .

The two first terms on the right-hand side above is some known constant C obtained

from the initial data, hence we can write

‖ut(t)‖2 + ‖u(t)‖2
Ã ≤ C + ‖g‖2 + ‖f‖2

Ã .

Using the same relations (3.2) as for the continuous case, we can obtain a bound on

‖u‖, and we therefore conclude that the scheme is stable.

3.2.1 Accuracy and convergence rates

Even though it is quite straightforward to obtain high-order approximations in the

interior of the domain, more care must be taken near the boundaries. To obtain

optimal convergence rates, boundary conditions must be approximated to at most

one order less than the interior points (see e.g. [Gus08, Gus75, Gus81]). In [Str94],

Strand investigated SBP operators approximating the first derivative. Among them,

operators using a diagonal norm, with accuracy in the interior of the domain 2p,

and accuracy p ≤ 4 at the boundary. This will according to [Gus75, Gus81] yield

a convergence rate of p + 1. For second derivative approximations satisfying a
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summation-by-parts rule, Svärd and Nordström proved in [SN06] that for schemes

with boundary accuracy p, the convergence rate is raised to p + 2, i.e., two orders

are gained. In fact, for PDEs with a nth-order spatial derivative, the accuracy at

and near the boundary can be lowered n orders to obtain the convergence rate of

the inner scheme.

When analysing numerical schemes such as the one introduced in this chapter, it is

possible to obtain an a priori estimate of the convergence rate by deriving an energy

estimate for the error between the exact and the numerical solution. To see how

this procedure is carried out, see for instance [Gus08]. Here, it is explained that

the energy method sometimes demonstrates that the convergence rate is one order

higher than the accuracy at the boundary. For other cases, however, only a factor

of O(h1/2) is gained by the use of the energy method. From the theory discussed

above, it is clear that the observed convergence rate is often higher than what is

expected from the analysis based on the energy method.

3.3 Numerical results

In this section, we present the results obtained when implementing the above nu-

merical scheme with an SBP operator that is 6th-order accurate in the interior and

3rd-order accurate near the boundary (see Appendix B for its specific form). The

analytical solution is u(x, t) = sin(2πx) cos(2πt), which yields no forcing function,

and the scheme is run until t = 1.

Table 3.1: Table showing the L2 errors and convergence using the (6, 3) scheme

Grid points L2-error L2-convergence

100 1.39153e-08 -

200 3.22325e-10 5.39

300 3.72387e-11 5.30

400 7.52297e-12 5.54

500 2.16224e-12 5.58

600 7.99859e-13 5.44
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The results listed in Table 3.1 indicate that the convergence rate of the scheme is

around 5.5. In Figure 3.1, we see the numerical solution when the number of grid

points is 600. The exact solution is not included here, since it looks identical to the

numerical solution in the plot. However, Figure 3.2 shows the error between the

calculated and the exact solution (notice the scale of the axes). We see from this

figure that the biggest errors are along the boundaries, which agrees with the fact

that the scheme is three orders less accurate here.

Figure 3.1: Plot of the numerical solution using 600
grid points.

Figure 3.2: Plot of the error between the exact and
the numerical solution using 600 grid points.
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Chapter 4

Finite volumes and the SBP-SAT

technique

For the second part of this project, we consider the finite volume method in two space

dimensions. In [SGN07], Svärd et al., showed that two common approximations

of the second derivative are inconsistent on unstructured grids. However, if the

grid is constructed by equilateral polygons, both approximations are consistent in

the interior. The idea of this project is to take an unstructured triangular grid,

and transform every triangle to a standard equilateral triangle (see Figure 4.1).

Afterwards, we refine the mesh by adding grid points in such a manner that the

standard triangle is consisting of only equilateral triangles. In this way, we might

recover the accuracy of the second-derivative approximation.

In this chapter, we consider one of the approximations discussed in the paper

[SGN07], namely the application of the first-derivative approximation twice. We

derive a finite volume method with operators that satisfy a summation-by-parts

rule. We begin by discretising the advection equation using these operators and

verify by numerical experiments what convergence rates we obtain by including the

transformation. Next, we discretise the second-order wave equation using the same

operators, and investigate consistency and convergence rates.
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4.1 The transformation

Before proceeding to the finite volume method, we start this chapter by introduc-

ing the transformation from the physical domain to the standard triangle. The

transformation we have used is linear and of the form

x = a1 + a2ξ + a3η,

y = b1 + b2ξ + b3η.

Here, (x, y) are the coordinates in the physical domain, while (ξ, η) are the coor-

dinates in the computational domain (the standard triangle). Each triangle in the

unstructured mesh will be transformed into a standard triangle with fixed vertices

(see Figure 4.1).

y

x

ξ

η

(0, 0) (1, 0)

(12 ,
√
3
2 )

Figure 4.1: Every triangle in the unstructured mesh is transformed into a standard triangle with vertices at (0, 0),

(1, 0) and ( 1
2
,
√

3
2

).

Later in this chapter, we will see how the transformation influences the problems

we are investigating.

4.2 The finite volume method

In [NFAE03], Nordström et al. analysed the unstructured node-centred finite volume

method, and showed that it can be regarded in an SBP framework. The following
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derivation was originally found in this article. For the purpose of this thesis, it was

verified and we will present it here for the reader’s convenience.

Figure 4.2: Example of a grid on the standard triangle. The dashed lines are the boundaries of the dual volumes,
the dots are the centroids and the squares are the nodes.

Consider the advection equation in two space dimensions

ut + aux + buy = 0, (x, y) ∈ Ω (4.1)

where Ω is the standard triangle, and the domain is divided into equilateral triangles.

Unlike the finite difference method, the finite volume method is based on the integral

form of the given PDE. We start by dividing the spatial domain into a number of

non-overlapping dual volumes. Then we integrate Equation (4.1) over each such

volume, which in this case is defined as as the area inside the polygon with vertices

at the centroids of the triangles surrounding node i (see Figure 4.2).

∫∫
Vi

ut dxdy +

∫∫
Vi

aux + buy dxdy = 0.

By using Green’s theorem, we obtain
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∫∫
Vi

ut +

∮
∂Vi

−bu dx+ au dy = 0. (4.2)

Vi

i

n1

n2

n3n4

n5

n6

∆xin3

∆xn3i

Figure 4.3: An interior point i of the grid with its dual volume Vi and surrounding neighbours n1 − n6. The
differences in the coordinates of the centroids are the ∆x and ∆y in the approximations of the derivatives.

We want to approximate the volume average of u, which can be expressed as ū =
1
Vi

∫∫
Vi
udxdy. This means that the first term on the left-hand side of Equation (4.2)

can be written Vi(ūi)t. Hence, the equation now reads

Vi(ūi)t +

∮
∂Vi

−bu dx+

∮
∂Vi

au dy = 0. (4.3)

The line integrals (fluxes) above are equal to the sum of the line integrals over each

edge in the dual volume. We approximate these line integrals by the mean value of

the solution at node i and the neighbouring node n, times the difference between the

coordinates in the two centroids constituting the corresponding volume side. The

orientation of the line integrals is in the counter-clockwise direction. Let Ni be the

set of all neighbouring nodes to node i. Then the line integrals in Equation (4.3)

can be written as
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∮
∂Vi

−bu dx = −b
∑
n∈Ni

ui + un
2

∆xin

∮
∂Vi

au dy = a
∑
n∈Ni

ui + un
2

∆yin

If we now divide Equation (4.3) by Vi, we obtain

(ui)t −
b

Vi

∑
n∈Ni

ui + un
2

∆xin +
a

Vi

∑
n∈Ni

ui + un
2

∆yin = 0, (4.4)

which is a discretised version of the original equation (4.1). This means that the x-

and y-derivatives are approximated as

ux|xi,yi ≈
1

Vi

∑
n∈Ni

ui + un
2

∆yin, uy|xi,yi ≈ −
1

Vi

∑
n∈Ni

ui + un
2

∆xin.

Hence, the following is a semi-discrete version of Equation (4.1)

u+ aP−1Qxu+ bP−1Qyu = 0 (4.5)

Here, P−1 is a matrix with 1
Vi

on the diagonal, and the specific form of Qx and Qy

will be described below.

First, we rewrite the sums in Equation (4.4) as

∑
n∈Ni

ui + un
2

∆yin =
∑
n∈Ni

ui
∆yin

2
+
∑
n∈Ni

un
∆yin

2

−
∑
n∈Ni

ui + un
2

∆xin = −
∑
n∈Ni

ui
∆xin

2
−
∑
n∈Ni

un
∆xin

2

(4.6)
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Next, consider all interior points of the grid.

We have that

Qxii =
∑
n∈Ni

∆yin
2

= 0 Qyii = −
∑
n∈Ni

∆xin
2

= 0,

since we are summing over a closed loop. This means that in the interior, Qx and

Qy will have zeros along the diagonals. Further, we have that the contribution from

a neighbouring node n to node i has equal size but opposite sign of the contribution

from node i to the neighbouring node n (see Figure 4.3), i.e.,

Qxin =
∆yin

2
= −Qxni

Qyin = −∆xin
2

= −Qyni
.

This means that Qx and Qy are skew-symmetric in the interior.

Let us now consider the nodes along the boundaries. We denote these nodes by b

instead of i to clarify that they are indeed boundary nodes.

−∆x

∆x

b n1

n2n3

n4

Vb

∆xb

Figure 4.4: The grid around a boundary node b with neighbouring nodes n1 - n4. The dashed lines together with
the boundary defines the dual volume Vb.

The flux through the boundary is approximated by the value of u at node b times the

∆xb or ∆yb (depending on which integral we are considering) along the boundary

(see Figure 4.4). This means that for boundary nodes, we have
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flux =
∑
n∈Nb

ub + un
2

∆ybn + ub∆yb −

(∑
n∈Nb

ub + un
2

∆xbn + ub∆xb

)
.

From Figure 4.4, we have that

∑
n∈Nb

∆xbn = −∆xb,
∑
n∈Nb

∆ybn = −∆yb,

which implies that the flux at a boundary node is given by

flux =
∑
n∈Nb

un
∆ybn

2
+ ub

∆yb
2
−

(∑
n∈Nb

un
∆xbn

2
+ ub

∆xb
2

)
.

This means that

Qxbb =
∆yb

2
, Qybb = −∆xb

2
.

As for the interior points, the contribution from a neighbouring node n to the bound-

ary node b has the same size but opposite sign of the contribution from the boundary

node b to the neighbouring node n. Thus,

Qxbn =
∆ybn

2
= −Qxnb

, Qybn = −∆xbn
2

= −Qynb
.

Remark. The property that Qx and Qy are almost skew-symmetric means that the

sums Qx +QT
x and Qy +QT

y satisfy



32

Qx +QT
x = Bx, Qy +QT

y = By,

where Bx and By are diagonal matrices with the boundary elements of Qx and Qy,

respectively. That is, Bx contains the elements ∆yb, and By the elements −∆xb.

This means that the SBP operators in two space dimensions have the same property

as the ones in one space dimension, and the above result corresponds to the SBP

property Q+QT = diag(−1, 0, ..., 0, 1) presented in Chapter 2.

We conclude this section by summing up the main results: the matrix P is a diagonal

matrix with elements Vi, and Qx and Qy are almost skew-symmetric matrices.

4.3 The advection equation

In this section we analyse the advection equation in two space dimensions. To reduce

notation, we first consider the equation on a single domain. Thereafter, we show

that the problem is well-posed also if we consider blocks that are coupled together

by an interface.

4.3.1 The advection equation in the computational domain

The equation must be transformed so that it can be solved in the computational

domain. Inserting the transformation presented in Section 4.1, yields

ut(x(ξ, η), y(ξ, η), t) + aux(x(ξ, η), y(ξ, η), t) + buy(x(ξ, η), y(ξ, η), t) = 0,

ut(ξ, η, t) + (aξx + bξy)uξ(ξ, η, t) + (aηx + bηy)uη(ξ, η, t) = 0.

As is seen from the above equation, the linear transformation results in a constant

coefficient problem in the computational domain that is analogous to the one in

the physical domain. The constants aξx + bξy and aηx + bηy corresponds to the a
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and b in the original problem, respectively. Hence, proving well-posedness in the

computational domain will be equivalent to proving well-posedness in the physical

domain. For this reason, we only consider the analysis in the computational domain.

Furthermore, for a cleaner presentation in the forthcoming sections, we denote the

coordinates in the computational domain (x, y) instead of (ξ, η). We also let a denote

aξx + bξy and b denote aηx + bηy.

4.3.2 Analysis of the continuous problem without interfaces

We first analyse the continuous problem on a single triangle and prescribe boundary

conditions so that the problem is well-posed.

Consider again the advection equation in two space dimensions.

ut + aux + buy = 0, (x, y) ∈ Ω. (4.7)

To demonstrate well-posedness using the energy method, multiply Equation (4.7)

by u and integrate over the domain Ω.

∫∫
Ω

uut dxdy = −
∫∫

Ω

auux + buuy dxdy

We define v = (au, bu), such that the right-hand side of the above equation can be

written

∫∫
Ω

uut dxdy = −
∫∫

Ω

∇u · v dxdy.

Here, we take the nabla operator to mean ∇ = ( ∂
∂x
, ∂
∂y

). We now split the integral

on the right-hand side into two equal parts, and use the integration-by-parts rule
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on one of them.

1

2

d

dt
‖u‖2 = −

∫∫
Ω

∇u · v dxdy

= −1

2

∫∫
Ω

∇u · v dxdy − 1

2

∮
∂Ω

u(v · n) ds+
1

2

∫∫
Ω

u∇ · v dxdy.

The first and last term of the right-hand side cancel, and we obtain

1

2

d

dt
‖u‖2 = −1

2

∮
∂Ω

u(v · n) ds

= −1

2

∮
∂Ω

u2(aex + bey) · n ds
(4.8)

where ex and ey are the unit vectors, nds = (dy,−dx) and |n| = 1. Let ((aex+bey)·
n)− denote the part of the boundary where (aex+bey) ·n < 0, and ((aex+bey) ·n)+

the part where (aex + bey) · n ≥ 0. Then Equation (4.8) can be written

1

2

d

dt
‖u‖2 = −1

2

∮
∂Ω

u2((aex + bey) · n)− ds− 1

2

∮
∂Ω

u2((aex + bey) · n)+ ds.

The term (aex + bey) ·n ≥ 0, does not contribute to any growth in the norm of the

solution, hence this part of the boundary can be disregarded, and we obtain

d

dt
‖u‖2 ≤ −

∮
∂Ω

u2((aex + bey) · n)− ds.

Following the procedure done in [SN04], we add the penalty term
∮
∂Ω
u(u−g)(aex+

bey · n)− ds = 0 (where g is the boundary data), which yields
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d

dt
‖u‖2 = −

∮
∂Ω

u2((aex + bey) · n)− ds+

∮
∂Ω

u(u− g)(aex + bey · n)− ds

= −
∮
∂Ω

(
u2((aex + bey) · n)− − u2((aex + bey) · n)−

+ ug((aex + bey) · n)−
)
ds

= −
∮
∂Ω

ug((aex + bey) · n)− ds

By setting the boundary data to zero, and integrating in time, we obtain the follow-

ing estimate

‖u(·, ·, t)‖2 = ‖u(·, ·, 0)‖2 = ‖f(·, ·)‖2 ,

which proves well-posedness of problem (4.7) in the sense of Definition 2.1, with

u = g along the boundary where (aex + bey) · n < 0.

4.3.3 Analysis of the discrete problem without interfaces

We now introduce the scheme for the advection equation on a single triangle. Based

on the operators derived in Section 4.2, we propose the following semi-discrete

scheme.

Proposition 4.1. The scheme

ut + aP−1Qxu+ bP−1Qyu = P−1SAT, (4.9)

with
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SAT =

(a∆yb − b∆xb)(ub − gb), for boundary nodes b with boundary conditions

0, otherwise

is a stable semi-discretisation of Equation (4.7) with u = g on the boundaries with

boundary conditions.

Proof. The goal is to derive an energy estimate. A similar derivation can be found

in [NFAE03]. Using the discrete energy method, multiply Equation (4.9) by uTP

and add the transpose.

uTPut + uTt Pu = −auTQxu− auTQT
xu− buTQyu− buTQT

yu+ 2uTSAT,

= −auT (Qx +QT
x )u− buT (Qy +QT

y )u+ 2uTSAT

We recognize the left-hand side as a time derivative, and utilize the fact that Qx +

QT
x = Bx, Qy +QT

y = By.

d

dt
‖u‖2 = −2a

∑
i∈B

u2
i

2
∆yi + 2b

∑
i∈B

u2
i

2
∆xi + 2

∑
i∈B

uiSATi,

= −
∑
i∈B

u2
i (a∆yi − b∆xi) + 2

∑
i∈B

uiSATi.

Here, B denotes the set of all boundary nodes. In the same fashion as for the

continuous case, we divide the sum −
∑

i∈B u
2
i (a∆yi − b∆xi) into two parts.

d

dt
‖u‖2 = −

∑
i∈B s.t.

(a∆yi−b∆xi)≥0

u2
i (a∆yi − b∆xi)−

∑
i∈B s.t.

(a∆yi−b∆xi)<0

u2
i (a∆yi − b∆xi) + 2

∑
i∈B

uiSATi.

The first term on the right-hand side is less than or equal to zero, and will therefore
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not contribute to any growth. The estimate can therefore be written

d

dt
‖u‖2 ≤ −

∑
i∈B s.t.

(a∆yi−b∆xi)<0

u2
i (a∆yi − b∆xi) + 2

∑
i∈B

uiSATi.

Next, we insert the specific SAT-term from the proposition to prove that the scheme

is stable.

d

dt
‖u‖2 ≤ −

∑
i∈B s.t.

(a∆yi−b∆xi)<0

u2
i (a∆yi − b∆xi) + 2

∑
i∈B

ui(a∆yi − b∆xi)(ui − gi),

=
∑

i∈B s.t.
(a∆yi−b∆xi)<0

−u2
i (a∆yi − b∆xi) + 2u2

i (a∆yi − b∆xi)− 2uigi(a∆yi − b∆xi),

=
∑

i∈B s.t.
(a∆yi−b∆xi)<0

u2
i (a∆yi − b∆xi)− 2uigi(a∆yi − b∆xi).

The first term on the right-hand side is less than or equal to zero, which means we

have

d

dt
‖u‖2 ≤ −2uigi(a∆yi − b∆xi). (4.10)

From Chapter 2, we can set boundary data to zero in the stability analysis, without

loss of stability, hence the estimate reads

d

dt
‖u‖2 ≤ 0.

Integration in time yields the final estimate
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‖u(t)‖2 ≤ ‖u(0)‖2 ,

which proves stability of the scheme in the sense of Definition 2.5.

4.3.4 Analysis of the continuous problem with interfaces

The theory about the interface treatment can be found in [LN14], [SN14] and

[CNG99].

ΩL ΩR

vu

Figure 4.5: Example of a grid with an interface (dashed line).

For simplicity, we consider a physical domain with only one interface, like the one

in Figure 4.5. The extension of the analysis to several interfaces is straightforward

as they are handled in the same way. We let u denote the solution in the left

sub-domain ΩL, and v the solution in the right sub-domain ΩR. We have to show

that the problem is well-posed, even with the coupling of the two blocks along the

interface. We still let (x, y) denote the coordinates in the computational domain.

We let also from now ΩL and ΩR denote the respective computational domains of

the triangles in Figure 4.5.

First, we split the equation into two parts
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ut + aux + buy = 0, (x, y) ∈ ΩL

vt + avx + bvy = 0, (x, y) ∈ ΩR

Next, we apply the energy method to both parts, and then add the two equations.

We refer the reader to Section 4.3.2 for the derivation of the energy estimate for the

advection equation. We skip to the part of the derivation where the intergration-by-

parts rule has been applied. We then have

d

dt
‖u(·, ·, t)‖2

ΩL
= −

∫
∂ΩLB

u2(aex + bey) · nL ds−
∫
∂ΩLI

u2(aex + bey) · nL ds,

d

dt
‖v(·, ·, t)‖2

ΩR
= −

∫
∂ΩRB

v2(aex + bey) · nR ds−
∫
∂ΩRI

v2(aex + bey) · nR ds.

In the above equations, the subscripts L and R denote the left and right part of the

domain, respectively, B denotes the parts of the sub-domains that are outer bound-

aries, while I denotes the parts of the sub-domains that are interfaces. We have

already seen that the problem with only outer boundaries is well-posed, so we will

disregard this part and focus only on the interface. We now add the two equations

and use the short-hand notation d
dt
‖w(·, ·, t)‖2 = d

dt
‖u(·, ·, t)‖2

ΩL
+ d

dt
‖v(·, ·, t)‖2

ΩR
to

obtain

d

dt
‖w(·, ·, t)‖2 = −

∫
∂ΩLI

u2(aex + bey) · nL ds−
∫
∂ΩRI

v2(aex + bey) · nR ds.

We have that ∂ΩLI
= ∂ΩRI

and nR = −nL. Using this, yields

d

dt
‖w(·, ·, t)‖2 = −

∫
∂ΩI

(u2 − v2)(aex + bey) · nL ds.
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We follow again the procedure in [SN04] and add the term
∫
∂ΩI

τ1u(u − v)(aex +

bey) · nL − τ2v(v − u)(aex + bey) · nL ds = 0 to obtain

d

dt
‖w(·, ·, t)‖2 = −

∫
∂ΩI

(u2 − v2)(aex + bey) · nL ds

+

∫
∂ΩI

(τ1u(u− v)(aex + bey) · nL

−τ2v(v − u)(aex + bey) · nL) ds,

=

∫
∂ΩI

(
(τ1 − 1)u2 − τ1uv + (1− τ2)v2 + τ2uv

)
(aex + bey) · nL ds.

Depending on the sign of (aex+bey) ·nL, we get different criteria for the parameters

τ1 and τ2. If (aex + bey) · nL < 0, then τ1 ≥ 1, τ1 + τ2 = 2 is required for well-

posedness. If (aex + bey) · nL > 0, then we require that τ1 ≤ 1 and τ1 + τ2 = 2.

When (aex + bey) ·nL = 0, the integral over the interface will vanish, and hence not

contribute to any growth in the solution.

4.3.5 Analysis of the discrete problem with interfaces

We now turn to the semi-discretisation of the advection equation on a grid consisting

of two blocks with an interface. Also here, we can extend the theory to include

several interfaces, but for a cleaner presentation, we consider only one.

We proceed in the same way as for the continuous case. We divide the equation

into two parts - one for each block, then we impose the interface conditions weakly

using the SAT technique in a similar manner as for the boundary conditions. Let

now u and v denote the solutions in the left and right sub-domains, respectively.

We propose the following scheme.
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Proposition 4.2. The scheme

ut + aLP
−1
L QxLu+ bLP

−1
L QyLu = P−1

L SATB + P−1
L SATI (4.11a)

vt + aRP
−1
R QxRv + bRP

−1
R QyRv = P−1

R SATB + P−1
R SATI (4.11b)

with SATB as in Proposition 4.1, and

SATI =


ω1(ui − vi) ((aLexL + bLeyL) · nL) , i ∈ ∂ΩLI

ω2(vi − ui) ((aRexR + bReyR) · nR) , i ∈ ∂ΩRI

0, otherwise

is stable.

Proof. Using the discrete energy method, multiply Equation (4.11a) by uTPL and

Equation (4.11b) by vTPR, and add the transposes to obtain

d

dt
‖u‖2

ΩL
= −aLuT (QxL +QT

xL
)u− bLuT (QyL +QT

yL
)u+ 2uTSATB + 2uTSATIL

= −2aL

(∑
i∈B

u2
i

2
∆yi +

∑
i∈IL

u2
i

2
∆yi

)
+ 2bL

(∑
i∈B

u2
i

2
∆xi +

∑
i∈IL

u2
i

2
∆xi

)
+2
∑
i∈B

uiSATi + 2
∑
i∈IL

uiSATi

d

dt
‖v‖2

ΩR
= −2aR

(∑
i∈B

v2
i

2
∆yi +

∑
i∈IR

v2
i

2
∆yi

)
+ 2bR

(∑
i∈B

v2
i

2
∆xi +

∑
i∈IR

v2
i

2
∆xi

)
+2
∑
i∈B

viSATi + 2
∑
i∈IR

viSATi.

From the proof of Proposition 4.1, we know that the boundary nodes are not causing

any instabilities, hence we disregard these nodes in the rest of the analysis, and focus

only on the interface nodes.
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We now add the two equations and use the short-hand notation d
dt
‖w‖2 = d

dt
‖u‖2

ΩL
+

d
dt
‖v‖2

ΩR
. This yields

d

dt
‖w‖2 = −2aL

∑
i∈IL

u2
i

2
∆yi + 2bL

∑
i∈IL

u2
i

2
∆xi + 2

∑
i∈IL

uiSATi

−2aR
∑
i∈IR

v2
i

2
∆yi + 2bR

∑
i∈IR

v2
i

2
∆xi + 2

∑
i∈IR

viSATi.

For simplicity, we consider now only one interface node k. Since this node is arbitrary,

stability of the whole scheme follows if we are able to prove stability for this node.

For the rest of the proof, we write only the right-hand side of the above equation.

− aLu2
k∆ykL + bLu

2
k∆xkL + 2ukSATIkL − aRv2

k∆ykR + bRv
2
k∆xkR + 2vkSATIkR

= −u2
k(aLexL + bLeyL) · nL + 2ukSATIkL − v2

k(aRexR + bReyR) · nR + 2vkSATIkR ,

where nL = (∆ykL ,−∆xkL) and nR = (∆ykR ,−∆xkR). We insert the respective

SAT-terms to obtain

− u2
k(aLexL + bLeyL) · nL + 2ω1uk(uk − vk) ((aLexL + bLeyL) · nL)

− v2
k(aRexR + bReyR) · nR + 2ω2vk(vk − uk) ((aRexR + bReyR) · nR)

= −u2
k(aLexL + bLeyL) · nL + 2ω1u

2
k(aLexL + bLeyL) · nL − 2ω1ukvk(aLexL + bLeyL) · nL

− v2
k(aRexR + bReyR) · nR + 2ω2v

2
k(aRexR + bReyR) · nR − 2ω2vkuk(aRexR + bReyR) · nR.

We now utilize the fact that (aRexR + bReyR) · nR = −(aLexL + bLeyL) · nL, which

yields

(
(2ω1 − 1)u2

k − 2(ω1 − ω2)ukvk + (1− 2ω2)v2
k

)
(aLexL + bLeyL) · nL.
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As for the continuous case, we get different criteria on the parameters ω1 and ω2

depending on the sign of (aLexL + bLeyL) ·nL. If (aLexL + bLeyL) ·nL < 0, then we

require ω1 ≥ 1
2

and ω1 + ω2 = 1, and if (aLexL + bLeyL) · nL > 0, then ω1 ≤ 1
2

and

ω1 + ω2 = 1. The case when (aLexL + bLeyL) · nL = 0 yields no restrictions on the

parameter as the above terms vanish.

The restrictions on ω1 and ω2 given in the proposition above, proves stability for

the numerical scheme. In addition to the scheme being stable, we also want it to

be conservative, since the governing equations are conservation laws. The following

theory applied to our problem can be found in for example [EAN11], [SN14], [LN14]

and [CNG99].

The weak form of the advection equation (4.7) can be obtained by multiplying by

a smooth test function Φ with compact support (which in this case means that it

vanishes at the boundaries) and integrating over the spatial domain and in time.

∫
Ω

Φu|t0 dΩ−
∫

Ω

∫ t

0

Φtu+ aΦxu+ bΦyu dt dΩ = 0.

Here, we have used the integration-by-parts rule to move the spatial derivatives

from the solution u to the test function Φ. We want the numerical scheme to mimic

the above equation. To demonstrate that the conservation property indeed applies

to the numerical scheme, multiply equation (4.11a) by φTLPL and equation (4.11b)

by φTRPR. Here, (φL,R)i(t) = Φ(xi, yi, t). Since Φ has compact support, all outer

boundary terms will vanish, and we therefore neglect the boundary SAT in the

derivation.

φTLPLut + aLφ
T
LQxLu+ bLφ

T
LQyLu = φTLSATIL ,

φTRPRvt + aRφ
T
RQxRv + bRφ

T
RQyRv = φTRSATIR .

We now add the two equations, and utilize the fact that φTPwt = d
dt

(φTPw) −
φTt Pw and Qx +QT

x = Bx, Qy +QT
y = By. We then obtain
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φTLPLu|t0 + φTRPRv|t0 −
∫ t

0

(
(φ)Tt PLu+ (φR)Tt PRv

+ aL(DxLφL)TPLu+ bL(DyLφL)TPLu

+ aR(DxRφR)TPRv + bR(DyRφR)TPRv

+ aL
∑
i∈I

φiui∆yiL + aR
∑
i∈I

φivi∆yiR

− bL
∑
i∈I

φiui∆xiL − bR
∑
i∈I

φivi∆xiR

− ω1

∑
i∈I

φi(ui − vi) ((aex + bey) · nL)

− ω2

∑
i∈I

φi(vi − ui) ((aex + bey) · nR)

)
dt = 0.

For the semi-discretization to be conservative, we need the last four lines in the

integral above to cancel. We consider now only one interface node k, and rearrange

the terms in question. This gives us

φk(aex + bey) · nL(uk − vk − ω1(uk − vk)− ω2(uk − vk)),

which cancels due to the stability condition ω1 + ω2 = 1. Hence, the numerical

scheme is conservative.

Before presenting the numerical results, we briefly investigate what convergence

rates the scheme will generate, theoretically. For finite difference methods, better

rates are often observed in the numerical experiments, and there is a chance we have

the same case for the finite volume method. However, the analysis provides an idea

of what rates we could at least expect.
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4.3.6 Convergence analysis

According to [SGN07], it is possible to show that the approximations for the first

derivatives are first-order accurate in the interior of the domain on unstructured

grids. We therefore expect at least first-order accuracy on the standard triangle as

well. In fact, it can be shown (see Appendix A) that the x-derivative is second-order

accurate in the interior of this domain. Numerical experiments corroborate this

result, and show that we have a similar case for the y-derivative. The truncation

errors can be summed up as follows for the first derivatives. For interior nodes, we

have T = O(h2), for boundary nodes T = O(h) and for corner nodes T = O(1).

The theory for convergence rates for the finite difference methods does not apply

for the finite volume method formulated on unstructured grids. However, we can

estimate the convergence rate by determining an energy estimate for the error of

the solution. See for example [Gus08] or [GKO95] for more about the following

procedure.

To distinguish the true solution from the numerical solution, we denote them by

u and v, respectively. The error at a point (xi, yi, t) is then expressed as ei =

u(xi, yi, t)− vi(t). The error will satisfy the scheme

et + aP−1Qxe+ bP−1Qxe+ T = P−1
b (a∆yb − b∆xb)eb. (4.12)

Where T is the vector containing the truncation errors. In the above equation, we

have allowed for a slight abuse of notation. The boundary term P−1
b (a∆yb−b∆xb)eb

should naturally be written in vector form as well, but since it does not play a big

role in the derivation of the convergence rate, we let it represent its corresponding

term in vector form. We now derive an energy estimate for Equation (4.12) to obtain

a bound for the error.

eTPet + eTt Pe+ aeT (Qx +QT
x )e+ beT (Qy +QT

y )e

−2eTb (a∆yb − b∆xb)eb + eTPT + T TPe = 0.
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From the earlier analysis of the advection equation, we obtain

d

dt
‖e‖2 ≤ 2〈e,T 〉 ≤ 2 ‖e‖ ‖T ‖ ,

d

dt
‖e‖2 = 2 ‖e‖ d

dt
‖e‖ ≤ 2 ‖e‖ ‖T ‖ ,

d

dt
‖e‖ ≤ ‖T ‖ .

We now integrate in time and utilize the fact that ‖e(0)‖ = 0. Let N denote the

number of grid points along each boundary. Then we have O(N) = O(1/h). The

dual volume is of order h2, i.e., V = Ch2, where C is some constant. This yields

‖e‖ ≤
∫ t

0

√
Ch2 · O(h2)2 · O(N2) + Ch2 · O(h)2 · O(N) + Ch2 · O(1)2 · O(1) dt,

≤
∫ t

0

O(h2) +O(h3/2) +O(h) dt.

This means that we expect a convergence rate of at least one for the numerical

schemes proposed in this section.

4.3.7 Numerical results

The Advection Equation without Interfaces

In this section we look at the results obtained when implementing the scheme pro-

posed in Proposition 4.1. We show two different cases.

Case 1:

We consider the problem on the physical domain showed in Figure 4.6 with the prob-

lem data a = 2.0, b = 0.5 and the analytical solution u(x, y, t) = e−3(x−at)2−3(y−bt)2 ,

which results in a zero forcing function. The scheme is run until t = 1. The results

are presented in Table 4.1. The results listed here, show that the convergence rate
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is higher than what was expected from the analysis. However, we notice that it is

deteriorating, which indicates that we cannot draw the conclusion that a full order

is gained.

Figure 4.6: The physical domain for the implementation of the advection equation on a single block with the data

a = 2.0, b = 0.5, u(x, y, t) = e−3(x−at)2−3(y−bt)2 . Here displayed with a refinement number of 9.

Table 4.1: Table showing the L2 errors and convergence for the advection equation on a single block with the data

a = 2.0, b = 0.5, u(x, y, t) = e−3(x−at)2−3(y−bt)2 , on the grid displayed in Figure 4.6.

Grid points along each boundary L2-error L2-convergence

9 0.01913 -

17 0.00427 2.16

33 9.84074e-04 2.12

65 2.43164e-04 2.02

129 6.19436e-05 1.97

257 1.61835e-05 1.94

Case 2:

We now consider the problem on the physical domain displayed in Figure 4.7 with

the problem data a = 2.0, b = −1.0 and the analytical solution u(x, y, t) =

e−3(x−at)2−3(y−bt)2 . The scheme is run until t = 1. The results are presented in

Table 4.2. The results listed here, also show that the convergence rate is higher

than what was expected from the analysis. However, they are not as high as for
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case 1, which gives an even stronger indication that we do not gain one order of

convergence.

Figure 4.7: The physical domain for the implementation of the advection equation with data a = 2.0, b = −1.0,

u(x, y, t) = e−3(x−at)2−3(y−bt)2 . Here displayed with a refinement number of 9.

Table 4.2: Table showing the L2 errors and convergence for the advection equation on a single block with data

a = 2.0, b = −1.0, u(x, y, t) = e−3(x−at)2−3(y−bt)2 , on the grid displayed in Figure 4.7.

Grid points along each boundary L2-error L2-convergence

9 0.04026 -

17 0.01180 1.77

33 0.00355 1.73

65 0.00115 1.63

129 3.82936e-04 1.58

257 1.31285e-04 1.54

The Advection Equation with Interfaces

We implemented the scheme proposed in Proposition 4.2 on a mesh consisting of

six triangles (see Figure 4.8 and Figure 4.9). Due to long run times, the highest

refinement number for the grids in these cases is 129. For both cases below, the

parameters ω1 and ω2 was chosen such that if (aex + bey) · n < 0, then ω1 = 1 and

ω2 = 0, where n is the outward pointing unit vector of each triangle. This means
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that if triangle I and II are neighbours, and (aex + bey) ·nI < 0, then the interface

SAT is applied to triangle I, and not to triangle II.

Case 1:

We consider the problem on the physical domain displayed in Figure 4.8 with the

problem data a = 2, b = 0.5, and the analytical solution u(x, y, t) = e−2(x−at)2−2(y−bt)2 .

The code is run until t = 1. The L2 errors and convergence rates are listed in Table

4.3.

Figure 4.8: The physical domain for the implementation of the advection equation on a grid with multiple blocks,

with problem data a = 2.0, b = 0.5, u(x, y, t) = e−2(x−at)2−2(y−bt)2 . Here displayed with a refinement number of
9.

Table 4.3: Table showing the L2 errors and convergence for the advection equation with the data a = 2.0 and

b = 0.5, u(x, y, t) = e−2(x−at)2−2(y−bt)2 , on the mesh displayed in Figure 4.8.

Grid points along each boundary L2-error L2-convergence

9 0.02247 -

17 0.00557 2.01

33 0.00141 1.99

65 3.612e-04 1.96

129 9.499e-05 1.93

Also for this case, the results demonstrates a better convergence rate than predicted
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by the analysis. However, we see a similar deterioration as in the cases on a single-

block domain.

Case 2:

We now consider the problem on the physical domain shown in Figure 4.9 with

the problem data a = 1.0, b = −1.0, and the analytical solution u(x, y, t) =

e−3(x−at)2−3(y−bt)2 . The code is run until t = 1. The L2 errors and convergence

rated are listed in Table 4.4.

Figure 4.9: The physical domain for the implementation of the advection equation on a grid with multiple blocks,

with problem data a = 1.0, b = −1.0, u(x, y, t) = e−3(x−at)2−3(y−bt)2 . Here displayed with a refinement number of
9.

Table 4.4: Table showing the L2 errors and convergence for the advection equation with the data a = 1.0, b = −1.0,

u(x, y, t) = e−3(x−at)2−3(y−bt)2 , on the mesh displayed in Figure 4.9.

Grid points along each boundary L2-error L2-convergence

9 0.06175 -

17 0.01547 2.00

33 0.00393 1.98

65 0.00104 1.92

129 2.8709e-04 1.85

We see that the convergence rate in this case is dropping faster than for the previous

case. In addition, as is seen in the figures 4.10a-4.10d, there is a jump in the solution
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along an edge between two of the triangles in the mesh. The reason for this is that

the direction of the wave is parallel to the interface, and therefore, there is no

exchange in data here. However, the plots indicate that the solutions from the two

triangles that share this interface, converge towards each other. Table 4.5 shows the

obtained convergence rates for each triangle to the true solution and also the rate

at which they are converging towards each other. The results demonstrates that

the numerical solutions along this interface is converging towards the true solution

at the rate 1, which is expected since the truncation error along the boundary is of

O(h).
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4.10a: Plot of the numerical solution with refinement
number 9.
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4.10b: Plot of the numerical solution with refinement
number 17.
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4.10c: Plot of the numerical solution with refinement
number 33.

4.10d: Plot of the numerical solution with refinement
number 65.
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Table 4.5: Table showing the L2 errors and convergence for the interface in the upper right corner. Subscript L
denotes the data from the leftmost triangle, and subscript R the data from the rightmost triangle. uex denotes the
exact solution.

Grid points along L2-convergence L2-convergence L2-convergence

each boundary (uex − uL) (uex − uR) (uR − uL)

9 - - -

17 0.98 1.07 0.96

33 0.97 1.04 0.99

65 0.98 1.03 1.00

129 0.99 1.01 1.00

Summary

The results presented in this section for the advection equation clearly demonstrates

that the convergence rates are higher than what was predicted by the theoretical

convergence analysis. However, different tests show different rates, and it is therefore

unclear what the actual convergence rate is. For both the single-block and multi-

block domains, we ran a test where the direction of the wave is parallel to a boundary

or an interface. The obtained convergence rates in these cases are lower than for the

cases where the wave is not parallel to any boundary or interface.

4.4 The wave equation

In this section, we analyse the second-order wave equation in two space dimensions

with Neumann boundary conditions on a single-block domain. Due to time limits

of the project, we do not consider meshes with interfaces.

The analysis for this equation differs from the one of the advection equation. We

explained in Section 4.3 that the transformation of the advection equation to the

standard triangle results in a problem analogous to the one in the physical domain.

This is not the case for the wave equation, and we therefore deal with the transfor-
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mation of this equation in a slightly different way. In this section, the coordinates

in the physical and computational domain is denoted (x, y) and (ξ, η), respectively.

4.4.1 Analysis for the continuous problem in the physical

domain

Since the resulting problem when transforming the wave equation to the standard

triangle is not analogous to the one in physical space (we obtain cross derivatives),

we first analyse the problem in the physical domain, and afterwards show that the

analysis in the computational domain corresponds to the one in the physical domain.

Consider the second-order wave equation in two space dimensions

utt = uxx + uyy = ∇2u, (x, y) ∈ Ωx, (4.13)

where ∇2 =
(
∂
∂x
, ∂
∂y

)2

is the Laplacian operator and Ωx is an arbitrary triangle. To

obtain an energy estimate for this equation, we proceed as usual by multiplying the

equation by ut and integrating over the domain Ωx.

∫
Ωx

ututt dxdy =

∫
Ωx

ut∇2u dxdy,

1

2

d

dt
‖ut‖2

Ωx
=

∮
∂Ωx

ut∇u · n ds−
∫

Ωx

∇ut ·∇u dxdy.

Here, we have applied the integration-by-parts rule on the right-hand side of the

equation. Rewriting the last integral yields

1

2

d

dt
‖ut‖2

Ωx
=

∮
∂Ωx

ut∇u · n ds−
∫

Ωx

1

2

∂

∂t
(∇u)2 dxdy,

1

2

d

dt

(
‖ut‖2

Ωx
+ ‖ux‖2

Ωx
+ ‖uy‖2

Ωx

)
=

∮
∂Ω

ut∇u · n ds.
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Now, if we add to the right-hand side the penalty term −
∮
∂Ωx

ut(∇u ·n− g) ds = 0

in accordance with the procedure in [SN04], we obtain

1

2

d

dt

(
‖ut‖2

Ωx
+ ‖ux‖2

Ωx
+ ‖uy‖2

Ωx

)
=

∮
∂Ωx

utg ds,

which demonstrates well-posedness if we set g = 0.

4.4.2 Transformation to the standard triangle

Next, we introduce some general theory that will be applied in the demonstration

of well-posedness of the problem. This theory can be found in [NS05].

The transformation from the physical domain to the standard triangle is on the form

ξ = ξ(x, y), η = η(x, y),

and is given by the inverse of the transformation introduced in Section 4.1

ξ =
b3x− a3y − a1b3 + b1a3

a2b3 − b2a3

,

η =
a2y − b2x+ a1b2

a2b3 − b2a3

.

(4.14)

Denote ξ = (ξ, η) and x = (x, y). The Jacobian of ξ is defined as

J =

(
xξ xη

yξ yη

)
. (4.15)

Let ∇ξ = ( ∂
∂ξ
, ∂
∂η

), such that J = (∇ξx)T . We have that the identity matrix,

I = (∇ξx)T (∇xξ)T . This means that the inverse of the Jacobian can be expressed
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as

J−1 = (∇xξ)T =

(
ξx ξy

ηx ηy

)
.

J−1 can also be found by inverting J. By doing so, we obtain

J−1 =
1

det(J)

(
yη −xη
−yξ xξ

)
.

The two different expressions must be equal, and so must their derivatives, hence

we obtain the following relations

(Jξx)ξ + (Jηx)η = (yη)ξ − (yξ)η = 0,

(Jξy)ξ + (Jηy)η = −(xη)ξ + (xξ)η = 0,
(4.16)

where, J = det(J).

4.4.3 Analysis for the continuous problem in the computa-

tional domain

We now turn to the analysis of the transformed problem. We refer the readers to

the papers [NS05], [ÅN19] and [NC01] for the theory applied in this section.

Consider again the second-order wave equation in two space dimensions

utt = uxx + uyy = kx + ly, (x, y) ∈ Ωx (4.17)
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Here, Ωx is the physical domain which is an arbitrary triangle, and k = ux and

l = uy. Since u(x, y, t) = u(x(ξ, η), y(ξ, η), t), we have that ux = uξξx + uηηx and

uy = uξξy + uηηy. By multiplying Equation (4.17) by J and using these relations,

we obtain

Jutt = J(kx + lx) = Jkξξx + Jkηηx + Jlξξy + Jlηηy.

We now recognize that each of the terms on the right-hand side can be written as

Jkξξx = (Jξxk)ξ − (Jξx)ξk, due to the chain rule. Then the above equation can be

written

Jutt = (Jξxk)ξ − (Jξx)ξk + (Jηxk)η − (Jηx)ηk + (Jξyl)ξ − (Jξy)ξl + (Jηyl)η − (Jηy)ηl,

= (Jξxk + Jξyl)ξ + (Jηxk + Jηyl)η −R1 −R2,

where R1 = (Jξx)ξk + (Jξy)ξl and R2 = (Jηx)ηk + (Jηy)ηl. By using (4.16), we get

R1 +R2 = 0. Hence, the above equation now reads

Jutt = (Jξxk + Jξyl)ξ + (Jηxk + Jηyl)η = Kξ + Lη, (4.18)

where K = (Jξxk + Jξyl) and L = (Jηxk + Jηyl).

We now turn to the derivation of the energy estimate. As usual, multiply Equation

(4.18) by ut and integrate over the domain (which is now the standard triangle, as

we have transformed the equation).

∫
Ωξ

utJutt dξdη =

∫
Ωξ

ut(Kξ + Lη) dξdη,

=

∫
Ωξ

(utK)ξ − utξK + (utL)η − utηL dξdη.
(4.19)
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Here, we have used the chain rule once again to obtain the last equality. We first

look at the left-hand side of the above equation. We have the following

∫
Ωξ

utJutt dξdη =

∫
Ωξ

1

2

∂

∂t
(ut)

2 Jdξdη,

=

∫
Ωx

1

2

∂

∂t
(ut)

2 dxdy =
1

2

d

dt
‖ut‖2

Ωx
.

(4.20)

We now divide the integral on the right-hand side of Equation (4.19) into two parts.

Let

I1 = −
∫

Ωξ

utξK + utηL dξdη,

I2 =

∫
Ωξ

(utK)ξ + (utL)η dξdη.

We consider first the integral I1. Inserting K and L and rearranging terms yields

I1 = −
∫

Ωξ

J ((utξξx + utηηx)ux) + J ((utξξy + utηηy)uy) dξdη,

where (utξξx + utηηx) = utx and (utξξy + utηηy) = uty, which means we have

I1 = −
∫

Ωξ

Jutxux + Jutyuy dξdη,

= −
∫

Ωξ

1

2

∂

∂t
(u2

x + u2
y) Jdξdη,

= −1

2

d

dt

∫
Ωx

u2
x + u2

y dxdy,

= −1

2

d

dt

(
‖ux‖2

Ωx
+ ‖uy‖2

Ωx

)
. (4.21)
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Next, we turn to the integral I2. By applying Green’s theorem, the integral can be

written

I2 =

∮
∂Ωξ

−utL dξ + utK dη,

=

∮
∂Ωξ

ut(K,L) · nξ dsξ,

where nξdsξ = (dη,−dξ), and nξ is the outward pointing unit normal vector in

the transformed space. Since the boundaries of the standard triangle are piecewise

linear, we have that dξ = ξ2 − ξ1 and dη = η2 − η1, where (ξ1, η1) and (ξ2, η2) are

two points along the boundary in question. These normal vector components can be

expressed in terms of the corresponding x- and y-coordinates because of the inverse

transformation (4.14).

dξ =
b3

c
(x2 − x1)− a3

c
(y2 − y1),

=
b2

c
dx− a3

c
dy,

dη =
a2

c
(y2 − y1)− b2

c
(x2 − x1),

=
a2

c
dy − b2

c
dx.

Here we have defined c = a2b3 − b2a3 to reduce notation. The constants appearing

in the above expressions can be recognized as derivatives of ξ and η. Substitution

of these constants gives the following expressions

dξ = ξxdx+ ξydy,

dη = ηxdx+ ηydy.
(4.22)

We now turn back to the integral I2. After inserting the above expressions, we have
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I2 =

∮
∂Ωξ

Jut(ξxk + ξyl, ηxk + ηyl) · (ηxdx+ ηydy,−ξxdx− ξydy).

Writing the above integrand out, we obtain after some manipulations

I2 =

∮
∂Ωx

Jut(ξxηy − ξyηx) ((ux, uy) · (dy,−dx)) ,

where we recognize that ξxηy − ξyηx = det(J−1) = 1
det(J)

. The resulting integral

therefore reads

I2 =

∮
∂Ωx

ut(ux, uy) · nxdsx. (4.23)

Combining the three parts (4.20), (4.21) and (4.23), we obtain

1

2

d

dt

(
‖ut‖2

Ωx
+ ‖ux‖2

Ωx
+ ‖uy‖2

Ωx

)
=

∮
∂Ωx

ut∇u · nxdsx,

which we know from the analysis in the physical domain, proves well-posedness.

4.4.4 Analysis for the discrete problem

The scheme for the wave equation was derived by mimicking the continuous case,

by applying the theory found in for example [ÅN19] or [NC01]. We refer the reader

to these articles for additional information about the following concept.

Proposition 4.3. The approximation

Jutt = JDξK̃ + JDηL̃+ JP−1
ξ SAT,
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of the problem (4.13) with Neumann boundary conditions and

SAT =

−
(

(K̃, L̃)− (G1, G2)
)
· nξ, for boundary nodes

0, otherwise,

and

K̃ = ξx(ξxDξu+ ηxDηu) + ξy(ξyDξu+ ηyDηu),

L̃ = ηx(ξxDξu+ ηxDηu) + ηy(ξyDξu+ ηyDηu),

G1 = ξx(ξxDξg + ηxDηg) + ξy(ξyDξg + ηyDηg),

G2 = ηx(ξxDξg + ηxDηg) + ηy(ξyDξg + ηyDηg),

is stable. Here, g is the boundary data in the physical domain, and Dξ = P−1
ξ Qξ,

Dη = P−1
ξ Qη.

Proof. The goal is to derive an energy estimate. Following the usual procedure,

multiply the above equation by uTt Pξ and add the transpose.

uTt PξJutt + uTttPξJut = JuTt PξDξK̃ + JuTt PξDηL̃+ K̃TDT
ξ PξJut + L̃DT

η PξJut

+ 2JuTt SAT,
d

dt
‖ut‖Ωx

= uTt JBξK̃ − uTt JQT
ξ K̃ + K̃TBξJut − K̃TQξJut + uTt JBηL̃

− uTt JQT
η L̃+ L̃TBηJut − L̃QηJut + 2JuTt SAT.

Here, we have defined Px = JPξ. Now, consider first all interior nodes of Ωξ.

−J
(
uTt Q

T
ξ K̃ + K̃TQξut + uTt QηL̃+ L̃TQηut

)
.
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By inserting the specific form of K̃ and L̃, we obtain after some tedious manipula-

tions

− J

(Dxu)Tt︷ ︸︸ ︷
(ξx(Dξu)Tt + ηx(Dηu)Tt )PξDxu− J(Dxu)TPξ

(Dxu)t︷ ︸︸ ︷
(ξx(Dξu)Tt + ηx(Dηu)Tt )

− J

(Dyu)Tt︷ ︸︸ ︷
(ξy(Dξu)Tt + ηy(Dηu)Tt )PξDyu− J(Dyu)TPξ

(Dyu)t︷ ︸︸ ︷
(ξy(Dξu)Tt + ηy(Dηu)Tt ),

= −J(Dxu)Tt PξDxu− J(Dxu)TPξ(Dxu)t − J(Dyu)Tt Pξ(Dyu)− J(Dyu)TPξ(Dyu)t,

= − d

dt

(
‖ux‖2

Ωx
+ ‖uy‖2

Ωx

)
.

Next, we turn to the boundary nodes.

2J(uTt BξK̃ + uTt BηL̃+ uTt SAT).

We now insert the specific form of K̃ and L̃ and consider only one boundary node

b for simplicity. We then have

2J(ut)b(ξx(Dxu)b + ξy(Dyu)b, ηx(Dxu)b + ηy(Dyu)b) · (∆η,−∆ξ) + 2J(ut)bSATb.

Relations analogous to 4.22 hold for ∆ξ and ∆η. Using these and inserting the SAT

term, yields

2(ut)b((Dxu)b, (Dyu)b) · (∆y,−∆x)− 2(ut)b(((Dxu)b, (Dyu)b) · (∆y,−∆x)− gb),
= 2(ut)bgb,

i.e., the scheme is stable.

We have proved that the scheme for the problem in the computational space is
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stable, and we will now investigate at which rate the scheme is at least expected to

converge at.

4.4.5 Convergence analysis

According to [SGN07] the application of the first derivative approximation twice

yields a truncation error of O(h) in the interior of the domain on grids where the

first derivative approximation has an error of O(h2). However, it was observed by

numerical experiments that the truncation error at these points is O(h2). In Ap-

pendix A, we provide an explanation for this. Corner- and boundary points are

not discussed in the article, but it is shown that if the first derivative approxima-

tion contains an O(h) error, then the second derivative approximation will possibly

have an error of O(1). Boundary nodes for the first-derivative approximation have

such an error, and therefore, we would expect a truncation error of O(1) along the

boundary and along the second outer “layer” for the second-derivative approxima-

tion. Extending this argumentation to corner points that have an error of O(1) (for

the first-derivative approximation), we would expect an error of O(1/h) in these

points for the second derivative. Indeed, this is what is observed in the numerical

experiments. See Figure 4.11 for description of the truncation errors for the second

derivatives. This figure shows the worst case scenario.

Remark. In the numerical experiments, it was observed that the truncation error

for the second derivative with respect to x along the boundary parallel to the x-axis

(in the computational domain) was of O(h).

Also for the wave equation, we derive an estimate for the convergence rate. We use

the truncation errors displayed in Figure 4.11. In the same fashion as for the advec-

tion equation, we let u and v denote the true and numerical solutions, respectively.

The error is then defined as ei = u(xi, yi, t)− vi(t), and will satisfy the scheme

Jett = JDξE1 + JDηE2 − P−1J ((K1, L1)− (K2, L2)) · nξ + JT ,
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Figure 4.11: Figure showing the pattern of the truncation errors. The orange nodes have T = O(1/h), the dark
blue nodes have T = O(1), and the light blue nodes have T = O(h2).

where E1 = K1 −K2, E2 = L1 − L2, and K1,2, L1,2 corresponds to K̃ and L̃ in the

original scheme but with the exact (K1, L1) and numerical solution (K2, L2). T is

a vector containing the truncation errors.

Following the same procedure as usual for deriving an energy estimate and using

the results of the earlier discrete analysis for the wave equation, yields

d

dt

(
‖et‖2

Ωx
+ ‖ex‖2

Ωx
+ ‖ey‖2

Ωx

)
≤ 2 ‖et‖Ωx

‖T ‖Ωx
.

Define now E2 = ‖et‖2
Ωx

+ ‖ex‖2
Ωx

+ ‖ey‖2
Ωx

. Then we have

d

dt
E2 = 2E

d

dt
E ≤ 2 ‖et‖Ωx

‖T‖Ωx
≤ 2
√
‖et‖2

Ωx
+ ‖ex‖2

Ωx
+ ‖ey‖2

Ωx
‖T ‖Ωx

,

d

dt
E ≤ ‖T ‖Ωx

.

Let again N denote the number of nodes along each boundary, such that O(N) =

O(1/h). Let now ∇ = ( ∂
∂t
, ∂
∂x
, ∂
∂y

). By making use of the fact that ‖et‖2 + ‖ex‖2 +

‖ey‖2 = ‖∇e‖2, we can, due to conservation, apply the Poincaré inequality to obtain

the following estimate
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‖e(t)‖Ωx
≤
∫ t

0

‖T ‖Ωx
dt,

≤
∫ t

0

√
O(1/h)2 · Ch2 · O(1) +O(1)2 · Ch2 · O(N) +O(h2)2 · Ch2 · O(N2) dt,

≤ O(1).

This suggest that as a worst case scenario, the proposed scheme will not converge.

4.4.6 Numerical results

We ran the proposed scheme on the physical domain displayed in Figure 4.12.

Figure 4.12: Figure showing the triangle used as the physical domain. Here, it is displayed with refinement number
9.

The exact solution is u(x, y, t) = sin(πx) cos(πy) cos(
√

2πt), which yields no forcing

function. The code was run until t = 0.5. Table 4.6 shows the obtained L2 errors

and convergence rates.
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Table 4.6: Table showing the L2 errors and convergence using the first derivative approximation twice.

Grid points along each boundary L2-error L2-convergence

9 0.28798 -

17 0.11476 1.33

33 0.04831 1.25

65 0.02203 1.13

129 0.01052 1.07

257 0.00514 1.03

As is seen from this table, even though there are many inconsistent nodes compared

to the total number of nodes (especially for lower refinement numbers), the scheme

seems to converge with first order. Hence, we obtain better convergence rates than

expected from the convergence analysis.

Investigations of the resulting plots indicate that the numerical solution along the

boundary x = 0 (where the solution is u = 0) is converging to the true solution

(see the figures 4.13a-4.13g). Figure 4.14 corroborates this indication. We also

investigated the boundary y = 0, to see if we have the same case here. Figure 4.15

demonstrates that we have convergence along this boundary as well. This indicates

that the boundaries are converging, even though they are inconsistent.
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4.13a: Plot of the numerical solution with refinement
number 9. The black line represents the boundary
along x = 0.
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4.13b: Plot of the numerical solution with refinement
number 17.The black line represents the boundary
along x = 0.
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4.13c: Plot of the numerical solution with refinement
number 33.
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4.13d: Plot of the numerical solution with refinement
number 65.
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4.13e: Plot of the numerical solution with refinement
number 129.

4.13f: Plot of the numerical solution with refinement
number 257.
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4.13g: Plot of the exact solution with 257 as the
number of grid points along each boundary.
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Figure 4.14: Plot of the numerical solutions along
the boundary x = 0. N denotes the number of grid
points along the boundary.
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Figure 4.15: Plot of the difference between the exact
and numerical solution along the boundary y = 0. N
denotes the number of grid points along the bound-
ary.



68



69

Chapter 5

Conclusions and further work

In this thesis, we have studied the extension of the SBP-SAT technique to the

finite volume method. The goal of this project was to introduce a methodology

for implementing both first and second derivatives on general unstructured grids,

where the higher accuracy of the approximations on structured grids is utilized by

introducing a transformation to a computational domain.

The results presented in Chapter 4, demonstrate that the introduction of this trans-

formation indeed raises the accuracy of the approximations. However, none of them

are fully consistent, and the case for the second derivative is especially unfavourable.

At least for lower refinement numbers, the number of inconsistent points is too high

to conclude that it is a good approximation. However, if such an approximation

is to be used on an unstructured grid, this methodology can be used to recover

some accuracy. For the first derivative approximation, the procedure introduced in

this thesis can be utilized to obtain higher convergence rates if the desired mesh is

unstructured.

Although full accuracy is not recovered, the results presented in this work clearly

demonstrates that the numerical schemes are convergent. We also noticed that the

observed convergence rates were higher than what was predicted by the theoretical

analysis. However, as discussed in Section 4.3.7 and 4.4.6, it is not clear what

convergence rates the schemes are producing, and we are missing the theory for

determining sharp estimates for the convergence rates.
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Based on the results of this thesis, possible future work could include further nu-

merical experiments to investigate the convergence rates of the schemes. Another

desirable matter is the derivation of a consistent second derivative approximation

formulated by the finite volume method that satisfy a summation-by-parts rule.

Lastly, it would be satisfactory to derive a methodology for transforming curved

boundaries, in order to allow for even more general grids.



71

Bibliography
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[SN04] M. Svärd and J. Nordström. Stability of finite volume approximations

for the laplacian operator on quadrilateral and triangular grids. Applied

Numerical Mathematics 51, 51:101–125, 2004.
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[SN14] M. Svärd and J. Norström. Review of summation-by-parts schemes for

initial-boundary-value problems. Journal of Computational Physics,

268:17–38, 2014.
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Appendix A

Truncation errors for the first

derivative

A.1 Interior nodes

We begin by considering interior nodes of the domain (see Figure A.1).

i

1

2

34

5

6

H

h

Figure A.1: Figure showing an interior node i of the domain and its neighbours. H is the height of a triangle, and
h is the step size in space.

We denote the difference between the y-coordinates of the centroids in the triangles

consisting of nodes (6, 1, i) and (1, 2, i) as ∆y1. The rest of the edges of the dual



78

volume is denoted in the same manner.

First, we recognize that the height of a triangle is given by H =
√

3
2
h, where h

distance between two grid points.

Second, the ∆ys are as listed below.

∆y1 =

√
3

6
h, ∆y2 =

√
3

3
h, ∆y3 =

√
3

6
h,

∆y4 = −
√

3

6
h, ∆y5 = −

√
3

3
h, ∆y6 = −

√
3

6
h,

The goal is to find the order of the truncation error for an interior node. Recall that

the approximation of the x-derivative at node i is given by

1

Vi

∑
n∈Ni

ui + un
2

∆yin,

where Ni is the set of all neighbouring nodes to node i. Writing out the sum in the

approximation, yields

(
ui + u1

2
∆y1 +

ui + u2

2
∆y2 +

ui + u3

2
∆y3 +

ui + u4

2
∆y4 +

ui + u6

2
∆y5 +

ui + u6

2
∆y6

)
.

(A.1)

From Figure A.1, we have that
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u1 = u(x+
1

2
h, y −H),

u2 = u(x+ h, y),

u3 = u(x+
1

2
h, y +H),

u4 = u(x− 1

2
h, y +H),

u5 = u(x− h, y),

u6 = u(x− 1

2
h, y −H).

The Taylor expansions are given by

u(x+
1

2
h, y −H) = u+ ux

(
1

2
h

)
− uyH +

1

2!

(
uxx

(
1

2
h

)2

− 2uxy

(
1

2
h

)
H + uyyH

2

)

+
1

3!

(
u(3)
x

(
1

2
h

)3

− 3uxxy

(
1

2
h

)2

H + 3yyx

(
1

2
h

)
H2 + u(3)

y H3

)
+O(h4),

u(x+ h, y) = u+ uxh+
1

2!
uxxh

2 +
1

3
u(3)
x h3

+O(h4),

u(x+
1

2
h, y +H) = u+ ux

(
1

2
h

)
+ uyH +

1

2!

(
uxx

(
1

2
h

)2

+ 2uxy

(
1

2
h

)
H + uyyH

2

)

+
1

3!

(
u(3)
x

(
1

2
h

)3

+ 3uxxy

(
1

2
h

)2

H + 3uyyx

(
1

2
h

)
H2 + u(3)

y

)
+O(h4),
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u(x− 1

2
h, y +H) = u− ux

(
1

2
h

)
+ uyH +

1

2!

(
uxx

(
1

2
h

)2

− 2uxy

(
1

2
h

)
H + uyyH

2

)

+
1

3!

(
−u(3)

x

(
1

2
h

)3

+ 3uxxy

(
1

2
h

)2

H − 3uyyx

(
1

2
h

)
H2 + u(3)

y H3

)
,

+O(h4)

u(x− h, y) = u− uxh+
1

2!
uxxh

2 − 1

3!
u(3)
x h3 +O(h4),

u(x− 1

2
h, y −H) = u− ux

(
1

2
h

)
− uyH +

1

2!

(
uxx

(
1

2
h

)2

+ 2uxy

(
1

2
h

)
H + uyyH

2

)

+
1

3!

(
−u(3)

x

(
1

2
h

)2

− 3uxxy

(
1

2
h

)2

H − 3uyyx

(
1

2
h

)
H2 − u(3)

y H3

)
+O(h4).

By using the above expansions and the relations between the ∆ys, we obtain after

some tedious calculations

1

2
∆y1(2uxh+

1

2 · 3!
u(3)
x h3 +

6

3!
uyyxhH

2) +
1

2
∆y2(2uxh+

2

3!
u(3)
x h3),

=

√
3

2
uxh

2 +
3
√

3

8 · 3!
u(3)
x h4 +

3
√

3

8 · 3!
uyyxh

4 +O(h5).

Division by Vi =
√

3
2
h2, gives the final result

1

Vi

∑
n∈Ni

ui + un
2

∆yin = ux +
3

4 · 3!
u(3)
x h2 +

3

4 · 3!
uyyxh

2 +O(h3).

This means that the truncation errors at interior points for the x-derivative are of

O(h2).
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A.2 Boundary nodes

We now consider all boundary nodes except those located at the corners of the

domain. We have three different edges in our domain, and we will therefore consider

them separately. We name the edges by (1, 2, 3), going in an counter-clockwise

direction, where edge 1 is the horizontal one.

Recall that the approximation of the x-derivative at a boundary node b is given by

1

Vb

∑
n∈B

ub + un
n

∆ybn + ub∆yb,

where B is the set of all neighbouring nodes to node b. The dual volume for such a

point is Vi =
√

3
4
h2.

Boundary nodes along boundary 1

H

h

1

23

4

b

Figure A.2: Figure of edge number 1 with a boundary node b and its neighbouring nodes.

Consider now a node along boundary 1. In this case, we have

∆yb = 0, ∆y1 =

√
3

6
h, ∆y2 =

√
3

6
h, ∆y3 = −

√
3

6
h, ∆y4 = −

√
3

6
h,

and
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u1 = u(x+ h, y),

u2 = u(x+
1

2
h, y +H),

u3 = u(x− 1

2
h, y +H),

u4 = u(x− h, y).

By inserting the Taylor expansions, we obtain

1

Vb

∑
n∈B

ub + un
n

∆ybn + ub∆yb =
1

Vb

(
1

2
∆y1

(
3uxh+

√
3

2!
uxyh

3 +
9

4 · 3!
u(3)
x h3 +O(h2)

))
,

= ux +

√
3

6
uxyh+

9

4 · 3!
u(3)
x h2 +O(h2).

Which means that we have a truncation error of O(h) along boundary 1.

Boundary nodes along edge 2

H

h

b

1

2

3

4

Figure A.3: Figure of edge number 2 with a boundary node b and its neighbouring nodes.

Consider now a node along boundary 2. In this case, we have
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∆yb =

√
3

2
h, ∆y1 =

√
3

12
h, ∆y2 = −

√
3

12
h, ∆y3 = −

√
3

3
h, ∆y4 = −

√
3

6
h,

and

u1 = u(x+
1

2
h, y −H),

u2 = u(x− 1

2
h, y +H),

u3 = u(x− h, y),

u4 = u(x− 1

2
h, y −H).

Inserting the Taylor expansions, we obtain after some manipulations

1

Vb

∑
n∈B

ub + un
n

∆ybn + ub∆yb =
1

Vb

(
1

2
∆y1

(
6uxh−

9

4
uxxh

2 −
√

3

2
uxyh

2 − 3

4
uyyh

2 +O(h3)

))
,

= ux −
3

8
uxxh−

1

4
√

3
uxyh−

1

8
uyyh+O(h2).

Hence, we have a truncation error of O(h) in the nodes along boundary 2.

Boundary nodes along edge 3

Consider now a node along boundary 3. In this case, we have

∆yb = −
√

3

2
h, ∆y1 = −

√
3

12
h, ∆y2 =

√
3

6
h, ∆y3 =

√
3

3
h, ∆y4 =

√
3

12
h,

and
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H

h

1 2

3

4

b

Figure A.4: Figure of edge number 3 with a boundary node b and its neighbouring nodes.

u1 = u(x− 1

2
h, y −H),

u2 = u(x+
1

2
h, y −H),

u3 = u(x+ h, y),

u4 = u(x+
1

2
h, y +H).

Inserting the above information into the approximation yields

1

Vb

∑
n∈B

ub + un
n

∆ybn + ub∆yb =
1

Vb

(
1

2
∆y1

(
−6uxh−

9

4
uxxh

2 +

√
3

2
uxyh

2 − 3

4
uyyh

2 +O(h3)

))
,

= ux +
3

8
uxxh−

1

4
√

3
uxyh+

1

8
uyyh+O(h2).

That is, we have an error of O(h) in the points along boundary 3.

A.3 Corner nodes

Lastly, we consider the three corner nodes that appears in the domain. We de-

note these corner 1, corner 2 and corner 3, starting from the leftmost corner and
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continuing in a counter-clockwise direction.

The approximation of the x-derivative at a corner node is given by

1

Vc

∑
n∈C

uc + un
n

∆ycn + uc∆yc1 + uc∆yc2,

where C is the set of all neighbouring nodes to c, and ∆yc1 and ∆yc2 are the two

∆ys along the boundaries. Here, the dual volume is Vc =
√

3
12
h2.

Corner 1

H

h

c 1

2

Figure A.5: Figure of corner node 1 and its neighbouring nodes.

Consider now corner 1. In this case, we have

∆yc1 = 0, ∆yc2 = −
√

3

4
h, ∆y1 =

√
3

6
h, ∆y2 =

√
3

12
h,

and

u1 = u(x+ h, y),

u2 = u(x+
1

2
h, y +H).

Inserting the Taylor expansions, yields
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1

Vc

∑
n∈C

uc + un
n

∆ycn + uc∆yc1 + uc∆yc2 =

1

Vc

(
1

2
∆y1

(
3u+

5

4
uxh+

1

2
uyH +O(h2)

)
+ u∆yc2

)
=

5

4
ux +

√
3

4
uy +O(h).

This means that we have an error of O(1) in corner 1.

Corner 2

H

h

c

1

2

Figure A.6: Figure of corner node 2 and its neighbouring nodes.

Consider now corner 2. In this case, we have

∆yc1 =

√
3

4
h, ∆yc2 = 0, ∆y1 = −

√
3

12
h, ∆y2 = −

√
3

6
h,

and

u1 = u(x− 1

2
h, y +H),

u2 = u(x− h, y).

Inserting the Taylor expansions, yields
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1

Vc

∑
n∈C

uc + un
n

∆ycn + uc∆yc1 + uc∆yc2 =

1

Vc

(
1

2
∆y1

(
6u− 5

2
uxh+ uyH +O(h2)

)
+ u∆yc2

)
=

5

4
ux −

√
3

4
uy +O(h).

Hence, we also have an error of O(1) in corner 2.

Corner 3

H

h

c

1 2

Figure A.7: Figure of corner node 3 and its neighbouring nodes.

Lastly, consider corner 3. In this case, we have

∆yc1 = −
√

3

4
h, ∆yc2 =

√
3

4
h, ∆y1 = −

√
3

12
h, ∆y2 =

√
3

12
h,

and

u1 = u(x− 1

2
h, y −H),

u2 = u(x+
1

2
h, y −H).

Inserting the Taylor expansions, yields
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1

Vc

∑
n∈C

uc + un
n

∆ycn + uc∆yc1 + uc∆yc2 =

1

Vc

(
1

2
∆y1

(
−uxh+

√
3

2
uxyh

2 +O(h4)

))
=

1

2
ux +

√
3

4
uxyh+O(h2).

Which shows that we have an error of O(1) also for corner 3.

A similar derivation could also be carried out for the y-derivative to obtain similar

results.

A.4 The second derivative approximation

In [SGN07], it was shown that applying the first derivative approximation used in

this thesis, twice, yields an error of O(h) for the approximation of the second deriva-

tive (in the interior). However, it was observed when implementing the approxima-

tion, that the error of the approximation for the second derivative was actually of

O(h2) in the interior. We now try to give an explanation for this.

From the above sections, we know that the error of an interior point is 1
3!
u

(3)
x h2.

Applying the first derivative approximation twice, yields

(uxx)i =
1

Vi

∑
n∈Ni

(ux)i + 3
4·3!

(u
(3)
x )ih

2 + 3
4·3!

(uyyx)ih
2 +O(h3)

2
∆yin

+
(ux)n + 3

4·3!
(u

(3)
x )nh

2 + 3
4·3!

(uyyx)nh
2 +O(h3)

2
∆yin.

Since (ux)
(3)
i = (ux)

(3)
n and (uyyx)i = (uyyx)n for polynomials of degree three or less,

the error in each node will be identical. This means that these errors will cancel

each other because of the relations between the ∆ys. We know that the application

of the first derivative approximation in the interior yields an error of O(h2), hence,

the error for the second derivative in the interior is also of O(h2).
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The above argumentation does not necessarily hold if the error at some neighbouring

nodes are of lower degrees. This explains why also the second outer “layer” of nodes

have an error of O(1) for the second derivative.
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Appendix B

SBP finite difference operator

The SBP finite difference operator used in Chapter 3 is a 6th order operator with

diagonal norm matrix P . The following matrices that constitutes this operator can

be found in for example [Gus08].

P = h



13649
43200

12013
8640

2711
4320

5359
4320

7877
8640

43801
43200

1
. . .


.
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S =
1

h



−25
12

4 −3 4
3
−1

4

0

0
. . .

1
4
−4

3
3 −4 25

12


,

D2 =
1

h2



114170
40947

− 438107
54596

336409
40947

− 276997
81894

3747
13649

21035
163788

6173
5860

− 2066
879

3283
1758

− 303
293

2111
3516

− 601
4395

− 52391
81330

134603
32532

− 21982
2711

112915
16266

− 46969
16266

30409
54220

68603
321540

− 12423
10718

112915
32154

− 75934
16077

53369
21436

− 54899
160770

48
5359

− 7053
39385

86551
94524

− 46969
23631

53369
15754

− 87904
23631

820271
472620

− 1296
7877

96
7877

21035
525612

− 24641
131403

30409
87602

− 54899
131403

820271
525612

− 117600
43801

64800
43801

− 6480
43801

480
43801

1
90

− 3
20

3
2

− 49
18

3
2

− 3
20

1
90

1
90

− 3
20

3
2

− 49
18

3
2
− 3

20
1
90

... ... ... ... ... ... ...
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