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Abstract

As the number of solar power plants grows throughout the world, being able to
predict the power output becomes more essential than ever. Such predictions
could either be built on top of weather predictions, or they could rely on his-
torical data. In this thesis we use the latter approach. However, any data that
a source provides is certain to contain both errors and missing data, which will
affect the prediction of any forecast technique that is employed. The aim of this
thesis is to be able to forecast the power production of a solar plant one hour
into the future. In order to do this we need quality data, so we will also look
at the data quality of data sets, and see how we can aim to improve erroneous
data. We will use this improved data when forecasting, and compare the results
to our forecasting on the original data to see if the results improve.
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Chapter 1

Introduction

The goal of this thesis is to find accurate methods for forecasting power produc-
tion of solar plants. We have several data sets that we will examine. The data
sets will be preprocessed and evaluated for inaccuracies and missing values, and
different methods will be applied in order to predict future values of power. The
historical data will need to be relatively large to make accurate predictions, so
we will be needing enough data to split into training and testing parts.

First we need to look at why it is important to predict power production.
Renewable energy is gathering a strong foothold as power sources around the
world and demand will seemingly only increase over time. Any company that
wishes to produce renewable power has an interest in accurate predictions of
power production.

In a hypothetical future where we are heavily reliant on renewable energy
sources, we need tools to ensure that the power grid of any city, country or con-
tinent remains stable, even when the production from renewable energy fluctu-
ates. For this reason, we must use forecasting to predict output of solar power in
order to accurately balance the grid with alternative energy sources. Knowing
in advance the approximate power production from a solar plant gives us the
opportunity of increasing or decreasing production from other energy sources.
Some forms of power production have longer ”wind-up-times” than others (see
Table 1.1), so when implemented in real-time scenarios, we may have to adjust
the forecast time window if required.
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Nuclear Hard coal Lignite CCG PS
Start-up time na 5-7 2-8 2-4 < 0.1
’warm’(h)
Ramp rate 0 0.6-4 0.6-6 0.8-6 15-25
(%/min)
Minimal possible 100 40-60 40-60 40-50 5-6
load (%)

Table 1.1: Start up time, ramp rate and minimal possible load for different
energy sources. CCG=Combined cycle gas, PS=Pumped storage. Table taken
from [J. Antonanzas et al 2016].

Here start-up time is the time needed for the production to begin, ramp rate
is the highest possible relative increase in production (e.g. if it takes 5 minutes
for the machine to go from 0-100%, the ramp rate is 20%/min). Pumped storage
refers to a form of gravitational energy storage, used for load balancing, where
excess energy is used to pump water into a basin high above the ground, which
can be released whenever more power is needed on the grid. We see that some
of the sources have long start up times, and therefore need a larger forecast
window than others.

When considering prediction of power production from solar panels, there
are three main strategies that can be used for analysis and prediction.

� Statistical analysis of electricity production

� Physical representation of production

� Hybrid

Statistical analysis is evaluating historical data of a variable, and using this
as the sole basis of our prediction. Time series and machine learning algorithms
fall into this category. One of the perks of this method is the simplicity of it -
we only need at least one variable to predict, and it requires no understanding
of how solar power works. It is however limiting, and fails to consider weather,
which the power production of a solar plant is highly dependent on. Also, our
basis for new information is always past information, and for weather values
this will not always be sufficient. It also means that if our data is inadequate,
our results will be too.

The other method - physical based representation, is representing the new
values as a combination of physical values and weather phenomenon - looking
at irradiance, weather data (mainly cloud cover and temperature), time of day
and physical placement of solar panel. This would be an improvement of our
previous method as the data is represented based on weather values which are
more likely to be correct when modelled from physical observations and not
as a pattern of historical information. This however means we will have to
construct our own models and equations for the values and we always run the
risk of not knowing how reliable our data is. If we do run into extreme weather
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conditions we will however be able to predict power production reflecting this
(unlike patterns in historical data which will not help capture extreme weather
conditions in their predictions.)

A third option is a hybrid of these two methods, a combination of historical
data and weather values. These theses will only focus on historical data and not
look at any pure physical representations of the production or hybrid methods.

Of the different methods that are used for prediction, the hybrid option is
usually the most accurate, while statistical is a close second. [1]

For accurate predictions, a large amount of good quality data is necessary.
This project can be split into two parts - quality check and improvement of data,
and forecasting using different methods. This thesis will look into the data,
evaluate missing/incorrect measurements and aim to correct for inadequacies,
and then use machine learning methods to forecast using both the preprocessed
data, and the original data, and compare the results. The second thesis in this
project will use some of the preprocessed data to forecast values - first with the
help of time series analysis and then machine learning methods.
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Chapter 2

Data sets

2.1 Bari, Italy

The Bari data set is a subset of a larger data set referred to as ”PVItaly”, which
originally consists of data from 18 plants in Italy. The original dataset features
many different plants on different altidues and with different azimuths (angle
with respect to the ground), but the specific sets we use consists of hourly data
from three solar power plants in Bari, Italy. The plants are in relatively close
proximity to each other. We chose to use these data sets because they featured
more variables than any of the other free data sets we were considering. More
details on the larger data set can be found in [Ceci et al].

The data we work with was recorded between January 1st and December
31st 2012. It consists of hourly measurements from 02:00 to 20:00 each day.
These 19 measurements each day for 366 days (2012 was a leap year) give us
6954 data points for each measured variable. The variables in the data are:

Irradiance The irradiation from the sun, measured at the location of the plant.
Unit for solar irradiance is watt per square meter (W/m2).

Power The output of the power plant, measured in kilowatts (kW ).

Weather temperature Air temperature at the location of the power plant.
Measured in Celcuis (°C).

Plant temperature Temperature of the solar panels. Measured in Celcius
(°C).

Cloud cover Dimensionless continuous variable between 0 and 1, where 0 rep-
resents clear sky, and 1 total cloud cover.

(Relative) Humidity is the ratio of the partial pressure of water vapor to
the equilibrium vapor pressure of water at a given temperature. Usually
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represented in percentage from 0% to 100%, here it is given as a continuous
variable between 0 and 1

Time of day Time of day of each measurement. Integer ranging from 2 to 20
each day.

Dew point The dew point is the temperature to which air must be cooled to
become saturated with water vapour. Measured in Celcius (°C).

Day ID ID of the day, 1 corresponds to January 1st, 366 to December 31st etc.

Pressure Air pressure, measured in Pascal or Newton per square meter (Pa =
N/m2)

Wind bearing Direction of wind. Measured in degrees from 0 to 360.

Wind speed Wind speed, measured in meters per second (m/s).

12



Chapter 3

Data quality

Real-world data often come with problems. Whether it is malfunctioning equip-
ment or human error, there will be missing values and other errors in any non-
generated data. There are some key differences between these two types of
errors that we need to take in account.

Missing data occur in all real-world data sets, as neither humans nor ma-
chines are perfect. Missing values of a variable are usually denoted by some
value that is impossible for the variable to attain, e.g. negative irradiance or
power, any temperature reaching -300 °C or simply ”not a number”[NaN]. Al-
ternatively, a good method is to impute a value that is extremely unrealistic,
e.g. -50 °C in Bari, Italy. For this reason, imputed missing values are often easy
to spot, as long as they are consistently noted throughout the set.

This is where problems occur in the Bari data set as the missing data seems
to be mostly replaced by 0, which is a problem in itself since many of the vari-
ables, such as irradiance, will realistically be 0 at many hours through the day.
In addition to this, it does not seem like the choice of representing missing data
as 0 is done consistently throughout the set, as we will see in Sections 3.3 and 3.4.

Imprecise/erroneous data often occur in data sets as well. This is usu-
ally a result of malfunctioning equipment or imprecise measurements. This also
includes non-zero measurements where the true value is zero, which we need to
take into account when identifying missing values later in this chapter. These
errors are much more difficult to identify in a data set than missing values, as
they may appear within the expected range of data.

In our sets it is hard to quantify exactly what constitutes missing and er-
roneous data in all cases, because data that appears erroneous may simply be
imputed missing data. We may mislabel errors as missing data and vice versa,
but all points are treated the same in our imputation algorithms in Chapter 4.

Errors and missing data may only be a problem if the frequency exceeds
a point where it will affect the accuracy and reliability of a model. A small
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number of errors in a data set may simply be discounted as noise.
In this chapter we will look at the quality of the five variables in our data set

that we consider most influential in the power production - irradiance, weather
temperature, plant temperature, cloud cover and humidity. We will also look
at our target variable, power, which is what we aim to forecast. We will argue
for a reliable criteria for classifying a point as missing data or as an error, and
look at the frequency and distributions of these errors in the sets.

True and false positives and negatives

In this paper, we characterize non-erroneous points as ”positives”, and erroneous
points (missing values, imprecise or in any way erroneous data) as ”negatives”.
”True” and ”False” refer to the labelling of these points. If we falsely label a
non-erroneous point as an error, it is a false negative, and vice versa.

Non-erroneous value Erroneous value
Not labeled as error True Positive False Positive

Labeled as error False Negative True Negative

Table 3.1: True and false positives and negatives

14



3.1 Irradiance

When we talk about solar panels, what is usually meant is photovoltaic [PV]
solar panels. These panels convert energy from the sun (irradiance) into a flow
of electrons, through what is known as the photovoltaic effect. Therefore we
know that if we have 0 irradiance, it is physically impossible to generate power
from the photovoltaic effect. This means that in any point where we have power
but no irradiance, or vice versa, one of the two variables must be wrong. We
need to figure out which of the two variables are incorrect.

The goal is to not label points where we have no irradiance, and very low
(but non-zero) power, as errors in irradiance. This is because the early morning
will have close to no irradiance, and the corresponding power may be very low,
but may still be within the margin of error for the instrument measuring power.

A reasonable assumption is that the instrument measuring power has a cer-
tain accuracy, say α, which means that with x% certainty, a measurement, P ,
will represent an exact value that lies in the interval [P −α, P +α]. This means
that if our measurement P > α we can with x% certainty say that the exact
value for P is greater than zero, in which case the irradiance should also be
greater than zero. Our problem is that we do not know the value of α, and we
will therefore try different values, which we call our threshold.

The possible problems that we may face is a high number of false negatives
and false positives in our classification. If a point were to be identified as a false
positive, it will remain the same value as it was originally, and will therefore
not decrease the ”accuracy” of the data set. On the other hand, a false negative
may distort the data by removing non-erroneous data and replace it by a value
that may only be less accurate.

We now want to specify what a reasonable threshold for power should be.
To get an overview of the impact of the threshold value, we will first implement
three thresholds, TH= {20, 50, 100}, interpret the result, and see if there are any
possible problems that may occur with any of the thresholds we have chosen.
See Table 3.2 and Figure 3.1.

TH=20 TH=50 TH=100
Set 1 264 (3.8%) 202 (2.9 %) 150 (2.16%)
Set 2 872 (12.54%) 730 (10.5%) 629 (9.05%)
Set 3 30 (0.43%) 28 (0.4%) 24 (0.35%)

Table 3.2: Number of erroneous values in irradiance
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Figure 3.1: Irradiance and power from 05:00 to 19:00 Feb 22nd - set 1, together
with the three thresholds. A day with relatively low power production overall,
which illustrates the threshold issue well.

From Figure 3.1 it seems clear that most of the points in question (irradiance
is zero, power is non-zero), will be correctly labelled as errors in the peak hours
of the day as long as the threshold is not too large. The data in Figure 3.1
does illustrate a common day with relatively low power production, the days
we are most likely to label false negatives. We can see that choosing threshold
larger than 20 will omit several points in which the power production is growing
substantially, and it therefore seems reasonable to set the threshold TH=20.

Another important factor is the distribution of errors. We can see from
Figure 3.2 that in set 1 and 2, we have a large number of zeros clustered in the
late winter/early spring part of the year, while set 3 has a few erroneous points
scattered throughout the set.
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Figure 3.2: Irradiance throughout the year, all sets.
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3.2 Power

As we mentioned in the beginning of Section 3.1, power mostly depends on
irradiance, as it is physically impossible for us to have power when we have
no irradiance. We therefore utilize the error criteria from the previous section,
by labelling any data point where we have no power while irradiance exceeds
a certain threshold, as an error. We implement the same TH-values as in the
previous section, of which results can be seen in Table 3.3.

TH=20 TH=50 TH=100
Set 1 7 (0.1%) 7 (0.1 %) 7 (0.1%)
Set 2 16 (0.23%) 13 (0.19%) 12 (0.17%)
Set 3 26 (0.37%) 16 (0.23%) 8 (0.12%)

Table 3.3: Number of erroneous values in power

Just as we argued in the previous section with regards to irradiance, the
possible mislabelling (particularly false negatives) will most likely occur in the
early mornings and late evenings, when the irradiance is low, but non-zero, and
the power is equal to zero. However, as we can see from Table 3.3, even at the
smallest TH we still have less than 0.5% errors in all sets. These points are
distributed relatively evenly throughout the sets, and are not clustered at any
time.

The low frequency of errors leads us to conclude our best choice of action
here is to not modify anything, and let the few erroneous points remain in the
set.

18



3.3 Weather Temperature

There seems to be inconsistency in how missing data is registered in the weather
temperature data, as missing data is incoded by a value of either 0, -1 or -2
degrees. In this case it does not seem like true measurements should fall within
the range {−2,−1, 0}, with the exception of February in set 3. This can be seen
from the sets themselves in Figure 3.4.

This makes it less likely to mislabel imputed missing data point, since no
true measurement should be 0 °C or colder, and so we choose to label any value
for which the weather temperature wT ≤ 0 as an error.

There are three key observations we can make by inspecting the data. The
first of which appears when we count the number of values wT k ≤ 0.

Set # of wT ≤ 0 % of total # of values
1 2928 42.11%
2 2928 42.11%
3 2928 42.11%

Table 3.4: Number of values in weather temperature less than or equal to zero

From Table 3.4, we notice all sets have the exact same number of missing
values. The reason for this is not known, but it may be the result of a computer
or coding error. It should be noted that the indices k of the missing data are
not equal across the sets, but the sets share exactly 760 erroneous indices (i.e.
data points k where wT k ≤ 0 in all sets). To investigate this further, we look
at the correlation coefficients of the sets, displayed in Table 3.5. These results
signify a strong statistical relationship in the weather temperature between the
sets. They may be data from the same source that is adjusted slightly between
sets based on the location of the plants, or there may be another reason for this
strong relationship that we do not know.

Set 1 Set 2 Set 3
Set 1 1 0.9495 0.9392
Set 2 1 0.9288
Set 3 1

Table 3.5: Correlation coefficients of weather temperature between sets
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The second observation is specific for set 1, as it seems that the distribution
of missing values has a distinct pattern in this particular set. It seems that they
mostly appear in the early morning throughout the year, from 02:00 to 09:00,
which can be seen in Figure 3.3. No such pattern appears in other sets. It is
hard to tell why this specific phenomena occurs, but it may be the result of
equipment shutting down during the night and remain off until people return
in the morning.

Figure 3.3: Weather temperature for all days in set 1. In this case, the majority
of the erroneous points occur between 02:00 and 09:00
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The third observation is on the general distribution of missing values through-
out the set. As we can see from Figure 3.4, the erroneous values are relatively
evenly spread out through the year.

Figure 3.4: Weather temperature through the year for all sets. We can see that
the erroneous values are spread our through the year in all sets.
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3.4 Plant Temperature

In the plant temperature, it seems that most of our problems come from missing
data points which have been imputed as 0, -1 or -2 degrees, just as in weather
temperature. However, identifying these missing values is not as simple as in
weather temperature in certain parts of the year. This is because it seems from
the data, to be realistic for the plant temperature to approach zero or negative
values in the winter months. This makes it more likely for us to obtain false
negatives.

Set # of pT ≤ 0 % of total # of values
1 627 9.02%
2 1804 25.94%
3 194 2.79%

Table 3.6: Number of values in plant temperature less than or equal to zero

As we see from Table 3.6, there is a large difference in the number of data
that we assume to be imputed missing data. This difference can also be seen in
Figure 3.5. From the plots, we can see a clusters of errors in sets 1 and 2, while
set 3 only has a few which are relatively evenly distributed throughout the year.

Figure 3.5: Plant temperature through the year for all sets. Errors appear
clustered for set 1 and 2.
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Even though several non-erroneous data points are ≤ 0, we would argue
that labelling all points that are less than or equal to zero as errors may be an
adequate solution. Firstly, since the number of possible mislabelled points is
so low (set 1 and 2 clearly has a large number of missing values, whilst set 3
has less than 3% values less than or equal to zero). Secondly, the times where
it seems realistic for the plant temperature to be zero or negative, all the sets
behave similarly. This property may help us not distorting the data, as we will
see in Chapter 4.
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3.5 Cloud Cover

Cloud cover is not as straightforward to measure compared to other variables
like weather temperature, power etc. What we can define is that we need a
maximum (complete) cloud cover and minimum (clear sky). This is expressed
as a continuous variable that ranges between 0, minimum, and 1, maximum.

In the Bari data set, we have some trouble assessing the criteria set for
measuring cloud cover. What constitutes a ”complete cloud cover” or a ”mid-
range” (as in corresponds to the value 0.5 or near it) cloud cover we do not know.

When we process our data, one particular feature sticks out. There seems to
be an over-representation of the value 0.310, displayed in Table 3.7. We are not
sure about the reason for this, but it may be related to the mean of the values
in the data set, which can be seen in the fourth column. This may be the value
they use to replace missing values in the set, or it may be a result of some other
action upon the data.

Set # of cc=0.310 % of total # of values Mean value ∀ cc 6=0.310
1 2716 39.06% 0.3060
2 2919 41.98% 0.3038
3 2655 38.18% 0.3083

Table 3.7: Frequency of the value 0.310 in cloud cover and mean of all other
values.

As stated earlier, our knowledge of cloud cover is limited, but what we do
know is that the cloud cover is related to the relative humidity. We can look
at the correlation when we include or exclude the 0.310 values, and see if the
correlation grows substantially when the suspected errors are excluded. As we
can see from Table 3.8, the correlation between variables grows when we exclude
the dubious values in question.

Set Corr. including 0.310-values Corr. excluding 0.310-values
1 0.3677 0.4499
2 0.3502 0.4331
3 0.3762 0.4574

Table 3.8: Correlation coefficients of cloud cover and humidity

Now that we know that the value 0.310 distorts the data somewhat by reduc-
ing the correlation with the relative humidity, it seems that some of these values
may be missing values imputed by a value approximately equal to the mean of
the set. Some of the values are most likely correct data, but it is hard to tell
the difference. Thus, we must choose to either assume they are all erroneous or
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that they are all correct. We conclude that most of them are imputed missing
values, and that we therefore classify them all as erroneous.

3.6 Relative Humidity

As stated in Chapter 2, relative humidity is the ratio of partial pressure of
water vapor to the equilibrium vapor pressure of water at a given temperature.
Relative humidity depends on temperature and the pressure of the system of
interest. The reason we look at relative humidity is because of its inherent
relationship with cloud cover.

While cloud cover is hard to measure, as discussed in the previous section,
relative humidity is measured simply by using a hygrometer, which make the
measurements more reliable than cloud cover. The amount of power a solar
panel produces is highly impacted by the cloud cover, which is again dependent
on the relative humidity. A relative humidity of 100% indicates a complete
cloud cover and rain.

However, our lack of general knowledge of the physical processes behind
relative humidity makes it very hard to identify errors in the humidity data,
although this does not indicate that there are none. We do not know what a
realistic rate of change in humidity is, which could have been an error indication.
In addition to this, the data itself does not seem riddled with errors like many
of the other variables in our data, in that there are no clusters (”holes”), i.e.
a span of time where we have constant humidity, or other visual indicators of
errors.

Therefore, we will neither classify any errors, nor aim to improve these data
in any way, since we might only distort the data.
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Chapter 4

Data imputation

Chapter 3 described the errors and missing values, and so we now seek to im-
prove the data in any way we can. We will use the information gathered in
Chapter 3, and attempt to formulate methods for replacing missing or erro-
neous data. Our goal is to improve the quality of the data so that when we
attempt to forecast, the preprocessing of data improves our results, compared
to results based on the original data.

We will not be looking at cloud cover or humidity in this chapter. For cloud
cover we have labelled what we assume are imputed missing values, but we do
not have the knowledge needed to replace any of these missing values with more
valid measurements. For humidity we failed to provide any meaningful criteria
for identifying missing or erroneous data. We will also not look to impute any
power data, since the number of errors were so low for this variable, as discussed
in Section 3.2, but the variable will be utilized in Section 4.2.

Irradiance, weather temperature and plant temperature had different types
of errors. The plant temperature data from set 1 and 2 had large ”gaps”, several
weeks of errors in a row, and relatively few errors scattered throughout in all sets.
The errors in irradiance were similar to plant temperature, while the weather
temperature had errors distributed evenly throughout the year for all sets, with
errors distributed evenly through all days for set 2 and 3, but clustered in the
morning for all days in set 1.

Thus, we have two types of error distributions for these three variables, clus-
tered and scattered. We also know that the values of these three variables rely
on different factors. We therefore take three different approaches in order to
improve the data.

In Section 4.2 we will look at the imputation of irradiance, and how we
can replace erroneous values in one variable by converting the value of another
related variable. In Section 4.3 we will look at the weather temperature and
construct a day-and-year periodic regression problem, from which we can replace
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missing values. Finally, in Section 4.4 we will look at the plant temperature of
all three sets and construct a replacement algorithm in which we may replace
missing values by extracting values from different sets.
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4.1 Preliminaries

Before describing the algorithms utilized for the different variables, we will define
some terms that will be used, and establish the notation used in the different
sections.

4.1.1 Standard deviation

Standard deviation, often represented as σ, is a measure that is used to quantify
the amount of variation in a set of values. If the standard deviation is small,
it indicates that values in the data set are generally close to the mean of the
set, while a large standard deviation indicates that values are spread out over a
wider range, further from the mean.

4.1.2 Regression and interpolation

Regression is trying to find a function y(x) that fits data sampled from that
function with errors. Interpolation is when we estimate intermediate values
for a function, usually used when data is accurate but intermediate values are
missing. A solution to a general regression problem can be expressed as,

y(x) =
∑k
j=0 ajφj(x),

where {φj(x)}kj=0 forms a linearly independent basis.

Here φj(x) are the functions that acts upon x, and aj are the scalar co-
efficients that we wish to estimate, which correspond to the j = {1, 2, ..., k}
functions φj . The choice of φ is dependent on the problem we wish to solve.
We get the optimal values of aj by minimizing the residual r,

r = arg min
aj

n∑
i=0

ŷ(xi)−
k∑
j=0

ajφj(xi)

2

(4.1)

Where ŷ(xi) are the true measurements and n is the number of data points.

4.1.3 Multiple imputation

The purpose of multiple imputation is to generate possible values for missing
values, thus creating several ”complete” sets of data. The number of imputations
is decided by the user, and the combined results of these imputations are usually
more accurate than single imputation methods. If we do i imputations for all
values we seek to impute, we get i complete data sets.
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Random number

When we do multiple imputations of a variable, we will use a random number
ξ to sample from the range of expected values. This random number is taken
from a normal distribution with mean 0 and a standard deviation σ = 1. We
will then multiply this random number by the standard deviation of the value
that we seek to impute. For each value we impute, we generate a new random
number ξ.

4.1.4 Notation

Sets:

K = {1, 2, ..., 6954} Indices of all data

S = {1, 2, 3} Indices of sets (plant 1,2 and 3)

K̂irr ⊆ K Indices of non-erroneous irradiance data

K̂pw ⊆ K Indices of non-erroneous power data

K̂IP = K̂irr ∩ K̂pw Indices in which neither irradiance nor power are erroneous

K̂wT ⊆ K Indices of non-erroneous weather temperature data

K̂pT ⊆ K k-indices of non-erroneous plant temperature data

ŜpT ⊆ K s-indices of non-erroneous plant temperature data

K̂wT,pT ⊆ K Indices in which neither weather- nor plant temperature are erroneous

Data:

Ik = Irradiance data, k ∈ K
P k = Power data, k ∈ K
tk = Time of day, k ∈ K

wTk = Weather temperature, k ∈ K
pT k,s = Plant temperature k ∈ K, s ∈ S

Variables:

ekirr =

{
1, if k /∈ K̂irr,

0, if k ∈ K̂irr

Binary error vector for irradiance, where 1 corresponds to data point k being
erroneous.
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ekpw =

{
1, if k /∈ K̂pw,

0, if k ∈ K̂pw

Binary error vector for power, where 1 corresponds to data point k being erro-
neous.

ekwT =

{
1, for k /∈ K̂wt,

0, otherwise

Binary error vector for weather temperature, where 1 corresponds to data point
k being erroneous.

ek,spT =

{
1, for (k, s) /∈ (K̂pT , ŜpT )

0, otherwise

Binary error vector for plant temperature, where 1 corresponds to data point
(k, s) being erroneous.

Rk,s =


1, pT k,s has been replaced

−1, pT k,s cannot be replaced by data from any set

0, otherwise

k ∈ K, s ∈ S

Replacement matrix for plant temperature
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4.2 Irradiation and Power - Converting values
of one variable to another variable

In this Section we will describe the replacement algorithm for irradiance, but
first we need to investigate the relation between irradiance and power for a solar
panel.

4.2.1 The relation between irradiation and power

The power of a solar panel is mostly relying on irradiance from the sun. Other
factors such as cloud cover can limit the amount of power we get by reducing
the irradiance, whilst the temperature of the panels themselves may reduce the
power output without affecting the irradiance. From [6.2.1 in Duffie & Beckman
2013] we have an equation that describes the energy output P of a collector of
area A, where U is the heat transfer coefficient.

P = A [I − U(pT − wT )] (4.2)

We wish to simplify this equation, because the three variables in the equation
that are needed in order to estimate the power production are not reliable in all
sets. Weather temperature has the same number of erroneous points through
all sets and is therefore equally unreliable throughout, see Table 3.4, while the
number of errors in irradiance and plant temperature vary between sets, where
set 3 has the least amount of errors and set 2 has the most for both variables.

When we have unreliable irradiance and temperature measurements at times,
any estimation that relies upon these values are highly questionable. We will
therefore exclude any index k /∈ K̂wt,pT when looking at the relation between the

two variable, plant and weather temperature, and exclude any index k /∈ K̂irr

when we look at the magnitude of the irradiance.
We would first like to get an impression of the magnitude of (pT −wT ), and

so we estimate the arithmetic mean and standard deviation of the difference
between the two variables, which can be seen in Table 4.1.

Set Mean value µ Standard deviation σ
1 1.4 5.3
2 2.6 5.9
3 -1.1 4.4

Table 4.1: The mean of the difference between plant temperature and weather
temperature

From the results in Table 4.1 we see that the difference between the two
variables wT and pT are relatively close to ±1 for set 1 and 3, the sets with the
least number of errors, and therefore arguably the best estimates. The standard
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deviation is around 5 for all sets, which is not very large, but also relatively far
from zero. This means that most values of (pT − wT ) should fall within ±10.

We will now look at the difference between U and Ik. If we can show that
Ik >> U , we may conclude that Ik >> U(pT k−wT k), and simplify accordingly.

The heat transfer coefficient U is not known to us from the data set, but in
several examples in [Duffie & Beckman (e.g. 6.4.1 and 6.4.3)], they describe a
collector with a heat transfer coefficient of approximately 7W/M2

°C. In other
similar examples, irradiance is many times larger than U , but we want to com-
pare it to the irradiance data from the set.

The values of Ik ranges from 0 to almost 1000 throughout the year. We
do have a high frequency of 0-values throughout the set which are both errors
and true measurements when the sun is not shining. The mean value of these
non-zero elements in Ik is > 300 for all sets. If we compare this mean of
irradiance µirr with U we get µirr/U = 300/7 ≈ 43. We know that most values
of (pT − wT ) should fall within ±10, and so we multiply the largets value, 10,
by U , which gives us µirr/U ∗10 = 300/70 ≈ 4.3. To test this in more detail, we
computed I, U on some reasonable parameters, which indicated that I generally
is 10 to 100 times larger than U .

Based on these arguments, we choose to simplify (4.2) to (4.3).

P = I ∗A, (4.3)

The area of the panels, A is unknown to us, but we know that it should be
constant since the area of the panels does not change throughout the year. We
estimate the value of A for each set through linear regression, which also gives
us the standard deviation σ.

While doing this we of course need to take account of the errors that occur
when converting values from one variable to the other. We have substantially
simplified (4.2), which means that we have introduced model errors εk. However,
we argue that these model errors will not be very crucial when our result would,
in any case, be highly impacted by data errors. When we account for the errors
in (4.3), we have

P k = A ∗ Ik + ε, ∀k ∈ K,
|εk| < ε, ε ∈ <

We will refer to this value of A as our conversion factor.
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4.2.2 Replacement algorithm

We will now illustrate the replacement algorithm in pseudocode. We do ten
imputations for each value in irradiance, and thereby attain 3 ∗ 10 data sets
with different irradiance data.

Algorithm 1 Irradiance replacement algorithm

This is done one set at a time.

Input: A, P k, Ik,ekirr, σ
Number of imputations: 10
Output: Iki
k = {1, 2, ..., 6954}, i = {1, 2, ..., 10}

ξ is a random number from a normal distribution with mean 0 and standard
deviation 1.
σ is the standard deviation from our linear regression to estimate A.

for k = 1, 2, ..., 6954 do

for i = 1, 2, ..., 10 do
Generate ξ;
Iki = (1− ekirr)Ik + ekirr

1
A (P k + ξσ) ;

end for
end for

NOTE: We can not impute irradiance from power if the power is also erro-
neous at that point. However, from our definition of error, it is impossible for
both power and irradiance to be erroneous in the same data point k
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4.3 Weather Temperature - Regression and in-
terpolation within a data set

If we were dealing with relatively isolated missing data points in the weather
temperature, we could simply replace these points with values acquired from
simple interpolation using the respective points neighbours. As the frequency
of missing data is so high, we need a more thorough algorithm where we approx-
imate the missing values by constructing a mathematical model that attempts
to simulate the weather temperature.

As described in Chapter 2, we have 19 data points each day for 366 days,
where the first measurement each day is at 02:00, and the last is at 20:00. Since
we are constructing a model of the weather temperature, a periodic process,
we need to construct our model on 24 hours a day. We then aim to solve the
regression problem such that our model best fit the data we have. Our function
y(t) need to inhabit two different cycles, one daily temperature cycle and one
yearly temperature cycle.

y(t) = a0 + a1 sin(
2π(t+ d1)

24
) + a2 sin(

2π(t+ d2)

24 ∗ 366
) (4.4)

Where

t is the time in hours from 01:00 January 1st to 24:00 December 31st, t ∈
{1, 2, ..., 24 ∗ 366}.

a0 defines the yearly average temperature, i.e. the value of y(t) when both sine
terms are equal to zero.

a1 is the daily amplitude, defined as the difference between the daily maximum
and minimum temperatures.

a2 defines the minima and maxima through the year, yearly temperature vari-
ance.

d1, d2 are the phase factors, which put the maximum and minimum at the right
time of the day/year.

Approximations for these parameters could be found by solving a non-linear
least squares, and in order to get the correct covariance estimates (a mea-
surement of joint variability between variables), we should estimate all values
simultaneously. However, due to a lack of time, we have chosen a more ad
hoc approach, using the fact that the 5 parameters do represent specific phys-
ical phenomenon. All unknown parameters are physical features we have some
knowledge about, which means that we can ”manually” estimate it using our
data.
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We begin by estimating the yearly average temperature a0, which we do by
using wT from the data. We calculate the mean value of the weather tempera-
ture wT , excluding all erroneous points, and get the results displayed in Table
4.2.

Maximum Minimum Mean value Standard Deviation
Set 1 36 3 18.6 8.1
Set 2 36 5 18.7 8.1
Set 3 36 1 18.6 8.3

Table 4.2: Mean, maximum, minimum and standard deviation of weather tem-
perature, all sets

From the mean values in Table 4.2 we get a good estimation for a0. The
mean values of the different sets are so similar we can use one value for all sets.

a0 = 18.6 (4.5)

We will now attempt to approximate the value of a2, the yearly variance,
and d2, the parameter that adjusts what our model will set as the time of year
when it is coldest and warmest. To do this, we first need to identify the coldest
and the warmest parts of the year. This seems approximately equal for all sets.
The coldest period is from mid January through February, while the warmest
part of the year seems to be mid July into August. The sets have almost the
same average temperature in these periods, approximately 7 °C in Jan/Feb and
29 °C in July/Aug, which can be seen in Table 4.3.

These results give us the variance through the year a2. We look at the
values from each set. We want the difference between the largest values in our
a2 sin(...) term to be (µjuly/aug−µjan/feb)/2, s = 1, 2, 3. These values are again
so similar, we choose only one for all sets.

a2 =


10.5, for set 1

10.7, for set 2

10.9, for set 3

≈ 10.7 (4.6)

We can also estimate the value of d2 since we now know that the coldest day
of the year should be in early February. A reasonable assumption is February
1st, which would make the warmest day for our function August 3rd, which also
seems reasonable. Since our model is based on t (which represents hours from
Jan 1st 01:00 to December 31st 24:00), we must find the t-value corresponding
to the day exactly in the middle of these two days, which corresponds to May
1st. We choose the time of day to be 12:00, arbitrarily, since this exact choice
of hours does not have a large impact on the function as a whole. This gives us
the value for t = 24 ∗ (31 + 29 + 31 + 30) + 12 = 2916 such that
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10.7 sin(
2π(2916 + d2)

24 ∗ 366
) = 0 → 2916 + d2 = 0

→ d2 = −2916 (4.7)

Now all that remain are the parameters corresponding to daily variations,
a1 and d1. To estimate these parameters, we need to look at the temperature in
smaller time frames than what we have done do far, and also see if this variance
changes throughout the year. d1 does not require as much calculations as a1,
so therefore we will begin by estimating d1.

We want to adjust d1 so that the peak values of a1 sin( 2π(t+d1)
24 ) correspond

with the warmest and coldest parts of the day. Therefore, we need to consider
when the warmest and coldest parts of the day are. From the data, it seems
like daily temperature peaks sometime between 12:00 and 18:00 each day. The
actual peak may vary from day to day, but 15:00 seems like a fair estimate.

We cross check this with our data by extracting temperatures at time 15:00
through the year and comparing it to the temperature at all other times. The
temperatures are fairly similar to those at time 14:00 and 16:00, but generally
higher than all others. We therefore choose to set 15:00 as the peak hour of the
day for temperature. This means that our daily sine-function has its roots at
09:00 and 21:00, and its minimal value will be at 03:00. We can now use this to
estimate d1.

a1 sin(
2π(9 + d1)

24
) = 0 → 9 + d1 = 0

→ d1 = −9 (4.8)

We estimate the mean temperature values each month, and look at the
corresponding standard deviation. We plotted the mean temperature values
and the values within one standard deviation for set 2 in Figure 4.3 to illustrate
how this changes throughout a year. We use these values to estimate a daily
variation in temperature. Since the standard deviation changes each month, we
redefine a1 → aM1 , (where M corresponds to each month) M = {1, 2, ..., 12}. We
will use aM1 to sample for our multiple imputations by utilizing the random value
ξ acting upon aM1 , where ξ is normally distributed with mean 0, as described in
Section 4.1.3.

aM1 = ξσM (4.9)
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Figure 4.1: Monthly mean temperatures (blue line) and corresponding standard
deviation (black dotted lines) for set 2

Set 1: Set 2: Set 3:
Mean σM Mean σM Mean σM

February 7.4 1.3 6.9 1.2 6.6 2.9
July 29.2 2.5 29.3 2.3 29.6 2.8

Table 4.3: The mean values and standard deviations of non-erroneous elements
in February and July.

We compute the standard deviation σM for each month and set, of which
some results can be seen in Table 4.3. These values are used in our function
y(t) to ensure that the daily variations is correct.

From (4.5) through (4.9), we have our estimation for y(t),

y(t) = 18.6 + ξσM sin(
24π(t− 9)

24
) + 10.7 sin(

24π(t− 2916)

24 ∗ 366
) (4.10)

Where σM , the standard deviation for month M is unique to each set. ξ is a
random number from a normal distribution with mean 0 and standard deviation
1.

Just like in Section 4.2, we will use 10 imputations for each set, which means
we will get 10 new weather temperature vectors, and thereby 10 new complete
data sets.
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Note: in the algorithm we slightly change the notation for y(t) and define it
discretely as yti , where i represents one of the ten imputations.

Algorithm 2 Weather temperature replacement algorithm

This algorithm is run one set at a time.

Inputs: wT k, σM , e
k
wT

Number of imputations: 10
Outputs: wT ki
k = {1, 2, ..., 6954}, t = {1, 2, ..., 8784}, i = {1, 2, ..., 10}

Using σM we construct a vector stσ with values corresponding to σM for t
within its respective month M
ξ is a random number from a normal distribution with mean 0 and standard
deviation 1.

for t = 1, 2, ..., 24 ∗ 366 do
for i = 1, 2, ..., 10 do

Generate ξ;

yti = 18.6 + ξstσ sin
(

2π(t−9)
24

)
+ 10.7 sin

(
2π(t−2916)

24∗366

)
;

end for
end for
for d = 1, 2, ..., 366 do

for j = 1, 2, ..., 19 do
for i = 1, 2, ..., 10 do

Y
(d−1)∗19+j
i = y

((d−1)∗24+j+1)
i ;

end for
end for

end for
for k = 1, 2, ..., 6954 do

for i = 1, 2, ..., 10 do
wT ki = wT k(1− ekwT ) + Y ki e

k
wT ;

end for
end for
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4.4 Plant Temperature - Replacing data with
corresponding data from different sets

As we saw in Section 3.4, the errors that occur in the plant temperature [PT]
are very different from the errors in weather temperature [WT]. Since the PT
will not necessarily behave in the same way as the WT due to the differences
in heat conduction in crystalline silicone and air, our method of extracting and
imputing yearly average temperature data in the previous section will not be a
feasible solution for this problem.

In addition to this, there is a difference in the frequency and distribution
of errors. While the erroneous values in WT are spread out relatively evenly
throughout the year, errors in PT are mostly clustered in the first 100 days
of the year and mainly occur in sets 1 and 2 which can be seen in Figure 3.5.
These large holes in the dataset makes a regression approach near impossible and
definitely highly inaccurate. We therefore choose to utilize a different method.

Since our plants are located in the vicinity of each other, we can replace
missing values in one set with values from another plant, given that at least one
of the data points from these two plants are non-erroneous. If the case is that
only one of the three sets has an erroneous point at data point k, we can replace
the erroneous value with the mean of these two non-erroneous values, so that
we retain as much variance as possible.

Before we proceed with this method, we should inspect the relation between
the plant temperature in the sets. We exclude any value that is erroneous in at
least one of the sets, and look at the absolute difference between the values in the
sets. We do not have any definition on what constitutes a ”small difference”,
but we would assume it would be less than one standard deviation for (non-
erroneous) values in each set. This standard deviation is 8 or greater for all
sets, so we look at temperatures that are within ±8 °C of each other. Results
are given in Table 4.4.

Choice of set % of values ≤ 8 °C
|pT1 − pT2| 87%
|pT1 − pT3| 92%
|pT2 − pT3| 87%

Table 4.4: Differences in non-erroneous plant temperature between sets. The
percentage of the total number of values that fall within one standard deviation
of each other.

From the results in Table 4.4, we see that the difference in values is small
between sets, which indicates that this method is feasible and fairly accurate.

The first thing we need to do is to check if the point in question (k, s) is
classified as an error, and at the same time we check to see if at least one of
the two other sets have a non-erroneous point at that data point k. If there
is at least one such point, we replace the missing pT value with the mean of
the non-erroneous points. If the value of point k is missing in all sets s, we do
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nothing.

For notation, see section 4.1.4

Algorithm 3 Plant temperature replacement algorithm

We run this algorithm for all sets at the same time since we want to use values
from all sets as replacements.

Inputs: pT k,s, ek,spt
Number of imputations: 1
Outputs: pT k,s

k = {1, 2, ..., 6954}, s = {1, 2, 3}

for s = 1, 2, 3 do

for k = 1, 2, ..., 6954 do

if ek,spT = 1 ∧
∑3
m=1 e

k,s
pT < 3 then

pT k,s = 1

3−
∑3

s=1 e
k,s
pt

[∑3
s=1(1− ek,spt )pT k,s

]
;

Rk,s = 1;

else if
∑3
s=1 e

k,s
pT = 3 then

Rk,s = −1;

end if
end for

end for
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Chapter 5

Forecasting: Machine
learning methods

Now we have preprocessed the data in the hope that this improves the result of
our forecasting techniques. In this chapter we will attempt to use Elastic Net
Regularization in order to forecast the power production at time k + 1, given
data at time k.

Choosing to use Elastic Net Regularization in order to predict power produc-
tion may seem like a strange choice, considering that so many of our variables
have a periodic nature (increases in the morning and decreases in the evening).
The algorithm seeks to discover a linear relationship between the predictors
(inputs) and targets (output), which means it can not describe these periodic
elements in itself. We chose to use this algorithm for three main reasons.

Firstly, if the elastic net algorithm manages to forecast adequately one hour
into the future, it may signify that there is some linear relationship between
the predictors and the outcomes, even if there is no such physical relationship.
If this were the case, it may indicate that there are ways of forecasting using
linear methods.

Secondly, given that we have preprocessed what we deemed the most influ-
ential predictors for power, we wanted to use an algorithm where we could see
the impact of these variables clearly.

Finally, there are ways to work around this linearity, which we will look at
in more detail later in this Chapter.

Perhaps the most important factor in any machine learning method is the
choice of predictors and outcomes. In addition to this, we have to choose the
time frame for these predictors and outcomes. We use different combinations
of all available data, which initially gives us 12 predictor variables, described
in Chapter 2. We will also attempt to include error identification vectors for
irradiance, weather temperature, plant temperature and cloud cover to see how
this affects the outcome.
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Our objective variable is power at time k + 1, P k+1, and we include power
at time k, P k as a predictor.

Original power: P k = {p1, p2, ..., p6954}
Target variable: P k+1 = {p2, p3, ..., p6954}

We can of course not use data at time k = 6954 to predict power at time
k = 1, so all data at time k = 6954, and power at time k = 1 must therefore be
excluded.

In the following Sections, we shortly describe some key concepts in machine
learning and how relevant they are to the problem we are attempting to solve.
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5.0.1 Training, validation and test data

Before we start training any method, we need to first identify how we should
split the data into training, testing and validation sets. Training data is the
data a method uses to adjust its hyperparameters so that they best fit the
training targets. Validation data is the data the method tests its accuracy and
performance on in order to know if it should train more or not. Finally, the
testing data is used to measure the performance of the final model.

We have 1 target variable and 12 predictor variables, with 6953 measure-
ments in each of the three sets (we removed the first measurement of power and
the last measurements for all predictors). If we had fewer measurements, we
would maybe need to include data from all three sets in our training and testing
data, but this does not appear to be necessary. We will use the standard split
of training and validation data, which is 75% training and validation and 25%
testing data, which we will describe in more detail in Section 5.0.4.

5.0.2 Bias and variance

Bias and variance are often mentioned in relation to each other, as both terms
are descriptions of the quality of a model. The bias describes how well a model
fits the data, where a large bias means it does not fit the data well. Variance
refers to the amount of variation in a model. If a model has high variance, it
may fit the data very well, but have very large variations in its values, and may
fail to describe any trends in the data. An example would be a straight line
fitted to some data, which will have no variance, but high bias since it does not
fit the data well. A high degree polynomial (particularly if the degree of the
polynomial is the same as the number of data points) fitted to the same data,
may have no bias but very high variance. This example is illustrated in Figure
5.1.

Figure 5.1: Illustration of bias and variance. The dotted line has very high bias
and no variance, while the polynomial curve has almost no bias and very high
variance.
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Increasing the complexity of a model may reduce the bias, but increase
variance. This is called the bias-variance tradeoff.

5.0.3 Generalization & Overfitting

Overfitting is when a we have a model that fits training and validation data
with accuracy greater than on the testing data, and thereby fails to adequately
describe any useful trends.

A model that does not overfit is a model that generalizes well. This is
a concept that must be taken into account when implementing any form of
machine learning techniques, and we must consider any possible issues that
may result in overfitting. In our case, one possible issue is that the model may
not use data from the entire year in training, and thereby not see the range of
possible outcomes that our data has.

5.0.4 Cross-validation

Cross-validation is a technique for assessing how well a statistical model will
generalize to a data set, and the goal is to test the models ability to predict from
new data that was not used while training it, in order to detect problems such
as overfitting. There are various methods of cross-validation used for different
purposes, but we will only describe the ones we implement. Both these methods
are non-exhaustive cross-validation, meaning they to not compute all ways to
split a sample, which may be less accurate but less computationally expensive.

Holdout method is a method based on splitting a data set X randomly into
two parts x0 and x1, usually training and testing sets, where the size of the
sets can be decided by the user. Typically, the model is run several times
with different holdout sets, and the results are averages of these multiple
runs.

k-fold cross validation is a method of splitting the data into k equally sized
disjoint subsets, and using a single subset as the validation data and the
rest for training in each iteration. This is done over k iterations so that
all data is used as validation exactly once.

NOTE: The k in k-fold cross validation is not related to the k we have used to
denote indices in our data.

For our purposes, we will do as mentioned in Section 5.0.1, and split the data
such that 75% of the data is in the training/validation set, and 25% is within
the testing set, i.e. the holdout set. We will use 10-fold cross-validation on our
training and validation data, and we will run the method several times with
data from multiple imputations on both weather temperature and irradiance.
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5.0.5 Shrinkage methods

In general problems where we have an input vector XT = (X1, X2, ..., Xp) and
want to predict an output Y , we have a problem of the form

Y =
∑p
j=1Xjβj + β0 + ε

= f(X) + ε

Where β0, and β = {β1, ..., βj , ..., βp} are parameters related to the inputs Xj ,
and ε is an approximation error.

If we were to solve this problem by Least Squares regression, i.e. solving

minβ0,β

∑N
k=1

(
yk − β0 −

∑p
j=1Xkjβj

)2
, we would retain all values in the input

vector X and use them as predictors for our value Y . The impact of these
predictors may be limited, but not zero.

However, all of the input data is not necessarily relevant to estimate an
output, and in some cases, some of the predictor variables may only reduce the
accuracy of the model. In these cases it may be be valid to only retain some
predictors and discard others, achieving a better model, possibly with a lower
prediction error than the full model. Some methods that utilize this are called
shrinkage methods. Two of the most common shrinkage methods are called ridge
regression and lasso regularization. [4]

Ridge regression imposes a penalty term on the size of the regression
coefficients β0, β by introducing a complexity parameter λ ≥ 0. It then
aims to minimize this penalized residual sum of squares, using the L2 norm
of β

arg min
β0,β

 N∑
k=1

(yk − β0 −
p∑
j=1

Xkjβj)
2 + λ

p∑
j=1

β2
j

 (5.1)

The complexity parameter controls the amount of shrinkage, which means that
as λ becomes larger, we have more shrinkage, i.e. the coefficients β0, βj shrink
towards zero. The optimal solution to the problem is usually the least complex
model (smallest λ) such that the model’s error is within one standard deviation
of the smallest error.[4]

Lasso regularization is a shrinkage method just like ridge regression, but
they differ in that Lasso is defined by the L1 norm

arg min
β0,β

1

2

N∑
k=1

(yk − β0 −
p∑
j=1

Xkjβj)
2 + λ

p∑
j=1

|βj |

 (5.2)

The L1 penalty term in Lasso makes the solutions nonlinear, and computing
the lasso solution is a quadratic programming problem, although there exists
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algorithms that computes the solutions with the same computational cost as
ridge regression.[4]
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5.1 Elastic Net Regularization

Elastic net regularization [ENR] is a form of supervised learning regression,
i.e. both data Xk and targets yk are given to the algorithm for training and
validation, and the algorithm’s goal is to finely tune the hyperparameters cor-
responding to the data so that it fits its targets as well as possible. It is a linear
combination of the Lasso regularization and ridge regression. ENR solves the
problem

argminβ0,β

 N∑
k=1

(yk − β0 −
p∑
j=1

Xjkβ)2 + λBα(β)

 (5.3)

where

yk is the power data at data point Pk+1, the target value.

Xjk is the value of variable j = {1, 2, ..., p} at data point k.

N is the number of observations.

β0 is a scalar parameter

β is a vector parameter of length p, where p is the number of different variables
in X.

λ is a nonnegative regularization parameter.

In which the number of non-zero components of β decrease as λ increases. The
problem involves both the L1 and L2 norm of β.

Bα is defined by

Bα = (1− α) ‖ β ‖22 +α ‖ β ‖1=

p∑
j=1

(
(1− α)β2

j + α|βj |
)
. (5.4)

Where α ∈ [0, 1] is chosen by the user or by cross validation.

For α = 1 elastic net is the same as lasso regularization, but for other values
of α, our penalty term Bα(β) will interpolate between the L1 norm and the
squared L2 norm of β. When α = 0, the elastic net algorithm is equivalent to
ridge regression.

Note: In MATLABs lasso/elastic net function, α = 0 is not a feasible value,
but for elastic net in general, α = 0 is a feasible value.
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5.2 Results

Our first attempt at using the elastic net to forecast was done on all data from
the Bari data set, where irradiance, plant temperature and weather tempera-
ture were preprocessed as described in Chapter 4. We chose to test the method
with three values for α = {0.25, 0.5, 0.75}, using every combination of the 10
different imputations in weather temperature and irradiance, thereby running
the algorithm 100 times for each α, for each data set.

The questions we wish to answer in this section are:

� Is there one optimal value for α that results in the most accurate predic-
tions for each or all sets?

� Are there large differences in error within sets with constant value of α?

Question two is particularly important, because if this is the case, it would
indicate that we should implement more imputations than 10 in our multiple
imputations, as this may improve accuracy even further.

Of course, the most essential question is whether or not the elastic net algo-
rithm can be used to forecast power production from photovoltaic solar panels,
which we will look further into in Chapter 6.

We will begin by looking at the results of implementation on preprocessed
data, and evaluate the general accuracy on the different sets. We would expect
irradiance and cloud cover, together with the time of day, to be the predictors
with the largest impact on the power production, so we will also look at the
impact of predictors, and see how they compare to our expectations.

Error estimates

The mean squared error for each iteration is calculated by approximating the
data in our holdout set H.

MSE =
∑
k∈H

yk − β0 − p∑
j=1

Xjkβj

2

Where yk are the target values and Xjk our predictor variables from the
holdout set H, and β0, βj , j = {1, ..., p} are the minimized arguments from the
elastic net algorithm. Since we do several runs for all choices of predictors and
values of α, the error in the tables in the following sections are the mean of
these mean squared errors.

5.2.1 Null model

Our results would be hard to interpret if we do not have anything to compare it
to, which is why we include the null model. This model aims to predict power at
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time k+ 1 using only power at time k. The error here will give us an indication
of whether or not our model improves as we include more predictors to the
algorithm. We run the null model for the three values of α, of which results are
displayed in Table 5.1. The model was run 10 times for each value of α for each
set.

∗104 Mean error
Set 1 α = 0.25 1.5226

α = 0.5 1.5364
α = 0.75 1.5255

Set 2 α = 0.25 1.7819
α = 0.5 1.7836
α = 0.75 1.7840

Set 3 α = 0.25 2.2878
α = 0.5 2.2966
α = 0.75 2.2728

Table 5.1: Results of the null model for all sets and all values of α. All subse-
quent results should be more accurate than the null model.

5.2.2 Implementation on preprocessed data

We will now run the algorithm for our preprocessed data, including the error
classification vectors in our prediction. All results are from 100 runs of the
algorithm for each value of α for each set.

We will begin by looking at the results from set 1.

∗104 Mean Max MSE Min MSE
α = 0.25 1.3782 1.5268 1.2184
α = 0.5 1.3530 1.5059 1.2090
α = 0.75 1.3611 1.4889 1.2357

Table 5.2: Mean value of 100 mean squared errors for different values of α - Set
1 with error classifiers.

We see a clear improvement from the null model. We would also like to see
the impact of the predictors, which we will do by looking at the values of the
vectors β corresponding to each run of the algorithm. For set 1, the predictors
acted similarly for all values of α, so we plot the predictors for all values in
Figure 5.2.
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Figure 5.2: The impact of the predictors for set 1 for all values of α. Each line
represents one of the 300 iterations upon the set.

It is clear from Figure 5.2 that the algorithm considers humidity to be the
most influential variable in the set with regards to power production. The β
value corresponding to humidity is negative, which indicates that when humidity
at time k is high, the power at time k + 1 will be lower. We also see an impact
from the cloud cover, which affects the power production negatively in some
iterations and positively in others.

An interesting observation is the impact of the error classification vectors.
It seems that error in weather temperature at time k indicates higher power
production at time k + 1. Error in irradiance at time k has both negative and
positive impact on power at time k + 1, with the same values of α. Error in
plant temperature has a negative impact, while error in cloud cover has next to
no impact on the power. This has no physical explanation, of course, but could
be an indication of a correlation as a result of our choice of error indication.

It seems like the values of the predictors appear in two distinct clusters.
When we inspect this further, it seems that these clusters are results of the
different imputations in weather temperature, not in irradiance. For some im-
putations in weather temperature, the β value corresponding to cloud cover
increases negatively, which leads to the (absolute) β value corresponding to
humidity decreasing. The variations in the impact of the error classification
vectors do not seem to be the result of neither the impact of cloud cover and
humidity, nor the choice of weather temperature or irradiance data. We note
which weather temperature imputations that led to a greater impact of cloud
cover, so that we may compare them to results from other sets.
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We now look at the algorithms performance on set 2.

∗104 Mean Max MSE Min MSE
α = 0.25 1.6957 1.8607 1.5456
α = 0.5 1.6981 1.8655 1.5501
α = 0.75 1.6930 1.8917 1.5268

Table 5.3: Mean value of 100 mean squared errors for different values of α - Set
2 with error classifiers.

Yet again we see an improvement from the null model. The predictors in
set 2 again behave similarly for all values of α, so we plot the coefficients for all
iterations.

Figure 5.3: The impact of the predictors for set 2 for all values of α. Each line
represents one of the 300 iterations upon the set.

Again the same trend appears. The model deems humidity highly influen-
tial, while the β-value corresponding to cloud cover changes from negative to
positive between iterations. The clusters in this plot are the result of the same
factors as for the set 1, different values for weather temperature which result
in an occasional bigger negative impact of cloud cover, which leads to a lower
reliance on humidity. The errors in weather temperature, irradiance and plant
temperature exhibit the same features as for set 1, and yet again seem to vary
arbitrarily.

We note that the imputations in weather temperature that led to an in-
creased impact of cloud cover in set 2, were not the same as in set 1.
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Lastly we look at set 3.

∗104 Mean Max MSE Min MSE
α = 0.25 2.1662 2.3374 1.9965
α = 0.5 2.1647 2.3831 1.9672
α = 0.75 2.1640 2.3406 1.9565

Table 5.4: Mean value of 100 mean squared errors for different values of α - Set
3 with error classifiers.

Again we see an improved accuracy compared to the null model. The pre-
dictors behave similarly to set 1 and 2, and has almost no variation between
values of α, and we therefore again plot for all values of α.

Figure 5.4: The impact of the predictors for set 3 for all values of α. Each line
represents one of the 300 iterations upon the set.

We see the same trend appear, with humidity generally having a very nega-
tive impact on the power, while cloud cover varies from having negative to pos-
itive impact between iterations, seemingly distributed into two clusters. These
clusters have the same features as in set 1 and 2, with higher impact of cloud
cover leading to lower impact of humidity. The errors from weather tempera-
ture, irradiance and plant temperature behave similarly as for set 1 and 2, and
vary arbitrarily between iterations.

The imputations in weather temperature that lead to a higher impact of
cloud cover in set 3 were, again, not the same as neither set 1 nor set 2.

The large impact of the error classification vectors leads us to believe that we
should exclude these in future predictions. Since the impact varies arbitrarily
between iterations, it is likely that these data only ’confuses’ the algorithm by
introducing random correlations in the training and validation data that leads
to weak performances on the testing data. It may also be the reason the clusters
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appear in the predictors. We therefore run the algorithm similarly as before,
only excluding the errors.

This time we display all values for all sets in Table 5.5 to compress the results
slightly.

∗104 Mean Max MSE Min MSE
Set1 α = 0.25 1.4139 1.5804 1.2573

α = 0.5 1.4132 1.5728 1.2447
α = 0.75 1.4109 1.5518 1.2483

Set2 α = 0.25 1.7253 1.8834 1.5974
α = 0.5 1.7187 1.8515 1.5084
α = 0.75 1.7208 1.9580 1.5873

Set3 α = 0.25 2.1749 2.4211 1.9729
α = 0.5 2.1620 2.3686 1.9838
α = 0.75 2.1791 2.3507 2.0209

Table 5.5: Mean value of 100 mean squared errors for different values of α - All
sets, no error classifiers

The mean error increases for most sets, and values of α, but by a relatively
small amount, and is still an improvement with respect to the null model.

As for the predictors, they behave similarly for all values of α, and so we
plot predictor coefficients for all values of α in one Figure for each set.

Figure 5.5: The impact of the predictors when we exclude error classification
vectors, for all values of α in set 1. Each line represents one of the 300 iterations
upon the set.
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Figure 5.6: The impact of the predictors when we exclude error classification
vectors, for all values of α in set 2. Each line represents one of the 300 iterations
upon the set.

Figure 5.7: The impact of the predictors when we exclude error classification
vectors, for all values of α in set 3. Each line represents one of the 300 iterations
upon the set.

The most notable difference from the earlier predictions is that the clusters
seem to have disappeared. Since the only change we have done is to remove
the error classification vectors, this indicates that this was a good choice, since
they seemed to only distort the results. We therefore choose to exclude error
classification vectors from all predictions after this.
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Another thing to note is that the models seems to rely slightly more on
some predictors, ’timeOfDay’ in particular. We should expect that time of day
had a relatively high impact on the prediction, given that the highest power
production is generally in the middle of the day. The reason behind this lack
of impact is most likely the linear nature of the elastic net algorithm. The
relationships between the predictors and the outcomes is linear, which means
that a variable that ranges between 2 and 20 each day, with an expected peak
from 12 to around 18, is not very helpful for the model itself.

We therefore introduce a transformed variable that interacts upon ’timeOf-
Day’ (denoted here as t for simplicity) in order to more realistically simulate
the daily variations in time. We define this term as τ(t) = cos(2∗π ∗ (t−3)/24),
where we choose to use t− 3 instead of just t in order for the peak (in this case
negative) to be at 15:00 for each day. Whether the value is negative or positive
does not matter, as long as the peaks agree with the peaks in power production.

We run the model again with the same data as the previous run, that is,
excluding error classification vectors. We run it once for each combination of
data from multiple imputations, which means 100 runs for each set, for every
value of α.

∗104 Mean Max MSE Min MSE
Set1 α = 0.25 1.3990 1.5358 1.2637

α = 0.5 1.3847 1.5171 1.2351
α = 0.75 1.3807 1.5147 1.1386

Set2 α = 0.25 1.6881 1.8479 1.5436
α = 0.5 1.6834 1.9120 1.5013
α = 0.75 1.6871 1.8754 1.5384

Set3 α = 0.25 2.1276 2.3157 1.8968
α = 0.5 2.1315 2.3724 1.9379
α = 0.75 2.1333 2.3811 1.9934

Table 5.6: Mean value of 100 mean squared errors for different values of α,
including our transformed variable τ - All sets

If we compare the results in Table 5.6 with our earlier results, we can see
that the mean error for this version is lower for set 2 and 3 for all values of
α, but higher for set 1 compared to the results in Table 5.2 (although it is an
improvement from the results in Table 5.5). We will look more at the differences
between results later, but first we want to see how the predictors changed from
what we saw earlier.

Again, the values of α did not affect the predictors, so we plot for all values
of α in Figures 5.8,5.9,5.10.
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Figure 5.8: Predictors for set 1, no errors, with transformed variable τ

Figure 5.9: Predictors for set 2, no errors, with transformed variable τ
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Figure 5.10: Predictors for set 3, excluding errors, with transformed variable τ

The clusters from Figures 5.2 - 5.4 have not reappeared, although the values
of β corresponding to cloud cover and humidity do vary between iterations. This
is a strong indication that these clusters were a result of the error classification
vectors, which substantiates our choice of omitting these as predictors.

An interesting thing to note here is that only when applied to set 3 did τ
have a negative corresponding β-value. In both set 1 and 2, the term is positive,
which is not what we expected.

In general, including this transformed variable seems to improve the pre-
dictions somewhat. It seems variables that clearly separate the afternoon from
the morning will improve the accuracy of the model. We therefore choose to
construct a bigger data set by using interaction terms, i.e. products of variables
in the set, as well as utilizing a new variable z, which we can use to separate
the morning (02:00 to 11:00) from the afternoon (12:00 to 20:00), and have z
interact upon the other predictors through multiplication. z is defined as,

z =

{
1, for afternoon, i.e. corresponding time of day ≥ 12

0, otherwise.

Again, we have our 12 predictors, which we will denote here simply as
x1, x2, ..., x12.

We construct our new data set by multiplying every combination of predic-
tors, as well as multiplying our new variable z with every predictor, such that
our new data set consist of our preprocessed data set,

[x1, x2, ..., x12], (5.5)

a set consisting of the products of all variables in (5.5) (interaction terms),
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[x1x2, x1x3, ..., x11x12], (5.6)

as well as the products of every variable in (5.5) and z (interaction terms),

[zx1, zx2, ..., zx12]. (5.7)

Combining (5.5), (5.6) and (5.7), we get our new data set X,

X = [x1, x2, ..., x12, x1x2, x1x3, ..., x11x12, zx1, ..., zx12]

We then use this new data set as predictors for our algorithm.

These results, understandably, take a lot more time to attain than the pre-
viously described ones. The number of predictors has increased from 12 to 90,
which increases the running time of the algorithm by a substantial amount. As
a result of this, there was not time to run this set for every combination of
weather temperature and irradiance data.

Therefore, we first ran the algorithm using only one imputation in irradiance,
but using all ten imputations from weather temperature. We then found the
imputation in weather temperature that returned the least mean squared error,
and used this imputation in weather temperature for all ten imputations of
irradiance. The mean error in Table 5.7 are the mean of the errors of these 20
runs of the algorithm.

We also only ran the algorithm for only one value of alpha for each set. The
choice of α was based on which α returned the least mean squared error for the
set in Table 5.6.

Mean MSE Max MSE Min MSE
Set 1, α = 0.75 1.0624 1.1148 0.9700
Set 2, α = 0.5 1.5041 1.6761 1.3449
Set 3, α = 0.25 1.9988 2.1026 1.8495

Table 5.7: MSE of all sets for our new data set with interaction terms.

The data in Table 5.7 shows a substantial improvement of all previous results
for all sets. The running time of the algorithm increased by a lot for each
iteration, but given the significant improvement in accuracy, this is by far the
best model we have implemented. The mean error might increase if the model
was run for all combinations of weather temperature and irradiance data, but
most likely by a small amount.

As for the predictors, plots are hard to interpret due to the number of
predictors. Additionally, the impact of the predictors were very similar between
sets, so we choose to plot all predictors in one figure, and describe the predictors
with the largest impact.

58



Figure 5.11: Predictors of preprocessed data, with interaction terms.

We again see both cloud cover and humidity have a big impact on the out-
come, similar to our predictors in Figures 5.8 - 5.10. There are slight variations
from one iteration to the next within sets, but almost no differences between
sets. As for the interaction terms, around ten had slight impacts on all sets,
with corresponding |β| ≤ 2. We can see that three interaction terms clearly
have larger impacts in all iterations, which were

� cloud cover × humidity (large negative impact)

� z× cloud cover (large positive impact)

� z× humidity (relatively large negative impact)

It is still clear that humidity and cloud cover are the most influential pre-
dictors for the power production. All models also relied slighly on ’timeOfDay’,
and the product of ’timeOfDay’ and z. The prediction of power relies almost
solely on these predictors, and the interaction between them and our variable
z, which separates mornings from afternoons.

5.2.3 Implementation on original data

Before we proceed to finish analysing the results and aim to make any conclu-
sions, we wish to see how the model performs on the original data.

Our hope is that the preprocessing of data has improved the accuracy, but we
know that the preprocessing has given us model errors, which may have distorted
the data more than the preprocessing has improved it. Additionally, we saw in
the previous section that the predictors we preprocessed in Chapter 4 did not
have the impact we originally thought, which indicates that the preprocessing
of the data will not have a large impact on the accuracy of the model. We will
again present the results relatively compactly.
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In our original data we do not have the same number of data sets as the
preprocessed data (as a result of the multiple imputations), but we run the
algorithm ten times for each set, for each value of α, to utilize different holdout
sets, and get a range of mean squared errors.

When we use the original data, we include both power at time k and, since
it improved performance on the preprocessed data, the transformed variable τ .
This means we have 13 predictors for these runs. The algorithm is run 10 times
for each α and each set.

∗104 Mean Max MSE Min MSE
Set1 α = 0.25 1.3488 1.4768 1.2466

α = 0.5 1.3782 1.5124 1.2800
α = 0.75 1.3356 1.4076 1.1954

Set2 α = 0.25 1.7582 1.8865 1.6425
α = 0.5 1.7269 1.7725 1.6246
α = 0.75 1.7253 1.8025 1.6197

Set3 α = 0.25 2.1510 2.3217 1.9839
α = 0.5 2.1911 2.2848 2.0555
α = 0.75 2.1677 2.2641 2.0430

Table 5.8: Mean value of 10 mean squared errors for different values of α - All
sets, original data with transformed variable τ

We can see from Table 5.8 that the algorithm performs relatively well on
the original data, with the transformed variable τ included, compared to the
results of implementation on the preprocessed data without error classifiers,
with transformed variable τ . The impact of different predictors can be seen in
Figures 5.12, 5.13, 5.14. Again, the differences between values of α are almost
non-existent, so we plot all in one figure for each set.
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Figure 5.12: Predictors of original data with transformed variable τ on set 1.
Ten iterations for each value of α.

Figure 5.13: Predictors of original data with transformed variable τ on set 2.
Ten iterations for each value of α.
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Figure 5.14: Predictors of original data with transformed variable τ on set 3.
Ten iterations for each value of α.

In all three sets, the humidity still had a very high impact on the outcome,
and cloud cover retained a relatively big impact, but the transformed variable
τ had by far the largest (albeit negative) corresponding β-value for all sets.
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Chapter 6

Comparison and analysis

In this chapter we will look further into our results and see if we can find any
patterns or trends.

We will look at the results of all implementations of elastic net regularization
on the different data sets. We have run the elastic net algorithm for the pre-
processed, and the original data. The preprocessed data has been implemented
with and without error classification vectors, and the transformed variable τ ,
and as a part of a larger data set with interaction terms. The original data has
been implemented without the error classification vectors, with the transformed
variable τ . We have also implemented the null model.

The (mean of) mean squared errors of all the different choices of input in the
ENR are displayed in Table 6.1. NE denotes that errors are excluded from the
model, and w.τ notes that the transformed variable τ = cos(2π(timeOfDay −
3)/24) has been included as a predictor. Prep refers to the preprocessed data
set, while OG refers to the original data. INTER denotes that we use the
expanded data set with interaction terms. NULL denotes the null model.
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α = 0.25 α = 0.5 α = 0.75
∗104 MSE MSE MSE
Set 1 Prep 1.3782 1.3530 1.3611
Set 1 Prep (NE) 1.4139 1.4132 1.4109
Set 1 Prep (NE,w.τ) 1.3990 1.3847 1.3807
Set 1 INTER (NE) 1.0624
Set 1 OG (NE,w.τ) 1.3488 1.3782 1.3356
Set 1 NULL 1.5226 1.5364 1.5255
Set 2 Prep 1.6957 1.6981 1.6930
Set 2 Prep (NE) 1.7253 1.7187 1.7208
Set 2 Prep (NE,w.τ) 1.6881 1.6834 1.6871
Set 2 INTER (NE) 1.5041
Set 2 OG (NE,w.τ) 1.7582 1.7269 1.7253
Set 2 NULL 1.7819 1.7836 1.7840
Set 3 Prep 2.1662 2.1647 2.1640
Set 3 Prep (NE) 2.1749 2.1620 2.1791
Set 3 Prep (NE,w.τ) 2.1276 2.1315 2.1333
Set 3 INTER (NE) 1.9988
Set 3 OG (NE,w.τ) 2.1510 2.1911 2.1677
Set 3 NULL 2.2878 2.2966 2.2728

Table 6.1: Mean squared error of all variations of predictors with different α-
values. All values are scaled down by 104. Least values in bold.

For all sets, the least error value was for the data set with interaction terms,
which had errors that were significantly lower than for all other choices of data.
There is a possibility of the mean error decreasing for other values of α, but this
difference would most likely be marginal.

From the results, it does not seem like there is a clear, optimal choice for α.
The values varied slightly, but not by significant amounts. The choice of data
was a lot more influential for the results than the choice of α.

We see that the preprocessed data improved the accuracy for sets 2 and 3,
but that the algorithm performed better on the original data for set 1. How-
ever, the differences between these results are small, most likely due to the fact
that the variables we preprocessed did not have a large impact on the outcomes.

Including the error classifiers did not improve the model.

In general, forecasting solely based on regression is difficult. Particularly
early mornings and late evenings, when we have a large rate of change in the
power production, are difficult for the algorithm to pick up on. As illustrated
in Figure 6.1, the algorithm predicts low - but not zero - production. This is
one of the areas where the algorithm struggles the most.

In addition to this, the time gap between 20:00 and 02:00 makes it difficult
for the algorithm to predict the next time step 6 hours into the future. This
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may have made our problem particularly difficult.

Figure 6.1: One day of forecasted power, July 19th, for set 1. Preprocessed data
with errors as predictors. We chose to show this day in particular because it
illustrates the problem of forecasting early mornings and late evenings.

It is clear from the results that if we were to forecast using Elastic Net
Regularization (or any other linear model) using data similar to the data from
Bari, it is crucial to include interaction terms. This action improves accuracy
substantially, and is essential for giving a linear model a way to explain daily
variations, even though it does increase the computation costs by a substantial
amount.
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Chapter 7

Conclusions

We have analysed the data from three plants in Bari, Italy, and preprocessed
the data the way we deemed most reasonable. We have then applied the elastic
net algorithm to this data, in order to predict power production one hour into
the future.

Our results indicate that the elastic net algorithm is capable of forecasting
power production in a one hour time frame, providing that we include interac-
tion terms as our predictors.

We have not noticed any extreme weather conditions in the data, which
makes it hard to say if the algorithm would handle that well or not.

In general, forecasting in the early morning and late evening is where the
algorithm struggles the most.

Further improvements

There are several things that we could have improved further. Firstly, we could
have applied our data to different machine learning methods and see if results
improved, e.g. random forests or support vector machines. It would also be
interesting to see the data implemented with even more interaction terms. Fi-
nally, implementing the algorithm on data with smaller time steps (half hour or
fifteen minute measurements), may have improved the accuracy.
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