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Når eg ser din himmel, eit verk av dine �ngrar,

månen og stjernene som du har sett der,

kva er då eit menneske, sidan du kjem det i hug,

eit menneskebarn, sidan du tek deg av det?

Salme 8,4-5.

When I consider your heavens, the work of your �ngers,

the moon and the stars, which you have set in place,

what is man that you are mindful of him,

the son of man that you care for him?

Psalm 8,3-4.
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Chapter 1

Introduction

In 1960 Theodore Harold Maiman reported the �rst working laser (1). Although interesting to
scientist, few people could have predicted the usefulness of this new technology. In the early
days it was said to be "a solution looking for a problem". At present, however, numerous such
problems have been found. In our every day life lasers are encountered for instance when listening
to CD-s and watching DVD-�lms, talking on the phone, on the dance �oor, when going to the
supermarket and during tra�c controls. Maybe the most important applications are the ones
that are not encountered every day, though. For example, laser technology is widely used within
medicine and science.

The main application of lasers in medicine is various kinds of surgery. There are also appli-
cations to diagnostics (2). Within science, it proves very useful for measurements. For instance,
very precise measurements of distances can be performed � on almost any scale. Lasers are used
for spectroscopy, i.e. measuring the energies of microscopic systems, and with short pulses, one
is able to monitor chemical reactions on the actual time scale of the reaction. Other interesting
applications are laser cooling and optical tweezing. Finally, one hope for the future is that energy
may be produced by fusion of small nuclei in combinations of very strong laser �elds (3).

The acronym "laser" stands for "light ampli�cation by stimulated emission of radiation".
Contrary to "ordinary light", laser light is coherent and practically monochromatic, i.e. it contains
only one wavelength. Typically it is very focused, so that the intensity of the radiation may be
extremely high. Over the years di�erent techniques have been used to make lasers. Maiman
used a silver coated rod of ruby, which is an example of a solid state-state laser. Nowadays,
semiconductor lasers are most common. The newest and maybe most impressive contribution
to the family is the free electron laser, which uses a relativistic beam of electrons. With the
improved technology, the intensity, the shortness of the pulses and the photon energy of lasers are
also improved (5). Lasers with photon energies of about 100 eV and pulse duration as low as 250
as has been demonstrated (6), and intensities can reach beyond 10 TW/cm2.

It is expected that, as the intensity and frequency of laser pulses become increasingly high,
we will acquire new knowledge about the interaction between matter and light. Much theoretical
e�ort has been made during the last decades in order to describe both atoms and molecules in
strong attosecond laser �elds.

For very high-frequency laser �elds the oscillations of the �eld may be fast even on the atomic
scale. This, in turn may cause electrons to experience some time-average e�ect of the �eld rather
than the instantaneous one. This may be related to the phenomenon of atomic stabilisation (7).
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Figure 1.1: This picture is from Star�re Optical Range on Kirtland Air Force Base, New Mexico,
USA (4). The laser is used to eliminate atmospheric distortions in order to get as clear images as
possible of objects in space.

Another issue raised by both the shortness of the wavelength of the �eld and its high intensity,
is the importance of the magnetic interaction. In many cases, the spatial dependence of the laser
�eld may be neglected so that it is adequately described by a homogeneous electric �eld. However,
as intensities and frequencies increase, this approximation breaks down.

Both these issues are central parts of the present work. The thesis contains six chapters.
Chapter 2 is a brief introduction to the Schrödinger equation, which is the starting point for
most of the results presented. Chapter 3 describes the interaction between matter and light, and
methods used to solve the time dependent Schrödinger equation are brie�y outlined in chapter 4.
The scienti�c papers, which are found in chapter 7, constitute the main part of the thesis. Each
of the these papers are introduced in chapter 5. Chapter 6 contains a summary of what has been
done along with a few ideas about the direction of future work.

In most of the papers and in parts of the thesis atomic units are used. They are de�ned by
choosing Planck's constant divided by 2π, ~ = 1.05 · 10−34 Js, as the unit of angular momentum,
the Bohr radius, a0 = 4πε0~2/mee

2 = 5.29 · 10−11 m, as the unit of length and the electron mass,
me = 9.1 · 10−31 kg, as the unit of mass. Atomic units are practical since this choice simplify
the relevant equations considerably, and the magnitudes of the quantities become moderate on
the atomic scale. However, they have the disadvantage that for most people they are not easily
related to quantities encountered in every day life, as is the case for the SI-units.
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Chapter 2

The Schrödinger Equation

At the end of the 19th century and in the beginning of the last one, various discoveries forced
scientist to change their understanding of nature in a profound way. The consequences reached
far beyond the realm of mere physics. For instance, the Michelson Morley experiment showed
that the speed of light is the same regardless of the observer's velocity relative to the light source,
which, in turn, lead Albert Einstein to put forward his famous theory of special relativity in 1905
(8; 9). With this theory, space and time could no longer be considered two separate, absolute
concepts; measurements of lengths or time intervals are modi�ed by the movement of the observer.

This was not the only revolutionary hypothesis put forward by Einstein this year. Among
other things he was also able to explain the photo-electric e�ect (10), in which he claims that
charges are liberated to carry current by absorbing light-quanta � one at a time � of a certain
energy which is given by the wavelength of the light. However, the idea of light as consisting of
small quanta does not originate from Einstein. It was �rst introduced by Max Planck in order to
explain the spectrum of black body radiation (11). Planck intended this idea to be no more than
a mathematical tool. He was even disappointed to learn that his "trick" turned out to change our
understanding of light completely. The traditional understanding of light as waves was no longer
su�cient; it had to be acknowledged that sometimes light behaves as particles. This new insight
in the nature of light was soon to have consequences for our understanding of matter as well.

Bohr was among the very �rst to try and formulate the principles of quantum mechanics. His
model of the hydrogen atom was able to explain the Rydberg formula for the spectral emission
lines from hydrogen gas through the relation (12)

En = − me4

2(4πε0)2~2

1
n2
, (2.1)

which was already known to agree very well with measured spectra. Here En is the energy of
the atom in state number n, e is the elementary charge and ε0 is the permittivity of free space.
Although the Bohr model is considered obsolete nowadays, he should be accredited for having
formulated the idea of a discretised energy spectrum of atoms.

In 1923 Luis de Broglie, inspired by Planck, Einstein and Bohr, among others, made the
bold step of suggesting, in his Ph. D. thesis, that since light turns out to be particles as well as
waves, also matter may behave as waves as well as particles. Few years later, his hypothesis was
con�rmed by experiments made by C. J. Davisson and L. H. Germer (13) and by G. P. Thomson
(14).
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All these observations paved the way for a completely new understanding of matter and its
interactions. However, it was not at all trivial to formulate a theory that could embrace these new
phenomena in a consistent manner. The process that �nally lead to the formulation of quantum
mechanics is an excellent example of the fruitfulness of cooperation and exchange of ideas. Many
letters were written and hours of discussions took place � not the least in Niels Bohr's institute
in Copenhagen.

Erwing Schrödinger was convinced that if particles are to be considered waves, they should be
described by a wave equation. In 1926 he developed and presented these ideas in a famous series
of six papers (15). His �rst published version of the equation for a particle in a static potential
reads

∆ψ +
8π2m

h2
(E − V )ψ = 0 (2.2)

Here ∆ = ∇2 is the Laplace operator, the eigenvalue E is the energy and V is the potential. He
considered the particle to be represented by a standing wave. For the hydrogen atom the solution
of this equation leads to the Bohr formula, Eq. (2.1), for the energies.

In fact, before this Schrödinger had already developed a relativistic version of the equation.
This was not published, however, because the energies predicted did not coincide with the Som-
merfeld correction to the Bohr formula (16). Schrödinger's relativistic equation is actually the
time independent version of the equation now known as the Klein-Gordon-Foch equation, which
is valid for particles of spin zero.

In the following papers Schrödinger incorporated the description of an electric �eld in his wave
equation, developed formalism for describing more complex systems, showed how perturbation
theory could be applied to quantum mechanics, and �nally formulated the dynamic generalisation
of Eq. (2.2) (17). For a single particle the time-dependent Schrödinger equation may be written{

− ~2

2m
∇2 + V (r, t)

}
Ψ(r, t) = i~

∂

∂t
Ψ(r, t). (2.3)

Shortly before Schrödinger published his wave equation, Werner Heisenberg had formulated
another theory of quantum mechanics called matrix mechanics. This was shown by Schrödinger
to be equivalent to his wave mechanical formulation.

Schrödinger's equation gained acceptance rather quickly. However, its meaning was to be
subject to intense debate. Speci�cally, how was the wave function Ψ to be interpreted? Max
Born suggested that the square of the absolute value of the wave function, |Ψ|2 represents the
probability density of �nding the particle at position r. These ideas were developed further by
Bohr in cooperation with Heisenberg, among others.

2.1 The Hydrogen Atom

We will very brie�y consider the solutions of the stationary Schrödinger equation for the hydrogen
atom. For this system, Eq. (2.2) may be written{

− ~2

2m
∇2 − e2

4πε0r

}
ψ(r) = Eψ(r). (2.4)
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Figure 2.1: The wave function of a highly excited hydrogen bound state with quantum numbers
n= 10, l= 5 and m = 3. The picture is taken from Ref. (18). The picture shows an isosurface
of the absolute value of the wave function. The colours encode the phase according to the colour
circle convention in the upper left corner. The diameter of this structure is about 3 · 10−8 m.

For a hydrogen atom the equation is analytically solvable. One discrete set of solutions for energies
below zero, i.e. bound states, may be written as

ψnlm = Rn,l(r)Yl,m(θ, ϕ). (2.5)

The radial part Rn,l is proportional to ρle−ρ/2L2l+1
n+l (ρ) where ρ = 2r/na0 and Lj are associated

Laguerre polynomials, and the angular part Yl,m(θ, ϕ) is proportional to P |m|
l (cos θ)eimϕ where

Pm
l are associated Legendre functions.

The quantum numbers n, l and m are related to the energy (through Eq. (2.1)), the angular
momentum of the system and the projection of the angular momentum on some pre-chosen axis,
respectively. An example of such a wave function is illustrated in Fig. 2.1. Obtaining the energy
spectrum of atomic hydrogen in such a consistent manner may be considered the �rst great
triumph of Schrödinger's wave equation.

For unbound system the energy is no longer quantised, and the eigenfunctions, ψk,l,m =
Rk,l(r)Yl,m(θ, φ), constitute a continuous basis in which the wave number k =

√
2mE/~ may

have any positive value.

The quantum numbers l, and m are subject to the constraints l = 0, 1, ..., n and m = −l,−l+
1, ..., l, respectively. Consequently, n2 states corresponds to the same energy En. This high degree
of degeneracy is a consequence of the special nature of the ∼ 1/r-potential. Since it is spherically
symmetric, all three components of the angular momentum are conserved. Furthermore, another
spatial vector, namely the Runge-Lenz vector, is also conserved. In group theoretical terms, this
is a manifestation of the SO(4)-symmetry (19).

For system with more than one electron, the degree of symmetry is strongly reduced due to
the interaction between the electrons.
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2.2 The Non-Local Nature of Quantum Mechanics

Einstein was very displeased about the direction quantum mechanics had taken. He felt that,
although it may be correct, it could not possibly be a complete theory. He was particularly
unhappy about the probabilistic, non-deterministic nature of the theory1. In order to "prove"
its inadequacy, he and two of his colleges formulated what they considered to be a paradox in
which two particles, according to quantum mechanics, could have 100 % correlated, yet undecided,
physical quanities at arbitrarily large separation (20). Thus, a measurement on one of the particles
would completely determine the outcome of a measurement of the same quantity on the other
particle instantly, which Einstein claimed to be in violation of the principle of relativity; no
information can travel faster than the speed of light. They drew the conclusion that there had to
be more to know about the system than what quantum mechanics was able to predict.

The correlation mentioned above arises from what is called entanglement; a system of, say,
two particles is not described by the combination of the state of each one of them but rather by
some global, common state. Schrödinger, who introduced the term "entanglement", said, referring
to this phenomenon: "I would not call that one but rather the characteristic trait of quantum
mechanics, the one that enforces its entire departure from classical lines of thought" (23).

In the early 1980s, one was able to investigate the issue of the EPR-paradox experimentally.
Earlier, John Bell had shown that if we, inspired by Einstein, assumed that the correlation between
seemingly entangled particle was due to some local hidden variables, measurements would be
correlated in a di�erent way than predicted by quantum mechanics. He suggested an experiment,
which Alan Aspect and coworkers were able to perform. They found a very good agreement with
the predictions of quantum mechanics (22).

Another manifestation of the non-local nature of dynamical, microscopic systems is interfer-
ence. In classical mechanics, a system starts out in a well de�ned initial state and evolves uniquely
into another. In quantum mechanics, however, the initial state is not precisely known � in the
classical sense, and we may think of the system as following several separate evolutions simul-
taneously. When the amplitudes of these distinct "paths" interfere with each-other, the phases
gives raise to an interference e�ect that does not have any classical analogue. The multiple path
Landau-Zener model, which is described later in this thesis, may serve as an illustrative example
of this phenomenon.

In addition to the heavy impact on physics and our understanding of nature, every day life has
also felt the consequences of modern physics � for better and for worse. Inventions such as lasers
(with all its applications), transistors and integrated circuits, nuclear magnetic resonance imaging
(MRI), nuclear energy and weapons and GSM-navigation are all results of these theories. At
present much e�ort is made in order to obtain control of quantum systems through manipulating
them with electromagnetic �elds. These e�orts may enable us, among other things, to obtain
optical control of chemical reactions, nano-fabrication and handling information on a quantum
level. Our dream is that this may open new doors within medicine, information technology and
energy production. This may make us better equipped to make conditions for life on earth more
sustainable. In doing so, however, we should not wait until these new technologies are available.

1The famous claim "God does not play dice" was put forward by Einstein in this context. Bohr's

response is both simple and wise: "Who are you to tell God what to do?"
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Chapter 3

The Interaction between Light and

Matter

The electromagnetic �eld is governed by the well known Maxwell equations. In di�erential form
they read

∇ ·E =
1
ε0
ρ (3.1)

∇ ·B = 0 (3.2)

∇×E = − ∂

∂t
B (3.3)

∇×B = µ0J + µ0ε0
∂

∂t
E, (3.4)

where E and B is the the electric and magnetic �eld, respectively, ρ is the charge density, and J
is the current density.

By expressing the �elds by the vector potential, A, and the scalar potential ϕ,

E = − ∂

∂t
A−∇ϕ (3.5)

B = ∇×A, (3.6)

Eqs. (3.2) and (3.3) are automatically satis�ed. The vector and scalar potentials are found by
substituting Eqs. (3.5) and (3.6) into Eqs. (3.1) and (3.4). However, this does not determine the
potentials completely; we may impose further restrictions which do not a�ect the physics. There
are several possible ways of doing this, which are referred to as gauges. Here we will use the
Coulomb gauge restriction, which demands that the divergence of the vector potential is zero:

∇ ·A = 0 (3.7)

If we limit ourselves to free �elds, i.e. with no charge nor current, the scalar potential is zero, and
the vector potential (in the Coulomb gauge) is given by

c2∇2A =
∂2

∂t2
A, (3.8)
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which is the well known wave equation. Here c = (ε0µ0)−1/2 is the speed of light. One is easily
persuaded that any linear combination of functions of form f(ωt− k · r) such that ω/|k| = c is a
solution of Eq. (3.8). Hence, the general solution may be written as

A(r, t) =
∫

d3k

2∑
λ=1

{a(k, λ) exp[i(ωt− k · r)] + a∗(k, λ) exp[−i(ωt− k · r)]} εk̂,λ. (3.9)

The polarisation vectors εk̂,λ, λ = 1, 2, are orthogonal to each other and to the propagation

direction k̂. The three components of k may be discretised by imposing a cavity on the system.
In quantum mechanics, the electromagnetic �eld, as well as the system of matter particles,

is described by a state vector in its own Hilbert space. Furthermore, the �eld, as any physical
quantity, is represented by operators. In the case of the vector potential, which gives the physical
quantities E and B, we let the expansion coe�cients a(∗)(k, λ) become operators. The a(k, λ)-s
are the annihilation operators, which reduce the number of �eld quanta in the mode given by the
momentum k and polarisation λ by one. Accordingly, a∗(k, λ) → a†(k, λ) is the creation operator,
which increases the number of quanta, i.e. photons, in the mode by one.

However, for strong �elds, the number of photons in a mode may be so high, in the order
of 106 or more, that any basis representation of the photon states would be unfeasible. On the
other hand, according to the correspondence principle of Bohr (24), for high quantum numbers,
classical physics should be reproduced. Hence, we should be able to describe the �eld classically
in the following, i.e. A will be a scalar quantity, not an operator. A rigorous proof of the validity
of this approximation for strong �elds is found in Ref. (25).

Alternatively, this procedure may be justi�ed by the ideas of Briggs and Rost (26). They have
shown that for some small quantum system coupled to another much larger1 system, the larger
one may be described classically in the interaction. Furthermore, based on the same idea, they
are able to deduce the time dependent Schrödinger equation from the time independent one with
a statistical description of the interaction. This semi-classical approach has a long history within
collision physics (27).

We will now turn to the issue of how the interaction between the (classical) electromagnetic
�eld and matter is described.

3.1 Euler-Lagrange Formalism

The starting point is the classical Euler-Lagrange formalism (28). In this context, the classical
Hamiltonian function for a particle with mass m is given by

H =
1

2m

3∑
i=1

piq̇i + V, (3.10)

where pi are the components of the generalised momenta, qi are the generalised coordinates and
V is some external potential.

1What is meant by "larger" is de�ned very precisely by an asymmetry condition on the energies of the

systems.

8



The generalised momentum is de�ned by the Lagrangian function L,

pi =
∂L
∂q̇i

. (3.11)

The Lagrangian is to be chosen such that it reproduces Newton's second law with the Lorentz
force,

mr̈ = q(E + v ×B), (3.12)

through the Euler-Lagrange equation,

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0. (3.13)

This is achieved with

L =
1
2
mv2 − V + qv ·A. (3.14)

Here q is the charge of the particle and v is its velocity.
Inserting Eqs. (3.14) and Eq. (3.11) into Eq. (3.10), we arrive at the Hamiltonian

H =
1

2m
(p− qA)2 + V (r) = H0 +HI (3.15)

where H0 = 1/2m p2 + V is the Hamiltonian of the unperturbed particle and the interaction is
given by

HI = − q

m
A · p +

q2

2m
A2. (3.16)

3.2 The Dipole Approximation

For monochromatic light the wavelength may be much larger than the extension of the system
at hand. For instance, red light has a wavelength of about 700 nm, whereas the typical size
of a molecule in in the ground state is about 1 nm. In such cases, when the extension of the
atomic system is not greatly increased by the interaction, the spatial variation of the �eld may be
neglected. This corresponds to a zeroth order expansion in the spatial variables of the the �eld,

exp[i(ωt− k · r)] = exp[iωt] +O(ωr/c).

When this approximation is applied to Eq.(3.15), it is referred to as the dipole approximation.
This approximation is widely used. However, as the wavelength grows shorter and the �eld

grows stronger, non-dipole e�ects may come into play. Part of this work is devoted to the study
of such e�ects.

It should be noted that large atomic system does not necessarily imply signi�cant non-dipole
e�ects since dynamics in many cases primarily takes place near the nucleus.
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Figure 3.1: The coordinates of the two particles, r1 and r2, along with the centre of mass and
relative coordinates R and r.

3.2.1 Separability of the Schrödinger Equation

When solving the time dependent Schrödinger equation for, e.g., the hydrogen atom or a hydrogen
like atom in an electromagnetic �eld, it is usually assumed that the proton may be considered
�xed, and the only dynamics is that of the electron relative to the position of the nucleus. This
seems reasonable considering the large ratio between the proton and the electron masses. However,
for any system of two charged particles, the Schrödinger equation is easily reduced to an e�ective
one particle equation when the dipole approximation applies.

For two particles in the �eld A, Eq. (3.15) is straightforwardly generalised:

H =
1

2m1
(p1 − q1A(r1, t))2 +

1
2m2

(p2 − q2A(r2, t))2 +
q1q2

|r1 − r2|
. (3.17)

We de�ne a new set of coordinates, namely the centre of mass (CoM) coordinates and the relative
coordinates, by

R = 1
M (m1r1 +m2r2)

r = r1 − r2

}
⇔
{

r1 = R + m2
M r

r2 = R− m1
M r

(3.18)

The coordinates are illustrated in Fig. 3.1.
The corresponding generalised momenta, P and p, respectively, are still given by Eq. (3.11).

By expressing the Hamiltonian in these coordinates and neglecting the spatial dependence of the
�eld, the Hamiltonian may be separated in three parts: HR, corresponding to the R-coordinate,
Hr, corresponding to the r-coordinate, and Ht, which is purely time dependent. Speci�cally we
have:

H = HR +Hr +Ht (3.19)

HR =
P 2

2M
− Q

M
A(t) ·P

10



Hr =
p2

2µ
− q̃

µ
A(t) · p + VC(r)

Ht = (A(t))2
(
Q2

2M
+
q̃2

2µ

)
.

where the total mass M and the reduced mass µ are de�ned by

M ≡ m1 +m2, (3.20)

µ ≡ m1m2

m1 +m2
, (3.21)

and the total charge Q and the reduced charge q̃ are de�ned by

Q ≡ q1 + q2, (3.22)

q̃ ≡ 1
M

(q1m2 − q2m1) = µ

(
q1
m1

− q2
m2

)
, (3.23)

respectively. The last term in Eq. (3.19) may be removed by a trivial phase transformation of the
wave function.

With the Hamiltonian reduced to separate terms depending only onR,P and r,p, respectively,
the separation is trivial. As we will see later, separation is less trivial when the spatial dependence
of the �eld is taken into consideration.

3.2.2 Alternative Formulations of the Hamiltonian

The form of the Hamiltonian Eq. (3.15) is commonly referred to as velocity gauge. This re�ects
the fact that the generalised momentum is shifted compared to the canonical momentum, mv, by
qA which corresponds to the momentum of a classical free particle in the presence of the electric
�eld E = −Ȧ.

Within the dipole approximation, there are various ways to formulate the the Hamiltonian of
the interaction. In general, by imposing some norm conserving (unitary) transformation T on the
state |Ψ〉,

|Ψ′〉 ≡ T |Ψ〉,

the Hamiltonian may be brought from H to H ′, which has generic form

H ′ = THT † + iṪ T †. (3.24)

In the following we will consider two other forms of the interaction, which constitute alternatives
to the velocity gauge, namely the length gauge description and the Kramers-Henneberger frame.

The length gauge

If the unitary phase transformation

Tl = exp(−iq r ·A(t)) (3.25)

(in atomic units) is applied to Eqs. (3.15) and (3.24), the new Hamiltonian will be

Hl =
1

2m
p2 + V (r)− qr ·E. (3.26)

11



In this case the interaction, −qr ·E, has a somewhat more intuitive form than in velocity gauge:
It is the potential energy of a dipole of charges ±q at separation r in the presence of the electric
�eld E. This is the origin of the term "dipole approximation".

In this formalism, the canonical and generalised momenta coincide, p = mv. It is also possible
to arrive at Eq. (3.26) through the Lagrangian function by adjusting the vector and scalar potential
in a way that does not change E nor B, i.e. by performing a gauge transformation � hence the
name length gauge.

Kramers-Henneberger frame

The Kramers-Henneberger (KH) form of the Hamiltonian is obtained by the transformation (in
atomic units)

TKH = exp(−iα(t) · p), (3.27)

α ≡ q

m

∫ t

t0

A(t′) dt′, (3.28)

which is a translation (24). The resulting Hamiltonian reads

HKH =
1

2m
p2 + V (r−α) +

q2

2m
A2. (3.29)

This description of the interaction was �rst derived by Pauli (29), and later by Kramers and
Henneberger (30; 31), after whom it is named. In literature, one will also �nd that it is called
acceleration gauge, which is somewhat misleading since it, contrary to the length gauge, cannot
be achieved by a gauge transformation (32).

The interaction is induced by the time dependent translation α of the position vector r. This
corresponds to a reference frame that follows the path of a classical free particle in the �eld.
Rather than the direct in�uence from the �eld, the particle "experiences" a moving potential.

As we will see, it is possible to generalise this description in order to include non-dipole e�ects.

3.3 Non-Dipole E�ects

Of course, no magnetic e�ects can be described with a vector potential independent of the spatial
variables (see Eq. (3.6)). In the velocity gauge, Eq. (3.15), the spatial dependence of the �eld
may be fully accounted for in a straightforward manner. But the description in the length gauge
is not that straight forward without the dipole approximation (33). When it comes to the KH
frame, the transition is somewhat more cumbersome than in the dipole case. However, we will
demonstrate here that it may still be done.

3.3.1 The non-dipole form of the Kramers-Henneberger Hamilto-

nian

We will take the vector potential to be represented by a linearly polarised �eld of the form

A(η) = A(η)ε (3.30)

12



where ε ≡ [εx, εy, εz] is a unit vector in the direction of the polarisation, and η is de�ned by

η ≡ ωt− k · r. (3.31)

The Coulomb gauge restriction, Eq. (3.7), is here equivalent to

k · r = kxεx + kyεy + kzεz = 0. (3.32)

The form of the transformation, Eq. (3.27), is maintained, but translation α is slightly re-
de�ned as compared to Eq. (3.28):

α(η) =
q

ωm

∫ η

η0

A(η′) dη′. (3.33)

In fact, it is not obvious that the transformation TKH = exp(−α(η) · p) actually is a translation
since α now depends on spatial variables in addition to time. However, within the Coulomb gauge
restriction we �nd that indeed TKHV (r)T †

KH = V (r−α). The transformation of the kinetic energy
term, Tp2/2mT †, gives raise to three new terms.

All in all the �nal Hamiltonian in the generalised Kramers-Henneberger frame reads

HKH =
1

2m
p2 + V (r−α(η)) +

1
2m

(A(η))2 −
1

2m

(
k2
(
α′(η) · p

)2 + ik2α′′(η) · p + 2(α′(η) · p)(k · p)
)
. (3.34)

In many cases the three last terms may be neglected. By comparing their magnitude to the
kinetic energy terms of the same form, we �nd that a su�cient criterion for this is given by

|q|Emax

ωmc
� 1, (3.35)

where Emax is the maximum amplitude of the electric �eld (Emax = ωAmax). In App. A for all
details are given.

The above formalism is easily generalised to a circularly polarised �eld and to any number of
particles.

3.3.2 Separation of the two-particle Hamiltonian in the presence

of a spatially dependent �eld

We have already seen that within the dipole approximation, the two-particle Schrödinger equation
is easily reduced from a six dimensional to an e�ective three dimensional equation. With a spatially
dependent �eld, which would necessarily depend on both the CoM coordinate R and the relative
coordinate r, this is not possible in the general case (see Eqs. (3.17) and (3.18) or Ref. (34)).
However, by expanding the vector potential to �rst order, we may �nd cases in which separation
is permissible. For simplicity, we let the linearly polarised �eld of Eq. (3.30) propagate along the
x axis. To �rst order in ωx/c and ωX/c, the �eld at positions r1 and r2 are given by

A(r1, t) ≈ A0(t) +
1
c
E0(t)

(
X +

m2

M
x
)

(3.36)
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and

A(r2, t) ≈ A0(t) +
1
c
E0(t)

(
X − m1

M
x
)
, (3.37)

respectively, where the time-only dependent �elds A0 and E0 are the respective �elds evaluated
at the origin. Keeping only terms of �rst order, the velocity gauge Hamiltonian reads

H = H ′ + h′ +
(
Q2

2M
+
q̃2

2µ

)
A2

0 −
q̃

M
P ·E0

x

c
− q̃

µ
p ·E0

X

c
(3.38)

with

H ′ ≡ 1
2M

P 2 − Q

M
P ·
(
A0 + E0

X

c

)
+
(
Q2

M
+
q̃2

µ

)
A0E0

X

c
(3.39)

h′ ≡ 1
2µ
p2 + VC(r)− q̃

µ
p ·A0 −

q′

µ
p ·E0

x

c
+
(
Qq̃

M
+
q̃q′

µ

)
A0E0

x

c
. (3.40)

The total and reduced charges, Q and q̃, are already de�ned in Eqs. (3.22) and (3.23), respectively,
whereas the e�ective charge q′ is de�ned by

q′ ≡ q1m
2
2 + q2m

2
1

M2
. (3.41)

The two last terms of Eq. (3.38) prohibit separation. However, for a charged system (Q 6= 0)
in a strong �eld they may be neglected upon comparison to other non-dipole terms that do not
include any momentum operator. This is related to the fact that for strong enough �elds, the
p-distribution in the velocity gauge has a narrow peak centred at the origin (35). This argument
also applies to the distribution of the relative momentum p in the direction of the �eld. For
neutral systems, the e�ect of the second last term in Eq. (3.38) may be estimated by assuming
thermal motion of the CoM (34). This way its e�ect may be compared to, e.g., the last term of Eq.
(3.40) and neglected when the latter is dominant. The resulting e�ective one particle Schrödinger
equation takes the form

i
∂

∂t
ψ(r, t) =

{
1
2µ
p2 +

q1q2
r

+
q̃

µ
p ·A +

(
Qq̃

M
+
q̃q′

µ

)
AE

x

c

}
ψ(r, t). (3.42)

Another interesting observation is that when the reduced charge q̃ vanish, as is the case, e.g., for
a system consisting of two identical particles, the Schrödinger equation separates exactly (to �rst
order in ωx/c). Recently Smirnova et al. demonstrated that, within the dipole approximation, a
proton and a deuterium particle may be quasi bound by combined linearly and circularly polarised
laser �elds (3). This raises the question of whether inclusion of non-dipole e�ects makes binding
of two protons feasible in a similar manner. With a linearly polarised �eld A| polarised in the
z-direction propagating in the x direction and a circularly polarised �eld A◦ polarised in the xy
plane propagating in the z direction, the Schrödinger equation of system may be written as

i
∂

∂t
Ψ(r, t) =

{
1
mp

p2 +
1
r
− 1
mpc

p ·
(
E◦z + E|x

)}
Ψ(r, t), (3.43)

where mp is the proton mass and E|(◦) = −Ȧ|(◦).
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3.4 Classical Dynamics

When describing complex systems, Monte Carlo methods, i.e. methods making use of arbitrary
numbers, may be quite useful. The description of the interaction between microscopic systems
and light is no exception. Furthermore, in surprisingly many cases adapted classical methods may
be applied successfully to study atomic and molecular processes. The classical trajectory Monte
Carlo (CTMC) method is an example of such a method. In this scheme, the dynamics is given by
classical equations, i.e. Newton's second law. A large number of initial positions and momenta are
chosen at random from some initial distribution. Then the classical equations corresponding to
each of these initial conditions are solved, and the results are obtained by investigating the whole
set of such solutions. There are various ways of constructing initial distributions. One possible
choice is the micro-canonical distribution in which the energy of each set of initial conditions is
�xed. Speci�cally, the initial coordinates r0,p0, subject to the condition 1/2 p2

0 + V (r0), are
substituted by a new set of coordinates in which the distribution is uniform. This method was
introduced bye Abrines and Percival in 1966 (36).

Ideally, the distribution of initial conditions should reassemble the quantum mechanical prob-
ability distribution as closely as possible � both in position and momentum space. For the micro-
canonical distribution, this is impossible, however, since there is an outer limit to the classical
position of a bound electron in a potential, and there are no such limit on the quantum mechanical
wave function.

For a particle subject to the static potential V (r) and the external electric �eld E(r, t) and
magnetic �eld B(r, t), Newton's second law may be written as a set of coupled ordinary di�erential
equations:

ṙ = v

v̇ =
q

m
(E + v ×B)− 1

m
∇V. (3.44)

This classical problem is of course much less costly to solve than the quantum mechanical one �
also for relatively large sets of initial conditions.

Again referring to the system of quasi bound proton and deuterium, Ref. (3), the above
method has been used to investigate the e�ect of non-dipole terms in binding of bare nuclei (37).
These calculations indicate that inclusion of spatial variables in the �elds have detrimental e�ect
on the binding of the system. However, we will demonstrate later that this detrimental e�ect is
less pronounced in a fully quantum mechanical description.
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Chapter 4

Solving the Schrödinger Equation

When solving the Schrödinger equation, analytical solutions are desirable. In addition to being
elegant, such solutions represent a very compact way of obtaining results which makes it easier to
investigate how the outcome depends on the parameters involved. However, in most cases we are
forced to settle for some numerical solution. A wide range of schemes for solving the Schrödinger
equation numerically is available. In this chapter we will consider two of them and give practical
examples of their application. We will start by considering an analytical method, though.

Throughout this chapter atomic units are used unless stated otherwise.

4.1 The Landau-Zener Model

In 1932 no less than four di�erent scientists were able to �nd analytical solutions to the Schrödinger
equation of a quantum system consisting of two states, |1〉 and |2〉 with some constant coupling
V and linear di�erence in diagonal energy, 〈2|H|2〉 − 〈1|H|1〉 = bt. These four people, who used
quite di�erent approaches, where Ettore Majorana (38), Ernst Carl Gerlach Stückelberg (39), Lev
Davidovich Landau (40) and Clarence Melvin Zener (41). However, usually only the last two has
their names attached to the model.

The model provides an analytical expression for the probability of transition between the two
states. Although derived for a very particular � and very small � system, it is widely used today.
Reason being that the model invites us to an intuitive understanding of the dynamics which
may easily be generalised and applied to larger systems. The underlying idea is that transitions
between states take place more or less instantly as the energies, or potential curves, of the two
states cross. For a system consisting of several states, transitions between crossing states take
place with probability given by the LZ model, whereas the populations of all other states are
assumed to be unaltered. An example of such a system to which the LZ model has been applied
successfully is shown in Fig. 4.1 (43). It should be noted that in general the phases of the
amplitudes of the states involved in crossings are important, not just the populations.

The assumption that transitions takes place at the instant of crossing may be motivated by
turning to the basis consisting of instantaneous eigenstates of the time dependent Hamiltonian.
We label these time dependent states |χj(t)〉 and de�ne them by

H(t)|χj(t)〉 = εj(t)|χj(t)〉, (4.1)
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Figure 4.1: The energies of three sub-shell in a lithium atom in the presence of a dc �eld. The
�gure is taken from Ref. (43). The red curves correspond to states with population probability
P larger than 1 %, whereas the the green curves correspond to 0.5 % ≤ P ≤ 1 %. The classical
ionisation limit is shown as a blue line.

where the εj-s are the eigenenergies of H(t). In this basis, which is referred to as the adiabatic
basis, the potential curves in general exhibit an avoided crossing rather than a crossing according
to the von Neumann-Wigner non crossing rule, see, e.g., Ref. (28). If we write the state as a linear
combination of the adiabatic states as

|Ψ〉 =
∑

j

a′j exp
(
−i
∫ t

ti

εj(t′) dt′
)
|χj〉, (4.2)

the Schrödinger equation is equivalent to

∂

∂t
a′k =

∑
j 6=k

〈χk|∂H
∂t |χj〉

εk − εj
e
−i

R t
ti

εj(t
′) dt′

a′j(t). (4.3)

From this we see that couplings, and hence the possibility of transitions, between the adiabatic
states vanish when the energy separation between two states become large. Furthermore, the
above expression together with the non-crossing rule, proves the adiabatic theorem, which says
that if the Hamiltonian varies slowly with time, ∂H/∂t ≈ 0, a system that starts out in the n'th
eigenstate will remain in the nth state (42).

In the following we will outline the relevant concepts of the LZ model a bit more precisely.

4.1.1 The two state case

We start out by a two state system, which in some basis has a linear energy di�erence and constant
coupling. We will refer to this basis as the diabatic basis. We may write the Schrödinger equation
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Figure 4.2: a) The diabatic (dashed curve) and adiabatic (full curve) diagonal energies. The
absolute value of the Lorentzian shaped coupling is also included (dash-dotted curve). b) The
populations of the two states as functions of time in the diabatic (dashed curve) and adiabatic
basis (full curve). In this example we have b = 2 a.u. and V = 0.37 a.u..

as matrix equation, iċ = HDc, with the Hamiltonian matrix

HD =
(
−1

2bt V
V ∗ 1

2bt

)
, (4.4)

The coupling V is assumed to be real in the following.
In the adiabatic basis, which is obtained by diagonalising the matrix (4.4), the Hamiltonian

takes the form:

HA =

(
−
√

(bt/2)2 + V 2 i bV
b2t2+4V 2

−i bV
b2t2+4V 2

√
(bt/2)2 + V 2

)
. (4.5)

The diagonal energies within both bases are illustrated in Fig. 4.2 a. The adiabatic diagonal
energies and basis states coincide with the diabatic ones in the limit t → ±∞. At the instant
when the diabatic curves cross, the splitting of the adiabatic curves gives the magnitude of the
coupling:

∆ε(t = 0) = 2|V |. (4.6)

The adiabatic coupling has a well localised Lorentzian shape, whereas it remains constant in the
diabatic basis. It is evident that transitions take place much faster in the adiabatic basis than in
the diabatic one. This is illustrated in Fig. 4.2 b.

In the adiabatic basis, the dynamics may be described through propagators in the form of
2× 2 matrices:

c(tf ) = J(tf , 0)SJ(0, ti)c(ti), (4.7)

where c(t) = (c1, c2)T is de�ned by |Ψ(t)〉 = c1|χ1〉 + c2|χ2〉. The initial and �nal times, ti and
tf , are to be chosen well separated from the crossing. Before and after the crossing, the only
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time-evolution is the one corresponding to the adiabatic phase, given by the J-matrices:

J(t2, t1) ≡ diag
{∫ t2

t1

ε1(t′)dt′,
∫ t2

t1

ε2(t′)dt′
}
. (4.8)

The transition matrix S reads

S(±) =
( √

1− peiα ±√p
∓√p

√
1− pe−iα

)
, (4.9)

where p is the probability of a non-adiabatic evolution (38; 39; 40; 41),

p ≡ exp (−2πδ) , δ ≡ V 2/| b|, (4.10)

and the Stokes phase,

α ≡ π

4
+ δ(ln δ − 1)− arg[Γ(1 + iδ)], (4.11)

is the phase shift introduced by the crossing.
We emphasise that this description only applies to the adiabatic basis. In the diabatic basis,

the phase shift that arises from the crossing is time-dependent.
The sign in Eq. (4.9) is crucial; care must be taken when choosing the right expression. It

depends on both the signs of the parameters b and V and also the topology of the potential curves
of the system.

4.1.2 The multi-state case

Within the framework of matrix propagators, the generalisation from two state to multi-state
Landau-Zener (MLZ) theory is straightforward. Suppose a system of N states is subject to m
crossings at times ti, i = 1, ...,m. Then

c1(tf )
c2(tf )

...
cN (tf )

 = J(tf , tm)Sm J(tm, tm−1)Sm−1 · · ·J(t3, t2)S2 J(t2, t1)S1 J(t1, ti)


c1(ti)
c2(ti)
...

cN (ti)

 .

(4.12)
The S-matrices are constructed by inserting the elements of the 2× 2 matrix Eq. (4.9) in the

entries corresponding to the adiabatic states involved in the avoided crossing, and the rest of it
corresponds to the identity matrix. The J-matrices are constructed by a direct generalisation of
Eq. (4.8).

In this propagation scheme, there are three kinds of phases involved, namely the adiabatic
or dynamic phases given by the time integral of the adiabatic energies, the instantaneous phase
shift α and signs arising from "book-keeping" arguments. In some particular cases, these phases
are unimportant. (44; 45). However, unless the system has some special topology, they all play a
crucial role.

In order to be able to apply Eq. 4.12, it is crucial that the transition dynamics at one crossing
do not interfere with the dynamics corresponding to the next one. From Eq. (4.5) we may �nd a
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criterion for this. We de�ne the interaction time τ as the width of the Lorentzian coupling at 10
% of its maximum value, 1/(b2τ2 + 4V 2) = 1

10 · 1/(4V
2), which gives

τ = 6
∣∣∣∣Vb
∣∣∣∣ . (4.13)

By demanding that two consecutive couplings do not overlap considerably we arrive at

tn+1 − tn >
1
2
(τn+1 + τn) ∀n. (4.14)

Although this is only a necessary condition, not a su�cient one, we expect that it should serve at
least as an estimate of the applicability of the MLZ model.

Second order transitions

Obviously, if the coupling V in Eq. (4.4) vanishes, no transition takes place. Analogously, one
may expect that no transitions will take place between two uncoupled crossing diabatic states in
some system consisting of more than than two states. However, this is not necessarily the case.
The Hamiltonian matrix of such a diabatic system may still feature avoided crossings between
the eigenenergies. The splitting will in general be of order ∼ V 2 as opposed to ∼ V , cf. Eq.
(4.6). From this a "pseudo-coupling" may be found and inserted into Eq. (4.10) in order to �nd
the probability of such a second order transition. Although the transition probabilities between
uncoupled diabatic states tend to be rather low, they may play a surprisingly crucial role. This is
rather puzzling seen from the semi classical point of view in which propagation takes place only
forward in time following diabatic energy curves between crossings with possible hopping between
diabatic states at the crossings due to the coupling.

4.2 Basis Expansion

One very common way of solving the Schrödinger equation numerically, is to expand the wave
function in some basis, |Ψ〉 =

∑N
i=1 ci|φi〉, where the �nite set of basis states {|φi〉} to as large

an extent as possible spans the relevant space. When doing so, the Schrödinger equation takes
the form of a coupled set of ordinary di�erential equations, which can be expressed as a matrix
equation. If the basis is orthonormal and the basis states are independent of time, the equation
reads

i
∂

∂t
c = H̃(t)c, (4.15)

with c = (c1, ..., cN )T and H̃ is a matrix with its elements given by 〈φi|H(t)|φj〉. This system of
coupled �rst order di�erential equations may be solved by, e.g., the Runge-Kutta method (46).
Of course, obtaining the couplings 〈φi|H|φj〉 may be far from trivial.

In principle, for su�ciently large N , any set of basis states will do. However, we want to keep
N as low as possible. Furthermore, maximum sparsity of the Hamiltonian matrix is desired in
order to make the numerical solution as fast and stable as possible. Quite frequently a basis that
solves some corresponding time independent Schrödinger equation is applied. Speci�cally, if the
Hamiltonian can be written as H = H0+H ′(t) where H0 does not depend on time, the eigenstates
of H0 may be a good choice of basis.
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4.2.1 B-spline basis sets

The method of basis expansion may be used in order to solve the time independent Schrödinger
equation, H0|φi〉 = εi|φi〉, as well as the time dependent one. In that respect, b-splines is a popular
choice of basis (47). These basis functions are piecewise polynomials which are non-zero only on
some limited interval. They are de�ned on the interval [0, rmax] by a knot sequence {ti} consisting
of N points on the interval. The i'th b-spline of order k is given by the recursion formula

B1
i (r) =

{
1, ti < r < ti+1

0, otherwise

Bk
i (r) =

r − ti
ti+k−1 − ti

Bk−1
i (r) +

ti+k − r

ti+k − ti+1
Bk−1

i+1 (r). (4.16)

Since these functions are non-zero only on a limited interval, the Hamiltonian matrix H̃0 becomes
band-diagonal. The degree of di�erentiability of the basis functions is given by the order k, as
well as the width of the diagonal band of the Hamiltonian matrix.

The basis is very �exible in the sense that di�erent parts of space may by given particular
signi�cance by an appropriate choice of knot sequence. In this way, by expanding the position
wave function on a basis consisting of spherical harmonics for the angular part and b-splines for
the radial part,

ψn(r, θ, φ) =
∑
l,m

fn
l,m(r)
r

Yl,m(Ω)

fn
l,m(r) =

∑
i

cni,lmB
k
i (r), (4.17)

the eigenfunctions of both atoms and molecules may be found to a very high degree of precision
(48; 49; 50).

Angular spectra for the photo electron of H+
2

The procedure described above has been applied to �nd the angular distribution of the photo
electron of the hydrogen molecular ion ionised by a linearly laser �eld oriented along the internu-
clear axis. The internuclear separation is assumed to be �xed at R = 2 a.u.. The eigenstates are
found using a set of b-splines of order k = 8 with 220 knot-points distributed linearly from 0 to
rmax = 60 a.u.. The continuum states, representing outgoing waves, are subject to the boundary
condition that the angular momentum quantum number l become well de�ned for the continuum
states in the limit r →∞. This is imposed through Lippmann-Schwinger formalism (48).

Having obtained the adequate eigenfunctions, couplings may be calculated and the time de-
pendent Schrödinger equation is solved.

The angular distribution of the electron of H+
2 after being ionised by a laser pulse may be

written as
dPI

dΩ
=
∫
dε

∣∣∣∣∣∑
l

i−le−iσlYlm(Ω)〈ψεlm|Ψf 〉

∣∣∣∣∣
2

. (4.18)

Here ε = k2
e/2 is the electron energy, σl ≡ arg Γ (l + 1 + i2/ke) is the Coulomb phase shift, and

ψεlm is the continuum state corresponding to an outgoing wave with energy ε, azimuthal quantum
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T = 2 fs, I = 1012 W/cm2, ω = 2.1 a.u. T = 5 fs, I = 1014 W/cm2, ω = 0.7 a.u.

Figure 4.3: The energy distribution of the photo electron from a H+
2 molecule exposed to a laser

pulse in the �xed nuclei approximation. The left panel is for a one photon transition, whereas the
right panel corresponds to a two photon transition. Also inserted in the �gure are the distribution
between the �nal channels and the angular distribution.

number m, which is conserved in this particular process, and asymptotic angular momentum
quantum number l. The �nal amplitudes 〈ψεlm|Ψf 〉 correspond directly to the amplitudes in Eq.
(4.15).

The angular distribution, along with the energy and channel distribution, for processes in
which the electron in the ground state Σg is ionised by absorption of one photon and by two
photons is shown in Fig. 4.3. In representing the energy distribution of the photo electron, dPI/dε,
the amplitudes must be multiplied by the proportionality factor between the true continuum states
and the box normalised continuum states, which is simply the square root of the density of states
in the box. Also the distributions within the �nal l-channels are shown. We see that, in accordance
with the dipole selection rules, only odd l-s are populated by one photon absorption and only even
l-s are populated in the two photon process. The two-photon angular distribution is essentially a
d-wave, whereas the outgoing wave is a mixture of p and f -waves in the one photon case.

4.3 The Split Operator Method

Formally, the solution of the Schrödinger equation may be written as

Ψ(t) = T̂ exp
(
−i
∫ t

t0

H(t′) dt′
)

Ψ(t0), (4.19)

where T̂ indicates that the products in the expansion of the exponential operator should be time
ordered (24). If we neglect time ordering and split the time interval into sub intervals of length
∆t,

Ψ(t+ ∆t) ≈ exp (−iH(t)∆t) Ψ(t), (4.20)

the error made in each time step is of order ∆t2 and proportional to the time derivative of the
Hamilton operator (51). In practical implementations the appearance of both kinetic energy T

23



and potential energy V in the exponent may be troublesome to handle. Therefore we would like
to split the propagator into products corresponding to the distinct parts of the Hamiltonian. The
error in doing so is minimised by "sandwiching" the propagator of the potential by half steps of
the kinetic energy operator, i.e. by writing Ψ(t+∆t) ≈ e−iT∆t/2e−iV ∆te−iT∆t/2Ψ(t), H = T +V .
In doing this an error of order ∆t3 is introduced (52).

This method has been developed further in order to describe dynamical systems of cylindrical
symmetry in spherical coordinates (53) and �nally to describe any three dimensional system in
spherical coordinates (54). The method is widely used in this work, so it merits being reviewed
in detail.

The Schrödinger equation of one particle subject to some time dependent potential W (r, t)
may be written in the following form:

i
∂

∂t
Φ(r, t) =

{
1

2m
∂2

∂r2
+

L2

2mr2
+ VS(r) +W (r, t)

}
Φ(r, t). (4.21)

Φ is the reduced wave function, rΨ(r, t), VS is any spherically symmetric part of the potential
and L is the angular momentum operator.

The reduced wave function is expanded in spherical harmonics,

Φ(r,Ω, t) =
lmax∑

l

l∑
m=−l

flm(r, t)Ylm(Ω). (4.22)

In order to minimise errors, the propagator is constructed as

U(t+ ∆t, t) = e−iA∆t/2e−iB∆t/2e−iW (t)∆te−iB∆t/2e−iA∆t/2, (4.23)

with

A =
1

2m
∂2

∂r2
, (4.24)

B =
L2

2mr2
+ VS(r). (4.25)

Correspondingly, propagating the wave function from time t to t + ∆t is performed in �ve
steps. The �rst one is multiplication with e−iA∆t/2. This part only operates on the radial part
of the wave function. By Fourier transforming the radial functions, the operator ∂2/∂r2 amounts
to simply multiplying by k2. Afterwards, the new radial functions are constructed by an inverse
Fourier transform. Very fast numerical routines for doing so are available.

The second step is very simple since the spherical harmonics are eigenfunctions of L2. Specif-
ically, e−iB∆t/2flmYlm = flm exp[−i(l(l + 1)/2mr2 + VS(r))]Ylm.

The most time consuming part of the propagation is the third one, e−iW∆t. The entire wave
function Φ must be constructed from Eq. (4.22) and then multiplied by the exponential operator.
Afterwards, the new radial parts flm must be obtained, which is done by projecting of the new Φ
on spherical harmonics,

flm(r) =
∫

Φ(r,Ω)Y ∗
lm(Ω) dΩ ≈

∑
n

wnΦ(r,Ωn)Y ∗
lm(Ωn). (4.26)

Angular grid points {Ωn} and the corresponding weights {wn} of the quadrature are provided by
Sloan and Wommersley (55). See Fig. 4.4.

The fourth and �fth step consist in repeating the second and third ones, respectively.
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Figure 4.4: The angular grid points of a grid consisting of 122 points. As we see, the points are
distributed rather uniformly on the sphere. The Image is provided by Prof. Ladislav Kocbach
(56).

4.3.1 Propagation in imaginary time

For certain systems, such as the hydrogen atom, analytical expressions for the bound states are
accessible. But in general these wave functions are not that easily constructed. In such cases,
any propagation scheme may provide at least the ground state by a very simple modi�cation,
namely substituting time by imaginary time, t → τ = −it. The time propagator given by the
time independent Hamiltonian H0 is modi�ed accordingly:

Ψ(t) = e−iH0tΨ0 → e−H0τΨ0, (4.27)

where Ψ0 is some test function with a non-vanishing projection on the ground state. This state may
always be written as a linear combination of eigenstates of H0, Ψ0 =

∑
n cnφn with H0φn = εnφn.

Consequently, Ψ(τ) =
∑

n cne
−iεnτφn. The amplitude of all excited states die out exponentially

faster than that of the ground state φ0. Therefore, after a short "time", the only surviving state
is the ground state.

The energy of the ground state is easily found from the norms of the wave functions of two
consecutive time steps. Assuming that it has already converged rather close to the ground state,
we have Ψ(τ + ∆τ) = e−H0∆τΨ(τ) ≈ e−ε0∆tΨ(τ). Thus

ε0 = − 1
2∆τ

ln
(
〈Ψ(τ + ∆τ)|Ψ(τ + ∆τ)〉

〈Ψ(τ)|Ψ(τ)〉

)
. (4.28)

The convergence towards the ground state can be checked by monitoring this value. An example
of such a convergence is illustrated in Fig. 4.7. When the ground state energy of the system is
known in advance, it provides a test of the accuracy of the numerical parameters at hand.

In principle, this method may be used to �nd excited states as well. By removing any pro-
jection of lower lying states at each time step, the resulting wave function should be the desired
excited state.
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Figure 4.5: lmax, the number of l-s needed to achieve convergent results, in the length gauge (*)
and the Kramers-Henneberger frame (+) as a function of the number of optical cycles (left) and
maximum �eld strength (right) for a hydrogen atom initially prepared in the 2p state exposed to
a linearly polarised laser �eld. The �gures are taken from paper I in this thesis.

4.3.2 Practial examples challenges

The split operator method is very useful and seemingly quite powerful. In principle, any three
dimensional dynamic system of one e�ective particle may be described by this method; any inter-
action may be implemented in the W (r, t)-potential. However, an interaction given by a scalar
operator is much more easily implemented than non scalar ones. Speci�cally, for interaction with
electromagnetic �elds, the length gauge, Eq. (3.26), and KH form of the interaction, Eq. (3.29),
is preferable to the velocity gauge, Eq. (3.15), which involves the operator A · p = −iA · ∇.

In the following some of the possibilities and challenges of the method will be illuminated by
brie�y outlining some particular applications.

The hydrogen atom in laser �elds

When describing a hydrogen atom in an electromagnetic �eld in the length gauge, the Coulomb
potential may be included in the spherical part of the potential, VS in Eqs. (4.21) and (4.25).
In the KH frame the translated Coulomb potential, 1/|r +

∫ t
t0
A(t′) dt′|, is included in the time

dependent potential W . As it turns out, for strong �elds much lower lmax is needed in order to
obtain convergence in the latter case than in the length gauge. In Fig. 4.5 we see that the numbers
of l-s needed in the length gauge seems to increase linearly with both �eld strength and pulse
duration, whereas it is more or less constant in the KH frame.

A problem that must always be tackled in atomic and molecular physics, is the singularity of
the Coulomb potential, V = 1/r. Since the �eld is calculated directly in this method, some �nite
value must be assigned to V (r = 0). One way of avoiding this problem, is to impose a softening,
V → 1/

√
r2 + s2. However, this may change the dynamics of the system rather dramatically (57).

In this work, the problem has been minimised by arranging the geometry relative to the angular
grid-points, such that the singularity is encountered as little as possible.
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Figure 4.6: The geometry of the system of a H+
2 molecule exposed to a linearly polarised laser

�eld. The protons are separated by the distance R and the angle between the internuclear axis
and the electric �eld of the laser de�ne the orientation angle θ.

Dynamics involving the hydrogen molecular ion

In the �xed nuclei approximation, the Hamiltonian of an H+
2 molecule exposed to a linearly

polarised �eld is given in atomic units by

Hl = −1
2
∇2 − 1

|r−R/2|
− 1
|r + R/2|

+ r ·E(t)

in the length gauge and by

HKH = −1
2
∇2 − 1

|r−R/2 + α|
− 1
|r + R/2 + α|

in the Kramers-Henneberger frame, cf. Eqs. (3.26), (3.28) and (3.29). See Fig. 4.6. Since the
Coulomb potential is not isotropic, both the Coulomb potential and the interaction with the �eld
is incorporated in the potential W in Eq. (4.21) in both gauges.

Although an analytical expression for the ground state of this system is known (58), it is more
convenient to construct it by propagation in imaginary time. In Fig. 4.3.2 the energy calculated
from Eq. (4.28) is shown as a function of the imaginary time τ . The convergence towards the
ground state energy is seen to be very fast.

In order to �nd the �nal ionisation probability an absorber is imposed on the boundary of
the grid. The remaining wave function is propagated until the the norm is converged, so that the
ionisation probability is found as PI = 1−

∫
grid |Ψ|

2 dV .
As mentioned, the projection of the explicit wave function Φ(r,Ω) onto spherical harmonics

is the most time consuming part of the propagation. Therefore the scheme may be "speeded up"
considerably if we are able to calculate the matrix elements of type 〈l′m′|W |lm〉 . Furthermore,
since numerical integration over the angles is avoided, the precision of the method is improved,
and truncation errors induced by the coupling to l-values higher than lmax may be removed.

Speci�cally, for the case of a H+
2 molecule in an electromagnetic �eld of arbitrary orientation

in the length gauge, this can be done analytically by expanding the Coulomb potential in spherical
harmonics and performing subsequent Euler rotations of the interaction term in order to align

27



0 1 2 3 4 5 6−1.12

−1.1

−1.08

−1.06

−1.04

−1.02

−1

−0.98

Imaginary time (a.u.)

En
er

gy
 (a

.u
.)

Figure 4.7: The convergence towards the ground state energy for a H+
2 molecule at internuclear

separation R = 2 a.u..

it with the quantisation axis (59). In this way, also the problem related to the singularities is
avoided since the potential is always �nite and still consistent with the lmax of Eq. (4.22).

Binding bear nuclei: Non-dipole e�ects

As mentioned previously, it has been demonstrated that, within the dipole approximation, deu-
terium and proton may be quasi bound by a combined circularly and linearly polarised laser
�eld (3) and that classical calculations indicate that this binding does not sustain inclusion of
non-dipole e�ects (60).

The Hamilton operator for the system, with the circularly polarised �eld A◦ propagating in
the z-direction and the linearly polarised �eld A| polarised in the z-direction and propagating in
the x-direction may be written in the Kramers-Henneberger form as

H =
3

2mp
p2 +

1
|r −α0|

+
1

2mpc
A0 ·E|

0x, (4.29)

wheremp is the proton mass and α = 1/2mp

∫ t
ti

A0(t′) dt′ ẑ. The index "0" indicates that the �elds
are evaluated at r = 0. The details of the separation in relative and centre of mass coordinates
are explained in App. B.

In this particular case, the linearly polarised �eld is much stronger and has a higher frequency
than the circular one, so that only non-dipole terms arising from this �eld is included. This is
done by expanding the �eld to �rst order in k| · r.

Using a Cartesian version of the split-operator scheme, it is found that inclusion of non-dipole
e�ects does have a certain detrimental e�ect on the binding of the system, but not to such an
extent that binding is not feasible. This is illustrated in Fig. 4.8.
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Figure 4.8: The norm of the wave function (thin lines) and the projection on the initial state
(thick lines) as functions of time with the dipole approximation (dash-dotted curves) and without
the dipole approximation (full curves). The �eld strengths are E◦ = 33 a.u. for the circularly
polarised �eld and E| = 260 a.u. for the linearly polarised �eld, and the frequencies are ω◦ = 0.060
a.u. and ω| = 0.11 a.u., respectively. This image is based on a calcualtion by Ingrid Sundvor.
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Chapter 5

Introduction to the Papers

The present scienti�c results are all products of teamwork. Many of the underlying ideas have
emerged from discussions and interaction between various people so that they cannot be accredited
one single person.

The content of the papers may seem somewhat diverse. However, they are all, in some way,
related to the dynamic interaction between matter and light. In the following the content of each
one of them will be brie�y outlined, and my speci�c contributions in each case � in addition to
taking part in writing the papers � in is indicated.

Paper I concerns geometrical dependencies in photo-ionisation of a hydrogen atom initially
prepared in the 2p, m = 0 state. It is found that for high photon energy, the ionisation probability
features a very strong dependence of the angle between the quantisation axis and the polarisation
of the laser �eld. This dependence is explained as a consequence of the multi photon channel
closing due to an e�ectively lower binding energy for the perpendicular geometry than the for
the parallel one. This hypothesis is con�rmed by investigating the energy spectra of the photo-
electron.

My speci�c contribution to this work is mainly modifying the computer codes used to describe
this system.

Paper II addresses some of the same issues as the previous one. By investigating the en-
ergy spectra of photo-electrons from hydrogen atoms initially prepared in the ground state, it is
found that multi-photon-ionisation is suppressed as the �eld strength increases. This explains
the mechanism of atomic stabilisation. At su�ciently high intensity, the electron only "experi-
ences" the time independent zeroth order Floquet component of the Coulomb potential in the
Kramers-Henneberger frame. Furthermore, the non-dipole version of the Kramers-Henneberger
frame Hamiltonian is presented. It is demonstrated that atomic stabilisation prevails inclusion of
non-dipole e�ects, contrary to what others have claimed, and that the photoelectrons have low
energy in this regime.

In this work I have worked out the non-dipole form of the Kramers-Henneberger Hamiltonian.

Paper III, as paper I, addresses the issue of orientational dependence in photo-ionisation.
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This time the system is the hydrogen molecular ion, however. Also in this case, for high photon
energy, very strong dependence on geometry is found. Speci�cally, at polarisation parallel to the
internuclear axis, the ionisation probability exhibits oscillatory behaviour as a function of the
internuclear distance. As the �eld strength increases, the ionisation probability ceases to increase,
i.e. the system is stabilised. As the angle between the polarisation and internuclear axis is
varied, the oscillations are reduced and vanish at perpendicular polarisation. This phenomenon is
explained in terms of interference between outgoing waves originating from each of the scattering
centres (protons). This idea is also able to explain the angular distribution of the photo-electron.

In this case, obtaining the numerical results and presenting them graphically has been done
by myself.

Paper IV is a proceeding to the 2nd International Conference on Developments in Atomic,
Molecular and Optical Physics with Applications in Delhi, India 2006. It may be considered
a brief summary of the results of the three preceding articles. Furthermore, results concerning
the nuclear motion in photo-ionisation of H+

2 are presented. Three such methods are considered,
namely the �xed nuclear approximation, classical description of the nuclear motion, and full quan-
tum mechanical description.

Paper V is an elaboration and continuation of paper III. Speci�cally, the photo-electron spectra
are investigated in more detail through a Fourier transform of the outgoing wave function after the
interaction. The model of two interfering outgoing waves is developed further to include Coulomb
scattering by the other scattering centre. This way, the angular distributions predicted by the
model agree quantitatively with the ones obtained from the ab initio calculations. Finally, the
importance of the initial distribution of the internuclear separations is considered.

As in the case of paper III, the ab initio calculations has been performed by myself, as well
as presenting them. This includes the method of �nding the photo-electron spectra through a
Fourier transform.

In paper VI non-dipole e�ects in photo-ionisation of the hydrogen atom is investigated. The
before mentioned non-dipole form of the Kramers-Henneberger frame is applied. Clear manifesta-
tions of the magnetic �eld are found by investigating the angular distribution of the photo-electron.
The angular distribution has a third lobe in addition to the two which are present also in the dipole
approximation. The non-dipole e�ects are reproduced by classical calculations.

In Paper VII we investigate the applicability of the Landau-Zener model to a four level system,
which may, e.g., consist of two spin-1/2 particles exposed to a magnetic �eld. Special emphases is
put on cases of exact solvability. Furthermore, the importance of interference e�ects and second
order transitions is demonstrated.

Numerical solutions to the speci�c examples are provided by myself. However, my main con-
tribution to this paper has been on the application of the Multi-state Landau-Zener model to
systems of multiple paths and describing the consequent interference e�ect in addition to investi-
gating the signi�cance of second order crossings.
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Paper VIII describes the transport of an electron between adjacent quantum dots using a
linearly polarised oscillating �eld in the radio frequency regime. The process is understood within
a simple four level model, which I have solved analytically. The framework of the Landau-Zener
model is applied, although the parameters predicted by this model does not apply to this partic-
ular system.

Paper IX addresses some of the same issues as those of papers III and V, namely the angular
distribution of the electron arising from photon ionisation of the hydrogen molecular ion. The
method is quite di�erent, however. In this case, the Schrödinger equation is solved as described
in Sect. 4.2.1 using a basis set consisting of b-spines and spherical harmonics. The dynamics
is contained within the Σ (m = 0)-symmetry, and the dynamics include description of nuclear
vibration. It is demonstrated that the angular distribution of the photo electron ionised by two
photons is strongly altered when the ionisation process involves resonant transitions between
bound electronic states.

The distributions displayed in the article are calculated by myself from calculations involving
nuclear vibration performed by Dr. Alicia Palacios. Furthermore, solving the Schrödinger equation
in the �xed nuclei approximation, used for comparison with the proton kinetic energy integrated
angular distributions, has been done by me.
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Chapter 6

Summary and Outlook

The main focus in this work has been the dynamics of atoms and molecules in the presence of
intense, short, high frequency laser �elds. Within this scope special emphasis has been put on
geometrical aspects. It has been found that the relative orientation of the linearly polarised �eld
is quite signi�cant � both for atoms and diatomic molecules. Furthermore, in the latter case,
also the internuclear separation is crucial. For both hydrogen and the hydrogen molecular ion,
the dependence is understood theoretically. For the molecule it has been shown that it may be
understood as a consequence of interference and refraction of two outgoing partial waves.

Some more fundamental theoretical concepts has been investigated as well. First of all, we have
considered the general applicability of the Landau-Zener model and found that its generalisation
to systems of many states and crossings can be done. Careful treatment of phase-interference
e�ects is necessary in the general case. It has also been found that transitions at second order
avoided crossings may be signi�cant, which is rather puzzling from a semi-classical point of view.
The framework of the Landau-Zener model has also been applied to describe coherent electron
transport between adjacent quantum dots.

Furthermore, e�ort has been made in order to describe non-dipole e�ects in the interaction
with the electromagnetic �eld. We have found that for very strong �elds in the high frequency
regime, the magnetic �eld causes the angular distribution of the photo electron from an atom to
feature a three lobe shape rather than a two lobe shape, as would be the situation in the dipole
approximation. We have also demonstrated that the phenomena of atomic stabilisation sustains
inclusion of non-dipole terms.

Another aspect of these non-dipole terms is their importance to the separability of the Schrö-
dinger equation. In general, these terms prohibit separation. However, in some cases separation
may be performed � either approximatively or exactly to �rst order in the spatial variables of the
�eld. The question of separability will be investigated further by numerical calculations.

Since H+
2 has been much investigated in this work, the two electron system H2 represents a

natural step forward. The ab initio description if this system is far more complex than the one
with only one electron � not just because the dimensionality is increased from three to six, or seven
if internuclear vibration is to be included, but also because electron correlation and entanglement
are introduced.

On the other hand, the reduction of one electron from H+
2 to H2+

2 is also an interesting
challenge. We have found that two protons, for which the relative motion does not have any dipole
interaction with any external �eld, �rst order spatial terms does induce an interaction. This raises
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the question of whether this system may be bound by a combination of strong electromagnetic
�elds in a manner analogous to that for proton - deuterium.
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