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Abstract

Air quality in urban areas is an issue of great concern as it affects public health and

local environments. By forecasting the pollutant levels public administrations may be

notified of periods with potentially bad air quality and can initiate strategic policies to

limit the spreading of pollutants. One of the challenges associated with forecasting air

quality is the fact that meteorological conditions and anthropogenic activities change

as seasons passes. This thesis targets such issues by presenting Braluft, a distributed

system designed to incrementally train forecasting models over time using machine

learning. The thesis makes use of the program to evaluate: (a) which variables influence

the levels of two important pollutants, NO2 and PM10, at Danmarksplass, Bergen, and

(b) whether the incremental approach is well suited for making air quality forecasts by

continuously adjusting to new observations. The program uses weather forecasts and

traffic level as input data, and the latter is assessed by applying computer vision to a

web camera overlooking the area. The most promising variables for NO2 forecasting

turned out to be wind speed and traffic levels by a wide margin. PM10 levels are

seemingly a result of more complex processes where all the observed variables have an

influence. The program delivers promising results for its intended purposes, namely

register trends occurring in the air quality and subsequently make air quality forecasts

based on these trends. This results in good air quality forecasts for most days where the

pollutant levels are low. However, bad air quality is often a result of sudden changes

and can hardly be considered a trend. The program is therefore struggling to foresee

such events. The concept supporting the program might prove more valuable in areas

where raises in pollutant levels are less abrupt.
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Chapter 1

Introduction

The sheer amount of data sources keeps expanding in personal and commercial contexts,

and the growth seems to have no end in sight. Components with data collection capa-

bilities are everywhere and have become a part of everyday life. The great challenge

for the technology industry is how to benefit from the immense collection of data which

is being recorded in our surroundings [6]. Industries are for instance investing heav-

ily in advanced monitoring technology and data archiving, in an attempt to construct

intelligent software capable of performing routine tasks. This leads to opportunities

related to optimizing maintenance using predictive models but also challenges in how

to process the data [7]. The new technologies introduced have made way to a new era of

digitalization resulting in a reformation in many business areas changing how we work.

1.1 Smart cities

Parallel with the growing amount of data sources there has been a pursuit for smarter

environments in a city context. This has led to implementations of innovations such as

smart grids, smart homes, smart transportation, and smart health care [8]. However,

while the field seems to continue its growth in terms of popularity there is an absence

of a universally agreed definition of smart cities. One attempt to characterize these

smart environments has been done by Mark Weiser by referring to them as “a physical
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1.1. SMART CITIES

world that is richly and invisibly interwoven with sensors, actuators, displays, and

computational elements, embedded seamlessly in the everyday objects of our lives, and

connected through a continuous network” [9]. In a more general sense one might say

that the final aim of the smart city is to make better use of public resources by reducing

costs and providing better, and perhaps even new services to the citizens [10].

The IoT & big data

Two important enablers of smart technology in a city context are The Internet of Things

(IoT) and big data technology [9]. Furthermore, the pursuit of smart environments

is what drives the growth of available data, which again is the core of the services

rendered by the IoT. IoT is also a novel paradigm, meaning it still has not established

best practices and a widely accepted business model which can attract investors for

further improvements [10]. IoT consists of things that are able to communicate with

one another and its neighbours [11].

ABI Research has previously estimated that there will be 30 billion connected devices

by 2020 contributing to the IoT [12]. The growth in the number of data sources is

posing some challenges in terms of efficient data storing and processing. This has led

to a paradigm shift from traditional computing towards more sophisticated computing,

such as big data analysis techniques. [8].

Big data is considered a revolution because of the potential for knowledge extraction

and decision making support based on large amounts of data, therefore making an

altering to how we live, work, and think [12]. The data obtained can provide value to

the city by providing new insights by uncovering hidden patterns and correlations that

can reduce costs and resource consumption [8]. Data collected can, in other words, serve

as a bridge between the physical and digital world by shedding new light on already

existing environments [11]. A collection of techniques that can be applied in order to

obtain value from big data is machine learning, which The McKinsey Global Instituate

consider the main driver for the big data revolution [12].
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1.2. MACHINE LEARNING IN SOCIETY

1.2 Machine learning in society

Machine learning thrives on efficient algorithms, large datasets, and powerful compu-

tation environments making it an essential part of the big data analytics kit [13]. The

field of machine learning has become indispensable in regards to extracting information

out of otherwise meaningless data, such as data generated by the IoT in a smart city

context [14]. The information technology surrounding us has contributed to the growth

of massive amounts of data across the globe, but 80% of this data is unstructured. The

idea of transforming this unstructured data into knowledge has been circulating since

early artificial intelligence research in the 1980’s [13].

However, mainstream machine learning venues are usually focused on novel algo-

rithms and sandbox studies on benchmark data sets rather than publishing studies

targeting real-world problems, even though the latter is influencing the broader world

through implementations in the form of various applications. This bias within the field

of machine learning can lead to an algorithmic echo chamber, increasing the gap between

theoretical and applied work [15]. Furthermore, many machine learning researchers are

surprised to realize that the difference in performance between various algorithms di-

minishes in importance outside of a sandbox context. Success in applying machine

learning algorithms in real applications is rather determined by how well the domain is

understood. Machine learning experts are in other words not able to solve the world’s

problem in isolation [15].

1.3 Air quality forecasting

The idea of contributing to the smart city ecosystem using machine learning and already

existing data sources, such as sensors and imagery, form the foundation of this thesis

and serves as the key motivational factor. How may one use already existing resources

to create value that benefits citizens with minimum added costs? A potential area in an

urban context that might benefit from new solutions is within air quality management,

such as forecasting and information services.
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1.3. AIR QUALITY FORECASTING

Routine air quality forecasts are of great importance for several reasons in a society,

including public health, air quality management, and science [16]. A significant asso-

ciation between air pollution and health issues is well asserted through many studies

showing the damaging effects of components forming air pollution [17][18][19]. Main

contributors to polluted air in urban areas include components such as CO, NO2, O3,

SO2 and particle matters of varying size [20].

Strategic moves initiated by public administrations are not uncommon when trying

to reduce the concentrations of pollutants by limiting vehicular traffic. An example

is number plate circulation (odd / even numbers) [20]. Using predictive models can

help assist planning and enforcing such strategies by providing forecasts supporting the

decision making process [20]. The forecasts should ideally be available 24-48 hours in

advance in order to implement such strategies in an efficient way [16]

The effect of bad air quality is of increasing public concern, which has led to the rise

of air quality standards set to protect public health [17]. The European Union has for

instance established air quality standards for NO2 and PM10 with concentration limits

on how many times per year the mean concentration can surpass the individual thresh-

olds [18]. Norway was in 2015 found guilty by the EFTA court of exceeding threshold

values and having insufficient assessments of measures for air quality regulation. One

of the cities included in the decision was Bergen which is the subject of this thesis in

terms of geographical location [2].

There are naturally already services publicly available for air quality forecasting for

Bergen and the surrounding areas, but the ones discovered as a part of the research

for this paper were either (a) just forecasting upcoming 24-48 hours and/or (b) lacking

details, such as actual pollutant levels or what the forecasts are based on. Miljøstatus.no

[21] is for instance as of today in early version providing forecasts for the following day.

Another service is hosted by the municipality of Bergen on their official sites [22]. Their

solution is for a longer time period but at the costs of providing very little detail in the

form of a manual written message. Norwegian Meteorological Institute offers air quality

forecasting through their public APIs, but is currently only in beta stages and is only
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1.3. AIR QUALITY FORECASTING

hosting forecasts for the following day [23].

Changes over time

There are many interacting factors having an impact on air quality through pollution

levels. Air quality in urban areas depends on local and regional emissions, as well as the

geographic and meteorological characteristics of the area. The forming and dispersion of

pollution should therefore be studied locally [24][25]. Furthermore, several factors may

change over time. A review of articles presented in this paper shows a lot of variation in

terms of how the different seasons affect air pollution and to which degree. Observations

from two different stations within the city of Athens emphasize this point, where one

station recorded no variations of NOX concentration when comparing the seasons while

another station noticed a significant difference when performing the same comparisons

[18]. Seasons do not only affect the air quality through meteorological changes, but also

manipulate anthropological activities leading to changes that might have an impact

on the air quality. The amount of cruise ships arriving in Bergen during the summer

months is expected to grow in the future resulting in an increased contribution to NO2.

Similar effects are seen for PM10 during the winter due to domestic heating. [2].

Other factors may change over time as well, including changes in vehicle type dis-

tribution and other transportational factors. Electric cars have seen an increased pop-

ularity which may have an observable effect on the air quality. This growth is however

sensitive to changes in benefits for choosing such vehicles, including exemptions on toll

fees [2]. The amount of traffic using motorised vehicles is also expected to increase by

1.9% yearly in Bergen [2]. Several improvements in transportational infrastructure are

also in motion, including light rail tracks to new locations and new opportunities for

walking and cycling [2]. An addition to this meteorological conditions tend to change

every year, and this may have a significant effect on the air pollutant levels and spatial

location of the pollutants within the city. Annual averages of NO2 and PM10 may vary

between 3-5 µg/m³ from one year to another [2].
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1.4. RESEARCH QUESTIONS

1.4 Research questions

This thesis is based on an attempt to build a solution that forecasts air quality for

several days in advance without making a compromise in regards to details and at the

same time contribute to the overall knowledge base of air quality. The proposed solution

addresses the issue of changing factors over time by being built on a foundation of online

machine learning models. This leads to the following research questions:

1. Which variables are ideal for air quality forecasting when considering traffic levels

and meteorological variables?

2. How well are online machine learning models performing when trying to forecast

air quality?

The designed solution is a program that does not try to directly answer the research

questions, but rather provides relevant data from external sources and data created by

the program itself. This data are then the subject of further analysis that targets an-

swering the research questions. The first research question is answered by looking at the

relationship between independent variables, such as wind speed or traffic level, and the

target variables (NO2 and PM10). Visualization of the data is the main contributor in

this answering process along with correlation coefficients for a numerical measurement.

The second research question is answered by comparing the observed air quality

values with the forecasted ones using common machine learning metrics for regression

problems. The idea of treating it as a regression problem is to look at predictive

capabilities of the machine learning models as a numerical value to see how low error rate

it is possible to achieve using the selected methods. The comparison is also visualized

in order to see how well the models fit to the observed data.
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Chapter 2

Design science

Information systems are developed to improve the efficiency within an environment

or an organization. Such creations are often of a complex nature and can be studied

at several levels, such as knowledge about the development of applications, as well as

information technology at a managerial level [26]. One might therefore argue that two

different, but complementary, research paradigms are needed to grasp the complexity

of information technology: behavioural science and design science [26].

Behavioural science has roots in natural science research methods and is about

explaining how and why things are the way they are. The end goal of the research

paradigm is truth [26] [27]. Behavioral science is revolving around developing and

justifying theories, where progress is achieved when the theories provide more accurate

explanations of phenomenons then past ones, and success can be measured by the

theories predictive ability of future observations [27] [26]. In an information technology

context this can result in theories related to a system’s usage, usefulness, and impact

within an organization [26].

Design science, on the other hand, has roots in the engineering field and is a problem-

solving paradigm that seeks to build innovative artifacts by applying knowledge of tasks

and situations to the building process [27]. Design can in other word be regarded as

both a process and an artifact where the goal is utility. In the end knowledge and

understanding of the problem domain are achieved through the development and usage

7



of the designed artifact [26].

Novelty While design science is based on creating artifacts, it should not be mixed

with system development as a routine design. The latter is about applying existing

knowledge to solve organizational problems using best practices. Design science is con-

trarily addressing unsolved problems in an innovate way, or solved problems in a more

efficient way. Furthermore, design science research has a clearly identifiable contribution

to a knowledge base [26].

It is difficult to build something really new, as most work is based on previously

existing ideas or products. Innovation might, however, take several different shapes

as seen in figure 2.1, such as improvement by implementing new solutions to existing

problems, exaptation by extending known solutions to new problems, and invention

with new solutions to new problems [1].

Figure 2.1: Contribution matrix [1]

Process

Similar to the development and justification of theories in behavioural science the design

sciences process is mainly built on two stages, building and evaluating [27]. This loop

between building and evaluating is usually performed several times before the final

artifact is complete [26].
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Building

Building artifacts as a part of design science research is a pursuit of an artifact with

a specific purpose, proving in the process that such an artifact can be developed [27].

The end products of design science are generally described as either

Constructs

Constructs assist the composition of vocabularies, enabled knowledge sharing

within a domain. Such conceptualizations include for instance entities, attributes,

and consensuses [27].

Models

Models are built upon a set of constructs and their relationships in a formal man-

ner, resulting in representations of the real world such as an Entity-Relationship

Model (ER-model) [27][26].

Methods

Methods are a way to perform goal-directed activities [27]. They are in other words

providing guidance on how to solve problems using, for instance, mathematical

algorithms, textual descriptions of approaches, or a combination [26]

Instantiations

The instantiations are a realization of an artifact in its environment, capable

of solving a specific task by operationalizing constructs, models, and methods

[27]. Furthermore, the implementations prove the feasibility or effectiveness of

the models and methods that are included in the artifact’s implementation [27].

Evaluating

The evaluation phase is concerned with assessing the utility provided by an artifact in

order to solve a given problem [26]. The evaluation results in more information and a

better understanding of the problem space, highlighting the improvement potentials in

terms of both the building processes and the artifact [26].
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Performance is a relative term connected to the intended use since artifacts can

potentially solve several different problems [27]. The evaluation metric is therefore

dependent on the particular artifact’s intended environment defining what it is trying to

accomplish [27]. Such metrics might be based on functionality, completeness, reliability,

usability, or how good the artifact is fitted to the organization [26]. The overall progress

is achieved when old technology is surpassed by more efficient innovations [27].

Knowledge base

There are two types of scientific research in the information technology practice, de-

scriptive and prescriptive. While the behavioural science field is generally based on

descriptive knowledge, design science is corresponding to prescriptive research activities

[27].

Incomplete understanding of the environment where the problem is originated can

result in poorly designed artifacts or unforeseeable side-effects. The creation of artifacts

is thus dependent on what is called kernel theory [27]. The kernel theory refers to any

descriptive knowledge used to inform the artifact building process about the problem

or its environment. This knowledge may have different forms, such as observations of a

phenomenon, principles, and natural laws [1].

From the prescriptive knowledge base the researcher can in a design science study

investigate similar known artifacts that have been used to solve a similar problem. This

may assist the process of setting a knowledge baseline by indicating the level of novelty

in the new artifact and by providing knowledge [1].

Knowledge from behavioural science and design science are accordingly both im-

portant as they provide the raw materials to a design science research project. This

through foundations from historical research on either information systems or referenced

disciplines, and methodologies providing guidelines used to justify theories and evaluate

artifacts [26].
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Chapter 3

The artifact

3.1 Braluft

This thesis proposes and demonstrates the use of an artifact made for air quality fore-

casting, and monitoring of how different parameters affect the air quality of urban areas.

The proposed artifact goes by the alias Braluft, which is Norwegian and translates as

good air. The name is inspired by the overall objective of this thesis, improving the city

of Bergen’s air quality by offering knowledge about the problem space and utility in the

form of the artifact itself.

Braluft explores how a combination of traffic data and meteorological variables relate

to the air quality on Danmarkplass in the city of Bergen. Additionally, it is attempt-

ing to forecast the air quality one week ahead using machine learning models. The

constructed artifact is in other words mainly dealing with three data themes: Weather

data, traffic data, and air quality data. Furthermore, all three data themes exist within

the program as both observations and forecasts.

The artifact is a complete software stack running on a group of virtual machines in

the cloud in a microservice-like architecture, including a single-page application (SPA)

available at braluft.no providing observational data, forecasts, and statistical insights

related to the performance of the machine learning models.
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3.2. PROGRAM DESIGN

Figure 3.1: Air quality forecasts as a sum of traffic and weather data

3.2 Program design

Braluft is designed to take an incremental approach to solve the issue of changing factors

over time. The general idea behind this is that the artifact has no data or knowledge

about air quality upon initialization on day 0. When the first day has passed the

observed data for that day are sent to train the machine learning models in the artifact

and air quality forecasts are being made for the following seven days. This procedure

is repeated every night resulting in a growing set of underlying data and potentially

smarter models.

Online learning The incremental approach of the program is made possible to realize

by using a concept called online learning in the machine learning field. Two different

approaches to training a model using machine learning are batch learning and online

learning. Batch learning is training models based on complete data sets and is the most

common among those two [12][28]. However, in many applications, time is of the essence

and a performed task is only valuable within a certain period, such as predicting stock

prices and earthquakes. Online learning is a paradigm within machine learning that is

based on learning one instance at the time and is therefore capable of making changes

over time. This strategy is also a way to handle big data volumes as machines do not

need to store large data sets in memory [29]. Online learning is, in other words, useful

when it is problematic to fit entire datasets in memory or when the learning systems

need to adapt to new patterns [28] .
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In online learning training samples are being observed in a sequence. For every

training sample a prediction is initially made. The correct, observed value is then

presented to the algorithm. The algorithm may finally decide whether to change the

parameters of the model or not, in an attempt to better fit to subsequent samples during

training or prediction [30].

3.3 Daily routine

The underlying processes and architecture of the program that enables the incremental

approach are in this paper presented twice. The intention of the following presentation

is to provide a conceptual understanding of what the program is trying to achieve

without discussing implementational details, but rather give an overview of the main

steps included in the process. A more thorough explanation of the implementation of the

program is provided in the Architecture chapter, and the Modelling chapter discusses

how the machine learning models are constructed.

As mentioned above, the program is designed to perform a set of operations every

night where data is gathered, models are updated, and forecasts are made. This process

can be divided into roughly two steps, training, and forecasting. The first step in this

process concerned with training starts with the gathering of observational data for the

day that went by. Data included in this operation are observational weather data,

observational air quality data, and observational traffic data. All the gathered data are

then stored in a relational database before it is used to update the machine learning

models in the program. Several machine learning models exist for both air quality and

traffic forecasting, and all the models in each category are updated at the same time in

a sequence. This step is illustrated in Figure 3.2. At the end of this step the overall

data set of observed data has increased, and the underlying machine learning models

should ideally perform better than before.

The next (and final) step of the nightly procedure is concerned with making air

quality forecasts for the next seven days. The initial part of this step is gathering

weather forecasts and creating traffic forecasts for the upcoming week which serves

13
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Figure 3.2: Training step

Every night observational data are collected for the previous day and stored in a relational

database (weather, traffic, and pollutant levels). This data are finally used to train internal

machine learning models in the program responsible of making traffic forecasts and air quality

forecasts.
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as input data for the air quality forecasting. The weather forecasts are originating

from external sources and the traffic forecasts are made by the program itself using

separate machine learning models. The weather and traffic forecasts are then sent to

the machine learning models for air quality forecasting for the upcoming week before

all the forecasting data are stored in the relation database alongside the observational

data. Figure 3.3 illustrates this step at a conceptual level.

These two steps sum up the operations performed actively by the program in a

simplified manner. A more detailed description of the system is as mentioned before

the subject of later chapters.

3.4 Spatial location

There are a total of four stations measuring air quality in Bergen and each station

represents a unique type of area based on the centrality of the area and whether it

is close to heavy traffic or not, as seen in Table 3.1. Danmarksplass was evaluated

to be the most promising location for this research work, due to its central position

just south-east of downtown Bergen, high traffic, and general availability of relevant

data sources. Weather observations are registered close to Danmarkplass at a weather

station at Florida, weather forecasts can be accessed using latitude and longitude, and

the location offers opportunities in regard to traffic assessment.

Central Suburb

Heavy traffic Danmarkplass Loddefjord

Little traffic R̊adhuset Åsane

Table 3.1: Measurement stations in Bergen [2]

3.5 Intervals

The main building block of the braluft ecosystem is the interval. It can be considered

both (a) an interval as a 6-hour long time period used at a conceptual level to divide days
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Figure 3.3: Forecasting step

The initial step of making air quality forecasts is to gather weather forecasts from external

sources and a traffic forecast from the internal traffic forecasting models in the program. These

data are sent to the internal air quality forecasting models in the program which returns

forecasts that are stored in the relational database.
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into shorter time ranges and (b) interval as data structure in the program responsible

of storing many different data types which are related to the time period.

An interval is a time period within a day and the final objective of the program

is to forecast air quality for each individual interval. Each day is divided into four

intervals, 00-06, 06-12, 12-18, and 18-24. The 6-hour length was decided based on

mainly two factors: The temporal dimensions of the data from external sources and

selecting the approach that provided best generalization capabilities but still has enough

details to provide usability. The intention of dividing days into intervals it is to get an

understanding of how the air quality evolves during a day and how it relates to human

factors, such as rush hour.

The interval as a data structure in the program may contain the following data:

• Weather observations

• Traffic observations

• Air quality observations

• Weather forecasts

• Traffic forecasts

• Air quality forecasts

Which data each interval actually possesses and the quantity of each data type

depends on how the interval is related to the current date. Only intervals that belong

to the past have observations, and future intervals generally obtain forecasts each day

one week in advance, with the exception of the traffic forecasts that are only made once

per interval. Both traffic and air quality forecasts are connected to potentially several

different models. The ideal passed interval looks in other words like this, where n

refers to the number of traffic models and m is the number of air quality models:
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(a) NO2 (b) PM10

Figure 3.4: Pollutant sources at Danmarkplass [2]

Type Quantity

Weather observation 1

Traffic observation 1

Air quality observation 1

Weather forecasts 7

Traffic forecasts 1 day ×n

Air quality forecasts 7 days ×m

3.6 Air quality

This thesis and the design of Braluft are targeting the air pollutants NO2 and par-

ticle matters smaller than 10 µm (PM10) for air quality assessment. The air quality

data is delivered by NILU - Norwegian Institute for Air Research which is an indepen-

dent, nonprofit institution concerned with raising awareness and increasing knowledge

of climate change and environmental pollution through their research and services [31].

Among these services is an open API (api.nilu.no) serving historical observations for

several pollutants across various stations in Norway. One of these stations is located

at Danmarkplass, which serve as a data source for NO2 and PM10 observations in the

Braluft-program.
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The role of the air quality observational data is twofold: (a) It is being used for

training the underlying machine learning models in the program in order to make better

predictions, and (b) to validate the predictions made by the artifact. In terms of

representing the air quality numerical values are used for the NO2 and PM10 levels.

More specifically is the micrograms per cubic meter (µg/m³) unit being used in the

artifact for both the pollutants. No conversions are being made to the data collected

from the API, but mean values are calculated for each interval.

3.7 Weather data

Unlike air quality and traffic data the artifact does not observe or try to predict any

of the meteorological variables. Both forecasts and observations of the weather data

are gathered from Meteorologisk Institutt, a public administrative body in Norway

providing meteorological services for civilian and military usage [32]. Many of the

services they provide are available through their public APIs, including those being

used by Braluft.

The selected meteorological variables being used are essentially the intersection of

the parameters provided by the APIs hosting the weather forecasts and observational

data. These parameters are:

• Wind speed

• Wind direction

• Humidity

• Temperature

• Pressure

• Precipitation
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3.8 Traffic

Traffic data plays a vital part in the program along with weather and air quality data

since sufficient knowledge about traffic is a prerequisite for modeling air quality [2].

While some data and reports exist related to local traffic there are currently limited

options in terms of open data solutions. The available sources found were deemed

unfitted for the Braluft project because of the lack of details in either the spatial or

temporal dimensions. Traffic data aggregation is therefore one of the processes included

in Braluft. Traditionally the state of traffic congestion is conducted by using various

types of sensors, such as piezoelectric sensors responding to pressure on the road [33]

or inductive loops [34]. The increased usage of GPS-devices such as smartphones has

also led to the emergence of network-wide traffic data capable of solving this problem

[33]. Such data is unfortunately not available in the context of Braluft. Luckily, there

is an available web camera overlooking the intersection on Danmarksplass and parts of

Fjøsangerveien, mainly in the direction of the central parts of Bergen. Images from this

camera are used as input to the application for assessing the traffic congestion in the

intersection.

Traffic assessment through video camera footage can be grouped into three categories

[33]:

• Detection-based methods identifying and counting vehicles

• Motion based methods tracking vehicle movement

• Holistic methods analyzing images a whole

The Braluft application takes a detection based approach, by downloading snapshots

of the web camera images and counting vehicles observed using a pre-trained machine

learning model. The intervals in the program are making use of this data by aggre-

gating the vehicle counts in the same time span as the interval, resulting in one final

numerical value representing the vehicle count for the six hours.

.
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Chapter 4

Air quality

4.1 Pollutants

As mentioned before, air quality is in this thesis assessed by investigating the presence

of NO2 and PM10, two of the most important pollutants concerning Norwegian cities

along with PM2.5 [2]. High concentrations of the components forming air pollution can

arise based on several different sources and conditions [18][20], such as:

• Local sources (traffic, construction, industry, heating, etc)

• Natural particle sources (dust)

• Inefficient atmospheric dispersion conditions

• Weather conditions enabling long-range transport of pollution components

4.1.1 Nitrogen dioxide

Nitrogen dioxide (NO2) is a toxic gas with great irritating power and is considered one

of the main pollutants of concern in the matter of air quality [20][16]. The pollutant

is part of a larger group of gases and components called nitrogen oxides (NOX) [2]

and is responsible for the yellowish color that can cover highly polluted cities [20]. It

is considered a secondary pollutant, as it is derived from nitrogen monoxide oxidation
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that occurs in the atmosphere, it is not produced by for instance a vehicle directly [20].

NO2 is capable of having both short and long term health effects, particularly when

exposed to sensitive people [20]. The gas may contribute to reduced lung function and

worsening of respiratory diseases [2]. It is also contributing to the formation of acid

rain leading to possible alterations in the ecosystem [20].

NO2 is the most challenging pollutant in Bergen with regard to regulatory require-

ments, where the yearly levels exceeded threshold values in 2010, 2012, 2013, 2014,

and 2016 [2]. However, levels are expected to drop significantly by 2021, mainly due

to new vehicular technology including zero-emissions vehicles, but exceedings of hourly

threshold values might still occur, especially during inversion of temperatures. This is

a natural phenomenon where the temperature layers are reversed, meaning hot air is

trapping cold air at ground level and not allowing pollutants to diminish [2].

4.1.2 Particulate matters

Particulate matters exist in a wide variety in terms of size, ranging from a few nanome-

ters to about 100 micrometers. PM10 is particles smaller than 10µm and can be referred

to as the inhalable fraction where exposure can lead to development and worsening of

lung and cardiovascular diseases [20][2].

Particles are formed by a complex mixture of many different solid and liquid sub-

stances of various nature, including metals, carbon, nitrates, and sulfate [20]. These

particles can be of a primary or secondary nature. Particles originating from primary

sources are usually a result of anthropogenic activities including combustion of fossil

fuels in vehicles, but also natural phenomenons such as wildfires. Secondary sources, on

the other hand, are for instance chemical reactions, condensation, and coagulation in

the atmosphere [19]. PM10 is at Danmarkplass mainly attributed to domestic heating

and traffic through resuspension of dust from roads and tire wear [2].

There has not been registered any exceedings of threshold set by the official regula-

tions for yearly PM10 values in Bergen since the measurement program was started in

2003 [2]. This trend seems to continue, as the risk of exceeding the threshold remains
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low. However, there are several days per year with PM10 levels above what is recom-

mended by The Norwegian Directorate of Health [2]. It is expected more emissions

from road dust towards 2021 in Bergen, but direct emissions from vehicles should at the

same time decrease due to new vehicular technology, meaning the total amount of PM10

should remain about the same with the exception of tunnel openings in the central part

of the city [2].

4.2 Weather

There is a lot of uncertainty regarding the connection between meteorological variables

and the impact they have on air quality [35]. The following section is therefore dedicated

to reviewing the effect of meteorological variables in similar studies to extract which

variables are worth exploring when designing air quality models for Braluft. How they

are used should however be decided by the models during training.

The knowledge about each variable gained from the reviews and during data explo-

ration can also facilitate the development of new similar tools, and planning of future

activities in the area to improve on the air quality [18].

Wind speed and direction

Local breeze has been observed as a main influence on the air quality when considering

meteorological variables in Barcelona. More specifically, the traffic/wind speed ratio.

In other words, a positive change in air quality was observed when the wind speed

increased and/or the amount of traffic decreased [24].

Similar observations are also seen in Cairo, where the prevailing presence of wind

results in a significant negative correlation with particles in the air [25]. Furthermore,

the same study indicated that the wind direction was able to affect the presence of NO2.

PM10 did not seem to be influenced by wind direction, suggesting that particles are of

urban origin [25].

A combination of wind speed and direction were deemed the most important me-
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teorological variables overall in Athens and Helsinki, but with some local variations.

[18].

The same tendencies were shown in three different cities in China, where NO2,

PM2.5, and PM10 diminished as the wind speed increased, except during the summer.

Wind direction also had an impact in these cities, where the highest concentrations of

polluted air were associated with certain wind directions, changing from city to city

[35].

In regard to forecasting in Bergen, there is a reason for optimism when considering

wind speed. Some concern should be raised towards wind direction as there seems to

be a somewhat low variance of wind direction in Bergen, especially during the winter

where wind mainly flows in from south/south-east. More variance is seen during the

summer [2].

Humidity

Studies in Cairo show that high concentrations of NO2 occurred when the humidity

was less than or equal to 40%. Every other observed component were, on the other

hand, peeking with humidity over 80%. Furthermore, the correlation was found to be

stronger between NO2 and the humidity than the other components [25]. A similar

study surveyed three Chinese cities and concluded with an all over positive correlation

between humidity and the components chosen in the Braluft application, NO2 and

PM10. This was especially clear during the winter season [35]. Humidity was found to

have little to no effect on the NO2 levels at three different sites in Ireland [16].

Temperature

The same study from Cairo concluded that there was no significant association between

temperature and the primary local pollutants. An increase was seen in NO2 during

warmer periods but was mainly attributed to other seasonal factors [25]. The correlation

between temperature and air pollution in the previously mentioned Chinese cities shows

varying results, both in terms of whether it had a positive or negative effect, and to
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which degree. These variations seem to vary a lot from season to season with different

results in each of the cities [35]. Just a little correlation was found between temperature

and NO2 levels in different sites in Ireland [16]

Based on these studies, it is difficult to conclude how much impact temperature

has on air pollution in general, since seasons and local climate have to be considered.

It does, however, justify further exploration in terms of what the effect it has in when

developing predictive models based on Danmarkplass, a location with a different climate

than previously mentioned studies.

Air pressure

The effect on air quality in regards to air pressure seems to be limited in similar historical

research. However, the effect was found to vary when tested in four different sites in

Ireland, from insignificant to significant [16].

Precipitation

Precipitation is rarely mentioned in the reviewed research on air quality forecasting

so it is hard to anticipate how or how much the parameter will affect the forecasting

capabilities. However, it may have a positive effect by washing pollutants of the roads

so that resuspension is avoided [2].

4.3 Impact from traffic

Air quality in urban areas is strongly influenced by the level of road traffic emissions

[24][36][20] and motor vehicles emit about 500 different compounds [25]. Local emissions

from traffic have been shown to be the main source of NOX and PM10 in the urban

areas of both Helsinki and Athens. This despite their differences in terms of climate and

human factors, such as population and cultural differences that might have an impact

(for instance attitude towards public transportation) [18].
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Rush hours Studies performed in Barcelona show an increase in all the observed air

pollution components during the rush hours in the morning, including NO2 and PM10

[24]. Similar observations are also seen in Helsinki and Athens, where NOX and PM10

peaked during the rush hours [18].

There are two types of emission produced by vehicles, namely emissions produced

by exhaust and non-exhaust. The former refers to pollutants directly emitted into the

air from the vehicle formed during fuel combustion in the engine or formed during

the emission itself when exhaust gases are mixed with the ambient air [24]. Non-

exhaust emissions, on the other hand, are a result of resuspension of road dust from the

degradation of tires, brakes, and pavement abrasion [24]. Studded tires are providing

an extra contribution to the resuspension of such particles, which is why they often

are regulated by fees. This has proven to be effective and provides an extra income to

support policies for emission control [2]. Data gathered from several European cities

suggest that emissions from the exhaust and non-exhaust sources contribute about the

same amount of particulate matter. The percentage of emissions from non-exhaust

sources can rise to up to 90% in northern European countries during the winter, with

studded tires and measures for de-icing the roads [36].

Applied policies for reduced emissions are usually targeting exhaust as a source of the

pollution through means such as extra toll during rush hours, park-ride-systems (parking

areas in the outskirts of urban areas connected to public transport), and incentives for

car sharing. While such measures can lead to a significant reduction of emissions caused

by the exhaust, it seems to have very little effect on non-exhaust emissions [36].
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Chapter 5

Machine learning

An essential part of the Braluft ecosystem is the air quality and traffic forecasting

models. The chosen approach for creating these models is using machine learning.

Machine learning is an interdisciplinary field that includes elements from a variety of

sources, for instance artificial intelligence, cognitive science, statistics, and several others

[29]. Machine learning is capable of handling tasks too complex for fixed programs

written by humans because of its potential to create generalizations automatically from

examples, and more complex tasks can be solved as the set of examples grow [3].

Machine learning algorithms can be categorized broadly into three categories, su-

pervised learning, unsupervised learning, and reinforcement learning [28].

Supervised learning Supervised learning is concerned with mapping inputs to out-

puts in the form of labels [12]. The data sets used for training the models using su-

pervised learning contain samples of input-output pairs [28]. Classification is usually a

supervised task where the outputs are in the form of a discrete value. The learning al-

gorithm is another words asked to produce a function f : Rn → {1, ..., k} where {1, ..., k}

is the set of different possible categories. Another variant is producing a function that

computes the probability distribution of the different categories [4]. Regression prob-

lems are another kind of supervised task that can be solved using machine learning, but

the outputs are continuous unlike classification problems [12]. The algorithms are in
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other words producing the function f : Rn → R [4].

Unsupervised learning Unsupervised learning is applied when the desired output

is not known but we want to know the structure of the data [12]. Labels of the data are

in other words not included in unsupervised learning algorithms [29]. Clustering, for

instance, is the problem of finding partitions inside observed data, which can be used

for creating rules for predicting the outcome of future data [37].

Semi-supervised is an option when a small amount of the samples in the data set

contains the desired label, but missing in the majority. The models are then based upon

both labeled and unlabeled data [28].

Reinforcement learning Reinforcement learning is based upon learning through

feedback in the form of reward or punishment from an external environment [28].

While supervised and unsupervised learning focus mainly on data analysis, reinforce-

ment learning is preferably used for decision-making problems [29].

5.1 Generalization

A key challenge in machine learning is making sure the models are capable of making

good predictions to new data, not the data which the models are based upon. This

ability is often called generalization. A strategy for measuring how well the model

generalizes is to measure how well the model is making predictions on a separate test

set containing samples that are not used to train the model. One might, in other words,

distinguish between training error and test error, where the former is used to direct the

training, and the latter is used to evaluate the model. In order to achieve generalization

capabilities in a model, the training error must be small, and the gap between training

error and test error should be narrow. Two central challenges in machine learning in

this context are the issues of over- and underfitting the model [4].
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The issue of overfitting An indication that overfitting is occurring is when a model

predicts well on training data, but bad on a separate test set. The distance between

training error and test error is in other words too wide and the models fail to generalize

to unseen data [4]. Generalization errors can be divided into variance and bias. Variance

refers to a model’s ability to make consistent predictions and bias is the ability to learn

the wrong thing. Both should be minimized for the most accurate predictions [12].

With this in mind, a powerful learner is not necessarily better than a less powerful one

[3].

Figure 5.1: Bias and variance illustrated [3]

Regularization is a group of techniques attempting to reduce overfitting and improve

generalization. The general idea is to apply a regularization term to an evaluation

function [3]. Early stopping, Lasso, and Ridge are a few examples. However, the

techniques introduce new parameters that need to be tuned in order to achieve a good

fit to unseen data, resulting in additional processing time, for instance using cross-

validation and grid search [7]. Regularization should, however, be used with caution,

as underfitting may occur instead [3].

Underfitting Underfitting, on the other hand, is when the training error is higher

than the accepted level, which can occur for instance if the training data is too complex

for the chosen algorithm [4].
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Figure 5.2: Overfitting and underfitting visualized [4]

A strategy for improving the model when it is under- or overfitting is to alter its

capacity, which refers to its ability to fit a wide variety of functions. A low capacity can

lead to underfitting because of its lacking capabilities of capturing complex structures

in the data and high capacity can result in overfitting where the model is basically

just memorizing the structure of the training data instead of trying to generalize. It

is therefore important to consider this trade-off when building the model in order to

obtain the best generalization capabilities [4].

5.2 Machine learning process

Machine learning algorithms are in general descriptions of how training examples should

be processed [4]. A training example is a collection of features with quantitative data

collected from the object or event we want the algorithm to process. The examples are

usually represented as vector [x1, . . . , xn] where xi is a feature, a piece of information

included in the representation of the example. A set of examples with several features

results in a matrix which is a common way to describe a data set in a machine learning

context [14].

Many machine learning problems can be solved by designing the right set of features

and process them using a simple machine learning algorithm. The ambitions behind
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this designing process are to separate the factors of variation in the data set [4]. The

performance of machine learning models are in other words heavily dependent on how

the data is represented [28].

A typical machine learning process usually goes through preprocessing, learning,

and evaluation phases [28].

5.2.1 Preprocessing

Preprocessing is the act of shaping raw data into a more suited form by removing

unwanted noise and transforming the data into input suited for learning. [28].

Data cleaning

Missing data values are not uncommon due to problems such as malfunctioning data

sources. This leads to implications with applying machine learning algorithms that

are not capable of taking missing data into account resulting in less accurate models

[29]. Data noise and outliers are therefore typically removed from the data set before

machine learning algorithms start the training process [12]. However, noisy data can

contain interesting patterns in itself, so deletion is not always the wisest choice. Missing

or corrupt data can, for instance, be replaced using accurate predictive methods [28].

Features

A feature in a training example is “an individual measurable property of the process

being observed” [38]. For instance, in a classification context is the objective of the

feature to provide useful information about the classes in the data, or more specifically,

we want the features to help us distinguish the classes. This means that a feature is

irrelevant if it is conditionally independent of the class labels [38].

Feature engineering The process of defining new features is often referred to as

feature engineering and may for instance be performed using domain knowledge [12].

The approach of using domain knowledge is, however, a costly one because of the
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dependency on human labor [28]. Selecting the ideal features is one of the most time-

consuming processes in regards to machine learning, and the tasks grow further in

complexity with an increased vertical and horizontal size in the datasets [12]. A possible

reason behind this is the fact that creating features often is a domain-specific task, while

learning algorithms are often way more general-purpose [3].

Dimensionality reduction Data sets with very high dimensionality require a mas-

sive amount of capacity in terms of memory and a high computational cost for training,

while simultaneously risking reduced generalization capabilities because of what is re-

ferred to as The curse of dimensionality. The term is meant to describe the phenomenon

of algorithms performing well in low dimensions, but become hard to deal with given a

higher dimension [3]. Furthermore, the Hughes effect states that the effectiveness and

predictive ability of algorithms decrease after a certain point when the datasets grow in

dimensionality. In other words, machine learning algorithms might lose accuracy as a

result of too many features in datasets of static size. Even though it might seem obvi-

ous, it is worth mentioning that there is no universally ideal subset of features, meaning

the feature selection process is individual for all task [14]. Dimensionality reduction is

concerned with trying to decrease the number of features in the data without losing a

significant amount of information [12]. Another way of looking at it is to divide the

problem of concept learning into two subtasks: deciding which features to use and how

to best combine them [39].

Feature selection While feature engineering is related to creating features, feature

selection is the process of selecting the best features [12]. The goal is in other words to

select a subset of variables capable of efficiently describing the original input data, while

simultaneously reducing noise and removing irrelevant variables. The desired effect of

this action is increased knowledge about the data, reduced computational complexity,

and overall predictive performance on the dataset. [38].

Many datasets consist of highly correlated variables with lots of potential for feature

selection. For instance, one feature is sufficient to describe two perfectly correlated vari-
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ables, since the extra variable provides no additional information about the class. These

excessive variables might even serve as noise for a algorithm, as it might introduce bias

and therefore reducing the performance [38]. An important notion is that correlation

does not imply causation [3], but it can serve as a guide to further investigate the effect

of a feature.

One way of selecting relevant features is through filter methods, where the general

idea is to give each variable a score and exclude any variable with a score beneath a

certain threshold. Pearson correlation coefficient is an alternative for calculating such a

score which is lightweight and avoids overfitting. A downside of such as an approach is

that variables might be discarded due to a low score even though it could prove valuable

in combination with other data [38]. The correlation coefficient can be a good indicator

of the strength between two or more variables, but only when a linear relationship exists

between the variables [29].

Instances selection

Instance selection is the process of selecting samples from a data set that are capable of

resembling the entirety of the dataset but on a smaller scale. A new dataset containing

representative samples will result in a reduction in height in regards to the data used

for machine learning [12]. This is similar to dimensionality reduction as some instances

are a better aid for the learning process than others. Blum and Langley [39] mentions

the following reasons why this is so:

• Reduction of computational complexity

• Labels for the samples could be expensive (e.g. when manually constructed by

experts)

• Focusing the learning process on informative examples

Possible approaches to this selection are random selection, genetic algorithm-based

selection, progressive sampling, using domain knowledge, and cluster sampling [12]. The

size of the re-sampled data sets has also to be put into consideration with a balance
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between accuracy and computing time, and the selection approach should ensure that

all output classes are included [12]. It is important to remember that there is a trade-off

when it comes to data size. In other words, how much can the data set be reduced in the

number of training samples before performance drops? Contrary, a simple, pragmatic

solution to bad model performance is for instance possibly just getting more data [3].

Feature scaling

Many machine learning algorithms perform poorly if the features are using very differ-

ent scales. Feature scaling is, therefore, one of the most important parts of the data

preprocessing [5, p. 66]. For instance, in the context of Braluft pressure is usually

around 1000 hPa and wind speed below 10 m/s resulting in potential struggles for the

machine learning models due to the difference in scale. Scaling the label of the data

is usually not required. Standardization is a commonly used feature scaling strategy,

where the mean value of a feature in the data set is subtracted from the feature value

in the training sample, and then divided by the variance [5, p. 66].

5.2.2 Learning

The learning phase includes selecting appropriate algorithms and tuning the learning

parameters to create a model based on the preprocessed data.

There are many machine learning algorithms available with a great deal of diver-

sity, something that reflects the different needs within the applications in regards to

capturing the mathematical structures in the data, offering explanations, and providing

alternatives for the trade-off between computational complexity and performance [37].

Selecting the appropriate algorithm is often considered more an art than a science since

there is no single model that performs best on all problems [13]. In addition to this,

models usually have the same fundamental strategy: grouping similar examples, where

similar is the variance provided by the individual algorithms. Therefore, Domingos [3]

suggests to start with the simplest algorithms. The learning parameters of the models

may also affect the performance significantly meaning proper configuration is crucial.
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Unfortunately, most machine learning systems are not providing assistance in this area

[28].

Machine learning algorithms

There are way too many algorithms available to mention here, so only the three al-

gorithms being tested by the Braluft-program are described in this section: Passive-

Aggressive Regressor (PAR), Stochastic Gradient Descent (SGD), and Neural Networks

(NN).

PAR and SGD are variants of Linear Regression, meaning the models make predic-

tions by computing a weighted sum of the input features plus a bias term. This is more

formally written as: y = θ0 + θ1x1 + θ2x2 + · · · + θnxn where y is the predicted value,

θ is the vector of trained model parameters, x is the vector of feature values, and θ0 is

the bias term [5, p. 106].

Passive-Aggressive regressor The Passive-Aggressive Regressor is part of an online

learning algorithms family for various prediction tasks, including classification, regres-

sion, and sequence prediction [30]. It is trained one instance at the time by initially

making a prediction of the target value which is the dot product of an internal param-

eter vector and the feature values of the training instance. The true target value of

the training instance is then revealed to the algorithm which suffers an instantaneous

loss calculated by the chosen loss function. The learning parameter epsilon controls the

sensitivity of prediction mistakes by considering the loss zero if the prediction mistake

is smaller than epsilon. At the end of the training process for the instance is the weight

vector updated using the loss function and the training instance [30].

Epsilon is in other words responsible for defining when to update the model. The

weight vector will remain the same if the prediction error is less than epsilon meaning

the algorithm remains passive for the given training instance. Contrary, if the prediction

error is larger than epsilon the algorithm will be aggressive to change the weight vector

[30].
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The Passive-Aggressive algorithms have a few variations of the objective function

for weight vector optimization. Some of these include a regularization term C which

defines how large steps the algorithm may take upon updating the weight vector [30].

Stochastic Gradient Descent Gradient descent is an optimizing algorithm attempt-

ing to minimize a cost function in order to find an optimal solution. This is performed

by updating a parameter vector by measuring the local gradient of the error function

and moving towards the descending direction one step at the time [5, p. 117]. Once

the gradient is zero the algorithm has reached a minimum. The size of each step can

be determined by setting a learning rate.

The algorithm has various different implementations, including Batch Gradient De-

cent and Stochastic Gradient Descent. The former is based on using an entire data set

to compute the gradients at every step. SGD on the other hand is only making use

of one training sample when calculating the gradients per step. This result in a cost

function bouncing up and down, but decreasing on average over time [5, p. 117].

Neural networks While neural networks are available in various types for different

tasks this thesis is focusing on using a Multi-Layer Perceptron (MLP) architecture. A

central building block for these neural networks are the linear threshold unit (LTU)

which serves as an artificial neuron in the network. The LTU takes a set of numbers as

input which are turned into a weighted sum. At the end a step function is applied to

the sum which is the output of the unit [5, p. 257].

Figure 5.3: Linear threshold unit (LTU) [5, p. 257]

36



5.2. MACHINE LEARNING PROCESS

A MPL consists of one input layer, one or more hidden layers of LTUs, and a final

layer of LTUs called output layer. Networks with two or more hidden layers are called

deep neural networks [5, p. 261].

Figure 5.4: Multi-Layer Perceptron [5, p. 261]

The networks are trained using back-propagation, which includes making a predic-

tion using the network, measure the error, then go through each layer of the network in

reverse order to measure how much each of the connections in contributed to the overall

error, and finally tweak these connection weights to reduce the error.

5.2.3 Evaluation

An evaluation of the model is the last step of the process, where the performance of the

model is determined [28].

Regression metrics

The objective of the metrics for regression problems is to measure the distance between

the predicted value and the actual target value, which may say something about how

much error the models are making in their predictions [5, p. 37-39]. While several

metrics could be included in this category, only four are presented as they are used to

evaluate the machine learning models in the program. In the samples m is representing

the number of training examples, x(i) is the vector of the values of the features of training
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sample number i, and h represents the predictive function of a machine learning model.

Coefficient of determination (r2) The coefficient of determination is a measure-

ment of how likely it is that future samples are correctly predicted by a model. The

best possible score is 1 and it can be negative [40].

Root mean square error (RMSE) The root mean square error emphasizes large

errors by squaring the prediction error, which may be an undesired property if there

are many outlying values that should be ignored [5, p. 37-39].√√√√ 1

m

m∑
i=1

(h(x(i))− y(i))2 (5.1)

Mean absolute error The mean absolute error is a simpler metric and is the mean

absolute distance between the predicted value and the observed value [5, p. 39].

1

m

m∑
i=1

|h(x(i))− y(i)| (5.2)

Median absolute error As the name suggests median absolute error is the median

of a absolute errors made by the model when comparing predictions with the actual

values. A potential advantage of using the median is that outlier data are ignored.

5.3 Machine learning & air quality forecasting

Stochastic multiple linear regression and neural networks have previously been used to

predict the concentration of air pollutants with success [18].

Forecasting models based on multiple linear regression with meteorological variables

have previously been developed and tested with data from Helsinki and Athens. The

target for the study was to forecast the maximum hourly concentration of PM10 and

NOX , as well as the daily average, for the following day. The latter was concluded

to be the easiest task to model out of the two, as anomalies were smoothed by more
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predictable observations. The challenge of seasonal variations was handled by making

separate models for cold and warm periods of the year [18].

A two-day pollutant forecast with good predictive abilities has previously been built

using an Elman Model based on a recurrent neural network to forecast the occurrences of

different components in the city of Palermo (Italy), including PM10 and NO2. Variables

used for the models were wind speed and wind direction, pressure, and temperature.

[20].

Neural networks have previously been built for PM10 forecasting targeting the follow-

ing day in urban areas in Belgium. The study concluded that meteorological conditions

were the main influencer of the PM10 concentration, with boundary layer height as the

most important variable. Anthropogenic activities, on the other hand, had a smaller

effect. Contrary to much similar work wind speed did not provide a significant role in

the accuracy of the model [19].

Neural networks and lazy learning have been tested for ozone and PM10 forecasting

for the current data in the city of Milan using air quality and meteorological data

with promising results. The best estimation parameter for PM10 was the previous

observation, with less emphasis on meteorological variables [41]

A forecasting system for making NO2 forecasts 24-48 hours in advance at four dif-

ferent locations in Ireland has been developed using a model based on multiple linear

regression, historical NO2 observations, and meteorological data. Wind speed and di-

rection were found to be a significant associated with the emissions levels at the three

different sites [16].
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Chapter 6

Architecture

The Braluft system is based on a microservice architecture consisting of four microser-

vices spread across three virtual machines. Each microservice is a stand-alone appli-

cation sub-unit. The communication between each of them is based on HTTPS and

REST-inspired APIs. This approach leads to flexibility as each service can be devel-

oped and redeployed separately without affecting the other services [42]. More tradi-

tional ”monolithic” approaches are on the contrary dependent on a full redeployment

of the entire code base for even small changes. The microservice architecture is conse-

quently more lightweight which enables easier deployment during updates and is well

suited for situations where it is difficult to anticipate all functionality in advance [43].

The virtual machines are hosted on UH-IaaS, a collaboration between the univer-

sities in Bergen and Oslo offering cloud computing to members of various research

organizations including the University in Bergen [44]. They are running with identical

specifications and operative system (1 VCPU, 4GB RAM, 20GB hard drive, Ubuntu

18.04).

This section will provide a more detailed description of the data sources and how they

fit into the overall architecture of Braluft. The three virtual machines are each given

an ambiguous name to make them distinguishable, Wilhelm, Thorvald, and Ragnvald.

The intent behind the ambiguity is to enable easy moving of services if needed. The

following list shows an overview of the architecture with a summary of the different
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services hosted by the different machines.

• Wilhelm

Main service

Responsible for the communication between all the services through daily

routine operations, data persistence, and serving as an API for the front

end. Everything runs in other words through the main service.

Source Service

Enables gathering and formatting of data from external APIs and hosting

these data so the main service can access them.

PostgreSQL

A relational database for data persistence.

Front-end

Static file hosting of front-end resources.

• Thorvald

Model manager

Responsible for handling the machine learning models that are a part of the

application. This includes training models and making predictions using data

provided by the the main service and hosting various utility functions.

• Ragnvald

Image service

The image service is responsible for downloading web camera images over-

looking the intersection on Danmarkplass, detecting the number of vehicles

in each image, and providing these data to the main service.
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Figure 6.1: The architecture behind Braluft

As the figure illustrates everything runs through the main service. The Source Service hosts

Weather forecasts / observations from the API’s of Norwegian Meteorological Institute and air

quality observations from NILU. Observational traffic data are created by the Image Service

using web camera images. The main service collects these data and saves them in the

database. The main service is also sending the observational data to the model manager to

train the underlying machine learning models in the program, as well as making sure forecasts

are made based on weather forecasts originating from the Source Service and traffic forecasts

from the Model Manager.
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6.1 Source Service

Source service is one of the four microservices that makes up the Braluft program.

It is written in Python as a Flask application and is responsible for serving weather

observations, weather forecasts, and air quality observations at source.braluft.no.

Figure 6.2: Responsibilities for the Source Service

Weather observations, weather forecasts, and air quality observations

Weather data

Both weather forecasting and weather observations for the application are delivered

by Norwegian Meteorological Institute and their APIs. The meteorological variables

included in the program are, as mentioned before, humidity, pressure, precipitation,

temperature, wind speed, and wind direction.

Weather observations are gathered from a service called Frost hosted by Norwe-

gian Meteorological Institute (frost.met.no). The service is an API providing access to

historical weather and climate data from various weather stations. One of them is lo-

cated at Florida approximately 750 meters away from Danmarkplass that the program

makes use of. The requested time period, weather station, and meteorological variables

are specified using GET-parameters to the Frost API and the response is formatted as

hourly intervals. The data are then aggregated into mean values for the intervals used

by Braluft (6-hour), with the exception of precipitation which is summed and wind

direction which is using the median. These data are served by the Source Service in the

format viewed by Listing 1.
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1 [
2

3 {
4 "0": {
5 "air_temperature": -0.55,
6 "precipitation": 0.2,
7 "relative_humidity": 77.67,
8 "surface_air_pressure": 990.42,
9 "wind_from_direction": 141,

10 "wind_speed": 3.82
11 },
12 // Intervals starting 06, 12, and 18 omitted
13 }
14

15 ]

Listing 1: Weather observations example

Weather Forecasts Weather forecasts are also delivered by Norwegian Meteorologi-

cal Institute, using the Locationforecast 1.9 module available as a part of their standard

API (api.met.no). Locationforecast does only include the current forecasts meaning no

historical data are available on the endpoint.

To solve the need for historical forecast data for development, database restarts,

documentation, and other purposes, the weather forecasts are saved as XML-files on

the virtual machine hosting the Source Service every night at 1:30 AM CET. The

location of the forecast is specified using latitude and longitude as GET-parameters

and a nine-day forecast is returned in XML-format by the origin.

When the Source Service is queried for weather forecasts for a specific day a Python

script is used to look through the folder containing the downloaded forecasts for relevant

hits from the preceding seven days of the date in question. A query for the date 2019-01-

10 will, for instance, look for forecasts with a date between 2019-01-03 and 2019-01-09

and returned in JSON-format as shown in Listing 2.
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1 [
2 {
3 "forecastOrigin": "2019-01-09",
4 "intervals": {
5 "0": {
6 "humidity": 95.82,
7 "precipitation": 1.7,
8 "pressure": 1024.33,
9 "temperature": 1.47,

10 "windDirection": 142.4,
11 "windSpeed": 3.35
12 },
13 "6": {
14 "humidity": 95.8,
15 // Data omitted
16 },
17 "12": {
18 // Data omitted
19 },
20 "18": {
21 // Data omitted
22 }
23 }
24 },
25 // Forecasts between 2019-01-03 - 2019-01-08 omitted
26 ]

Listing 2: Weather forecast example for 2019-01-10

The original XML-data are stored in various intervals by the API depending on

how close the forecasted data are to the origin date of the forecast. The nearest dates

have data in an hourly rate, while later dates come with data in six-hour intervals.

Similarly as the weather observations the forecasted data are returned from the Source

Service as mean values, with the exception of precipitation and wind direction, using

the program’s intervals of six hours.

Air quality observations

Air quality observations are the final data hosted by the Source Service. The data

are delivered by Norwegian Institute for Air Research (NILU) through their publicly

available APIs located at api.nilu.no. The Source Service sends requests to the API

specifying requested time range and observation site using GET-parameters. The API

sends a response containing data related to several observed pollutants, including NO2

and PM10, in hourly intervals for the requested time range. Finally, the Source Service is
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aggregating the data into the 6-hour intervals used by the program as shown in Listing

3.

1 {
2 "0": {
3 "NO2": {
4 "max": 12.55,
5 "mean": 6.93,
6 "median": 6.69,
7 "min": 2.53
8 }
9 // Other pollutants for interval omitted

10 }
11 // Remaining three intervals omitted
12 }

Listing 3: NO2 for the 00-06 interval for an arbitrary date

6.2 Image Service

Figure 6.3: Responsibility for the Image Service

The Image Service downloads web camera images overlooking local traffic and counts the

number of vehicles in the images

Image service is a separate service responsible for getting the traffic observations used

in the Braluft program. It runs on its own virtual machine for dedicated resources and

scalability. Briefly explained the Image Service is responsible for measuring the traffic

in images from a web camera hosted by Bergens Tidende overlooking the intersection on

Danmarksplass. The measurement is based on how many vehicles are being detected by

an object detector in the images. Figure 6.4 is an example image from the web camera

stream.
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Figure 6.4: Imaged captured from web camera on Danmarksplass

Image downloading strategy

The service makes no attempt to provide an exact number of passing vehicles in the

intersection, but rather provide numbers that are able to represent the amount of traffic.

It is therefore based on snapshots rather than the continuous video stream. This leads

to a significant reduction in required computational power compared to trying detecting

vehicles in a video stream. Additionally, the web camera stream is based on many short

video clips resulting in challenges for the object detection approach since the vehicles

are likely to appear in several clips. Using snapshots is therefore a lot more feasible and

requires much less engineering.

Conveniently, snapshots from the stream are already being hosted publicly by the

web camera provider in JPG-format which is updated every 10 minutes. Braluft makes

use of these snapshots when making traffic observations. The virtual machine hosting

the Image Service downloads the latest image every 10 minutes and saves them in a

backlog folder.
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Figure 6.5: Processed web camera image by YOLOv3

Object detection strategy

The Image Service is taking a detection-based approach using You Only Look Once

version 3 (YOLOv3) for detecting vehicles in the web camera images. YOLO is a pre-

trained machine learning model based on a convolution network capable of predicting

several objects simultaneously in an image.

The algorithm divides the image into a grid with several different bounding boxes

per cell. Each of the boxes is assigned an individual confidence score representing how

certain the model is that an object exists within the box and how accurate the perimeter

of the box is [45]. The boxes are also predicting class probabilities describing how likely

it is that various classes exist within the box [46]. The final prediction values are the

product of the confidence scores for the bounding boxes and the class probabilities.

The technique is very fast compared to more traditional classifier-based methods since

YOLO only requires a single network evaluation [45]. The convolutional network used

by YOLOv3 has 53 layers and is called Darknet-53 [46]

YOLO has previously proved to be capable of performing better on traffic congestion
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classification than regular deep convolutional neural networks [33] while simultaneously

being quick because of the only look once approach. In addition to traffic congestion,

YOLO (or modified versions of YOLO) is also tested in a variety of other tasks within

traffic contexts, such as traffic light detection [47], pedestrian detection [48], and road

lane detection [49].

The object detection phase is initiated once per hour where the downloaded web

camera images in the backlog folder are processed using YOLO. This is performed by

a script that loads the object detector and iterates over the six images downloaded the

past hour. The object detector returns a list of objects for each image which is reduced

to an integer representing the sum of vehicles. The vehicle count and the filename are

at the end saved locally as files in the format seen in Listing 4

1 [
2 {
3 "cars": 38,
4 "file": "2018-12-20T13:46:23.jpg"
5 },
6 // Remaining files omitted
7 ]

Listing 4: Traffic observations in JSON-format

Precision

Targeting 100% accuracy is not a priority for the object detection process in the Image

Service. It is more important that the object detection is consistent for all the images

and that the detector is capable of creating numbers suited for traffic representation.

The YOLO object detector can be controlled by setting a threshold value defining

how certain the detector has to be that a certain object exists in order to report it as

detected. This threshold was configured in the Image Service through many experiments

performed during development using images with different context, such as a varying

amount of vehicles and time of day (day/night). The ideal threshold value was concluded

to be 20% leading to the most detected vehicles without false positives and other errors.
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Figure 6.6: Image Service process

Web camera images are downloaded every 10 minute into a backlog folder. Once per hour the

images in the backlog folder are processed by counting the number of vehicles in the images.

The results are saved as local files on the virtual machine hosting the service.
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Accessing the processed data

The processed data are available through HTTPS using a Flask application written in

Python. GET-parameters in the HTTPS-query are used to specify the time period, for

instance, https://images.braluft.no/?from=2018-12-20T14:00&to=2018-12-20T15:

00 will get all data related to images between 14 PM and 15 PM, 20 December 2018.

The service will then query the local files for file names that are in the requested time

range before the data are returned in JSON-format as seen in listing 4.

6.3 Model Manager

A typical approach to making machine learning models is to make several variants and

select the model with the best performance. However, the best performing model might

vary as time passes and the problem space changes [16]. In addition to this there is as

previously mentioned no model that performs best on all problems.

Figure 6.7: Responsibilities for the Model Manager

The Model Manager is handling all the machine learning models used by the program to

create traffic forecasts and air quality forecasts. This includes initiating and training the

models, and using the models to create forecasts. All the actions are performed upon request

by the Main Service.

This challenge adds extra complexity in terms of building models and infrastructure

for the Braluft program since:

• The incremental nature of Braluft means hardly any data are available to analyze

at the initial period for the project. This makes it difficult to gain intuition on

what a good model looks like for the project
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• Even with this intuition it is difficult to foresee which model will perform best

months or years ahead

• Several models increase the need for a uniform way of training models and making

forecasts

• The program is dependent on regression models for three different tasks:

– NO2

– PM10

– Traffic

The model manager is implemented to combat these issues by providing an interface for

effortless model deployment, making it easier to explore new models in larger quantities.

Model structure

The general idea behind the Model Manager is that every model controlled by the

model manager must conform to (a) a specific file structure where each model has a

folder containing one script file and one file for the serialized model, and (b) the script

file must implement a train and a predict function.

The file structure is illustrated by Figure 6.8 showing how models are grouped by

task and identified by using the folder names as model names. This structure enables

the Model Manager to find the correct model for the correct task.
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models

no2

n02 par c2

index.py

model.plk

pm10

pm10 par c10

index.py

model.plk

traffic

sgd a0001

index.py

model.plk

Figure 6.8: File structure for models

All the models are grouped into folders by task. Each model has a separate folder where the

folder name is used for identification and the folder must contain an index.py file with the

actual implementation of the model. The serialized models are stored as model.plk

The index.py file in the model folders allows the Model Manager to communicate

with the models in a uniform way. These files hold the actual implementations of the

models and must therefore implement a constructor creating the serialized model if it

does not exist, a train function, and a predict function. The implementation of the

functions is entirely up to each individual model, meaning they can take advantage of

different frameworks and libraries.

Using the Model Manager

The model manager’s role is to keep an updated list of available models and making

sure data are sent to the right model for training or for making predictions. The model

manager is not responsible for selecting which intervals should be sent to training or
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Figure 6.9: Training a model using the model manager

The Model Manager receives a POST-request to the train endpoint. The model type and

name are specified as a part of the request body so that the Model Manager may find the

correct model to train. The other part of the request is the interval data that are being sent to

the model for training or predicting.

54



6.4. MAIN SERVICE

making predictions, nor keeping track of which intervals have been used for training of

the individual models. The model manager knows, in other words, nothing about the

general state of the program or its intervals.

The Model Manager is running on a separate virtual machine as a Flask application

with two endpoints accessible through HTTPS using the POST-method, /train and

/predict. These endpoints decide which action to perform. The message body of the

request must contain two JSON-objects. The first one is a JSON-object with the name

and type of the model. Upon receiving a request the model manager attempts to find

the model with a matching name and type using the file hierarchy. The other object in

the request is the interval data that include observational data if the action to perform

is training, or forecasting data if new forecasts are to be made. These data are forwarded

to the selected function (train / predict) in the specified model. This process is shown

in Figure 6.9. If the performed action is to make a prediction, the response from the

Service is the predicted value provided by the selected model.

6.4 Main Service

The last service is responsible for communication between the other microservices, a

relational database, and the front end. Most of the active actions in the program are

initiated or go through the Main Service. Key responsibilities of the service include:

• Defining a domain model

• Data Persistence

• Creating intervals

• Making sure upcoming intervals are provided with forecasts

• Fetching historic data for the past intervals and sending them to the model

manager for model updates

• Providing endpoints used by the front-end and for statistics
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The service is written in Java 1.8 using the framework Spring Boot, with the assistance

of Maven for handling dependencies and building.

Domain model and data persistence

Spring Boot was chosen for this task for several reasons, including the Spring Data JPA

(Java Persistence API), static types, and sensible default configuration. The domain

model of the service is defined using annotated Java classes to describe entities and

their relationships. The model is mapped to a relational database (PostgreSQL) hosted

on the same virtual machine as the service. This process is made possible with some

assistance from the Object-relational mapping tool Hibernate which has a lot of utility

related to saving data and making queries, making the data persistence a lot simpler

with reduced development time.

Daily routine

The Main Service’s most important job is the daily routine performed 2 AM every night.

All the data manipulation for the service is performed in a single run preparing for the

next day. The procedure is performed in the following order:

1. Synchronize the list of available models with the Model Manager

2. Create intervals

3. Add data to the intervals (except traffic forecasts and air quality forecasts)

4. Train traffic models and make traffic forecasts for upcoming intervals

5. Review all the traffic models

6. Train air quality models and make air quality forecasts for upcoming intervals

Model synchronization The initial step of the nightly procedure is synchronizing

available models. The Main Service is notified about any changes in the models hosted

by the Model Manager and makes sure new models are saved in the database, and
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models no longer hosted by the Model Manager are deleted. Models for all tasks are

taken into account during this step (traffic, NO2, and PM10).

Creating intervals After the models are synchronized the Main Service is creating

the four new intervals one week ahead relative to the current date. For instance, if the

current date is 01.01.2019, the new intervals are dated 08.01.2019.

Getting data The next step is to add data of the following types to the intervals

missing data:

• Observational weather data (Source Service)

• Observational air quality data (Source Service)

• Weather forecasts (Source Service)

• Observational traffic data (Image Service)

Which data to add are depending on how a given interval is related to the current

date. Only passed dates can get observational data. Contrary, passed dates do not get

any new weather forecasts.

Training traffic models and making traffic forecasts The intervals from the

previous day are used for training the traffic models, and the newly created intervals

one week ahead are receiving exactly one traffic forecast per traffic model

Traffic model review The next step is reviewing the traffic models, where the goal

is to find the traffic model with the best performance for the past 30 days. The time

range was set with the intention of trying to find the model capable of capturing recent

traffic trends that might occur based on seasonal changes such as holidays. This model

is stored in-memory so that the program know which traffic forecast to use when making

air quality forecasts.
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6.5. THE JOURNEY OF AN INTERVAL

Training air quality models and making air quality forecasts The initial part

of the step is using using the observational data from the previous date to train the

air quality models in the program. Next up is making forecasts for the intervals in

the following seven days. These forecasts are based on fresh weather forecasts and the

traffic forecast made by the model found in the previous step.

6.5 The journey of an interval

To further illustrate how the different services within the program are communicating

with each other, the following section is dedicated to describing the entire journey of a

single interval object. All the steps in the process include saving data in the relational

database and is therefore not explicitly stated as a part of each step. Table 6.1 describes

the creation of an interval starting 08.01.2019 00:00.

Day: 1 Date: 01.01.2019

1. The interval object is created by the Main Service.

2. The Main Service initiates the collection of weather forecasts for the interval from

the Source Service.

3. The Main Service sends the interval to the Model Manager n times for traffic

forecasts, where n is the number of traffic models available.

4. The Main Service has previously calculated which traffic forecasting model performs

the best. The traffic forecast made by this model for the interval is sent, along with

weather forecasting data, to the Model Manager k+m times for air quality forecasting,

where k is the number of NO2 models, and m is the number of PM10 models.

Day: 2-7 Date: 02.01.2019 - 07.01.2019
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Performed every day:

1. The Main Service initiates the collection of the latest weather forecast for the interval

from the Source Service.

2. Step 4 from day one is repeated by sending in weather forecasts and traffic forecast

to the Model Manager for air quality forecasting. The selected traffic forecast used may

differ every day if the best performing traffic model has changed.

Day: 8 Date: 08.01.2019

No action performed related to the interval.

Day: 9 Date: 09.01.2019

1. The Main Service initiates the collection of observational weather and air quality

data for the interval from the Source Service.

2. The Main Service initiates the collection of observational traffic data for the interval

from the Image Service.

3. The Main Service sends the observational data for the interval to all models managed

by the Model Manager (traffic, NO2, and PM10) for training.

Table 6.1: The journey of an interval

6.6 Front end - braluft.no

While the microservices form the fundamentals of the Braluft program, they offer little

usability and insight by themselves. This is of course because the microservices are

only available through HTTPS using, for the time being, undocumented endpoints in

a JSON-format. A separate front end is therefore built to represent the processed

data provided by the Main Service’s endpoints. It is intended to show historical data,

forecasts, and different types of charts, such as line charts comparing observed data to

forecasts over time, performance metrics for models over time, etc. The responsibility
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of the front end is in other words to:

• Show forecasts made by the program

• Show data points for traffic, weather, and air quality to easily detect missing data

• Monitor the models

Implementation

The front end is a Single-page application written in Javascript, based on the React

library developed by Facebook. With the exception of React there are too many libraries

included in the development of the front end to go into details of all, but two worth

mentioning are redux and chartjs. Redux is responsible for containing the application

state of the frontend, mainly data collected from the Main Service’s endpoints. ChartJS

is simply put the library providing charts to the frontend. All the source files for the

front-end are bundled upon deployment and hosted as static files accessed at braluft.no.

Visualisations

The front end is a utility created to make sure data are collected properly and monitor

the performance of the models. The latter task is however difficult, as data can be too

complex to interpret, often require processing. To overcome this issue, visualizations

are integrated into the front end making the metadata related to the models easier to

interpret. Furthermore, this can improve the domain knowledge, by looking at how

the variables correlate and finding patterns in the data that can be used in feature

engineering [13]. Interesting results that are derived from this process may even be

considered a part of the artifact itself if the visual representations can provide new

information about the air quality.
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Chapter 7

Exploring the data

This chapter is dedicated to exploring the observational data gathered as a part of the

Braluft-program. More precisely the relationships between the traffic level, meteorolog-

ical variables, and the pollutants are examined using visualizations of the data along

with the Pearson correlation coefficients. The data set created for this section is based

on observations made between December 2018 - May 2019 and consists of 604 intervals.

Each of the intervals can be considered an observation for the variables. There are

in other words only observations gathered during winter and spring, and future data

collected during the summer or fall may very well look different. This limitation should

be accounted for when reviewing the data.

Traffic

Using traffic level for air quality forecasting appears to be useful for especially NO2,

and to a certain degree also for PM10. The most important conclusion based on the

patterns seen in Figure 7.2 is probably that low to nonexistent traffic levels result usually

means good air quality considering these observations are clustered to the bottom left.

However, high traffic levels do not necessarily mean bad air quality given the scattered

observations when traffic levels are rising. The increase seems to be somewhat clearer

for NO2 than PM10 since the lowest registered pollutant levels increase as the amount
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Figure 7.1: Correlation between observed data

of traffic grows. The relationship between the traffic levels and the two observed air

pollutants seems to correspond with the coefficients in Figure 7.1.
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Figure 7.2: Traffic
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Wind speed

Based on the data gathered by Braluft wind speed is the most influential meteorological

variable given the visible decrease in pollutant levels as wind speed increases. Similarly

as traffic level it does seem like wind speed has a greater effect on NO2 than PM10.

This is illustrated by both Figure 7.3 and the correlation matrix in Figure 7.1.
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Figure 7.3: Wind speed

Wind direction

The data gathered by the program show patterns in the wind directions that correspond

with the geographical surroundings of Danmarksplass. As of 18 May 2019 604 intervals

are registered in the program. 464 of these observations have a wind headed towards

south-east (210), south (104), or north-west (150).

The remaining directions have many fewer observations registered which is likely

because of the valley-like surroundings formed by the local mountains around the ob-

servation site, with Ulriken to the east and Løvstakken to the south-west.
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Figure 7.5: PM10 - Wind directions

More important, wind direction seems to have an impact on air quality. The general

tendency in the observed data is that wind headed towards north-west tend to result in

an increase in NO2 and PM10 levels. Contrary, wind headed towards south-east / south

leads to lower NO2 and PM10 levels. The complexity behind this observation warrants

a separate study, but it is possible that the wind headed north is more exposed to

anthropogenic environments than its opposite and is therefore bringing pollutants from
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other districts.
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Figure 7.6: Wind directions with NO2 and PM10 correlation

Precipitation

Precipitation seems to have some influence on the observed air quality, especially when

considering PM10 levels. This could very likely be related to road dust being washed

away resulting in less resuspension because of traffic.
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Figure 7.7: Precipitation

Humidity

Given the data gathered by the program there are not any significant signs of a con-

nection between humidity and the NO2 levels with a Pearsons correlation coefficient

of 0.032 and no visible patterns showing in the plotted data. However, humidity does

seem to have some association with PM10 considering the low pollutant levels during

periods with high humidity, but no linear relationship seems to exist.
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Figure 7.8: Humidity
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Temperature

An increase in temperature seemingly has an effect on PM10 albeit not much. This

relationship is not obvious in Figure 7.9, so a few machine learning models were trained

to compare performance with and without temperature as a feature. Including temper-

ature led to a small increase in performance as seen in Table 7.1.

Model r2 median abs err rmse mean abs err

PAR - with temperature 0.43 5.22 10.28 7.25

PAR - without temperature 0.30 5.97 11.41 8.19

Table 7.1: PAR with and without temperature

24-hour forecasts - Performance April 2019
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Figure 7.9: Temperature

Pressure

The least relevant feature available in the program was concluded to be pressure. This

is based on a low Pearson correlation coefficient, no obvious patterns seen in figure 7.10,

and by creating some sample models as seen in table 7.2. Unlike temperature exclusion

of pressure actually increased the performance of the models.
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Model r2 median abs err rmse mean abs err

PAR - with pressure 0.41 5.21 10.42 7.40

PAR - without pressure 0.43 5.22 10.28 7.25

Table 7.2: PAR with and without pressure - Performance April 2019
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Figure 7.10: Pressure
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Chapter 8

Modelling

The Braluft program is working with three different kinds of machine learning tasks,

traffic, NO2, and PM10. All these can be considered regression problems meaning the

objective is to produce a numeric value. Previous comparisons between artificial neural

networks and linear multiple regressions models in an air quality forecasting context

have shown that artificial neural networks perform slightly better. However, simpler

regressions models are easier to construct and can often be interpreted in terms of

how much each feature contribute to the predictions. Such contributions are usually

not made by artificial neural networks using a ”black box” approach [18]. In order to

represent simple and complex models, both model types are being used for this thesis.

The program is not concerned with making the actual learning algorithms since sev-

eral high quality machine learning frameworks already offer implementations of various

incremental solutions. The objective of this thesis is rather to make use of already

existing technology and data to evaluate the concept of incrementally trained models

for air quality forecasting.

The program makes use of two different machine learning frameworks. The first is

Scikit-learn, providing state-of-the-art implementations of common machine learning al-

gorithms wrapped in a user-friendly interface. The motivation behind the development

of the package is the growing need of analysis tools for non-specialist making it suited for

beginners [50]. The module does also provide several utility functions for model selec-
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tion, evaluation, and preprocessing. In terms of online learning algorithms for regression

problems the package provides implementations of Passive-Aggressive Regressor (PAR)

and Stochastic Gradient Descent (SGD), both tested in this program.

The other pre-built machine learning framework being used is Keras, a high-level

Neural Network (NN) API capable of running on top of several different backends in-

cluding Tensorflow. Using this approach has enabled fast prototyping of neural networks

as a part of the Braluft-program.

The machine learning related processes in the program are written in Python, a

language of a high-level nature that has established itself for algorithmic development

and data analysis in scientific and industrial communities [50].

Stepwise modelling The modeling process in the program is split into three steps.

The first step was to explore and implement traffic forecasting models. The out-

come of this step was traffic forecasting models and initial insight into how good the

selected machine learning algorithms performed considering learning rate, number of

observations, etc.

Step one

TRAFFIC MODELS

1

Step two

 AQ MODELS (first gen.)

2

Step three

 AQ MODELS (second gen.)

3

Figure 8.1: Modelling progress steps

The modelling was performed in three steps: (1) Creating traffic forecasting models, (2)

Creating the initial air quality forecasting models, and (3) Creating more air quality models

based on experiences gained in previous steps for increased performance.

The second step in the modelling process was the implementation of a first generation

of air quality forecasting models. These models are characterized by their usage of all
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8.1. THE MODEL TRAINING PROCESS

the available variables as input data and being numerous in terms of tested learning

parameters. The objective of this somewhat naive generation of models was primarily

to gain insights into the data and the prediction task.

The final step was to convert the previously gained insights from the first genera-

tion of models, the explored data, and previously reviewed literature into models with

presumably better performance. This is mainly done by making adjustments to the set

of features eliminating variables with poor predictive abilities.

8.1 The model training process

The three problems the program is concerned with do share a common infrastructure for

preprocessing, learning, and evaluation. This infrastructure is not limited to the Model

Manger, but is a collaboration between all the services in the program where everyone

contributes. Admittedly the Model Manager is the largest contributor, especially if the

models are included.

Image Service

Main Service  Model Manager

Source Service

• Data formatting  

• Feature selection


• Polynomials


• Standardisation


• Train models


• Make predictions



 

• Check null values  

Figure 8.2: Responsibilities in the modelling process

The machine learning processes are not only performed by the Model Manager and the

models. It is more accurately a collaboration between all the components making up the

program where every part has a contribution. Services related to collecting external data are

also performing formatting, the Main Service makes sure no intervals missing data are sent to

the Model Manager for training / forecasting, and the Model Manager and its models take

care of the rest.
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8.1.1 Data preprocessing

The greater part of the preprocessing of input data performed by the program is related

to data originating from external sources made available by the Source Service. Obser-

vational traffic data and traffic forecasts, on the other hand, require little processing

since they are created by the program itself using the ideal data format and temporal

resolution. The processing performed by the program is mainly done at three different

stages: Data formatting performed by the Source Service, handling of missing data per-

formed by the Main Service, and final preprocessing performed by the Model Manager

where feature vectors are created among other things.

Data formatting The first part of the preprocessing is performed by the Source

Service. Luckily, the external data used are properly formatted through well defined

APIs and thus requiring small amounts of processing by the program. Most of the

processing performed at this stage is therefore mainly related to formatting the data into

the 6-hour intervals used by the program and using appropriate aggregation functions

for each of the variables as described in the Architecture-chapter.

Dealing with missing data The next preprocessing step is performed by the Main

Service making sure the intervals are not missing any data before they are sent to the

machine learning models for training or forecasting. Intervals missing such data are

ignored until all the relevant data are present.

Final processing The final part of the preprocessing is performed by the Model

Manager. The Model Manager is equipped with three different preprocessing functions

for: (a) Traffic models, (b) First generation of air quality models, and (c) Second

generation of air quality models. These functions are responsible for performing the

actions described in the following sections related to the individual modelling steps.
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8.1.2 Learning

All the three selected algorithms (PAR, SGD, and NN) are being tested for each of

the three problems in the program. The implementations of the models were usually

performed in groups of 5-10, and the lessons learned from each group influenced the

next resulting a pursuit of the ideal learning parameters for the algorithms.

The training is performed by uploading the models to the Model Manager and

performing a restart of the program. This forces the program to discover the new

models and sends the intervals for training and forecasting. The specifications of the

trained models, such as learning parameters, and the performance metrics were during

the development stored manually enabling reproduction of the best performing models.

Learning rate

The selected algorithms have their own ways of controlling how fast the algorithm should

learn when exposed to new training examples, which is one of the key challenges of the

entire program. In order to illustrate the effect of the learning rate in the context of

Braluft, one might consider the following alternatives:

High learning rate

An online learning algorithm with a high learning rate will be capable of adapting

to changes rapidly, but there is a large chance that it will forget the experience

gained from older training examples [5, p. 16].

Low learning rate

A low learning rate for an online machine learning algorithm will naturally result

in slower learning, but it will be less sensitive to noise and non-representative data

[5, p. 16].

An important property of the program is the ambition of picking up recent changes

within traffic and air quality trends. Old records going several months back should

therefore be outweighed by new training examples. The data set is as of April 2019
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rather small, meaning the models with a very low learning rate are not able to find the

baseline and are likely to struggle when making forecasts. Such models might definitely

be valuable as the data set increases in size, but serve little utility for now in terms of

evaluating the concept.

That being said, too high learning rate could cause harm as well. Days with poor air

quality are being outnumbered by days with good air quality by quite a wide margin,

and longer periods with good air quality might occur. During those periods a model

with a too high learning rate may forget what a day with bad air quality looks like, and

therefore not be able to forecast it.

To evaluate the online learning concept models are equipped with a broad range of

learning rates (low-high). Models with very low learning rate are dropped due to the

small size of the data set.

8.1.3 Evaluation

A brief evaluation is performed of the traffic models in this chapter. The evaluation and

discussions related to the air quality models are saved for chapters 9-10 of this thesis

since they represent the overall forecasting abilities of the program.

8.2 Modelling traffic

The first step performed related to making models for the Braluft-program was build-

ing traffic forecasting models. A natural choice, considering air quality models are

dependent on traffic forecasts in order to make air quality forecasts.

Preprocessing

The Model Manager performs only one operation as a part of the preprocessing for

traffic models, namely converting the interval data into a vector of binary features.

All the features in the vector are features related to time:

• Hours of the day
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• Day of the week

• Whether or not the day is a public holiday

The interval starting 25.03.2019 at 6 AM will, for instance, be converted to the vector

seen in Table 8.1.

00-06 06-12 12-18 18-00 Monday Tuesday .. Sunday Holiday

0 1 0 0 1 0 .. 0 0

Table 8.1: 25.03.2019 - 6AM as a vector of traffic data

Learning

A total of 57 models were implemented for traffic forecasting. The training and eval-

uation of the traffic forecasting models references in this section were based on data

accumulated between 18.12.2019 and 05.04.2019. A full overview of the tested models

and their performance metrics are available in appendix A.

Evaluation

Several of the models achieved what could be considered acceptable result for its usage,

namely making traffic forecasts that serve as input to air quality forecasting models.

Using data for March 2019 several models achieve an r2 score between 0.7 and 0.8, and

a median absolute error between 80 and 95 vehicles when comparing the predicted

values and the observed number. However, the mean absolute error for many of these

models is around 150 vehicles, which is higher than expected considering that outliers

are rare in the data set. These somewhat disappointing results for the mean absolute

errors are most likely due to the fact that most of the algorithms are performing well

on intervals between Monday and Friday, but are struggling with making predictions

for the weekend as illustrated by Figure 8.3. The models with a high learning rate are

the best at taking weekends into account but make larger errors elsewhere. It is likely

that the ideal model has a low to moderate learning rate, but is dependent on more
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Figure 8.3: Observed traffic levels and traffic predictions by a small neural network

The traffic models perform generally better for the workweek compared to the weekends as

illustrated by using data for a few weeks in March and April 2019

data since the traffic levels seem stable week after week, with the exception of days

surrounding holidays. Given the incremental design of the program this issue should

hopefully diminish over time.

For now the small variants of neural networks have the best performance when

considering MAE and the issue of forecasting weekends, with a median absolute error

around 70-80 vehicles and mean absolute error around 130 vehicles.

8.3 First generation of air quality models

The primary objective of the first generation of air quality forecasting models was to

gain insights into the data and discover the potential of air quality forecasting using

machine learning algorithms. The processes described in this section are identical for

NO2 and PM10 models with the only difference being the target value.
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Preprocessing

The processing of intervals headed for training or forecasting with air quality machine

learning models is somewhat more complex than traffic data. The process is mainly

separated into two parts: (a) feature selection turning the interval data from JSON-

format to a feature vector (b) scale the data using standardisation.

Feature selection In the first generation of air quality forecasting models all the

available variables are included as features. This means all the six meteorological vari-

ables being recorded by the program along with traffic level, serve as input data for

making NO2 and PM10 forecasts. The variables are represented as continuous numeri-

cal features when the data are turned into a vector, with the exception of wind direction

which is turned into binary features as seen in Table 8.2.

Pres. Hum. Prec. Tem. Wind speed Traffic Wind N Wind NE .. Wind NW

1023.13 61.17 0.0 3.83 9.2 142 0 1 .. 0

Table 8.2: Sample air quality data as vector (First generation)

Polynomial features Some of the linear regression models make use of polynomial

features of degree 2 or 3 in order to fit nonlinear functions. This conversion is made by

the PolynomialFeatures module from Scikit-learn.

Standardisation The next step after the data have been converted to a vector is

standardisation. This is performed by the StandardScaler imported from Scikit-learn

tuned by using observational data between 1 January 2019 and 8 April 2019. The

output of this process is a new vector illustrated in Table 8.3. The binary variables

representing wind direction are unaffected.

Pres. Hum. Prec. Tem. Wind speed Traffic Wind N Wind NE .. Wind NW

1.25 -0.98 -0.52 -0.23 2.23 -0.80 0 1 .. 0

Table 8.3: Air quality vector standardised (First gen)
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Learning

25 models were implemented for both NO2 and PM10 forecasting (50 models for the

pollutants combined). The training and evaluation of these models were based on data

accumulated between 18.12.2019 and 09.04.2019. A full overview of the tested models

and their performance metrics are available in appendix B and C.

Evaluation

The evaluation of the air quality models are the subject of chapters 9-10. Performance

metrics are also available in appendix B and C.

8.4 Second generation of air quality models

The idea of using all variables as input features for both NO2 and PM10 was meant to

be a part of a learning process enabling the creation of more ideal models. This led to

a second generation of models where the processes are mainly the same as the previous

generation with some alterations that are being discussed in this section.

Preprocessing

The new set of models is initially using the same preprocessing function as the previous

generation. That means all the data are turned into a vector consisting of the avail-

able meteorological variables and traffic level, and standardised. However, the second

generation of models is only using a subset of the features from the original vector.

Considering the possible number of combinations given the amount of variables and

available algorithms, it is unrealistic to test all possible combinations [19]. The sub-

set of new features is therefore cherry-picked by reviewing the data, literature, and

experience gained from the first generation of air quality models.
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NO2

Two of the available variables stand out as obvious selections for the second generation

of NO2 models: wind speed and traffic level. In addition to this, precipitation and a

few of the wind directions are also promising candidates. Two variants of NO2 models

were created to explore this further.

Variant 1 The feature vector of the first variant is based on the features mentioned

above resulting in a feature vector illustrated by Table 8.4.

Prec. Wind speed Traffic Wind N Wind SE Wind S Wind W Wind NW

-0.52 2.23 -0.80 0 0 0 1 0

Table 8.4: Air quality vector standardised - Second generation (Var 1 NO2)

The new feature vector makes use of three features from original vector without any

modifications: Precipitation, wind speed, and traffic level. The three wind directions

with least expected relevance are no longer represented.

Variant 2 The second variant is a lot simpler by only using wind speed and traffic as

polynomial features of degree 2 as seen in Table 8.5

Wind speed (WS) Traffic (T) WS2 WS× T T2

2.23 -0.8 4.9729 -1.784 0.64

Table 8.5: Air quality vector standardised - Second generation (Var 2 NO2)

PM10

Based on the reviewed data in the previous chapter it is less obvious which variables to

use as features for PM10 models compared to NO2. Generally speaking all the available

variables are slightly associated with increased PM10 levels with the exception of several

wind directions. However, none of the variables stand out as essential. The selection

of features for the second generation of PM10 models is for that reason still somewhat
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broad, but excludes pressure and most of the wind directions. This results in a feature

vector seen in Table 8.6.

Hum. Prec. Tem. Wind speed Traffic Wind SE Wind W Wind NW

-0.98 -0.52 -0.23 2.23 -0.80 0 1 0

Table 8.6: Air quality vector standardised - Second generation (PM10)

Learning

All the three algorithms are still being used for the second generation, but in fewer

variants. The new models are based on the experiences gained from the first generation

such as the ideal learning rates but with altered feature sets.

Evaluation

The evaluation of the air quality models are the subject of chapters 9-10. Performance

metrics are also available in appendix D and E.
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Chapter 9

Results

The results in this chapter are based on the most promising models from the first and

second generations of air quality models. Additionally, a couple of machine learning

models trained using batch-learning on data gathered between 18 December 2018 and

31 April 2019 are also included. This trio of model types are selected to highlight any

improvement in performance for the second generation and to compare how well the

online learning approach is faring compared to batch learning.

All the results presented in this chapter are based on observational data and forecasts

for April 2019. Only the best performing models are selected here, but metrics for the

rest of the models are available in appendix D (NO2) and E (PM10).
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Pollutant Length Model r2 median abs err rmse mean abs err

NO2 24-hour PAR (C=1, 1st gen) 0.13 13.80 21.26 16.34

NO2 24-hour PAR (C=1, 2nd gen) 0.14 11.57 21.18 15.75

NO2 24-hour PAR (Wind + traffic) 0.23 11.06 20.01 15.01

NO2 24-hour SVR (Batch) 0.21 13.66 20.27 15.97

NO2 3-day PAR (C=1, 1st gen) -0.06 14.09 23.47 18.03

NO2 3-day PAR (C=1, 2nd gen) -0.00 11.98 22.80 17.01

NO2 3-day PAR (Wind + traffic) 0.16 14.85 24.54 19.25

NO2 3-day SVR (Batch) 0.08 15.22 21.82 17.55

NO2 7-day PAR (C=1, 1st gen) -0.02 14.78 23.05 18.29

NO2 7-day PAR (C=1, 2nd gen) -0.09 15.53 23.72 18.90

NO2 7-day PAR (Wind + traffic) -0.18 20.41 24.70 20.56

NO2 7-day SVR (Batch) 0.03 15.26 22.40 17.92

PM10 24-hour PAR (C=1, 1st gen) 0.42 5.27 10.33 7.33

PM10 24-hour PAR(C=0.5) (2nd gen) 0.33 5.27 11.09 7.71

PM10 24-hour NN medium (Batch) 0.26 6.95 11.70 8.77

PM10 3-day PAR (C=1, 1st gen) -0.23 6.99 15.06 10.26

PM10 3-day PAR(C=0.5)(2nd gen) -0.17 5.99 14.69 9.77

PM10 3-day NN medium (Batch) 0.01 7.45 13.51 9.91

PM10 7-day PAR (C=1, 1st gen) -0.48 7.77 16.54 11.84

PM10 7-day PAR(C=0.5)(2nd gen) -0.40 7.49 16.10 11.33

PM10 7-day NN medium (Batch) -0.31 7.53 15.55 11.04

Table 9.1: Performance metrics for the best performing NO2 and PM10 models

All the results are based on data gathered in April 2019. Both pollutants have models

representing the first generation, second generation, and models trained using batch learning

algorithms. Performance metrics are included for 24-hours, 3-day, and 7-days forecasts for each

of the models. Unlike PM10, NO2 has two models from the second generation with the

inclusion of a model trained using only wind speed and traffic data. By only considering these

metrics the models are having similar performances overall. Some of the models perform

better for specific length, i.e., The PAR trained using only wind and traffic data performs

better than a PAR trained using all variables when comparing 24-hour forecasts, but the latter

delivers better results for 7-day forecasts. Least variance between the different forecast lengths

is present for forecasts made by the batch learning model, which is likely because it is only

affected by changes in weather forecasts.
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9.1. ANALYSIS

9.1 Analysis

By only considering performance metrics there is not much separating the different

models when comparing the first generation, second generation, and models trained

using batch learning. Furthermore, the three online learning algorithms (PAR, SGD,

and NN) achieve comparable result for NO2 and PM10 forecasting and the differences

between the models are similar for 24-hour, 3-day, and 7-day forecasting. The models

for both pollutants seem to be achieving similar performance levels considering the fact

that NO2 levels are usually a lot higher than PM10.

Skewed errors

A general tendency for the models is that the mean absolute error is higher than the

median. Figure 9.1 shows the absolute errors for the second generational PAR forecast-

ing NO2 in April 2019 illustrating where much of the gap between the mean and median

is originating. The model keeps an overall decent error rate for most of the intervals,

but a sudden increase is seen for a group of about 15-20 intervals to the right.

This error distribution reflects the strengths and weaknesses of the models as well

as the problem in hand. It turns out that bad air quality often is a result of abrupt

changes and such events do not occur very often. In other words intervals with bad air

quality are rather outnumbered by the ones with good air quality, and intervals with

bad air quality are preceded by several intervals with good air quality. This is observed

for both NO2 and PM10 levels as seen in Figure 9.2, but NO2 does seem to be somewhat

more volatile.
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9.1. ANALYSIS
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Figure 9.1: Absolute errors made by PAR (second gen.) forecasting NO2 - April 2019

The figure shows the absolute errors made by a second generational Passive-Aggressive

Regressor in 24-hour forecasts made April 2019. The absolute errors are, as mentioned before,

the absolute distance between the forecasted values and the observed values. The order of the

errors in the graph is set by the size of the errors and is in no way related to the dates of the

errors. As illustrated the errors do have a stable increase for about 100 intervals and the final

remaining 20 errors are seeing a sudden increase. This results in a higher mean absolute error

than median absolute error for the model, which is seen in all the air quality models in the

program. This is mainly attributed to the fact that few models are capable of forecasting

sudden increases in pollutant levels, resulting in large errors when they do occur.
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9.1. ANALYSIS
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Figure 9.2: Observed pollutant levels - April 2019

Observed pollutant levels for April 2019 recorded at Danmarkplass, Bergen. The original data

are in hourly intervals, but this graph is based on the data in six-hour intervals using mean

values of the original data. NO2 are somewhat more volatile than PM10. Sudden raises in

pollutant levels are however seen for both NO2 and PM10.

With the sudden worsening of air quality in mind the models can broadly be cate-

gorized into two behaviours characterized by their learning rates and the influence they

have on predictions over time. To illustrate how the models handle periods with high

pollutant levels, the sudden raise in NO2 in the beginning of April is used as an example

by looking at data gathered between 28 March 2019 and 15 April 2019 in the following

sections.

High learning rate

The models with a high learning rate tend to respond rapidly when changes occur such

as the sudden rise of pollutant levels. However, if these changes are preceded by several

intervals with low pollutant rates the models have forgotten what bad air quality looks

like and are unable to catch it before it is too late.

85



9.1. ANALYSIS
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Figure 9.3: Neutral network with high learning rate (NO2)

Models with a high learning rate tend to fit well to the observed values overall but struggle

when facing sudden raises in pollutant levels. The models remain one step behind the actual

levels when such events occur, as seen in the 24-hour forecasts around 2 April. Perhaps more

important, the 7-day forecasts are based in the high polluted periods, resulting in too high

forecasted values.

However, the model detects the sudden increase in NO2 levels after it occurs and

updates its weights with the high learning rate. The improvement is seen immediately

for the 24-hour forecast which lines up nicely with the observational data. Even though

this is good news, many models do seem to be one step behind the observational data

as seen in Figure 9.3.

A potentially larger issue is the effect this has on the following days. When looking

at the 7-day forecasts, it seems like the models almost ignore the data and rather focus

on the high pollutant levels on the days the forecasts are made resulting in too high

forecasted values.

Low/medium learning rate

The other behaviour is seen in models using a low to medium learning rate, resulting in

less impressionable behaviour when exposed to sudden raises in pollutant levels. This

has led to more consistent predictions when comparing 24-hours, 3-days, and 7-days

86



9.1. ANALYSIS

forecasts. These models generally perform well but the lowered learning rate has a

natural downside. Since the intervals with high NO2 and PM10 levels are outnumbered

by the ones with low levels, the models have fewer training examples with bad air quality

to learn from. This, combined with the low learning rate, results in models struggling

to learn to forecast periods with high pollution levels, and the models end up ignoring

the high polluted events altogether.
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Figure 9.4: SGD with low learning rate (NO2)

Models with low learning rates are performing well for both 24-hour and 7-day forecasts for

most days. However, sudden raises in pollutant levels are almost ignored since such periods are

heavily outnumbered by days with low pollutant levels. The low learning rates are preventing

the models to learn anything from the few high polluted days before the levels drop to normal.

Wind speed & traffic levels for NO2

The two behaviours explained so far cover almost all the models for both NO2 and

PM10 forecasting regardless of learning algorithm and feature sets. There is however

one exception, the Passive-Aggressive Regressor trained using only wind speed and

traffic levels with a relatively low learning rate.
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Figure 9.5: PAR(C=0.5) using wind m/s & traffic levels (NO2)

NO2 models trained using only wind speed and traffic levels provide a unique behaviour com-

pared to the other models being able to foresee the sudden raise in NO2 levels for 24-hour

forecasts. Some of the drawbacks from the other models are however also present here, con-

sidering the 24-hour forecasts are still too low compared to the observed values, and the 7-day

forecasts are predicting too high values based on the sudden increase that occurred when the

forecasts were made.

Compared to the other models it is capable of providing a somewhat unique be-

haviour by foreseeing the raise in NO2 levels and still provides reasonable forecasts for

the surrounding days. It should therefore be considered one of the more successful

models in the program. Two drawbacks of the model in its current state are: (a) The

forecasted value during the peak of the pollutant levels should ideally be even higher,

and (b) The model is having some of the same issues as the models with higher learning

rates when making forecasts for the following days. After being exposed to high pollu-

tant levels overshooting occurs by some margin. Unfortunately, no models were able to

capture the same behaviour for PM10 levels.

Batch learning

The final models included in the program are the ones trained using batch learning for

comparison. Figure 9.6 shows the forecasts made by a Support Vector Regressor, but
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9.1. ANALYSIS

all the models trained using batch learning show the same tendencies. The models are

naturally more consistent than their online learning counterparts in terms of changes

per day since they are only affected by changes in the weather forecasts. However, none

of these models are able to foresee the raise of the pollutant levels and keep a stable

output of forecasted values relatively consistent with days with low pollutant levels.
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Figure 9.6: SVR trained using batch-learning

Models trained using batch learning delivers consistent forecasts when comparing the lengths of

the different forecasts (24-hours, 3-days, and 7-days). These models are, unlike the rest, only

affected by changes in the weather forecasts. The behaviour of these models are similar with

the incremental models trained using a low learning rate: Performing well for most days, but

are unable to foresee sudden raises in pollutant levels. This is much likely because periods with

high pollutant levels are underrepresented in the data set.
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Chapter 10

Discussion

Variables used for forecasting

By looking at which variables affect the pollutant levels there are few surprises compared

to previous findings in similar work. Wind speed and the amount of traffic are the

variables with the best prediction capabilities for NO2. PM10 on the other hand seems

to be a result of a much more complex relationships of variables, making it harder to

make good forecasts.

The intent behind the program is to capture changes in pollutant levels over time.

Domestic heating for instance is difficult to measure compared to many other variables.

The same goes for the ship traffic caused by tourism which mainly is a concern during

the summer months [2]. A negative aspect of the incremental approach is that the

program is not able to bring any insights into how much these implicit variables affect

the pollutant levels.

Traffic assessment

The traffic assessment method used in Braluft is focusing on feasibility through simplic-

ity by only accounting for the traffic volume, but the trade-off for using this approach

is the loss of details in the form of traffic speed and vehicle type distribution, two im-

portant factors for modeling future air quality [2]. Assessing traffic through real-time
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video with YOLO or a different detection method could solve this issue and potentially

improve the air quality forecasting models of Braluft.

However, the relatively simple solution used in this thesis has been able to provide

traffic observations with good representational capabilities well suited for the role of

input data. The observed traffic data show well defined patterns in terms of workweek,

weekends, and holidays.

The performance of the traffic forecasting models could also be improved by explor-

ing new variables. The introduction of time differentiated road toll has, for instance,

resulted in a 15-16% traffic reduction during hours in the morning and afternoon [2]

compared to the levels before it was introduced. This might be included to some degree

by the incremental nature of the program, but it is deserving a further exploration to

see how it affects air quality through traffic levels.

Using incremental learning

By using the incremental approach the program is defining itself as reactive, instead of

proactive. The models in the program are more specifically characterized by trying to

make sense of the recent observations and the errors made in order to improve its future

forecasts, and unlike models trained using batch-learning older historic observations are

potentially forgotten over time.

The approach results in a program that performs well for most days where the

pollutant levels are relatively low and more importantly, stable. These results are

loosely connected to previous studies concluding that the best predictive variables for

NOX and PM10 in Athens and Helsinki were the air pollutant concentrations from the

previous day [18]. This is essentially how the 24-hour forecasts from models with a high

learning rate are made. The weights of these models are altered so much for the recent

observations that asking for forecasts are essentially the same as asking “How was the

air quality yesterday?”.

A key challenge for the program is the fact the periods with bad air quality tend

to arise abruptly and can therefore hardly be considered a trend. This results in many
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models forgetting what bad air quality looks like or they are unable to learn it. The

best performing models to counter these effects are simple NO2 models trained using

only wind speed and traffic data. No such model was found for PM10, but the best

predictor is probably NO2 based on a Pearson coefficient of 0.5 and the patterns seen

in Figure 10.1. A good NO2 forecast has in other words potential to describe upcoming

PM10 levels.
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Figure 10.1: NO2 - PM10 visualized

An important consideration related to these remarks and overall review of the pro-

gram is the relatively small size of the data set used. This is naturally affecting both

the review of the variables and the performance of the machine learning models. In

addition to this all the data used in this paper are gathered during winter or spring,

meaning performance may change considerable as time and seasons passes. It is also

likely that the program would see an increased performance if tested at a location where

raises in pollutant levels are less sudden.

Weather forecasts accuracy

An essential contributor to the air quality forecasts are naturally the weather forecasts.

More important, accurate air quality forecasts require accurate weather forecasts.
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It is difficult to tell exactly how tight the relationship between weather forecasts and

air quality forecasts made by incremental models is. That being said, any reduction of

accuracy in the weather forecasts will certainly lead to a reduction in accuracy for these

models if the incremental nature is not accounted for. This effect is clearly observed for

models trained using batch learning that are only affected by changes in the weather

forecasts. A small and stable decrease in performance is seen for these models as the

length of the forecasts increase. However, this decrease in performance is smaller than

the decrease seen in most incremental models. This is most likely caused by two factors:

(a) incremental models perform generally better than batch learning models for short

term forecasts (24-hour) and worse for long forecasts (7-day), resulting in a broader

range of errors, and (b) the incremental nature of the models acts as a potentially extra

error source that most likely is a bigger contributor to the size of the errors than weather

forecasts as the length of the forecasts increase.

The largest concern when considering the accuracy of weather forecasts is the wind

speed. Wind speed has proven to be a very important variable for forecasting pollutant

levels, especially for NO2. As illustrated by Figure 10.2 short term forecasts are very

accurate. However, the 7-day forecasts are struggling to foresee peaks in wind speed and

remain rather conservative for most days. This behaviour is very similar to what is seen

in many of the incremental air quality models in the Braluft program. Unfortunately

the lack of accuracy in wind speed forecasts is not enough to explain why many air

quality models are having difficulties foreseeing sudden raises in pollutant levels. The

reason behind this is the fact that most air quality models are not able to forecast

sudden increases for short term either, even though the weather forecasts are rather

accurate. However, this raises the question of whether it is even possible to forecast the

pollutant levels 7-days ahead using meteorological variables.
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Figure 10.2: Wind speed forecasts

Wind speed forecasts tend to be very accurate short-term, but the forecasts get more conservative

as the length of the forecasts increases.

Challenges in development

The challenges related to the development of the program are mostly concerned with

engineering of the machine learning pipeline or modelling of the machine learning mod-

els. Additionally, the incremental nature of the program increases the complexity of the

program and especially the engineering part.

Engineering challenges

Considering engineering the biggest challenge is time for several reasons. First of all,

the instructions in the program have a natural order. The web camera images must be

processed before the traffic models can be trained, weather forecasts must be collected

before the creation of air quality forecasts, and the list goes on. Second, some of the

data required for the program are only available for a brief period of time. Third, much

of the data provided by external sources are using different time intervals ranging from

1 to 6 hours.

The Microservice architecture proved to be a great way of dealing with the time re-
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lated challenges. The Main Service was implemented to handle communication between

the services and making sure actions were performed in the correct order. The other

two time related challenges were also mitigated by using separate services capable of

downloading and formatting the data without affecting the rest of the program. This

separation of concerns also allowed easy redeployments upon changes in functionality.

Modelling challenges

In terms of modelling the largest challenge in the program is the absurd amount of pos-

sibilities when considering different algorithms, feature sets, and learning parameters.

This might initially seem like a positive thing as many different sets of possible com-

binations exist offering opportunities, but the challenge is to find the best performing

combination. The challenge of having too many options for a machine learning problem

is not specific for this program. One might even argue that the process of selecting the

best combinations for traffic, NO2, and PM10 is assisted by the nature of this program.

First of all, the amount of already implemented learning algorithms is drastically

reduced by the requirement of being able to update models incrementally. Furthermore,

the intent behind the program is to test a concept, not to create production ready

models. The linear models and the neural networks selected were deemed sufficient

for this cause by representing both simple and more complex learning algorithms, even

though different frameworks could perhaps provide marginally better performance.

Second, for the feature sets there are a limited number of relevant variables available

for this problem. More importantly, the variables used are properly labeled and their

relationships with pollutant levels have been explored previously, although local varia-

tions exist. However, even with such insights it is difficult to create an ideal feature set

as proven with PM10 in this thesis. Experimentation is therefore required to find the

best features for the problem.

Finally, the learning parameters were the most difficult part of the modelling process

in the program. The learning parameters may affect both performance metrics and the

behaviour of the models as illustrated by how models with high and low learning rates

95



act differently when faced with major changes in pollutant levels. These parameters

were during the modelling adjusted by creating several different models and comparing

the performance metrics and their behaviour. This is primary performed without any

assistance from external resources. That being said, the learning algorithms did prove

to have sensible default values that enabled decent performance in models from the very

beginning.

The need of experimentation to find the ideal combination resulted in a total of

132 models when considering every one of the problems in the program (traffic, NO2,

and PM10), all using different combinations of learning algorithms, feature sets, and

learning parameters. The actual number is somewhat higher as several models were

created to test different parts of the the machine learning pipeline. Most of the models

were created and trained as a part of a small group of models, and almost all the groups

revealed something new in the form of unseen performance metrics and behaviours. It

was not until the number of models reached 100-110 the observation of new experiences

started to stagnate. It was at this point the modelling phase ended. This goes to show

how much work is required for a machine learning process, even when the options are

narrow.
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Chapter 11

Conclusion

This thesis has presented Braluft, a software stack created to gain insight into the air

quality by examining data related to Bergen, Norway. The individual components of

the stack are running in a microservice architecture and are brought together in order

to make up a program capable of gathering data, incrementally train machine learning

models, and create forecasts for the air pollutants NO2 and PM10.

Impact of variables

To review how meteorological variables and traffic levels affect NO2 and PM10 levels a

data set was constructed using observations made by the program between December

2018 and April 2019. Based on the data set the main influences of NO2 levels were wind

speed and traffic levels by a wide margin. This correlation is supported by the fact that

the best performing model overall was responsible for forecasting NO2 using only wind

speed and traffic levels.

For PM10 the effect of each variable was more spread out, meaning none of the

variables stands out as better predictors than the others. The PM10 levels do in other

words seem to be a result of a larger system of processes. The variable with best

predictive capabilities for PM10 is probably NO2.

The effect of the variables is comparable with many findings from similar work,
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such as reductions in pollutant levels as wind speed increases or vehicular traffic levels

decreases.

In terms for wind direction similar effects are seen for both NO2 and PM10. Wind

is mainly headed south/south-east or north/north-west due to the surroundings with

elevated areas. Wind headed north tend to worsen the air quality, suggesting that

pollutants are brought in from other areas. The opposite is seen when the wind is

headed south. However, these effects are rather small for both the observed pollutants

in the program.

Online learning for air quality forecasting

The use of incremental models is showing a lot of promise in terms of forecasting air

quality using meteorological variables and traffic levels. The approach allows the pro-

gram to capture the recent trends and changes in seasons and deliver forecasts with

overall good precision for both NO2 and PM10.

However, even though the models are generally performing well, there is one major

challenge associated with the task when considering Danmarkplass, Bergen. The pro-

gram is built on the idea of adapting to changes over time, but periods with bad air

quality have during the development of the program been a result of abrupt changes

and are often not lasting more than a couple of days. Such occurrences can barely be

considered a trend. This results in many models forgetting what bad air quality looks

like and are therefore not able to forecast it. This is especially true for the models with

a high learning rate that miss the initial raise in pollutant levels and remain one step

behind the actual levels. The models with a low learning rate are on the other hand

missing the raise altogether.

Online/batch learning

When comparing online learning models with batch learning models there are not much

separating the models considering performance metrics. That being said, the strategies
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for these models are somewhat different. As mentioned before most of the online learning

models tend to perform well for most days where the pollutant levels are low, but make

large errors upon sudden worsening of the air quality. The batch learning models, on

the other hand, are making most forecasts targeting a middle ground between ordinary

days with little pollution and highly polluted days. These models are therefore often

closer to forecasting periods with bad air quality, but make more mistakes for ordinary

days.

Finally, the data set being used for this paper is still fairly small for both online- and

batch learning models with around 500 training samples. An increase in performance

should be expected as time passes and the program collects more data, especially for

the more complex models.
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Appendix A

Traffic model metrics

Passive-Aggressive Regressors

loss C epsilon r2 median abs err rmse mean abs err

epsilon insensitive 1 20 -0.26 152 382.65 280.56

epsilon insensitive 10 20 0.66 94 197.94 143.56

epsilon insensitive 15 30 0.71 87 184.01 134.13

epsilon insensitive 20 20 0.73 87 178.01 128.58

epsilon insensitive 25 20 0.73 94 177.36 131.17

epsilon insensitive 30 0.1 0.72 98 181.74 133.63

epsilon insensitive 30 30 0.72 98 179.11 133.22

epsilon insensitive 50 50 0.71 103 182.3 137.92

squared epsilon insensitive 1 20 0.6 118 216.74 160.01

squared epsilon insensitive 10 20 0.52 120 237.39 175.54

squared epsilon insensitive 15 30 0.53 118 232.77 171.89

squared epsilon insensitive 25 20 0.51 121 239.16 176.99

squared epsilon insensitive 30 0.1 0.45 132 252.09 187.96

squared epsilon insensitive 50 50 0.57 121 223.95 165.62

Stochastic Gradient Descent

Learning rate: constant

loss eta0 r2 median abs err rmse mean abs err

squared epsilon insensitive 0.1 0.73 111 176.73 136.14

squared epsilon insensitive 0.2 0.6 115 216.3 157.89

squared epsilon insensitive 0.3 -0.42 240 406.5 313.81

squared epsilon insensitive 0.05 0.8 115 171.18 142.32

squared epsilon insensitive 0.15 0.69 107 191.32 142.42
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squared epsilon insensitive 0.01 0.58 152 220.5 175.72

huber 4 0.54 144 231.38 179.78

huber 0.3 0.5 101 242.03 173.69

huber 5 0.42 166 259.47 200.14

huber 1 0.7 93 185.89 133.81

huber 0.5 0.64 95 205.19 146.29

huber 1.5 0.72 96 181.11 133.26

epsilon insensitive 40 0.69 93 190.1 138.62

epsilon insensitive 20 0.69 89 190.49 137.56

epsilon insensitive 35 0.69 94 189.34 137.22

epsilon insensitive 30 0.69 88 188.46 134.93

epsilon insensitive 25 0.7 92 188.24 134.93

Learning rate: optimal

loss alpha r2 median abs err rmse mean abs err

squared epsilon insensitive 1.2 0.3 220 285.45 237.03

squared epsilon insensitive 2 0.19 241 306.33 254.81

squared epsilon insensitive 0.5 0.48 181 245.09 201.94

squared epsilon insensitive 1 0.34 213 277.12 230.4

Neural Networks

loss optimizer learning rate epochs structure r2 median abs err rmse mean abs err

MAE RMSprop 0.01 1 12-64-64 -248.82 352 5391.92 2458.48

MAE Adam 1 1 12r-4r 0.35 133 274.05 199.65

MAE RMSprop 0.05 1 12-64 0.23 170 299.73 225.95

MAE Adam 0.01 1 12-64-64 0.32 160 281.18 211.55

MAE Adam 0.01 1 12-8r -0.43 203 407.48 306.75

MAE Adam 0.001 1 12-64r-64r -1 249 482.24 365.88

MAE Adam 0.001 1 12-8r -1.45 299 533.74 411.1

MSE Adam 0.01 1 64-64r-64r 0.57 101 224.87 157.96

MSE RMSprop 0.01 1 64-64r-64r 0.2 169 305.93 232.07

MSE Adam 0.01 1 32-16r-8r -0.29 205 388.9 296.01

MSE Adam 0.01 1 128r-32-r-8r -0.04 181 348.53 264.34

MSE Adam 0.01 10 128-64r-32r-16r 0.51 97 238.76 166.51

MAE Adam 0.01 10 128-64r-32r-16r 0.52 93 237.68 163.59

MSE Adam 0.01 100 128-64r-32r-16r 0.57 93 225.66 158.74

MSE Adam 0.001 20 6 0.64 97 206.8 147.78

MSE Adam 0.01 20 6r-6r 0.65 91 201.61 142.13

MSE Adam 0.01 50 6r-18r-12r-6r 0.6 98 215.92 154.78

MSE Adam 0.01 20 128-64r-32-16r 0.54 96 260.97 178.6

MSE Adam 0.01 20 6r-6r 0.64 92 226.74 159.55

MSE Adam 0.01 20 6r-18r-12r-6r 0.8 115 171.18 142.32
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Appendix B

First generation NO2

Passive-Aggressive Regressors

24-hour forecast / 05.03.2019 - 05.04.2019

C poly. deg. r2 median abs err rmse mean abs err

0.01 1 -1.55 21.24 36.95 28.78

0.1 1 0.02 10.07 22.93 15.69

1 1 0.4 10.27 17.93 13.59

10 1 0.2 11.51 20.67 15.63

100 1 0.2 11.33 20.69 15.63

0.01 2 -1.53 20.41 36.78 28.62

0.1 2 0.11 10.38 21.87 15.49

1 2 0.39 10.08 18.1 13.59

10 2 0.34 12.43 18.84 14.35

0.01 3 -1.49 19.07 36.5 28.12

0.1 3 -0.03 11.78 23.51 17.04

1 3 0.34 11.22 18.82 14.26

10 3 0.33 13.27 18.92 14.69

3-day forecast / 05.03.2019 - 05.04.2019

C poly. deg. r2 median abs err rmse mean abs err

0.01 1 -1.56 21.67 36.99 28.95

0.1 1 -0.01 9.93 23.23 16.12

1 1 0.13 13.08 21.59 16.72

10 1 -0.2 18.1 25.33 19.89

100 1 -0.19 17.86 25.26 19.8

0.01 2 -1.49 21.6 7 36.54 28.63

0.1 2 -0.02 12.18 23.35 16.97

1 2 -0.02 13.84 23.33 17.7

10 2 -0.1 15.78 24.25 19.17

0.01 3 -1.39 19.67 35.74 27.82

0.1 3 -0.27 13.69 26.09 19.98

1 3 -0.17 15.56 25.06 19.49
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10 3 -0.12 15.15 24.53 19.19

7-day forecast / 05.03.2019 - 05.04.2019

C poly. deg. r2 median abs err rmse mean abs err

0.01 1 -1.58 21.51 37.13 29.14

0.1 1 -0.02 10.73 23.41 16.34

1 1 0.14 13.23 21.46 16.76

10 1 -0.16 16.78 24.92 19.75

100 1 -0.15 15.47 24.81 19.62

0.01 2 -1.52 21.53 36.71 28.93

0.1 2 -0.05 10.91 23.69 17.6

1 2 0 14.91 23.14 17.91

10 2 -0.15 15.67 24.82 19.36

0.01 3 -1.4 21.41 35.81 28.06

0.1 3 -0.43 15.45 27.65 21.71

1 3 -0.24 16.24 25.8 20.34

10 3 -0.23 17.58 25.65 20.28

Stochastic Gradient Decent

24-hour forecast / 05.03.2019 - 05.04.2019

loss learning rate poly. deg. r2 median abs err rmse mean abs err

squared loss invscaling 1 -0.02 9.4 23.4 15.9

squared epsilon insensitive invscaling 3 -7.26 21.43 66.49 34.02

squared epsilon insensitive invscaling 2 0.2 10.9 20.64 15.12

squared epsilon insensitive invscaling 1 0.07 13.07 22.31 16.68

squared loss invscaling 3 0.07 12.15 22.27 16.22

squared loss invscaling 2 0.05 11.59 22.55 15.76

squared loss constant(0.001) 1 -0.67 11.5 29.92 21

squared loss constant(0.01) 1 0.22 13.27 20.46 16.19

squared loss constant(0.1) 1 0.21 11.95 20.54 15.42

3-day forecast / 05.03.2019 - 05.04.2019

loss learning rate poly. deg. r2 median abs err rmse mean abs err

squared loss invscaling 1 0.06 10.22 22.43 15.76

squared epsilon insensitive invscaling 3 -4.51 23.7 54.32 35.87

squared epsilon insensitive invscaling 2 0.1 11.84 21.9 16.63

squared epsilon insensitive invscaling 1 0.16 11.42 21.22 16.05

squared loss invscaling 3 -0.18 14.25 25.14 19.18

squared loss invscaling 2 0.02 11.76 22.95 16.82

squared loss constant(0.001) 1 -0.71 13.92 30.22 21.86

squared loss constant(0.01) 1 -0.02 13.86 23.35 17.79

squared loss constant(0.1) 1 0.17 13.3 21.11 16.39
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7-day forecast / 05.03.2019 - 05.04.2019

loss learning rate poly. deg. r2 median abs err rmse mean abs err

squared loss invscaling 1 0.07 9.8 22.34 15.86

squared epsilon insensitive invscaling 3 -10.9 18.72 79.81 40.6

squared epsilon insensitive invscaling 2 0.05 13.06 22.49 17.19

squared epsilon insensitive invscaling 1 0.19 11.92 20.84 15.68

squared loss invscaling 3 -0.33 15.38 26.65 21

squared loss invscaling 2 -0.02 12.99 23.35 17.65

squared loss constant(0.001) 1 -0.78 15.3 30.83 23.16

squared loss constant(0.01) 1 -0.11 15.1 24.41 18.99

squared loss constant(0.1) 1 0.17 13.34 21.05 16.2

Neural Networks

24-hour forecast / 05.03.2019 - 05.04.2019

loss optimizer epochs structure r2 median abs err rmse mean abs err

MSE Adam(0.01) 20 128-64r-32r-16r 0.1 13.05 20 15.73

MSE Adam(0.01) 20 6r-6r 0.286 9.83 17.87 13.03

MSE Adam(0.01) 20 6r-18r-12r-6r -0.38 10.55 24.77 15.96

3-day forecast / 05.03.2019 - 05.04.2019

loss optimizer epochs structure r2 median abs err rmse mean abs err

MSE Adam(0.01) 20 128-64r-32r-16r -0.32 12.93 24.23 17.75

MSE Adam(0.01) 20 6r-6r -0.2 10.26 23.1 16.81

MSE Adam(0.01) 20 6r-18r-12r-6r -0.55 11.27 26.29 18.83

3-day forecast / 05.03.2019 - 05.04.2019

loss optimizer epochs structure r2 median abs err rmse mean abs err

MSE Adam(0.01) 20 128-64r-32r-16r -0.44 10.55 25.34 18.21

MSE Adam(0.01) 20 6r-6r -0.34 13.78 24.4 18.34

MSE Adam(0.01) 20 6r-18r-12r-6r -0.09 11.95 21.98 16.62

Epsilon=5 - loss = epsilon insensitive
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Appendix C

First generation PM10

Passive-Aggressive Regressors

24-hour forecast / 05.03.2019 - 05.04.2019

C poly. deg. r2 median abs err rmse mean abs err

0.01 1 -1.01 11.21 21.48 15.42

0.1 1 0.12 6.37 14.23 9.58

1 1 0.37 6.66 12 8.88

10 1 0.27 6.87 12.93 9.37

100 1 0.27 6.87 12.93 9.37

0.01 2 -1 12.09 21.42 15.73

0.1 2 -0.21 6.98 16.67 11.25

1 2 -0.38 9.55 17.77 12.96

10 2 -0.4 8.78 17.92 12.97

0.01 3 -0.9 10.09 20.88 15.25

0.1 3 -0.5 9.57 18.54 13.58

1 3 -0.51 11.02 18.61 13.96

10 3 -0.51 11.03 18.61 13.99

3-day forecast / 05.03.2019 - 05.04.2019

C poly. deg. r2 median abs err rmse mean abs err

0.01 1 -1.05 11.59 21.71 15.75

0.1 1 -0.12 6.93 15.99 10.73

1 1 -0.15 6.98 16.25 10.69

10 1 -0.38 8.28 17.8 11.81

100 1 -0.38 8.28 17.8 11.81

0.01 2 -0.96 10.74 21.19 15.39

0.1 2 -0.22 7.31 16.7 11

1 2 -0.34 8.03 17.51 11.46

10 2 -0.31 7.26 17.33 11.28

0.01 3 -0.89 10.52 20.8 15

0.1 3 -0.47 7.24 18.39 12.35

1 3 -0.55 8.29 18.88 12.44
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10 3 -0.54 8.12 18.77 12.39

7-day forecast / 05.03.2019 - 05.04.2019

C poly. deg. r2 median abs err rmse mean abs err

0.01 1 -1.07 11.69 21.8 15.93

0.1 1 -0.11 6.9 15.93 10.55

1 1 -0.18 7.59 16.45 11.54

10 1 -0.38 9.84 17.76 13.27

100 1 -0.38 9.84 17.76 13.27

0.01 2 -0.89 11.4 20.85 14.91

0.1 2 0.09 6.45 14.43 9.79

1 2 0.22 6.81 13.37 9.69

10 2 0.3 7.18 12.68 9.4

0.01 3 -0.76 9.69 20.08 14.31

0.1 3 -0.24 7.83 16.83 11.05

1 3 -0.06 8.11 14.67 10.64

10 3 0.09 7.96 14.47 10.55

Stochastic Gradient Decent

24-hour forecast / 05.03.2019 - 05.04.2019

loss learning rate poly. deg. r2 median abs err rmse mean abs err

squared loss invscaling 1 -0.08 5.82 15.74 10.03

squared epsilon insensitive invscaling 3 -0.91 10.38 20.91 13.84

squared epsilon insensitive invscaling 2 0.08 6.11 14.5 9.69

squared epsilon insensitive invscaling 1 0.1 6.62 14.39 9.5

squared loss invscaling 3 -0.18 6.41 16.44 10.64

squared loss invscaling 2 0 5.59 15.13 9.84

squared loss constant(0.001) 1 -1.6 19.98 24.42 20.81

squared loss constant(0.01) 1 -1.8 18.19 25.32 20.39

squared loss constant(0.1) 1 -0.17 7.92 16.37 11.44

3-day forecast / 05.03.2019 - 05.04.2019

loss learning rate poly. deg. r2 median abs err rmse mean abs err

squared loss invscaling 1 -0.24 5.72 16.84 10.92

squared epsilon insensitive invscaling 3 -0.95 11.5 21.16 15.49

squared epsilon insensitive invscaling 2 -0.25 6.19 16.93 11.14

squared epsilon insensitive invscaling 1 -0.09 6.31 15.83 10.52

squared loss invscaling 3 -0.56 7.76 18.95 12.97

squared loss invscaling 2 -0.32 6.62 17.39 11.41

squared loss constant(0.001) 1 -1.23 18.18 22.61 18.77

squared loss constant(0.01) 1 -1.16 15.88 22.29 17.95

squared loss constant(0.1) 1 -0.12 7.05 16.04 11.05
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7-day forecast / 05.03.2019 - 05.04.2019

loss learning rate poly. deg. r2 median abs err rmse mean abs err

squared loss invscaling 1 -0.24 6.1 16.86 11.03

squared epsilon insensitive invscaling 3 -1.68 10.57 24.78 16.57

squared epsilon insensitive invscaling 2 -0.21 6.82 16.64 11.25

squared epsilon insensitive invscaling 1 -0.07 7.05 15.7 10.21

squared loss invscaling 3 -0.54 9.52 18.79 13.68

squared loss invscaling 2 -0.32 7.28 17.4 11.89

squared loss constant(0.001) 1 -1.31 16.4 23.02 18.69

squared loss constant(0.01) 1 -0.96 15.41 21.23 16.89

squared loss constant(0.1) 1 -0.18 7.62 16.48 11.39

Neural Networks

24-hour forecast / 05.03.2019 - 05.04.2019

loss optimizer epochs structure r2 median abs err rmse mean abs err

MSE Adam(0.01) 20 128-64r-32r-16r 0.13 5.5 11.81 8.38

MSE Adam(0.01) 20 6r-6r 0.21 6.46 11.21 8.39

MSE Adam(0.01) 20 6r-18r-12r-6r 0.33 6.11 10.35 7.59

3-day forecast / 05.03.2019 - 05.04.2019

loss optimizer epochs structure r2 median abs err rmse mean abs err

MSE Adam(0.01) 20 128-64r-32r-16r -0.33 5.23 14.58 9.16

MSE Adam(0.01) 20 6r-6r -0.54 7.46 15.7 10.61

MSE Adam(0.01) 20 6r-18r-12r-6r -0.13 6.03 13.43 8.91

7-day forecast / 05.03.2019 - 05.04.2019

loss optimizer epochs structure r2 median abs err rmse mean abs err

MSE Adam(0.01) 20 128-64r-32r-16r -0.44 10.55 25.34 18.21

MSE Adam(0.01) 20 6r-6r -0.34 13.78 24.4 18.34

MSE Adam(0.01) 20 6r-18r-12r-6r -0.09 11.95 21.98 16.62
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Appendix D

Second generation NO2

First gen. First generation NO2 online learning model

Second gen. Second generation NO2 online learning model

Batch NO2 model trained using batch-learning

WT Feature set: only wind speed and traffic (polynomial degree of 2)

PAR Passive-Aggressive Regressor C=1, epsilon=5)

PAR(0.5) Passive-Aggressive Regressor C=0.5, epsilon=5)

SGD Stochastic Gradient Descent from Scikit-learn (default)

NN small Hidden layers: 6-6

NN medium Hidden layers: 6-18-12-6

KNeighborsRegressor KNeighborsRegressor from Scikit-learn

SVR Support Vector Regression from Scikit-learn

RandomForest RandomForestRegressor from Scikit-learn

All metrics are based on observational data and forecasts for April 2019.

24-hour forecast

Type Model r2 median abs err rmse mean abs err

First gen. PAR 0.13 13.80 21.26 16.34
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First gen. SGD -0.26 11.33 25.55 17.79

First gen. NN small 0.14 11.78 21.14 15.72

Second gen. PAR 0.14 11.57 21.18 15.75

Second gen. PAR(C=0.5) 0.17 12.67 20.76 15.69

Second gen. SGD 0.05 13.71 22.23 16.83

Second gen. NN medium -0.27 19.18 25.69 20.40

Second gen. NN small 0.24 11.78 19.80 15.12

Second gen. (WT) PAR 0.23 11.06 20.01 15.01

Second gen. (WT) NN small -0.14 13.01 24.27 18.08

Batch SVR 0.21 13.66 20.27 15.97

Batch KNeighborsRegressor 0.12 14.57 21.33 16.84

Batch RandomForest -0.05 15.48 23.31 18.31

Batch NN small 0.11 15.23 21.51 17.25

Batch NN medium -0.03 17.70 23.15 18.94

Batch (WT) SVR 0.21 12.66 20.20 15.71

Batch (WT) NN small 0.19 12.27 20.54 16.12

3-day forecast

Type Model r2 median abs err rmse mean abs err

First gen. PAR -0.06 14.09 23.47 18.03

First gen. SGD -0.18 13.44 24.70 18.27

First gen. NN small -0.26 13.79 25.61 19.39

Second gen. PAR 0.00 11.98 22.80 17.01

Second gen. PAR(C=0.5) 0.05 13.30 22.15 17.18

Second gen. SGD -0.04 13.89 23.18 17.86

Second gen. NN medium -0.78 17.46 30.41 23.03

Second gen. NN small -0.39 14.05 26.86 19.71

Second gen. (WT) PAR -0.16 14.85 24.54 19.25

Second gen. (WT) NN small -0.85 16.61 30.94 22.81

Batch SVR 0.08 15.22 21.82 17.55

Batch KNeighborsRegressor -0.24 16.13 25.40 20.18
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Batch RandomForest -0.44 16.20 27.36 21.61

Batch NN small -0.34 17.61 26.35 21.28

Batch NN medium -0.59 20.17 28.74 22.95

Batch (WT) SVR 0.08 15.26 21.80 17.59

Batch (WT) NN small -0.13 17.23 24.18 19.25

7-day forecast

Type Model r2 median abs err rmse mean abs err

First gen. PAR -0.02 14.78 23.05 18.29

First gen. SGD -0.17 13.72 24.62 18.42

First gen. NN small -0.27 19.25 25.63 21.12

Second gen. PAR -0.09 15.53 23.72 18.90

Second gen. PAR(C=0.5) -0.05 16.09 23.39 18.84

Second gen. SGD -0.11 13.78 24.04 18.54

Second gen. NN medium -0.81 13.48 30.60 22.24

Second gen. NN small -0.46 18.78 27.48 22.53

Second gen. (WT) PAR -0.18 20.41 24.70 20.56

Second gen. (WT) NN small -0.66 19.78 29.30 23.85

Batch SVR 0.03 15.26 22.40 17.92

Batch KNeighborsRegressor -0.36 18.11 26.59 21.42

Batch RandomForest -0.40 17.07 26.99 21.07

Batch NN small -0.40 17.87 26.92 22.04

Batch NN medium -0.63 22.43 29.10 23.83

Batch (WT) SVR 0.03 15.71 22.49 17.92

Batch (WT) NN small -0.18 16.21 24.78 19.98
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Appendix E

Second generation PM10

First gen. First generation NO2 online learning model

Second gen. Second generation NO2 online learning model

Batch NO2 model trained using batch-learning

WT Feature set: only wind speed and traffic (polynomial degree of 2)

PAR Passive-Aggressive Regressor C=1, epsilon=5)

PAR(0.5) Passive-Aggressive Regressor C=0.5, epsilon=5)

SGD Stochastic Gradient Descent from Scikit-learn (default)

NN small Hidden layers: 6-6

NN medium Hidden layers: 6-18-12-6

KNeighborsRegressor KNeighborsRegressor from Scikit-learn

SVR Support Vector Regression from Scikit-learn

RandomForest RandomForestRegressor from Scikit-learn

All metrics are based on observational data and forecasts for April 2019.

24-hour forecast

Type Model r2 median abs err rmse mean abs err

First gen. PAR 0.42 5.27 10.33 7.33
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First gen. SGD SEI -0.15 7.97 14.60 10.47

First gen. NN medium 0.20 6.37 12.15 8.98

Second gen. PAR 0.43 5.22 10.28 7.25

Second gen. PAR(C=0.5) 0.33 5.27 11.09 7.71

Second gen. SGD SEI -0.08 6.78 14.15 9.83

Second gen. NN medium -0.09 6.59 14.21 9.98

Second gen. NN small 0.21 6.30 12.08 9.03

Second gen. SGD -0.23 5.99 15.07 9.96

Batch SVR 0.02 5.27 13.44 8.83

Batch KNeighborsRegressor 0.03 7.73 13.37 9.84

Batch RandomForest 0.08 8.47 13.08 9.91

Batch NN small 0.10 8.00 12.92 9.93

Batch NN medium 0.26 6.95 11.70 8.77

3-day forecast

Type Model r2 median abs err rmse mean abs err

First gen. PAR -0.23 6.99 15.06 10.26

First gen. SGD SEI -0.46 7.51 16.44 11.57

First gen. NN medium -0.44 6.03 16.34 10.59

Second gen. PAR -0.15 6.02 14.59 9.82

Second gen. PAR(C=0.5) -0.17 5.99 14.69 9.77

Second gen. SGD SEI -0.43 6.51 16.27 11.02

Second gen. NN medium -0.79 7.36 18.20 12.31

Second gen. NN small -0.50 7.31 16.66 11.67

Second gen. SGD -0.60 6.93 17.19 11.44

Batch SVR -0.11 6.21 14.31 9.57

Batch KNeighborsRegressor -0.41 8.21 16.16 11.41

Batch RandomForest -0.37 7.01 15.92 11.24

Batch NN small 0.03 7.29 13.40 9.97

Batch NN medium 0.01 7.45 13.51 9.91
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7-day forecast

Type Model r2 median abs err rmse mean abs err

First gen. PAR -0.48 7.77 16.54 11.84

First gen. SGD SEI -0.50 8.51 16.66 11.75

First gen. NN medium -0.59 7.71 17.13 12.05

Second gen. PAR -0.42 7.71 16.20 11.67

Second gen. PAR(C=0.5) -0.40 7.49 16.10 11.33

Second gen. SGD SEI -0.53 7.78 16.80 11.75

Second gen. NN medium -0.87 11.82 18.60 14.64

Second gen. NN small -0.61 8.21 17.28 12.67

Second gen. SGD -0.73 8.63 17.88 12.41

Batch SVR -0.18 6.03 14.80 9.86

Batch KNeighborsRegressor -0.73 8.21 17.91 12.05

Batch RandomForest -0.84 8.01 18.45 12.95

Batch NN small -0.16 6.99 14.62 10.36

Batch NN medium -0.31 7.53 15.55 11.04
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