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Abstract

In this thesis, we study the numerical approximation solving a fully coupled quasi-static,
linear Biot model in a 3D domain Q with 1D line sources or. To approximate the problem,
we developed a scheme combining two techniques: (1) a splitting technique for solving the
pressure and the flux and (ii) the fixed-stress splitting scheme. The scheme here is based
on splitting the solution of both the pressure and the flux in the flow equations into one
explicitly-known, low regularity term and one implicitly-unknown, high regularity term.
The flow equations are then solved to get the high regularity terms. In the second step, the
explicitly-known terms are interpolated onto the discrete space of the pressure and the flux.
Thus, obtaining the reconstructed pressure and flux. Finally, to calculate the displacement
by solving the mechanics equation with the actual pressure. This scheme has one additional
step in comparison to the standard schemes. Optimal convergence were both theoretically
and numerically proven for the novel scheme. Lastly, we simulated flow and mechanics for a
data set describing a vascular system of a human brain to demonstrate simulations on a data
set with complex geometry.



Introduction

There has been a growing interest for a model to solve fully coupled flow and mechanics in
poroelastic media and this type of model has been extensively studied for decades. The main
reason is the wide field of applications, for instance in geophysics and biomedicine. Some
examples are: coupled flow and mechanics in soil science and civil engineering [ Armero,
1999; Biot, 1941; Borja and Alarcén, 1995; Park, 1983; Schrefler, 2004; White and Borja,
2008], coupled heat flow and mechanics in mechanical engineering [Armero and Simo,
1992] and CO;, sequestration [Morris, 2009a,b], i.e. the change in mechanical behavior as
a result from injection of CO;. There is also an interest in coupled flow and mechanics in

bioengineering. In particular, the behavior of blood flow in soft-tissue systems, e.g. the brain.

The quasi-static, linear Biot model [Biot, 1941, 1955] was developed for studying poroelastic
phenomena, and is the choice of mathematical model in this thesis. Moreover, the aim is
to simulate flow and mechanics in the brain at the level of microcirculation. Therefore, a
Dirac line source term is included in the right-hand side of the mass conservation equation,
i.e. (Ib). The system of equations read:

Find (u, p,w) such that:

—V-2uew) +A(V-u)l] + aVp = f, (la)
at(% + (XV-u) + V-w = y+ fér, (1b)
K'w+Vp=psg (1c)

The variables and parameters are as follows: u is the displacement, €(u) = %(Vu +Vul)
is the (linear) strain tensor, p is the pressure, w is the flux, dr is the Dirac source term
distributed on the line segment I' C Q C R3, f is the intensity of the line source distributed
onT’, u and A are Lamé parameters, « is the Biot coefficient, K is the permeability tensor
divided by the kinematic viscosity, py is the fluid density, M is the Biot modulus, f is the
contribution from body forces, and v is a source term.
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The Biot model, i.e. (1a)-(1c) with f = 0, are usually discretized in time by backward Euler,
see e.g. [Both et al., 2017; Mikeli¢ et al., 2014]. This is combined with a spatial-discretization
method, where we mention the conformal finite element method for the mechanics and mixed
finite element for the flow [Berger et al., 2017; Both et al., 2017; Phillips and Wheeler,
2007; Yi and Bean, 2016]. Other choices of spatial-discretization used for the Biot model is
cell-centered finite volume [Nordbotten, 2016], mixed finite element method for both me-
chanics and flow [Yi and Bean, 2016], non-conforming finite element [Hu et al., 2017], MINI
element [Rodrigo et al., 2016], continuous or discontinuous Galerkin [Chaabane and Riv-
iere, 2018a,b] or multiscale methods [Castelletto et al., 2017, 2018; Dana and Wheeler, 2018].

In addition to the discretization methods for time and space, the Biot model can be solved by
two alternatives: monolithically or with an iterative splitting algorithm. Solving the equations
monolithically has the advantage of being unconditionally stable, but an iterative splitting
algorithm is much easier to implement. Splitting the Biot model without adding a stabiliza-
tion term leads to an unstable scheme [Kim et al., 2011]. Adding the stabilization term in the
mechanics equations gives the undrained splitting scheme, and adding it in the flow equations
gives the fixed-stress splitting scheme [Mikeli¢ and Wheeler, 2013]. These splitting schemes
are good alternatives for simulations of the linear Biot model since both schemes obtain
good convergence rates, see e.g. [Berger et al., 2017; Kim et al., 2011; Mikeli¢ and Wheeler,
2013]. In this thesis, we will consider the fixed-stress splitting scheme, which is a popular
scheme in literature. The reason is its wide field of usage. Some examples of applications are:
effectively solving the quasi-static, linear Biot model for poromechanics [Storvik et al., 2018],
solving fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport
[Brun et al., 2019], Anderson acceleration for consolidation of unsaturated porous media
[Both et al., 2019], non-linear extension of Biot’s model for poromechanics [Borregales et al.,
2018] and a space—time finite element approximation of the Biot system modeling fluid flow
in deformable porous media [Bause et al., 2016]. Accordingly, in this thesis, (1a)-(1b) are
discretized in time by using backward Euler and in space by the finite element method. The
equations are then solved as a fully coupled, discrete system with the fixed-stress splitting

scheme.

The line sources are interpreted as one-dimensional (1D) line segments in a three-dimensional
(3D) domain. Mathematically, the line sources are modeled as Dirac distribution on the line
segments [D’Angelo and Quarteroni, 2008]. This upscaling technique can be applied in

various applications, e.g. modeling of 1D steel components in concrete structures [Llau et al.,
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2016] or interference of metallic pipelines, bore-casings in electromagnetic concrete struc-
tures [Weiss, 2017] and interaction of a three-dimensional reservoir with the flow through
1D wells [Cerroni et al., 2019]. However, in the last years there has been an interest in
using the same type of flow model for biological applications, e.g. studying blood flow
in vascularized tissue of the brain [Grinberg et al., 2010; Reichold et al., 2009], efficiency
of cancer treatment by hypothermia [Nabil and Zunino, 2016], and drug delivery through
microcirculation [Cattaneo and Zunino, 2014; Possenti et al., 2018]. 1D line sources are good
approximation when the radii of the roots, steel components, pipeline or blood vessel are
negligible compared to their lengths and the size of the simulation domain. This upscaling
technique causes the solutions to be singular, i.e. difficult to resolve numerically. It was
proved that the lack of convergence is local to the area around the singularity (see [Gjerde
et al., 2018; Koppl et al., 2016] and reference therein). Hence, we develop a singularity
removal-based scheme on a splitting of the solutions of the pressure and the flux and the
fixed-stress splitting scheme. [Gjerde et al., 2018] has shown that the splitting technique
obtained optimal convergence when solving the following 3D flow model with 1D line

sources:
~V-(KVp)=f& inQ (2a)

P = Dpo on dQ. (2b)

In this thesis, the developed scheme is tested for solving the fully coupled Biot model. The
splitting technique splits the solutions of the pressure and the flux into one (explicit) low
regularity term denoted by the subscript s and one (implicit) high regularity term denoted
with r [Gjerde et al., 2019]. The terms with the subscript s are known terms that captures the

singularity of the solution. The splitting reads:

p=ps+pr (3a)

W =w;+w,. (3b)

(3a)-(3b) are used to reformulate (1b)-(1c) in order to solve the equations for the high
regularity terms. The fixed-stress splitting scheme is then interpreted in three steps. Firstly,
solving (1b)-(1c) for the updated p, and w,. Secondly, interpolating p onto the discrete space
of the pressure and thus obtaining the actual pressure. Lastly, (1a) with the reconstructed
pressure from the previous step and then solved to get u. This scheme will be referred to as
the fixed-stress splitting scheme with singularity removal. It was developed for the purpose of
simulating flow and mechanics at the level of microcirculation. To the best of our knowledge,

simulating flow and mechanics in the brain have not been done before. At least not with
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a 3D flow model with 1D line sources. The interest in simulating mechanics is motivated
by vascular compliance. In biomedical applications, this is referred to as the relationship
between the volume of the blood within a vascular vessel and the blood pressure generated
by the presence of that volume. This property can help to determine diseases, e.g. vascular
compliance is reduced in vascular dementia, but not in Alzheimer’s disease [Dhoat et al.,
2008].

Outline

Chapter 1 introduces basic theory used throughout the thesis. First, we introduce important
concepts of single-phase flow in porous media. We here derive both Darcy’s law and the
mass conservation equation, which are two of our governing equations. In Section 1.2, we
motivate the choice of mathematical model, where we mentioned that an upscaling technique
is required to simulate flow and mechanics in the brain at the level of microcirculation. The
chapter concludes with useful definitions. In particular, defining function spaces used for the
variational formulation of (1a)-(1c), Green’s functions used to aid in the approximation of
the solutions and lemmas used for the convergence analysis.

In Chapter 2, we introduce our mathematical model. In Section 2.1, the quasi-static, linear
Biot model is introduced and the mechanics equation (1a) is derived. In the next section,
we introduce a splitting technique which has been proven to obtain optimal convergence for
solving (2a)-(2b). We show the method when solving (2a)-(2.2b). The technique will be
applied to (1a)-(1c) in Chapter 3 and 4.

We begin Chapter 3 by introducing the finite element method. Here, we introduce the
conformal variational formulation with an example. Then we apply to (1a). Next, we in-
troduce the mixed variational formulation, and apply it to (1b)-(1¢). Lastly, in this section,
Section 3.1.3 introduces the finite element discretization and Section 3.1.4 defines the discrete
spaces used in our computations. We then introduce the iterative scheme. Section 3.2 first
introduces our choice of time-discretization technique, i.e. backward Euler. Secondly, intro-
ducing the fixed-stress splitting scheme solving the Biot model, i.e. (1a)-(1c). Lastly, in this
section, we introduce the fixed-stress splitting scheme with singularity removal. The scheme
is based on the splitting of the solution of p and w, i.e. (3a)-(3b). (1b)-(1c) are reformulated
to solve for the high regularity terms, i.e. p, and w,. The fixed stress splitting scheme is then
interpreted to solve the reformulated flow equations and the mechanics equation in three

steps. This is an additional step in comparison with the standard schemes. In the first step,



the reformulated flow equations are solved. Secondly, the low regularity terms, i.e. py and
w; are interpolated to the discrete spaces of the pressure and the flux, respectively, to obtain
the actual pressure and flux. Lastly, we obtain u by solving the mechanics equation with the
reconstructed pressure. This chapter concludes with a proof of convergence for this scheme.

In Chapter 4, we present our numerical results. We perform the convergence tests of
the scheme introduced in Section 3.2.3, i.e. the fixed-stress splitting scheme with singularity
removal. Here, we begin by performing convergence tests for three test cases where we set
the parameters independent of z. Thus, we are only considering two dimensions. The first
test problem was included as a reference case, where (1a)-(1c) with f = 0 are solved with
the standard fixed-stress splitting scheme. Then, the second test case consisted of solving
(1a)-(1c) with the standard fixed-stress splitting scheme, but ignoring a small region before
calculating the errors. This demonstrated that the lack of convergence is mostly located in the
area surrounding I'. Finally, we numerically verified the theoretically results from Theorem
7 in Section 3.3. This means applying the fixed-stress splitting scheme with singularity
removal, which was introduced in Section 3.2.3. After retrieving optimal convergence. We
lastly simulated flow and mechanics for a data set describing a vascular system of a human

brain.

Contributions

The contributions of this thesis are:

* Extending the Biot’s equations to the case of including line sources.

* The dimensional gap causes the pressure to be singular. This makes it difficult to resolve
numerically. Therefore, we combine two techniques to obtain optimal convergence.
One splitting technique for solving flow problems in a 3D porous medium with 1D
line sources, and second is the fixed-stress splitting scheme algorithm for the coupled

flow and mechanics problem.

* Theoretical convergence proof of the fixed-stress splitting scheme with singularity
removal for d € {2,3}.

* Implementation of the novel numerical method developed here in FEniCS. Numerical

experiments have been conducted that show errors and optimal convergence rates.

* Numerical tests on a real data set of a human brain to show application on a data set

with complex geometry.
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Chapter 1
Basic theory

In this chapter, we will introduce basic theory which will be used in chapters to come, that
is Chapter 2, 3 and 4. We start off by introducing basic concepts of single-phase flow in
porous media. In particular, deriving two of our governing equations. In the second part, we
motivate the choice of mathematical model for simulating flow and mechanics in the brain
at the level of microcirculation. In the last part, we define basic function spaces used for
calculations, Green’s functions used to aid in the approximation of the solutions, and the

lemmas used in the convergence analysis.

1.1 Porous media

We start this section by discussing single-phase flow in saturated porous media. We then move
to derive two of our governing equations: first Darcy’s law and then the mass conservation
equation. We direct our theory towards the Biot’s equations, which will be our mathematical
model. The main source of this section is [Nordbotten and Celia, 2011], and we direct to
[Nordbotten and Celia, 2011] for further theory of flow in porous media.

1.1.1 Porous media flow

A material with pores and a solid part is called a porous medium. The solid part is referred to
as the matrix and the pores are referred to as the pore space. The pore space of the media can
be filled with one or more gaseous or liquid fluids. The flow inside this media is referred to
as a porous media flow. In this thesis, we will only consider single-phase flow. That is, a
medium with a flow consisting of only one fluid. An example of a single-phase flow is water,

and water and oil for a two-phase flow.
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Fig. 1.1 Illustration of a porous medium.

Solid phase (matrix)

Figure 1.1 illustrates the structure of a porous medium filled with one fluid. As denoted in
the figure, the white area illustrates the pore space and the gray shapes illustrate the matrix.
In a porous medium there only exists laminar flow, i.e. Re << 1. Re (Reynolds number) is a
dimensionless quantity used to predict the pattern of the flow in different situations. The flow
on this scale has a very complex geometry, where the quantities usually have characteristics
of order 107°. Therefore, Representative Elementary Volume (REV) is introduced. REV is a
length scale big enough to obtain defined averages over the pore space. In other words, the
quantities considered in porous media are averages over the REV. The scale considered here
is referred to as macro-scale. Darcy’s law, which is derived in the next section, is only valid

on macro-scale.

1.1.2 Darcy’s law

One of the most important equations to describe flow in a porous medium is Darcy’s law. We
will derive Darcy’s law for a single-phase flow in saturated porous media. The basis of the
equation is experiments performed by Henry Darcy in 1856. The essence of the experiments
is illustrated in Figure 1.2. As denoted in the figure, the cylinder is filled with sand and the
tubes are filled with water. The cylinder will further be referred to as the column. Also, the

lengths z; and z; are the heights where the tubes penetrate the column.

In general, the experiments consisted of predicting how much water that would flow through
the sand filters. Darcy made several empirical observations from his experiments. The main
observation was the following proportionality law

Alhsy — h
g~ (f’zé r). (1.1)
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Fig. 1.2 Illustration of Darcy’s experiment.

In words, Darcy’s flux g is proportional to the cross-section A multiplied with the difference
in hydraulic head hz; and hy; and divided by the column length . Darcy’s flux is the

volumetric flow rate through the column.

The first formulation of Darcy’s law is obtained by introducing a proportionality coeffi-

cient k in (1.1), i.e.

Aher — h
g =—kK (f’zg s, (12)

Here, k will be referred to as the hydraulic conductivity. Darcy’s law states that the fluid
flows from regions with higher hydraulic head /y ; to regions with lower hydraulic head A .
Hence, the minus sign in (1.2). This concept is generally for physical laws; where something
is flowing from a region with high values to a region with low values, e.g. temperature flows
from regions with high temperature to regions with low temperature. Moreover, Darcy found
that K was dependent on the sands’ ability to transport fluid, i.e. the permeability of the sand.

He found the following relationship between the hydraulic conductivity and the permeability:

_kprs
1253

K (1.3)
In addition, k is the intrinsic permeability constant, pr is the fluid density, g is gravitational
acceleration constant and (i is the dynamic viscosity. Before extending Darcy’s law to
differential form, we introduce the volumetric flow rate per area w,,. The volumetric flow per
area is obtained by dividing (1.2) by A, i.e.

(hr2 — hy1)

= L2 (1.4)

w4
VA ¢
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We will now extend Darcy’s law to differential form. It is practical extending to three
dimensions since real applications are in three dimensions. We start by treating the right-
hand side of (1.4) as the differential of hy. We assume that Ahy = hyr — hy; is small
and further align the column along the z-axis. This means that iy = hs(z). Under these

assumptions, w, can be rewritten as a one-dimensional differential:
Wy = — i dohy. (1.5)
Next, we extend d /¢ to the gradient of Ay, i.e.
Vhy = dchyex+dyhye,+dhye;,

where e; is the unit vector for coordinate j = x,y, z, respectively. Now, (1.5) can be extended
to a three-dimensional vector:
w, = —K Vhy, (1.6)

where K is the hydraulic conductivity tensor. We let the x-axis be in the horizontal direction.

Then a general expression of the pressure along the column is given by

p=prglhs —2). (1.7)
We rearrange (1.7) such that we obtain an expression for /1:

hp =2 42 (1.8)

Prg

Next, we insert (1.8) in (1.6), and remark that Fxg = “Lf from (1.3). Then we have

k
w, =—— (Vp + prg Vz), (1.9)
My
where k is the intrinsic permeability tensor. Lastly, we insert e, := Vz and g := —g e;. This
yields
k
wy, = —— (Vp - pfg)v (110)
Hr

which is the generalized three-dimensional formulation of Darcy’s law for a single-phase
flow. We now turn to derive our second governing equation, which is the mass conservation

equation.
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1.1.3 Conservation of mass

It is well-known in classical mechanics that mass is a fixed quantity, i.e. it cannot be formed
or destroyed, but it can be deformed by an applied force. This means that in a closed system
the total mass is conserved. In words, the general idea behind mass conservation for a control
volume dV can be expressed as

rate of change) [ mass flowing mass flowing . external mass
of massindV | into dV out of dV sources '
This is also illustrated in Figure 1.3.

Prlyy /pfwv,z+ ()Z (wau,z)dz

Pryz

PrWust 0, (Prwy ) dx

/ .

Py, z ‘pj'wu,y*'dy(pfwv,y)dy

Fig. 1.3 A control volume with fluid and mass fluxes.

To derive the equation, we let dV = dxdydz and y be an external mass source. Then
the mass flowing out of and inside of dV can be expressed as —(psw,,; +d; pyw,, ;) and
pswy,j, respectively, where j = x,y,z. Next, we would like to express the rate of change of
mass in dV. We let @ be the total mass of the fluid in dV, where ® can be expressed in terms

of the porosity ¢, the fluid density py, and the control volume dV. Then we have
D =prodV. (1.11)

The porosity is defined as the ratio between the volume of the pore space V), and the total

volume V of the porous medium, i.e.

<

0=+
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Moreover, we let df be a small time-interval. Then the mass conservation equation can be
written as
o,P dt = pyw,, jdt — (pywy, jdt +0; pywy,; dVdt) + w dVdr. (1.12)

Next, we expand for all components and insert (1.11) in (1.12). This yields

O (pr9dV) dt = — 9 (pswyy) dxdy dz dr
— dy(pswy,y) dy dz dx dt
— d.(pywy,) dz dx dy dr
+ ydxdydzd:.

Further, we assume that the control volume is fixed in time, i.e. dV = const.. Then the final

form of the mass conservation equation reads

a(pre) + V-(pywy) = . (1.13)

So far, we have derived Darcy’s law and the mass conservation equation. In addition
to this, we introduced some important properties for flow in porous media. Before turning to
function spaces, and defining some useful lemmas, we will introduce some physical proper-
ties of flow and mechanics in the brain. We also here motivate the choice of mathematical

model.

1.2 Flow and mechanics in the brain

There are numerous fields where simulation of flow and mechanics in a porous medium
are of interest. Some examples are CO; storage, water and soil pollution, nuclear waste
management and cancer research (in particular tumor growth). A popular mathematical
model for solving fully coupled flow and mechanics equations in a poroelastic medium is the
quasi-static, linear Biot model [Biot, 1941, 1955]. This model will be discussed in Section
2.1, and consists of a system of three equations solving for pressure, flux, and displacement.
It was developed for studying poroelastic phenomena, i.e. describing the interaction between

the deformation of an elastic porous medium and the fluid flow inside.

In addition to the Biot model, we need an upscaling technique to simulate flow and mechanics

in the vascular system of the brain. The structure of the vessels at the level of microcirculation
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has very complex geometry. These networks consist of thousands of vessels. Figure 1.4
illustrates an example of the structure of a capillary and also captures the differences in the
radii of arteries, veins, and capillaries. A capillary vessel has a radius of approximately
4um [Stgverud et al., 2012]. Hence, it would be computationally intractable to resolve these

vessels as 3D objects in the mesh. Consequently, we need to upscale the flow equations.

<«— Artery

Capillary

Direction of
blood flow

Fig. 1.4 Tllustration of an artery, a vein and a capillary.

A popular upscaling technique is homogenization. In this technique, the brain and the vascu-
lar system are considered two different porous media [Dewhirst and Secomb, 2017; Shipley
and Chapman, 2010], where Darcy’s law is used to calculate the pressure and flux [Helmig,
1997; Khaled and Vafai, 2003]. Though this reduces the computational costs and the data
volume, both the pressure and the flux can only be expressed as averages over the control
volume. A requirement of homogenization is that the medium is periodic, but since the ves-
sels at the level of microcirculation has very complex geometry, it is not certain that it can be
described as a periodic medium. For this reason, another upscaling technique was developed
with this application in mind. Here, the blood vessels are reduced to one-dimensional (1D)
line segments [D’ Angelo and Quarteroni, 2008], where the surrounding tissue is modeled as
a three-dimensional (3D) porous medium. This technique is applicable since the radii of the
blood vessels are very small compared to their lengths and the size of the simulation domain.
The drawback of this reduction technique, is that it causes the solutions to be singular. Conse-
quently, the solutions are difficult to resolve numerically. In particular, it leads to suboptimal
convergence [Gjerde et al., 2018; Koppl et al., 2016]. One way to obtain optimal convergence
rates is to split the solutions of the pressure and flux into one low regularity term and one high
regularity term [Gjerde et al., 2018]. This terminology will be explained later in Section 2.2,
and will be applied to the Biot model with lower-dimensional source terms in Chapter 3 and 4.

The Biot model has been studied extensively, see e.g. [Bause et al., 2016; Berger et al.,
2017; Hu et al., 2017; Rodrigo et al., 2018; Showalter and Momken, 2002; Yi, 2017]. This
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model is suitable for simulation of flow and mechanics in the brain since the blood vessels
are poroelastic. To the best of our knowledge, the Biot model has not been coupled with
a 3D flow model with 1D line segments to simulate flow and mechanics at the level of the
microcirculation. In this thesis, we will develop numerical methods to approximate this
type of problem. There is a lot of literature for dealing with the flow and transport in the
brain, see e.g. [Dewhirst and Secomb, 2017; Penta et al., 2014; Shipley and Chapman, 2010].
Though there is also an interest to study the mechanics in the brain. The interest in simulating
mechanics in the brain is motivated by vascular compliance. This is a relationship between
the volume of the blood within a vascular vessel and the blood pressure generated by the
presence of that volume, and can be applied to biomedical application. It can be of help
when determining diseases. One example is that vascular compliance is reduced in vascular

dementia, but not in Alzheimer’s disease [Dhoat et al., 2008].

1.3 Definitions

Finally, this chapter will conclude with defining general function spaces used for solving the
Biot model and Green’s functions used to aid in the splitting technique introduced in Section

1.2. Lastly, we included some useful lemmas used in the convergence analysis.

1.3.1 Function spaces

We start off by defining weak derivatives. Note that [Evans, 2010] is the main source for the
definitions to come. We let C2°(Q) be the space of infinity differentiable functions v: Q — R
with compact support in , i.e. the values map to zero near the boundary dQ. We assume
that we have the two functions u € C!'(Q) and v € C(Q). From partial integration, we have

weak derivatives of v if

/uxivdx:—/uvxi dx. (1.14)
Q Q

The boundary term was excluded since, as stated, v has compact support on Q. Next, we
define four function spaces. Note that a Banach space is a complete, normed linear space.
Also, a space is said to be complete if every Cauchy sequence in the space is convergent to a
point in the space [Cheney, 2001]. Before turning to the definitions of the function spaces, we
define an operator D. Let & = (a, ..., @,) be a multiindex of order |&| = ot) +...+ &, =m
for 1 <m < eo. Then

V.
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We also introduce the short-hand notations for the inner product and the induced norm

(v)rag) = (,v),  lull 2iq) = llull2 = lull,
respectively. Now, we define the function spaces:

Definition 1.1. A Hilbert space H is a Banach space equipped with an inner product which
generates the norm with respect to the function space.
a. The space L*(Q) = H(Q) is a Hilbert space with

(u,v) :/ uvdx,
Q

foru,v € L*(Q).
b. The Sobolev space H™(Q) is a Hilbert space where

we H™(Q),

there exists
D%u e L*(Q),

such that
/Dauvdx:(—1)|a|/ uD% dx, Yv,D% € L*(Q).
Q Q

¢. The Sobolev space H(div;Q) is a Hilbert space where
u € H(div;Q)

implies
D%u,V-uc L*(Q).

d. Let Q be bounded and 0 be C'. Then there exists a bounded linear operator T :
T:H'(Q)— L*(0Q),
where a function u € Hé (Q) is said to have zero-trace if and only if
Tu=0 ondQ.

Definition 1.2. Let C°(Q) be the space of continuous function u : Q — R, where u is zero-
times continuous differentiable and Q = QU Q.
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1.3.2 Green’s function

Modeling the blood vessels as 1D line segments lead to a great reduction of the computational
complexity of the model as it avoids expensive meshing of the blood vessels. As stated in
Section 1.2, the model reduction has the drawback of inducing the solutions to be singular.
Consequently, they become difficult to resolve numerically. To avoid this, we introduce a
splitting technique [Gjerde et al., 2018] for the solutions. The splitting technique relies on
the use of Green’s functions in order to capture the singularity. Therefore, let us introduce the
Green’s functions. The need of Green’s functions will be made clearer with the discussion of
a 3D flow model with 1D line source terms in Section 2.2.

We start with letting a line segment I" = (0,0, z) € Q pass through entire domain Q C R? and
(r,0,z) be the cylindrical coordinates with r = y/x? + y2. Then the Green’s function for the
Laplacian —A in R is given by
G(r) = —-In(r) (1.15)
r)=——In(r .
2 ’
where G(r) € L*>(Q) and 1/27 is a scaling factor. If we let 8 be the Dirac line source
distributed on the line segment I" C Q C R3. Then the fundamental property of G(r) is given
by
—/AG(r)de:/ v5rdQ:/vdS e C(Q), (1.16)
Q Q r

where dS is an element on I". Moreover, we now let I' C € be an arbitrary line segment and
Q C R3. Then the Green’s function for the Laplacian —A in R? is given by

11
Gip(x,y) = (1.17)

Al -yl
where G3p € L*(Q). In the case of an arbitrary line segment, we seek the candidate G(x)
such that it solves
—AG(x) = 6r in Q, (1.18)

where Or is a Dirac line source distributed on a line segment I' C Q C R3. The (implicit)
high regularity term in the splitting of the solutions corrects the lack of boundary conditions
for solving (1.18). G(x) is obtained by the convolution of dr and (1.17). The convolution of
two functions u(x) and v(x) is defined as

(s ) i= [ux=7)v(n) d.
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where * is the convolution operator. We then obtain G(x):
G(x) = 5r * G3D
_ ! / o
“an Jo =y (1.19)

1 / 1
=— ds.
4m Jr |lx—yll

The fundamental property of G(x) is given by

—/AG(x)de:/vérdQ:/ vds  Wec(@). (1.20)
Q Q I

1.3.3 Preliminaries

In this section, we included the lemmas used in the convergence analysis in Section 3.3. They

read:

Lemma 1 (Polarization identity). Let (X, (-,-)x) be a Hilbert space and u,v € X. Then it
holds | |
vy = 5 e vl = 5 eI

Lemma 2 (Binomial identity). Let (X,(-,-)x) be a Hilbert space and u,v € X. Then the
following inequality holds

1, ., 1 s 1.
(u=vvix =S ully + 5 llu=vlx =S Ivix-

Lemma 3 (Cauchy-Schwarz inequality). Let (X,(-,-)x) be a Hilbert space and u,v € X.
Then the following estimate holds

2 2
[ (e, v)xe | < lull (][ -
Lemma 4 (Young’s inequality). Let a,b,e € R, € > 0. Then
1 €
b| < —a*+=b%.
lab| < P +2

Lemma 5 (Arithmetic Mean-Root-Mean Square (AM-RMS) inequality). Let m € N and
{u;}_; C R. Then the following inequality is true

m

Y U<

J=1

~.DN

1
m

m
Y i,
j=1
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Lemma 6 (Thomas’ Lemma [Radu, 2004; Thomas, 1977]). There exists a constant Cg 4 > 0
not depending on the mesh size h, such that given an arbitrary qy € Qy, there exists 2, € Zy,
satisfying V -2y = g, and lzal] < Cova |l



Chapter 2
Mathematical modeling

In this chapter, we will introduce our mathematical model. We consider the quasi-static,
linear Biot model to simulate flow and mechanics in the vascular system of the brain. The
Biot model includes 1D line sources in the right-hand side of the mass conservation equation.

The choice of model was motivated in Section 1.2. The system of equations read:

—V-2uew)+A (V-u)l|+aVp=f, (2.1a)
8,(%+aV-u)+V-w:w+f5r, (2.1b)
K 'w+Vp =pys. (2.1¢)

In addition, (2.1a) is the mechanics equation, (2.1b) is the mass conservation equation and
(2.1c) is Darcy’s law. In the first section, we introduce the Biot model (2.1a)-(2.1c), i.e.
f = 0. Furthermore, [Gjerde et al., 2018] suggested a mathematical technique to obtain

optimal convergence for solving:
—V-(KVp)=for in Q, (2.2a)

P = po on dQ. (2.2b)

We observe that (2.2a) is the same as (2.1b) with additional terms. The goal of Section 2.2
is to introduce a mathematical approach which obtains optimal convergence for solving
(2.2a)-(2.2b). We will apply this technique to (2.1b)-(2.1c) in Chapter 3 and 4.
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2.1 Biot’s equations

We start off by introducing the fully coupled quasi-static, linearized Biot system, i.e. (2.1a)-
(2.1c) with f = 0. Recall Darcy’s law and the mass conservation equation were derived in
Section 1.1. We will first derive the first governing equation, that is the mechanics equation

(2.1a). Next, we apply some manipulations to the last two equations.

An important property in the derivation of (2.1a) is poroelasticity, which was mentioned in
Section 1.2. Poroelasticity is used to describe the elastic behavior of a material with pore
networks where there exists a pressurized fluid [Capurro and Barberis, 2014]. Furthermore,
the poroelastic Cauchy stress tensor 67°” can be expressed in terms of the pressure p and the
displacement u:

6’ (u,p) = o(u) — apl, (2.3)

where « is the Biot coefficient, I is the identity tensor, and O is a linear stress tensor. Next,

o can be expressed in terms of u. This reads
o(u) =2ueu) + A(V-u)l, (2.4)

where €(u) = 1(Vu+ VuT) is the linear strain tensor, and it and A are Lamé parameters.
The strain tensor describess the deformation of the body of the matrix. This is applicable
since we assume that the displacement is much smaller than the relevant dimensions of the
body. During the deformation, we assume that the geometry and constitutive properties of

the material are unchanged. Further, we combine (2.3)-(2.4):
67 (u,p) = 2uem) + A (V-u)I — apl. (2.5)

Next, considering the quasi-static formulation, i.e. neglecting the acceleration. The mechani-

cal deformation of a solid-fluid system can then be written as
—-V.o" =f. (2.6)

Here, f is the contribution from body forces in the porous medium. We obtain the first
equation of our model by inserting (2.5) in (2.6):

—V-2ue)+A(V-w)l+aV-(pl) =f. (2.7)
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For the second equation, we consider the mass conservation equation (1.13) derived in
Section 1.1.3. We letw = pyw, and @ = p ;¢ be the mass of the fluid. Then

oPr=-V-wty. (2.8)
Here, @ can be expressed in terms of # and p:
@ — p

r(u,p) = i + oV -u, (2.9)

where M is the Biot modulus. Next, we insert (2.9) in (2.8). This yields
P _
at(M + aV-u) + V.w = vy, (2.10)

which is our second equation. The third and last equation is Darcy’s law, i.e. (1.10), with

w=pw,:

kp
==L (Vp — pre).
My
For simplicity, we let K = % = va’ where Vv is the kinematic viscosity. We rearrange and
obtain (2.1¢c):
K 'w+Vp = prg, (2.11)

where K~! is the inverse of the permeability tensor divided by V.

2.2 Flow model with lower-dimensional source terms

The aim of this section is to introduce a singularity removal-based technique. [Gjerde et al.,
2018] showed that this technique obtained optimal convergence for solving a 3D flow model
with 1D Dirac line sources Jr distributed on a 1D line segment I" C Q, i.e. (2.2a)-(2.2b). We
let @ C R3 be a bounded, open domain with a smooth boundary 9Q and I' = U;?lzll“ ibea

collection of m line segments. Then m line sources are defined as:
m -_—
/f6rvd§2: Z/ f(sj,0)v(s;)dS W e C(Q),
Q 1/
j=1v%J

where f(s;,t) € H*(T;) is the intensity of the line source j, s; is the arc-length of the line
segment j and ¢ is the time.

[Gjerde et al., 2018; Koppl et al., 2016] proved that the lack of convergence was local
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to the area surrounding the singularity. Thus, removing a small region R surrounding I

retrieved optimal convergence for solving (2.2a)-(2.2b). We let € > 0, then R is given by

R={(x,y,2) : V/x2+y? < g} (2.12)

This motivates the need of a singularity removal-based technique. The technique considered
was originally found in [Gjerde et al., 2018], but is written for the purpose of verification and
convenience for the reader. The technique splits the solution of the pressure into one explicit,
low regularity term and one implicit, higher regularity term [Gjerde et al., 2019, 2018]. This
reads

P =Ds+ Pr, (2.13)

where p; captures the singularity and p, is the high regularity term. To avoid a singular
solution, we reformulate (2.2a)-(2.2b) in order to solve for p,. The actual pressure is obtained
by interpolating p, onto the discrete space of the pressure. Note that the technique introduced
in the two sections to come, holds for (A1)-(A2). By (Al), K is independent of the position

and the direction of the flow, hence a positive scalar quantity.

For haemodynamics in the brain, we consider the following assumptions:
Al. Isotropic porous medium.

A2. Homogeneous porous medium.

A3. Nearly incompressible.

Ad. Neglecting the gravitational acceleration g.

(A1)-(A4) are usually made when considering flow in the brain, and g is usually neglected in

haemodynamics [Formaggia et al., 2009], i.e. dynamics of blood flow.

2.2.1 Ilustration of the method

We start by illustrating the singularity removal-based technique for a fixed line source, where
we orientated the coordinate system such that I" is aligned with the z-axis. We further let
f(z,t) € H*(T'), T = (0,0,z) € Q be a line segment that passes through the entire domain
and (r,0,z) be cylindrical coordinates with r = y/x2 +y2. Then the line singularity term p;
in (2.13) can be expressed as

_ f(z,1)G(r)
e (2.14)
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where the Green’s function G(r) € L?(Q) is given by (1.15). Recall the aim is to reformulate
(2.2a)-(2.2b) to obtain a problem which can be solved for the high regularity term p,. We
begin by inserting (2.13) in (2.2a) and then rearrange for convenience:

—V-(KVp;) =V -(KVps) = for. (2.15)
Further, we find an expression for —V - (KVp;) by inserting (2.14) in —V - (KV py):

—V.(KVp,) = —V - (KV/G)

(2.16)
= —d,f G— fAG.
Next, we substitute the result from (2.16) into (2.15). This yields
—V-(KVp,) —d.f G— fAG = fér. (2.17)

The two last terms in (2.17) cancel each other out by the fundamental property (1.16). We
rearrange and obtain:
—V-(KVp,) =d,.fG. (2.18)

We denote the right-hand side of (2.18) as a function F € L?(Q). For generalization, we
let F(f) € L*(Q) be a function of the intensity of the Dirac source term. This means
that F(f(z,7))|r=(0,0,z) = F(f)- Lastly, we obtain the reformulated boundary conditions by

inserting (2.13) in (2.2b). Then the generalized problem with singularity removal reads:

—V-(KVp,)=F inQ, (2.19a)
Pr=—p0+Ps0=pro ONIQ. (2.19b)

Remark that
F(f(z,t)) = dzzf(zat) G, (2.20)

with G given by (1.15).

2.2.2 Line sources

This chapter is concluded by extending the technique introduced in Section 2.2.1 to consider

arbitrary line sources. We let I' = (r,0,z) C Q be an arbitrary line segment between the

points a and b for a,b € Q. We recall the splitting of p, i.e. (2.13) and let p, be given by
E(f)G(x)

py= 2T, 221)
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Note that this technique holds for (A1)-(A2). Here, E(+) is an extension operator and
G(x) € L*(Q) satisfies (1.18). We let E(f) : H*(I') — H*(Q) NC%(Q) be the extension of
the line source intensity f into the domain Q. We need to find expressions for both G(x)
and E(f) in (2.21). This is not as straightforward as for a fixed line source, as illustrated
in the previous section. Moreover, we start off by finding G(x) since E(f) need to satisfy
the reformulated problem given by (2.19a)-(2.19b). Therefore, we first find G(x), second
F(E(f)) and third E(f).

Fig. 2.1 Tllustration of a blood vessel with a line segment I' = {(0,0,z) : z € [a,b]} and its
elongation I" = {(0,0,z) € Q}. R is a small region surrounding I" with radius r. P: Q — I"is
a projection operator and projects a point in Q onto the closest point on I

An arbitrary line can be expressed as
y=a+ys s€(0,L), (2.22)

where L = ||b—al|, s is the arc-length of the line segment, and y = I% is the normalized
tangent vector of I', which means ||y|| = 1. Figure 2.1 illustrates a blood vessel with a 1D
line segment going through it. Furthermore, to find the candidate G(x), we insert (2.22) in
(1.19). This yields

1 (L 1

Since ¥ is the normalized, the solution of the integral in (2.23) is

Glx) 1 n <||x—b|| +L+y- (a—x))'

dn lx—all+7-(a—x)

We rewrite this solution in its final form to read

1 rp+L+7y-(a—x)
G(x) = ln( Py P ), (2.24)
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for

re = |lx—al|

and
ry = ||x—b|.

Next, we find F, where we use the same approach as in Section 2.2.1. We start by in-
serting (2.21) in —V - (KV py). This gives us

—V - (KVps) = A[E(f)G]

(2.25)
= GAE(f) +2VE(f)-VG+E(f)AG.

Then we insert the result from (2.25) in (2.17), where we use the fact that E(f)|r = f:
V- (KVp,)+GAE(f) +2VE(f) - VG +E(f)AG = —E(f)dr- (2.26)

We observe that by the fundamental property (1.20), the two terms to the right of (2.26)

cancel each other out. We then rearrange the remaining part. This reads
—V.-(KVp,) =GAE(f)+2VE(f)-VG. (2.27)
We let the right-hand side of (2.27) be F(E(f)). That is
F(E(f)) =GAE(f)+2VE(f)-VG. (2.28)

Hence, (2.28) satisfies (2.19a)-(2.19b).

Finally, we turn to find an expression for E(f). E(f) needs to be chosen such that VG| is
canceled since VG | fails to be integrable in L?() in the neighborhood of I. In other words,
if we want p, € H*(Q) and F € L*(Q), then VG| needs to be canceled out. The regularity
of p, depends on the choice of E(f). Remark that VG can be split into one perpendicular and
one parallel part, i.e. VG = [VG |, VG”]T. We obtain the cancellation of VG | by choosing
E(f) such that V| E(f) = (0,0) € R, where R is given by (2.12) and illustrated in Figure
2.1. Further, we assume f = f(s,7) is known, where f(s,7) is a function of the arc-length

parameter s and the time 7. By these assumptions, a choice of E(f) can be

E(f)(x,1) = f(P(x),t) forxeQ, (2.29)
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where P : Q — T is a projection operator. We define it as x — (x —a) - ¥ the orthogonal
projection of a point x onto the extension of I'. The extension of I'is given by I" = {(r,0,z) €
Q}. This is also illustrated in Figure 2.1. Now, we can find a final expression of F. Given
the extension (2.29), the terms in (2.28) affected by the gradient and the Laplacian operators

are:

x—b x—b
1 by by
VG:E(L—}-}’LI—F'Y'(G—XI) _ra+’)/-(a—x)>7 (2303)
VE(f) =d f(P(x),1)Y, (2.30b)
AE(f) = dzzf(P(x)at) HYH = dzzf<P(x)at)' (2.30¢)

We now consider F(f(P(x),t)) since (2.29). Then the final expression of F is obtained by
inserting (2.30a)-(2.30c) in (2.28):

FUF(PG).1)) = def (P(x).1)G -+ def (P(x).1) (i - 1) , @31)

where G is given by (2.24).



Chapter 3
Discretization

In this chapter, we will introduce all the mathematical methods used for solving the Biot
model with 1D line sources. That is the discretization techniques and iterative schemes. We

recall the system of equations:

—V-2uew)+A (V-u)l|+aVp=f, (3.1a)
a,(ﬂ%+av.u)+v-w:w+f5r, (3.1b)
K 'w+Vp =psg. (3.1¢)

This mathematical model was introduced in Chapter 2. In (3.1a), we have Vp ¢ L?(Q)

because of the singularity in p. This will be taken care of by partial integration.

The Biot model is usually discretized in time by backward Euler, see e.g. [Both et al.,
2017; Mikeli¢ et al., 2014]. Various methods have been developed for spatial-discretization
of partial differential equations, e.g. finite differences, finite volumes, and finite elements.
Due to its simplicity in analysis, we will consider the finite element method. Even though,
our techniques can be used for other discretization methods. We further apply the fixed-stress
splitting scheme to decouple the flow and mechanics equations. The fixed-stress splitting
scheme is a fast, robust algorithm with good convergence, which is the motivation behind the

choice of method.

We will in this chapter introduce a singularity removal-based scheme in order to avoid
singular solutions when solving (3.1a)-(3.1¢). The scheme combines this splitting technique

with the fixed-stress splitting scheme. Let us recall the splitting of the solution of the pressure,
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and apply the same splitting technique to w. This reads:

D= ps+Dr, (3.2a)

wW=w;+w,, (3.2b)

where the subscripts s and r indicate the low and high regularity term, respectively. The
scheme also employs backward Euler, the finite element method and the fixed-stress splitting

scheme. In the last section, we prove optimal convergence for this scheme.

3.1 Finite element method

A method to spatially solve partial differential equations is the Finite Element Method
(FEM). The foundation of the FEM is splitting the spatial domain € into smaller units or
elements, and then approximate the solution on the discretized domain. First, we introduce
the conformal variational formulation and then apply it to the mechanics equation (3.1a).
Secondly, we introduce the mixed variational formulation, and then apply it to the flow
equations (3.1b)-(3.1c). We then introduce the finite element discretization. Here, we
introduce the elements used for calculating the pressure, flux and displacement. Lastly, we

defined the discrete spaces used to approximate the solutions.

3.1.1 Conformal variational formulation

To explain the conformal variational formulation, we consider the following example:

Example 1 (Poisson equation with Dirichlet boundary conditions). For some source term S.
Find p such that:
—Ap =S inQ, (3.3a)

p =0 ondQ. (3.3b)

Here, (3.3a) is an elliptic equation, i.e. the information is propagated equally in all directions.
To obtain the variational formulation of (3.3a)-(3.3b), we first multiply both sides of the
equation with a test function q € Q. We then integrate over the spatial domain. Consequently,
(3.3a)-(3.3b) becomes:

—/Q(Ap)qu:/QSqu, (3.4)
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where p € Q is referred to as the trial function. Next, our intention is to find a weak
Jormulation of (3.4). We first use partial integration on the left-hand side of (3.4):

—/(Ap)qu:/Vp-qux —/ @qu, (3.5)
Q Q o0 dn

where n is a normal vector. The last term of (3.5) is neglected since q have compact support
on Q. Consequently, we now have a weak form of the problem (3.3a):
Find p € Q such that Vg € Q:

/Vp~qux:/Squ. (3.6)
Q Q

The function spaces Q and Q may be different but may also be the same. In the conformal
variational formulation, Q and Q are the same function space. The function spaces of Q
and Q depends on the choice of which function space S belongs to. As an example, if we
let S € L*(Q) then Q and O be H'(Q). Furthermore, we observe that the left-hand side of
(3.6) is a function of both p and q. Hence, we can write the left-hand side as the function
a(p,q). We also observe that the right-hand side is a function of only q, and can be written
as the function L(q). a includes the unknown parts of the equation and L the known parts.
This means that we want to solve the linear system a = L. For convenience, we rewrite
(3.6) in terms of the inner product. Then we have the conformal variational formulation of
(3.32)-(3.3b):
(Vp,Vq) = (S,q).

We apply the same approach as in Example 1 to the mechanics equation (3.1a). Let f € L? (Q).

Then the conformal variational formulation problem reads:

Problem 1. Let p € L>(Q) be given, then find u € H'(Q) such that Vv € H'(Q):

ueu),e(v)) + (AV-u,V-v) — (ap,V-v) = (f,v). (3.7)

3.1.2 Mixed variational formulation

The mixed finite element method differentiates from the conformal by having the property

of local mass conservation [Matthies and Tobiska, 2007]. This is also a motivation behind
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the choice of method. Mass conservation is a useful property in the biomedical field, e.g.
studying the blood flow of drug delivery through microcirculation [Cattaneo and Zunino,
2014; Possenti et al., 2018] and the efficiency of cancer treatment by hypothermia [Nabil and
Zunino, 2016]. In a mixed finite element problem, we consider more than one finite element
at once and the choice of both elements and function spaces determine whether the scheme
is stable. A naive choice of combination of elements can lead to a unstable scheme. The flow
equations (3.1b)-(3.1c) are solved with this method. Therefore, we will now introduce the
mixed variational formulation.

We consider the following example to explain the mixed variational formulation:

Example 2 (Mixed problem with Dirichlet boundary condition). Let S € L*(Q) be a source
term. Then we consider the strong formulation of the following problem:
Find (w, p) such that:

V-w=S inQ, (3.8a)
K 'w+Vp=0 inQ, (3.8b)
p = po ondS. (3.8¢)

We let W and W be mixed function spaces. Then, by the same approach as in Example 1, a
weak formulation of (3.8a)-(3.8c) in terms of the inner product reads:
Find (w,p) € W such that¥(z,q) € W:

(K™'w,2) = (p,V-2) +{poz, m)aq =0  Ww,z€ H(div;Q),

(V-w.q) = (S,q) Vp,q € L*(Q).

Here, (po zn, n)yq are the boundary conditions. In a mixed problem, the Dirichlet boundary
conditions are Neumann boundary conditions. As in Example 1, W and W may be different
but also the same function space. A natural choice of function spaces for this mixed problem
isW =W =H(div;Q) x L*(Q).

Now, we apply the mixed variational formulation to (3.1b)-(3.1c) as shown in Example 2.
Welet y € L?(Q), pr € R, g € R ford € {2,3} and & ¢ L*(Q). Then the problem reads:

Problem 2. Givenu € H'(Q). Find (p,w) € L*(Q) x H(div; Q) such that ¥(q,z) € L*(Q) x
H(div;Q):

<A%8tp7q> + (o, (V-u),q) +(V-w,q) =(v,q) +(f,q)r, (3.10a)
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(K~ 'w.z) — (p,V-2) = (psg,2). (3.10b)

We have now introduced the conformal and mixed variational formulation and applied them to
(3.1a) and (3.1b)-(3.1c), respectively. Before defining the discrete spaces, we will introduce
finite element discretization. Here, we introduce our choice of elements and expected order
of convergence for a problem with these elements.

3.1.3 Finite element discretization

In the FEM, as previously stated, the spatial domain is discretized into smaller units or
elements in order to approximate the solution. In two dimensions, the elements are usually
triangles and in three dimensions tetrahedrons, but they may be other types of elements. We
let .7, be the mesh of Q, where the subscript 4 denotes the variable spatially discretized by
mesh size 4. The mesh is a collection of the elements, and can be expressed as a set of these

elements. Let us consider triangle elements denoted as t. Then .7}, is a set of triangles {t}

such that
Q= (Jt
te 7,

We discretize (3.1a)-(3.1c) in space by P, Py, and RT( elements to approximate the displace-
ment, the pressure, and the flux, respectively. P; elements are linear piecewise polynomials.
We consider the Continuous Lagrange elements denoted as CG. These elements have one
nodal value on each edge of the element. C(G as a triangle element is illustrated in Figure
3.1(a). Further, Py elements are piecewise constants. Here, we consider Discontinuous
Lagrange elements, which are denoted as DGg. These elements only have one nodal value in
the center of the element. This is illustrated for a triangle element in Figure 3.1(b). Lastly, we
consider a vector space of R?-valued polynomials given by RTy = a; + bix, where a; € R?
and b € R. These elements have a normal component on each corner of the triangle. RT

as a triangle element is illustrated in Figure 3.1(c).

The expected order of convergence for the solutions when using the FEM depends on
the choice of elements and the regularity of the solution. Solving (3.7) by FEM with P
elements for the displacement, i.e. the conformal FEM, yields optimal &(h?) of convergence
in the L?(Q)-norm and @ (h') in the H'(Q)-norm. Furthermore, solving (3.10a)-(3.10b)
when f = 0 by the mixed FEM with Py — RT( elements for pressure and flux, respectively,
the optimal convergence is ¢ (h') in the L?(Q)-norm.
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CG, DGy RTo l

@ (b) (©)

Fig. 3.1 Illustration of the triangle elements: Continuous Lagrange (CG1) (a), Discontinuous
Lagrange (DGy) (b), and Raviart-Thomas (RTy) (c). The black dots and arrows indicate the
degrees of freedom of the element. The subscripts denote the order of polynomials.

3.1.4 Discrete spaces

In the last section of FEM, we define the discrete spaces. They are written as in [Both et al.,
2017]. We let Q@ C R where d € {2,3}, then the discrete spaces read

Vi={vy€[Hy(Q) ] |Vte T, vy [P ]},

On={ qn € L*(Q) |Vt € T, gy € Po},

Z,= {Zh S H(diV;Q) | Vvt e %, zh|t(x) =a;+bix, a) € Rd,bl S R}.

3.2 Iterative solver for Biot’s equations

In the previous section, we introduced the finite element method and used it to spatially
discretize (3.1a)-(3.1c). We now turn to discretize (3.1a)-(3.1c) in the time, and introducing
the iterative scheme and a singularity removal-based scheme. There are two alternatives to
solve the fully coupled Biot model; monolithically or with an iterative splitting method. We
consider the widely used fixed-stress splitting scheme, see e.g. [Bause et al., 2016; Borregales
et al., 2018; Storvik et al., 2018]. This is motivated by the fact that it is unconditionally stable
and easier to implement. Here, a stabilization term is added to the flow equation (adding it to

mechanics equation is the undrained splitting scheme).

For the purpose of solving (3.1a)-(3.1c) without singular solutions, our approach is to
develop a singularity removal-based scheme. We recall as previously mentioned that the

scheme employs the splitting of the solutions of the pressure and the flux [Gjerde et al.,
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2018], i.e. (3.2a)-(3.2b), and the fixed-stress splitting scheme.

For d € {2,3}, the standard assumptions for these schemes, see e.g. [Both et al., 2017], read:
AS. LetpreR, g€ R4 be constant.

A6. Let M, u, A € L*(Q) be positive, uniformly bounded, with the lower bounded strictly

positive.

A7. LetK € L“(Q)dXd be a symmetric matrix, which is constant in time and has uniformly
bounded eigenvalues, i.e., there exist constants k,,,ky € R, satisfying for all x € Q and for
all z € R4\{0} i.e. not zero.

0<knz'z<zZ'K(x)z<hkyz'z<oo

3.2.1 Backward Euler

The Biot model is usually discretized in time by the backward Euler, see e.g. [Both et al.,
2017; Mikeli€ et al., 2014]. The method has the form

Y =y T u(y),

where the superscript n indicates the current time level and n — 1 the previous time level.
T .= 1% is the time step and " := nt for n € N. Here, T and N are the final time and the
total number of time steps, respectively. Moreover, this is an implicit method, and its main
advantage is the unconditional stability. Though, it is more costly to implement than an
explicit method. However, an explicit method is not unconditionally stable. Furthermore,
backward Euler is a one-step method since Vr > 0 only depends on y" [Quarteroni et al.,
2007].

We will now apply backward Euler to Problem 1-2, i.e. (3.7), (3.10a) and (3.10b). We include
the subscript A for the spatial-discretization. Further, we let (ug, pg,wg) eV, xQyxZy,be
the initial values. Note that the discrete spaces defined in Section 3.1.4. Further, we let the so-
lution of the displacement, the pressure, and the flux for the previous time time step be known.
Then we have: Given (uzfl,pzfl,wzfl) € V), X O x Zy,. Find (u}}, p,wj) € Vi x Qp X Zy:

QuUE), €p)) + (A(V-ul),V -v) — (apl, V -vi) = (f"v), (3.11a)
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1 n n n n n
<A_/Iph ,Clh> +(aV-uy, qn) +T(V-wy,qn) = TV qn) + (" qn)r

| (3.11b)
+ <MPZ_1,%> +(aV-ul ! qp),
(K~'w" z1) — (P V -21) = (prg.21), 3.11¢c)

for all (v, qn,25) € Vi X Qp X Z,. We now turn to introduce the fixed-stress splitting scheme,
and then apply it to (3.11a)-(3.11c¢).

3.2.2 Fixed-stress splitting scheme

The fixed-stress splitting scheme is a popular iterative splitting scheme for solving the fully
coupled Biot model, see e.g. [Almani et al., 2016]. [Both et al., 2017; Mikeli¢ et al., 2014]
proved global, linear convergence for this scheme. It has been widely used for finding the
solution to coupled flow and mechanics problems [Gaspar and Rodrigo, 2017]. The scheme
has a "fixed’ stress, and the idea is that an artificial volumetric stress og = 0o+ K4,V -u —otp
is kept constant. K, € L*(Q) is referred to as the drained bulk modulus. In this scheme,
we will consider the tuning parameter Brs = &?/K,,. The theoretically optimal choice of
Brs is shown in [Both et al., 2017]. The optimal By is the same for the fixed-stress splitting
scheme with singularity removal, which will be introduced in Section 3.2.3. Hence, Bfs is

also shown in the proof of convergence in Section 3.3.

We now apply the fixed-stress splitting scheme to (3.11a)-(3.11c). First, we define a se-
quence (uZ’i, pZ7i, wZ’i), i > 0. Let i denote the current iteration step and i — 1 denote the
previous iteration step. We initialize u, p and w by uZ’O =ul !, pZ’O =p}~!and wZ’O =wi !
respectively. The scheme iterates until a stopping criterion is reached. The full scheme reads:
Step 1: Given (uZ’i_l, pZ’i_l, wZ’i_l) €V}, x Oy x Zy,. Find (pZ’i, wZ’i) € Qp X Z;, such that

Y(qn, zn) € On X Zy:

1 n,i n,i n n
<(M+ﬁFs)Ph’761h>+T<V'Wh’,%>: (" qn) + (" an)r

1 _ 3.12
+<1\_/IPZ 1th>+ (aV-ul = q) (3.122)
n,i—1

+ Brs Py an) — (aV-ul g,

KW z) = (P V -2) = (prg.za)- (3.12b)
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Step 2: Given pZ’i € Q. Find uZ"i €V}, such that Vv, € V,:

Que)’),ewy)) + AV -ul), Vv = (apl', Vv) + (f",v). (3.12¢)

We let (pi,wi u) denote the solutions at iteration step i and (pz_l, w;l_l, uz_l) denote the

solutions at the previous iteration step i — 1. Then for g,, &, > 0, the stopping criterion is
given by

(P, why i) — (P wi s wy | < eater [Pl wi W) (B13)

In addition, &, and &, are the absolute and relative error tolerances, respectively.

3.2.3 Fixed-stress splitting scheme with singularity removal

Finally, we introduce a singularity removal-based scheme. Our goal is to introduce a scheme
that avoids singular solutions when solving (3.1a)-(3.1c). The scheme is based on splitting
the solutions of p and w into one low (explicit) regularity term and one high (implicit)
regularity term denoted by the subscript s and r [Gjerde et al., 2019], respectively. In contrast
to the standard formulation of the fixed-stress splitting scheme, this scheme is solved by
three steps. The first step solves (3.1b)-(3.1c¢) to get p, and w, using (3.2a)-(3.2b). Secondly,
p and w are reconstructed by interpolating p,; and w, onto the discrete spaces of p and w,

respectively. Third, solving (3.1a) to get u.

We start off by reformulating (3.1b)-(3.1c¢) in order to solve for p, and w,. Next, we discretize
the system of equations by using backward Euler in time and the finite element method in
space. Lastly, we apply the fixed-stress splitting scheme. This scheme holds for (A2) and
(AS)-(AT7). Welet f € H 2 and recall the flow model with singular removal introduced in
Section 2.2. It is given by (2.19a)-(2.19b), where (2.19b) is the Dirichlet boundary conditions.
We will first reformulate (3.1c) and then (3.1b).

To begin, we insert (3.2a)-(3.2b) in (3.1c). Then

wy+w, = —KV(ps+pr —Pfg)-

We have the relation wy = —KVp,. Rearranging to obtain Darcy’s law with singularity
removal:
K 'w.+ Vp, =pss. (3.14)
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According to (3.14), we have
—V-(KVp,) =V -w,.

As aresult, (2.19a) becomes
V-w,=F(f). (3.15)

Providing that (A1) holds, then for a line segment going through the entire domain F is
given by (2.20) and for an arbitrary line segment F is given by (2.20) and (2.31), respectively.
Moreover, we next obtain the flow equation with singularity removal by inserting (3.2a),
(3.2b) and (3.15) into (3.1b). This reads

8:(% + OCV'M) + Vew, = y+F(f),
where V¥ is the source term solving the time-derivative term in (3.1b). After rearranging, we
obtain
o (5:—/; + aV-u) + V.w, =y, (3.16)

Here, the source term with singularity removal is given by

o 9 ps
Vo =Y +F(f)— M

We now apply the finite element method as the spatial-discretization and backward Euler as
the time-discretization. Then we obtain the weak formulation of (3.1a), (3.14) and (3.16). In
addition, we include the spatial- and time-discretization of (3.2a)-(3.2b). Accordingly, we

have
(2ue(uy), €(vn)) + AV -up),V -vp) — (apy, V-vi) = (f",vn), (3.17a)
(3 a) 0V )+ 707 W) = ()
+ <Al4p'ﬁ,ﬁl7qh> (3.170)
+ (aV'uZ’I,qh%
(K~'Whzn) + (P V- zn) = (Pr8:2n), (3.17¢)
Ph="DPsp+ Prps (3.17d)

Wy =W+ Wy, (3.17e)
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Finally, we interpret the fixed-stress splitting scheme. This scheme has one additional step
in comparison with the standard schemes. Recalling that the theoretically optimal Brg is
shown in the proof of convergence in Section 3.3. Furthermore, we start by initializing u, p,
and w, by uZ’O = uZ‘l, p’Z}? = p’r’f and wZ’}? = wZ;l, respectively. Then the full scheme for
(3.17a)-(3.17e) reads:

Step 1: Given (uZ”—], p%_], wz;’l_l) €V x Oy X Zy,. Find (pz;i, w’r'jl) € Qy, x Zj, such that

V(qn, zn) € On X Zy:

1 j ] n
< (_ +ﬁFS) pz’}poh> + T<V 'WZ’;,aC]h> = T<WSr=Qh>

M
-
+<M pﬁh17%>

o (3.182)
h 7f]h>
+( Brs pZ}i_I,qm
- <(XV-uZ’l_1,qh>7
-1, n,i
(K™ Wzn) — (P2, V o zn) = (Pr8:2n)- (3.18b)

Step 2: Given (p':’;’;,p?’h,w:’?i,w;h) € 0y x 0, xZy xZ;,. Find (pZ’i,wZ’i) €0y XZy:
P =P, (3.18¢)

wi =W, W (3.18d)

Step 3: Given pZ’i € Qy,. Find uZ"i €V, such that Vv, € V.
pe),e(v) + (AV-uy).V-v) = (g Vo) + (Pl (Bu18e)

The stopping criterion becomes

|l Wi i) = (i wish || < eater |l Wi w)|. 319)

We call (3.18a)-(3.18e¢) the fixed-stress splitting scheme with singularity removal.

3.3 Convergence analysis

We conclude this chapter by proving convergence for the fixed-stress splitting scheme with

singularity removal for homogeneous porous media. The scheme is given by (3.18a)-(3.18e).
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We will also consider the time-discretized equations (3.17a)-(3.17¢). The proof is included
for the sake of completeness, even though it is only a special case of the proof in [Both
et al., 2017]. Hence, the foregoing scheme extends easily to include heterogeneous media.
Theorem 7 is extended by (3.24)-(3.25) in comparison to the theorem in [Both et al., 2017].
The proof is also more detailed. Moreover, Lemma 1-5 are the primary technical tools in
the proof. It holds for d € {2,3}, and (A2) and (A5)-(A7). Additionally, we use the Banach
contraction argument, proving that the method is a fixed-point contraction.

We begin by showing an inequality which will be used later in the proof. The definition of

leu n—/zCﬁQ
L(EG) £ (Ge5e) Jee

ij=1

the strain tensor reads:

After applying the AM-RMS inequality (Lemma 5), we achieve the desired inequality:

€ (u)||* >d/ Z(a”’> dx =d ||V - up|*. (3.20)

Theorem 7 (Linear convergence for fixed-stress splitting scheme with singularity removal).

Assume (A2) and (A5)-(A7). Let (uj, Prps Wips p},wi) and (u)", p':’}i, rh, Wy ) be

solutions of (3. l7a)-(3 17e) and (3 18a)-(3. 186) respectively Let ei = prh prh, =
n, i

LA —w! i el, = “h —uy, e = ph — pj, and el, = wh —wj} denote the errors at the current
iteration. Then for all

B o (3.21)
> — .
" 22u+a)
it holds
i 2 % i—11|2 320
Hep —A%_’_%_i_%”p | ( )
and 5
2ule(el)| +2[[V-e]|* < 5 [leb” (3.23)

3,“4-/1
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where

er=ep, (3.24)
and

ew = ey,. (3.25)
Optimal convergence rates are obtained when equality holds in (3.21).
Remark. Under the assumptions stated in Theorem 7, (3.22) is a contraction. Therefore, as

i — oo the error of the pressure goes to zero geometrically, and with (3.23) for in hand, it

implies that error in the difference in iterations of the displacement term goes to zero.

Proof. Step 1: Flow with singularity removal and mechanics

First, we subtract (3.18a) from (3.17b), and (3.18e) from (3.17a). Second, we add the two
equations together. Here, we test v, = ef[l eV qn= e;l €Qpand gz, = ’Cefvj I'€Z,. This
yields

Ui ' j— i i—
MHe;,_HerﬁFS(e e el VT, el Y +2u(e(el) (e ) +A(V e,V ey ') =0.

Further, we apply the Polarization (Lemma 1) and Binomial identity (Lemma 2). After

rearranging, we have

A S S
Elletei+ eI+ 5 V- (eht-ei )P =5 lletel, — e

_ %HV ei _ei—l ”2+l|’epr 2 (3.26)
+ Brs(lep, |+ lleh, = e, I = llep, |+ 7K el b)) = 0.

Step 2: Mechanics

Now, we take the difference of iteration i and i — 1 of (3.18¢) and test with v, = e — e’ L

Then

2/,LH£ el —el H +A||V- (€, e 1)}}2:(x<e;—e;*1,v (el —ei ). (3.27)

We add and subtract the terms on the right-hand side of (3.27) by v € (0, 1). This gives

2 [e(el — ek D)|F+A [V (el — e D" = e el — el 1,V (e — i)

p
+a(l=7){e,—¢, V(e —e )

p

(3.28)
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In the next few steps, we only look at the right-hand side of (3.28) to manipulate it as needed.
Firstly, we apply Cauchy-Schwartz inequality (Lemma 3). Secondly, we apply the inequality
(3.20). This yield

a (e, —ey 'V (g —e ) ra(l =i, —e, .V (e )
<ayle,—e, IV (=i | +at=nlle, = [V (e —e ]
<vdaylle,—¢"| et —e [+ a=n e, e [[V- (e e D] (329

We now combine (3.29) with (3.28):

2ule(e, — e I +A V- (eh—ei D < Vad avle, — e || letel — e )]
+a(l=7)le, =, | [[V-(ew—e )]
Next, we apply Young’s inequality (Lemma 4). Note that €] = 2ug; and € = 24 & with

€1,&,c > 0. Also, we rearrange the terms and multiply both sides with a scaling constant c.
Then

c(2—ren)u|lele,—e || +e(l=(1=1e)A ||V (e —e )]
. o’c [ dy . 1—y Hei —e’;le (3.30)
- 4 HE A& p p ’
We choose the parameters optimal by minimizing
min L[4 1o 3.31)
v.e.e,e 4 HE] /182 ’ '
such that
c,€,8 >0,
Y€ (0,1),
1
c2—yer) =3, (3.32)
1
c(l1-—(1—-7)&)= e (3.33)

Here, (3.32)-(3.33) are limited by (3.26). In other words, we want % in front of Hs(e,"l — e,’;_ ' ) H2
and % in front of HV . (efl — ef[l) Hz as in (3.26). We rearrange (3.32) and (3.33) such that we
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achieve expressions for 1/¢; and 1/¢&:

1 Y

= 3.34
& =0Ty (3.34)
1 11—y
—_—= 3.35
e 21 L) o

After inserting (3.34)-(3.35) in (3.31), the minimization problem only depends on ¥ and c. It

e (dF  (1-9)
2u A ’

now reads

min 3.36
nin - (3.36)

(1- )
such that ¢ > ;lt and y € (0, 1). We obtain expression for ¥ and ¢ from (3.36). These expression
are inserted in (3.34)-(3.35) to obtain optimal values for € and &,. All the optimal values

read
i1
=5,
2u
Y*_2u+d7L’
. 2u+dA
81 = ,
2u
8*_2u+dﬂt
27 2dA
We insert the optimal values in (3.30). Then
H i ez A i i1y o’ i -2
— ||&(e;, — — V- (e, — < — — ) 3.38
2” (en—ew )| +4|| (eu—ew )| _4(511"'/1)”61) €p I (3.38)

Step 3: Darcy with singularity removal
Here, we start by taking the difference between (3.18b) and (3.17c¢). This yields

<K_le|i,vr7zl’l> - <e§)r7 \4 'Zh> =0.
Next, we use V -Z;, = g, from Thomas’ Lemma (Lemma 6):
1, i |2
<K ewr’zh>_H€pr|| =0.
We now apply Cauchy-Schwartz inequality and rearrange:

et |I> < (K€l e, ) /2K 20,200 /2.

wp Cw,
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First, we apply (A7). Second, we use ||z;|| < Cq 4|¢s|| from Thomas’ Lemma. Third, we

square both sides and rearrange. This reads

1

<

?/—_<K Ll iv 1/2“

—=(K'e,.e,)" " ||

le

prh

P< (K, el ). (3.39)

Step 4: Combining Step 1-3
Substituting (3.38) and (3.39) into (3.26), and then rearrange:

_— A _—
Elletel eI+ V- (el +el 1)\}2+(M+%+CT) e, ||
(3.40)
B2 ey = 1P < B2 e P s e =
2 pPr d‘u_l_l Pr pr

We can discard the two first positive terms in (3.40) since the inequality in (3.40) still holds

without them. This leaves

Brs
<M+%+Cz—) le},

Providing that Brg <

ﬁFS | _BFSH

‘ “—2 1

leh, =51
(d,u‘f—k Pr Pr :

|| Pr Pr

o? . )
m holds, i.e. (3.21), we have:

Brs Brs | i—12
R e

which proves (3.22).

Step 5: Mechanics revisited
We return to the mechanics equation one last time. We subtract (3.18e) from (3.17a) and test
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with v;, = €!,. This yields
2u|[e(el)||” +1||V-éi||” = aleh, V- éi).

Here, we repeat all steps in Step 2, but due to linearity we analogously obtain

bl

.UiZ/liZ
5 le@ll"+71vV-al” < du+%

This proves (3.23).

Step 6: Spitting of pressure and flux
We subtract (3.17d) from (3.18c) This yields

€p = pr

which is (3.24). Next, we subtract (3.17¢) from (3.18d). Then

Cy = ewr,

which is the same as (3.25).

We finish up the proof by using the Banach contraction argument to prove that the method is
a contradiction. By Banach fixed-point theorem, the method converges if

Brs= — %
FS = <1,
230+ 2)

and is a contraction since
ﬁps < 1.

Hence, the method also has a unique fixed point. [



Chapter 4
Numerical simulations

The aim of this thesis has been to develop a mathematical model to obtain optimal conver-
gence for solving coupled flow and mechanics equations at the level of microcirculation. We
will in this chapter numerically verify the theoretically results from Theorem 7. We recall

our system of equations:

—V-2uem)+A(V-w)l|+aVp = f, (4.1a)
a,(%+av-u>+v-w:w+f5r, (4.1b)
%—FVP —0. (4.1¢)

We assume (A1)-(A4), and consequently K is a positive scalar quantity and g is neglected.
To obtain optimal convergence for solving (4.1a)-(4.1c), we introduced a singularity removal-
based scheme in Section 3.2.3. It combines two techniques: one splitting technique [Gjerde
et al., 2019, 2018] and second the fixed-stress splitting scheme. We recall that the solutions
of p and w can be split into one low and one high regularity term denoted by the subscript s
and r, 1.e.

P = Dps+pr, (4.2a)

w=w;+Ww,, (4.2b)

respectively. We first reformulate (4.1b)-(4.1c) to solve for p, and w,. Then the fixed-stress
splitting scheme is applied in order to solve the system of equations in three step. First,
solving (4.1b)-(4.1c) to get p, and w,. Secondly, interpolating p, onto the discrete space
of the pressure to obtain the actual pressure. Lastly, (4.1a) is solved with the reconstructed

pressure to get u.
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Finally, we simulate flow and mechanics with a data set describing a vascular system
of a human brain. The data set consists of arteries and veins represented by line segments.
Moreover, the code is implemented with FEniCS [Alnas et al., 2015] and all plots are
obtained with ParaView [Ahrens et al., 2005].

4.1 Numerical examples in 2D

In this section, we set the parameters for the problem such that the solutions are independent
of the z-axis. We also let f € H?>(Q). Then we can reduce our problem to two dimensions.
Note that we assume (A1)-(A4). Furthermore, we perform convergence tests on the following

test problems:

Test cases in 2D:

4.1.1: Test case with smooth right-hand sides.

4.1.2: Test case with a point source.

4.1.3: Test case with a point source solved by the fixed-stress splitting scheme with singularity

removal.

In all applications in 2D, we consider the unit square mesh:
Q={(0,1)x (0,1) c R?}.

For the choice of f, we have in mind that the flow of blood from the heart has a pulsative
nature. Therefore, we want to test the convergence of the method with f(¢) as a pulsating

function. We set

f(t) =sin(z). (4.3)
u and A are respectively given by functions of the bulk modulus E and Poisson’s ratio v:
E
= — 4.4
K 2(1+v)’ “4)
Ev
A= (4.5)

(I+v)(1=2v)’
The Poisson’s ratio v is very close to 1/2 for nearly incompressible material [Ern and
Guermond, 1992], where we set v = 0.4999 for all cases. Furthermore, the tuning parameter,

which theoretically gives optimal convergence rates, was found by the proof of convergence
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in Section 3.3, i.e.
a?
Brs = —5———- (4.6)
2(3 1+ 1)
Before turning to our numerical examples, we recall the short-hand notation for the induced
norm:

lllp20) = lleel -
(@)

Table 4.1 Parameters for numerical examples in two dimensions.

Symbol:  Quantity: Value:
K Permeability scalar divided by vy 1.0 D/P
E Bulk modulus 1.0 Pa
M Biot modulus 1.0 Pa
o Biot-Willis coefficient 1.0

% Poisson’s ratio 0.4999
g Gravitational vector 0 m/s?
T Final time 1.0s

T Time step 0.1s

h Mesh size 1/8, 1/16, 1/32, 1/64
&, Absolute error tolerance le—6
& Relative error tolerance le—6

4.1.1 Test case with smooth right-hand sides

The analytic solutions in the first test case were taken as in [Both et al., 2017] and is
commonly used as a test case in literature. We let f = 0, which yields smooth right-hand
sides. Furthermore, (4.1a)-(4.1c) are solved by the fixed-stress splitting scheme, i.e. (3.12a)-
(3.12c). This test case was included as a reference case. The parameters considered are

summarized in Table 4.1. Moreover, the analytic solutions read
p=ix(1-x)y(1-y), w=-KVp, u=ux(1-x)y(1—y)[1,1]".

Table 4.2 shows the errors and the convergence rates for this test problem. It can be observed
that all solutions obtained optimal convergence rates. For simplicity, let the subscript a
denote the analytic solutions and the subscript 4 denote the numerical solutions. Moreover,

all plots of the solutions from this case are shown in Figure 4.1, where the plots of w;, and uy,
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are of the magnitude.

Table 4.2 Errors and convergence rates obtained when applying the fixed-stress splitting
scheme to a test problem with all smooth variables. For reference, optimal convergence rates
are listed in the bottom row.

h pa = pallr2 [IWa—wallr2 o —unlp2
1/8 44¢—03  18—02  2.1e—03
1/16 22¢—03  93e-03  S.4e—04
1/32 1.le—03  47e—03  1l.4e—04
1/64 55¢—04  23e—03  3.4e—05
Rate 1.0 1.0 2.0
Optimal 1.0 1.0 2.0

Pr Wy, Up,
0.0 0.02 0.04 0.062 0.0 0.08 0.17 0.25 0.0 0.03 0.06 0.088

|| | | m
(a) (b) (©)

Fig. 4.1 Numerical solutions obtained when applying the fixed-stress splitting scheme to
a test problem with smooth right-hand sides: Pressure (a), magnitude of the flux (b), and
magnitude of the displacement (c).
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4.1.2 Test case with a point source

We let f(¢) be given by (4.3) and Jr be a point source. Then we solve (4.1a)-(4.1¢c) with
the standard fixed-stress splitting scheme, i.e. (3.12a)-(3.12c). We recall that suboptimal
convergence rates were found to be local to I for a 3D problem with 1D line sources [Gjerde
et al., 2018; Koppl et al., 2016]. Optimal convergence was retrieved when removing a small
region surrounding the neighborhood of I". We test this for the Biot model. In other words,
we will solve (4.1a)-(4.1c) with the fixed-stress splitting scheme and ignore a small region R

when calculating the errors of w and u. R is given by (2.12) and illustrated in Figure 2.1.
We kept the displacement from the previous test case. The parameters are summarized

in Table 4.1. We also recall that p; = %, where G given by (1.15). We set p, = 0. Then the
analytic solutions read

pz—MLK(sin(t)ln(r)> w=—-KVp u=rtx(1—x)y(1—y)[1,1]7.

(@ (b)

Fig. 4.2 Tllustration of the mesh size / of a triangle element (a), and the position of the point
source with respect to the mesh (b). The uniform mesh is constructed by dividing the unit
square into 1/h x 1/h squares and dividing each square by the diagonal. The mesh size of
the unit square mesh is the length of the shortest side of the triangle.

The mesh size of a triangle element is illustrated in Figure 4.2(a). We set the point source

in the origin of the mesh, but as illustrated in Figure 4.2(b), the point source moved to the
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center of one of the surrounding elements.

The errors and the convergence rates obtained for this test case are shown in Table 4.3.
For simplicity, we let the subscript a indicates the analytical solutions and the subscript 4 the
numerical solutions. We can observe in Table 4.3 that the convergence rates for w increased
when ignoring the small region before calculating the errors and became close to optimal.

The convergence rates of p was decreasing with the mesh size.

Table 4.3 Errors and convergence rates obtained with the fixed-stress splitting scheme to a
test problem with a point source. Optimal convergence rates are listed in the bottom row.

h |Pa—Pall2 [Wa—wall2 HWR,a_WR,hHLz g —unl| 2 ||“R7a_“R-,hHL2
1/16 1.1e— 01 5.2¢—01 4.2¢ —01 2.5¢—04 2.9¢ — 04
1/32 5.6e—02 5.2¢—01 2.3e—01 6.1e — 05 7.3¢ —05
1/64 3.2¢—02 5.2¢ —01 1.2e —01 1.5¢—05 1.8 —05
Rate 0.9 0.0 0.9 2.0 2.0
Optimal 1.0 1.0 1.0 2.0 2.0

Plots of the numerical and analytic solutions are shown in Figure 4.3-4.4. The plots of
the pressure and the flux have qualitative differences. We cropped these plots to provide a
closeup look at this region. As stated earlier, there are difficulties in numerically resolving

the solutions in the neighborhood of I'. This is illustrated in the plots in Figure 4.3.

Figure 4.3(a)-(b) show plots of p, and p;, respectively. Even though the pressure obtained
optimal convergence, the plots of p, and p;, have qualitative differences. The differences in
these figures are the intensity and the size in the region surrounding I', where p, has both a
larger distributed region and intensity. The reason for these differences can be difficulties
resolving the singularity when interpolating the numerical solution of the pressure. Further-
more, Figure 4.3(c)-(d) show the plots of the magnitude of w, and wy,, respectively. The
shape of the flux in Figure 4.3(c) is expected to look similar the function 1/r, but before
plotting, the variable is interpolated onto elements in RTy. These elements are defined for
functions in H(div; Q). Though, the flux itself does not even belong to L?(Q). Recall that
the functions in H(div; Q) should themselves be in L?(Q) and their divergence should also
be in L?(Q). Thus, the singularity makes it difficult to interpolate the flux. This can be
illustrated in the plots of the analytic and numerical solutions of the flux in Figure 4.3(c)-(d),
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respectively.

Lastly, Figure 4.4 shows uncropped plots of both the analytical and the numerical solu-
tions, respectively. Figure 4.4(a)-(b) shows the plots of the pressure. Accordingly, Figure
4.4(c)-(e) shows plots of the magnitude of w,, w;, and u;, including vector fields.
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Da Pr

-0.11 0.23 0.58 0.92 -0.11 0.23 0.58 0.92
N m

(a) (b)

o
W,

0.0 14 28 A41. 0.0 14 28 41.
' m .

(c) (d)

—
Wy

Fig. 4.3 Upper line: Cropped plots of the pressure; analytic (a) and numerical (b). Lower line:
Cropped plots of the magnitude of the flux; analytic (c) and numerical (d). These plots were
obtained for a test problem solved by the fixed-stress splitting scheme with a point source.
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P Pn
-0.11 0.23 0.58 0.92 -0.11 0.23 0.58 0.92

-

Up,
0.0 0.03 0.06 0.088

(e)

Fig. 4.4 Upper line: Plots of the pressure; analytic (a) and numerical (b). Middle line: Plots of
the magnitude of the flux; analytic (c) and numerical (d). Lower line: Plot of the magnitude

of the displacement; numerical (e). All plots are numerical solutions obtained by fixed-stress
splitting scheme with a point source.
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4.1.3 Test case with a point source solved by the fixed-stress splitting

scheme with singularity removal

In last test case in 2D, we numerically verify the theoretically results from Theorem 7 for
d = 2. As in the test case in Section 4.1.2, we let dr be a point source. Then we solve
(4.1a)-(4.1c) by the fixed-stress splitting scheme with singularity removal. This scheme
was introduced in Section 3.2.3 and is given by (3.18a)-(3.18e). The motivation to use this
method is that the Dirac source term causes the solutions of p and w to be singular. This
leads to difficulties in resolving the solutions numerically. The previous test case illustrates
the lack of convergence in the L?(Q)-norm of the flux. This is illustrated in Table 4.3. We
also observed that the lack of convergence was highly related to the neighborhood of the
point source. Therefore, there is an interest in a singularity removal-based scheme.

The fixed-stress splitting scheme with singularity removal can be explained in a few sen-
tences. The scheme is based on splitting the solutions of the pressure and the flux into
one explicit, low regularity term, which captures the singularity, and one implicit, higher
regularity term. The unknown is the high regularity term, and the low regularity term is
given. The actual pressure and flux are obtained by (4.2a)-(4.2b), respectively. The flow
equations are reformulated in order to solve for the high regularity terms. The developed
scheme consists of three steps. First, it solves (4.1b)-(4.1c¢) to get p, and w,. Second, p, and
wy are interpolated onto the discrete space of the pressure and the flux to reconstruct the
actual pressure and flux. Third, solving (4.1a) with the reconstructed p to obtain u.

We recall from Section 2.2.1 that py = fTG Then we have p; = Sing)G, where G is given by

(1.15). The parameters used are summarized in Table 4.1. The analytic solutions then read:

_xyt

_ T
Pr="5rk

t
w,=—K Vp, u= ﬁ[cos(x), sin(y)]" .
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Table 4.4 Errors and convergence rates obtained with a point source. The results are obtained
by solving the system of equations by the fixed-stress splitting scheme with singularity
removal. Optimal convergence rates are listed in the bottom row.

h |Pra—prall ;2 ([Wra—wenll 2 e —unl 2
1/8 4.3e¢—03 8.1e—03 2.3e—04
1/16 2.1e—03 4.1e — 03 5.7¢ — 05
1/32 1.1 —03 2.0e —03 1.4e —05
1/64 5.4e — 04 1.0e —03 3.5¢—-06
Rate 1.0 1.0 2.0

Optimal 1.0 1.0 2.0

The error estimates and the convergence rates are shown in Table 4.4. We obtained optimal
convergence rates for all variables solved with this scheme. Furthermore, in Figure 4.5, we
can observe different impacts from the low and high regularity terms in the total solutions
of the pressure and flux. We only included the numerical solutions since the analytic and
numerical results were close to identical. Figure 4.5(a)-(c) shows the plots of p,;, p, , and
Ph, respectively. In addition, Figure 4.5(d)-(f) shows the plots of the magnitude of w,;, wy ,
and wy,, accordingly. Lastly, Figure 4.5(g) shows the plot of the magnitude of uy,.
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Prn

3 Pr

-0.16 -0.11 -0.05 0.0 0047 028 05 075 -0.11 0.16 0.44 0.71
- = .
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i,
0.086 0.13 0.17 0.21

(2)

Fig. 4.5 Upper line: Plots of the pressure; the low regularity term (a), the high regularity term
(b) and the reconstructed pressure (c). Middle line: Plots of the magnitude of the flux; the
low regularity term (d), the high regularity term (e) and the reconstructed flux (f). Lower
line: Plot of the magnitude of the displacement; the displacement (g). All plots are numerical
solutions obtained by fixed-stress splitting scheme with singularity removal with a point
source.
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4.2 Numerical simulations in 3D

This chapter concludes with numerical simulations in 3D. We will first numerically verify the
theoretical results from Theorem 7 for d = 3. We recall that Section 4.1.2 showed optimal
convergence rates for d = 2. Finally, we perform simulations of flow and mechanics for a
data set describing a vascular system of a human brain. That is, numerical simulation on a
data set with complex geometry. We solve (4.1a)-(4.1c) with the fixed-stress splitting scheme
with singularity removal, i.e. (3.18a)-(3.18e). Furthermore, we consider the unit cube mesh

for all applications in this section:
Q={(0,1)x (0,1) x (0,1) Cc R3}.

We let 1, A and Brg be given by (4.4)-(4.6), respectively. Note that we assume (A1)-(A4).
To summarize, we consider the following simulations in 3D:

Simulations in 3D:
4.2.1: Test case with a line source.

4.2.2: Simulation of flow and mechanics in a non-trivial data set.

Table 4.5 Parameters for simulations in three dimensions.

Symbol: Quantity: Value:

K Permeability scalar divided by vy 0.5 D/P

E Tuning parameter 1.0 Pa

M Biot modulus 1.0 Pa

Qa Biot coefficient 1.0

\% Poisson’s ratio 0.4899, 0.4999
g Gravitational vector 0 m/s?

T Final time 1.0s

T Time step 0.1s

h Mesh size 1/2,1/4,1/8, 1/16
&, Absolute error tolerance le—6

& Relative error tolerance le—6
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4.2.1 Test case with a line source

In this section, we numerically verify the theoretically results from Theorem 7 for d = 3. We
let Or be a line source. Then we solve (4.1a)-(4.1c) by the fixed-stress splitting scheme with
singularity removal. We let f(s;,1) € H 2r i), where s is the arc-length of the line segment j
and 7 the time. With the same intention as in Section 4.1, i.e. (4.3), we set f to be a pulsative
function:

f(sj,t) =sin(r)(1+s;). 4.7)

The analytic solutions of this test problem was set to:

1
pr=odf(s0)(ra=r)  wr=—KVp, u=nx(1-x)y(1-y)z(1-2)[L,1,1]".

We recall that r, = ||x —a|| and r;, = ||[x —b||, where a and b are the points between the
line segment. This is also illustrated in Figure 2.1. Furthermore, Figure 4.6 illustrates a
tetrahedron element, its mesh size and the position of the line source with respect to the
element. The position of the line source with respect to the mesh is same as for the point
source in Section 4.1. This is illustrated in Figure 4.2(b). The parameters for this test problem

are summarized in Table 4.5. We also recall the short-hand notation for the induced norm

lull 2y = llull -
(@)

<h\>

Fig. 4.6 Illustration of a tetrahedron element. The uniform cube is constructed by dividing
the unit cube into 1/h x 1/h x 1/h cubes and dividing each cube by the diagonal. The mesh
size for the unit cube mesh are the length of the shortest side of the tetrahedron. The red line
illustrates a line source going through the center of the tetrahedron.
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Table 4.6 Errors and convergence rates obtained with the fixed-stress splitting scheme
with singularity removal to a test problem with a line source. The results are obtained
with v = 0.4999, and CG elements for the displacements. Optimal convergence rates are
demonstrated in the bottom row.

h Hpr,a _Pr,hHLz er.,a - Wr,h”Lz Hua - uh”L2 Rates for u
1/2 1.5¢ - 02 2.8¢ —02 5.3e—03

1/4 8.0e — 03 1.3e—02 1.5¢—03 1.9
1/8 4.0e — 03 7.2e — 03 4.1e—04 1.8
1/16 2.0e — 03 3.5¢e—-03 2.3e — 04 0.8
Rate 1.0 1.0 1.2

Optimal 1.0 1.0 2.0

For simplicity, let the subscript 4 indicate the numerical solution and the subscript a indicate
analytical solution. We observe in Table 4.6 that u does not converge of order #2. Hence, we
tested with v = 0.4899 since further testing revealed that this parameter had a significant
impact of the errors of u. The errors of p and w were excluded due to obtaining the same
results for both variables. The reason for the lack of optimal convergence of u may be that
the singularity from p is hard to resolve when solving the mechanics equation in 3D.

Table 4.7 Errors and the convergence rates obtained with the fixed-stress splitting scheme
with singularity removal to a test problem with a line source. Results obtained with CG
elements and for v = 0.4899 [Zakerzadeh and Zunino, 2015]. The optimal convergence rate
is demonstrated in the bottom row.

h |lug —upl|;2 Rates
1/2 5.5¢ — 03

1/4 15¢—03 1.9
1/8 3.9¢—04 2.0
1/16 I1.1e—04 1.8
Rate 1.9

Optimal 2.0
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Even though, the results in Table 4.7 achieves almost & (hz) the convergence rates still
decrease between mesh size 1/8 and 1/16. This issue was resolved when choosing [P,
elements for approximating u. Here, we set v = 0.4999, and chose C(G, elements. These
elements have one additional node on each edge in comparison to CG| element. We recall
that Figure 3.1(a) illustrates the C(G element as a triangle. Furthermore, in Table 4.8 we can
observe the difference in convergence rate for CG; and CG; elements. CG; elements can

expect a order of convergence to be greater than &'(h?).

Table 4.8 Errors and convergence rate for the displacement obtained with the fixed-stress
splitting scheme with singularity removal to a test problem with a line source. Comparing
the results obtained with CG; and CG, elements for v = 0.4999.

h ||ua —uhHLz with CG;  ||u, —uhHLz with CG,
1/8 4.1e— 04 4.3e—04

1/16 2.3e —04 8.7e — 05

Rate 0.8 2.3

Figure 4.7(a)-(b) shows the plots of p,;, and pj, respectively. Further, Figure 4.7(c) shows
the plot of the magnitude of w,;,, and Figure 4.7(d) shows the plot of the magnitude of w,.
Lastly, Figure 4.7(e) shows the plot of the magnitude of u;,. The plots were obtained with
v = 0.4999 and the parameters listed in Table 4.5.
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0. 0.015 0.03
m

(e)

Fig. 4.7 Upper line: Plots of the pressure; the high regularity term (a) and the reconstructed
pressure (b). Middle line: Plots of the magnitude of the flux; the high regularity term (c)
and the reconstructed flux (d). Lower line: Plot of the magnitude of the displacement; the
displacement (e). All plots are numerical solutions obtained by fixed-stress splitting scheme
with singularity removal with a line source.
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4.2.2 Simulation of flow and mechanics in a non-trivial data set

Finally, we simulated flow and mechanics with a data set describing a vascular system of a
human brain. This kind of network is illustrated in Figure 4.8. Here, the red and blue vessels
illustrate arteries and veins, respectively. The capillaries are not visualized in this figure, but
Figure 1.4 illustrates its structure. The data segmentation and tree extraction were provided
by E. Hanson and E. Hodneland.

Fig. 4.8 Visualization of a vascular network of a human brain [Hodneland et al., 2019]. The
red vessels illustrate arteries and the blue vessels illustrate veins.

We let or be m line sources. Here, m ~ 3000, and the data set consists of I' = U;-”le“ j» where
I"is a collection of m line segments. These line segments represent a vascular system in a
human brain. Figure 4.9 shows the data set from the front (a), the side (b) and the top (c).
The red lines represent arteries and the blue veins.

(a) (b) (©)

Fig. 4.9 Illustration of the data set describing a vascular system of the human brain: Front
(a), side (b) and overview (c). Here, the arteries (red) and the veins (blue) and the data set
consists of ~ 3000 line segments. It was constructed from a MRI scan [Tardif et al., 2016].
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The results from these simulations were obtained with the unit cube mesh and the parameters
in Table 4.5. We set v = 0.4999. For the simulation with a non-trivial data, we consider
two intensity functions, one for the arteries and one for the veins. We set fi = f(r4j,t)
and f> = f(r,,t) to be functions of the radii and time for the jth artery and the jth vein,

respectively. The line segments are sorted by radii, so we may write:

f(ra,j;t> - Sl:;(j),
f(rj,t) = _Slrfl(jf).

The choice of intensity functions is motivated by the fact that blood flows from the arteries
through the capillaries and to the veins (before flowing back to the heart). Thus, it makes
sense that the arteries are represented as line sources and the veins as line sinks. The motiva-
tion for this is that both f(r, j,7) and f(r, j,t) are constants. It also makes sense that the flux
increases when the radii become smaller for both the veins and the arteries. In addition, the
blood interaction between both the arteries and capillaries, and the capillaries and the veins,
are with the smallest vessels of both the arteries and the veins. Hence, it makes sense to set
the intensities of the vessels with biggest radii to zero. Since our data set of the veins are the
biggest, we set half of the intensities of these line segments to zero. Figure 1.4 illustrates
the difference in radius of an artery, a capillary and a vein. Also, the complex structure of a

capillary is illustrated.

We look at a closed system, where all the source terms are set to zero. Further, we set
the boundary conditions to the flow equations as an arbitrary constant and the mesh was
made lager to comply with the boundary conditions. The unit cube mesh was then cropped
in ParaView to fit the data set for better visualization. Figure 4.10(a) shows a contour plot of
the pressure. Second, Figure 4.10(b) shows the magnitude of the flux. Lastly, Figure 4.10(c)
shows the deformation of the domain. Both the flux and the deformation have the direction
toward the center of the domain. From a physical point of view, it looks like the brain is
shrinking. This means that there is more mass flowing out of the veins than flows into the

arteries.
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Fig. 4.10 The plots are obtained with a data set describing a vascular system of a brain: Con-
tour plot of the pressure (a), magnitude of the flux (b), and the magnitude of the displacement
(c). The results are found using the fixed-stress splitting scheme with singularity removal.
The data set consists of line segments constructed from a MRI scan [Tardif et al., 2016]. The

plots are cropped in ParaView after the simulations to fit the data set.



Chapter 5
Conclusions

In this thesis, we have numerically and theoretically studied the convergence of the fixed-
stress splitting scheme for solving the quasi-static, linear Biot model with lower-dimensional
source terms. These source terms are modeled as 1D Dirac source terms and cause the
solution to be singular at the source point. Central to this work is the observation that a
fixed-stress splitting scheme solving the Biot model including such singular source terms
leads to a loss of convergence for the flux. In our work, by combining the fixed-stress
splitting scheme with singularity removal, we have retrieved the optimal convergence for all
variables in our numerical scheme. The scheme is based on splitting the flow solutions of the
pressure and the flux in one low, but explicitly-known, term and the other, high regularity,
implicitly, term. We then solve the system of equations by the fixed-stress splitting scheme.
The explicitly-known low regularity term is then interpolated onto the discrete pressure space
to obtain the actual pressure of the problem. It is then used in the mechanics equation to
solve the displacement. Thus, the scheme includes one additional step in comparison with
the standard schemes. Optimal convergence was proven both theoretically and numerically.
We illustrate the approach in several numerical examples including a data set describing
a vascular system of a human brain. Our solution scheme treats homogeneous media, but
extension to heterogeneous media is straightforward. Moreover, in terms of applications,
though we have considered the examples from the biomedical field, other areas such as

subsurface processes are equally relevant.

5.1 Future work

For future studies, would be interesting to have a benchmark made for this kind of problem
and further investigating results for real applications. In addition to realistic parameters,

having more realistic boundary conditions is also of interest. Also, it would be of interest to
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perform the simulations on different meshes than the unit square and cube mesh. In particular,
a mesh which is similar to the shape of a brain. There would also of interest to extend the
convergence tests in Section 4.2.1 to include smaller mesh sizes. Moreover, it can be proved
that the scheme has existence and uniqueness as for two academic examples. Also, the proof
of convergence can be extended to include heterogeneous porous media, even though this
is straightforward. Furthermore, it would be of interest to include a transport equation, for
example to describe chemical concentration. Even though this work is a step in the right
direction to simulate flow and mechanics in vascular tissue. The problem we should have
studied is coupled 1D-3D equations, where the 1D domain I is endowed with its own flow

equation to simulate flow in vascular tissue [D’ Angelo and Quarteroni, 2008].
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