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Abstract
The ionization dynamics of an initially excited aligned H(2p, m = 0)
atom exposed to short intense laser pulses is studied in the non-perturbative
regime based on a three-dimensional numerical solution of the time-dependent
Schrödinger equation on a spherical grid. The laser pulse is given a linear
polarization vector which defines an angle θ with the symmetry axis of the
initial 2p state. Strong orientation effects for ionization are found as a function
of polarization direction for high laser frequencies. The angular distribution
of the photo-electron spectrum shows two characteristic features related to
ionization dynamics and interference of parallel versus perpendicular states
with respect to the polarization direction of the field. For high enough field
intensities, the ionization probability saturates below unity. In this limit, the
angular electronic distribution is insensitive to the laser polarization direction.
Another characteristic feature is a complete suppression of multiphoton peaks
which results in kinetic emission spectra dominated by slow electrons.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, the experimental tools to study dynamical processes of atom and molecule
interactions with electromagnetic fields have improved dramatically. For example, attosecond
laser pulses with phase control are now realized [1] and open for imaging of ultrafast dynamics
such as time-dependent Auger processes [2] or nuclear dynamics [3]. Other examples involve
preparation of aligned molecules [4] and momentum recoil analysis of fragmenting products
[5, 6] utilizing real studies of reaction dynamics to a degree which only a few years ago were
at the ‘gedanken’ level.

In order to interpret and understand the basic underlying quantum mechanics, the need
to solve the time-dependent Schrödinger equation in parallel with the experimental progress
is strengthened [7]. This requires development and evaluation of numerical methods for
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increasingly complex systems with a corresponding increasing number of degrees of freedom.
For linear polarized laser light interacting with spherically symmetric ground state atoms, the
symmetry reduction to two effective degrees of freedom has resulted in a variety of methods [8]
which has been applied to a range of phenomena such as above threshold ionization (ATI) [9],
dynamic stabilization (DS) [10] and high harmonic generation [11]. A few groups, however,
have reported related studies with broken cylindrical symmetry, e.g., atomic stabilization in
intense circular polarized light [12, 13] molecular dynamics [14] and interaction with excited
hydrogen [15].

Analogous to such studies of light–matter interactions with circular polarized light,
interactions between initially aligned atoms or molecules in general need a full three-
dimensional analysis as well [16]. An example is here the ability of a diatomic molecule
to ionize as a function of the angle between the (linear) laser polarization vector and the
molecular internuclear axis. A strong alignment dependence on the ionization probability
of diatomic molecules exposed to femtosecond laser pulses was recently experimentally
demonstrated [17]. On the theoretical side, molecular alignment effects and the interplay
between nuclear and electronic dynamics has only been studied within perturbation schemes
[18, 19] or low-dimensional models [20, 21].

Concerning alignment and increasingly intense laser fields, it is well known that the
ionization probability of ground state atoms at some point may start to decrease, or alternatively
saturate at a level below 1 [10]. The geometrical aspects of this process for aligned atoms
have only been briefly documented previously [15].

The present paper has two main components (i) an analysis of numerical methods and
(ii) an application of the best method to calculate the ionization probability and the energy
spectrum of an initially excited hydrogen atom in the 2p state with vanishing angular
momentum around the quantization axis. The atom is exposed to a 5-cycle laser pulse
with frequency either in the XUV region or in the UV region. The linear polarization vector
defines in both cases an angle θ with the quantization axis. An extremely strong orientation
effect is predicted for the XUV radiation, whereas the UV light produces a much more modest
orientation effect. This is in contrast to calculations of similar orientation effects in diatomic
molecules [25] and indicates that new orientation effects might be observed for diatomic �

state molecules in contrast to � state molecules [17].
The calculations are based on a three-dimensional spectral split step method. The method

is shown to behave very efficiently in the Kramers–Henneberger frame for strong pulsed laser
fields. It is based on an original two-dimensional formulation by Hermann and Fleck [22]
which was recently extended to three dimensions [23]. The paper is organized as follows: in
the following section, the numerical method is described. In section 3, the calculations are
presented and the results are interpreted. Atomic units, me = h̄ = e = 1, are used unless
otherwise stated.

2. Three-dimensional spectral method

A hydrogen atom interacting with the classical electromagnetic field is conveniently described
by the semi-classical Hamiltonian,

H = 1

2
[p + A(r, t)]2 − 1

r
, (1)

where A(r, t) is the electromagnetic vector potential. In the present formulation we assume
the dipole approximation to be valid, i.e. the wavelength of the radiation is much larger than
the extent of the atom. For moderate intensity, laser frequency and pulse duration, this is
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an excellent approximation. However, for the highest intensities in section 3, it has been
shown that non-dipole effects start to become important [24]. When the dipole approximation
applies, A(r, t) ≈ A(t), and when introducing spherical coordinates the effective Hamiltonian
can be expressed in the so-called velocity gauge,

H(r, t) = −1

2

∂2

∂r2
+

L2(�)

2r2
+ Vv(r,�, t) = H0 + Vv(r,�, t), (2)

with

Vv(r,�, t) = −1

r
+ A(t) · ∇. (3)

Here � = (θ, φ) denotes the spherical angles. This Hamiltonian governs the time
evolution of the reduced wavefunction �(r, t) = r�(r, t). The squared term of the
vector potential of equation (2) contributes in the dipole approximation to the wavefunction
only as a global phase factor. This factor is routinely removed by the transformation
�v(r, t) → �v(r, t) e−i/2

∫ t

0 A2(t ′)dt ′ . The velocity gauge is a frequently used starting point
for perturbation theories [25] as well as non-perturbative treatments [26].

An alternative formulation which is explicitly based on the physical electric and/or
magnetic fields is obtained by the transformation

�l(r, t) = Uv→l�v(r, t) (4)

with, Uv→l = e−ir·A(t). Since the electric field is related to the vector potential by,
E(r, t) = −∂tA(r, t), we obtain the length gauge Hamiltonian H = H0 + Vl(r,�, t) where
the potential is given by,

Vl(r,�, t) = −1

r
+ E(r, t) · r. (5)

Alternatively, the laser pulse may be described from the accelerated frame [27] following
the motion of a free electron in the field. The frame transformation is defined by
Uv→a = e−ip·α(t) which gives the Kramers–Henneberger (KH) frame Hamiltonian, H = H0 +
Va(r,�, t), with

Va(r,�, t) = − 1

|r + α(t)| . (6)

The quantity α(t) is the electron field displacement vector defined by α(t) = ∫ t

0 A(t ′) dt ′.
In the KH frame, the effect of the laser is thus ‘seen’ from the position of the electron as a
nucleus oscillating with the characteristic frequency of the laser pulse. We note that the KH
transformation is closely related to the electronic translational factors (ETF) applied to almost
all non-perturbative two-centre descriptions of ion–atom collisions where the ETF factors not
only ensure Galilean invariance of the theory, but also strongly limit the number of states
needed to describe electron capture processes [28].

In light–matter interactions, the KH frame has played a decisive role for the development
of an understanding of adiabatic stabilization [10]. We summarize here briefly the method
of approach: assume for the moment that the Hamiltonian is perfectly periodic. Then from
Floquet theory, a complete set of complex time-dependent eigenfunctions (quasi-stationary
states) of the KH Hamiltonian can be constructed as follows:

ψ(η)(r,�, t) = e−iE(η)t

∞∑
n=0

φ(η)
n (r,�) e−inωt (7)
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where E(η) is the complex ‘quasi-energy’ of these states. Insertion of this expansion, together
with a Fourier expansion of the time-dependent potential of equation (6),

Va(r,�, t) = VKH +
∑
n�=0

Vn(r,�) einωt , (8)

into the Schrödinger equation in the KH frame, leads to an infinite set of time-independent
coupled differential equations for the components φ

(η)
n and the complex eigenvalues E(η),(

1

2
p2 + VKH − (E(η) + nω)

)
φ(η)

n = −
∑
m�=0

Vmφ(η)
m+n. (9)

The zero-order term VKH represents the time average of the potential over a period, i.e.

VKH = 1

T

∫
T

Va(r,�, t) dt, (10)

with T being the period of the laser. In the high-frequency limit (ω → ∞) the zero-order part
of equation (9) dominates, and the set of Floquet equations reduces to one single [29],(

1
2 p2 + VKH − E(η)

)
φ

(η)

0 = 0, (11)

with the formal solution

ψ(η)(r,�, t) = e−iE(η)tφ
(η)

0 (r,�). (12)

In this limit, the atom is completely stable against multiphoton ionization, i.e. for ω → ∞
the electron does not feel the rapid oscillations of the nucleus, but only its average value over
a period. A sufficient criterion for stabilization is, ω � |W0(E0)|, where |W0(E0)| is the
binding energy of the lowest eigenenergy state in the field. From this criterion, stabilization
can occur when the external frequency is higher than internal (field free) frequencies of the
electron. Adiabatic development from an initial field-free state to the ground state of VKH

when the field is on and back again is then possible. And in this very simple picture, the atom
is completely stable against ionization. It was shown by Pont and Gavrila [30] that the ground
state of the VKH potential becomes less bound with increasing field strength. Hence, for a
given frequency the stabilization process strengthens as the laser intensity increases.

From a modelling point of view, different physical processes are most efficiently described
in different physical frames. In general, the description should start from a point which
minimizes the perturbation and thus keeps the number of computational operations to a
minimum. Thus, none of the equivalent descriptions of dipole limited light–atom interactions,
equations (3), (5) and (6), is optimal for all kinds of laser frequencies, intensities and pulse
durations. With r and pl the conjugate variables describing position and momentum in the
length gauge, the corresponding conjugate variables of the velocity gauge are r and pv =
pl − A. This may lead to fewer states required to describe the wavefunction in situations
where pl � A, as has been shown in basis state expansions [26]. Unfortunately, however, the
velocity gauge cannot be easily implemented in the numerical split step scheme below.

A comparison between the numerical properties of the velocity and length gauge with
the KH frame has to the best of our knowledge not been carried out. By inspection however,
the KH frame seems to be a natural frame for impulsive strong field processes, as strong field
strengths will only reduce the magnitude of the Coulomb potential. Apart from regions in
space where r � α, the KH frame thus minimizes the magnitude of the perturbation. The
present scheme allows for direct implementation of both the length gauge and the KH frame
Hamiltonians. In the following, we will compare the computational requirements necessary
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to obtain frame invariance of the numerical results between the two Hamiltonians with the
potentials in equations (5) and (6), respectively. The vector potential is here given by,

A(t) = E0

ω
sin2

(
tπ

Tpulse

)
sin(ωt)up. (13)

This pulse ensures that the dc component of the field is zero. Furthermore, by keeping Tpulse

an integer number n of laser cycles, Tpulse = 2πn/ω, we are also guaranteed that the field
displacement is zero at t = Tpulse. This makes a direct comparison of the wavefunction before
and after the pulse possible without any additional transformations of the states [31].

In the simplest split step operator formulation, the wavefunction can be propagated from
time t to t + t , with t small [32, 22] by,

�(r, t + t) ≈ e−itA/2 e−itB/2 e−itVl/a(r,t) e−itB/2 e−itA/2�(r, t) (14)

with A = − 1
2

∂2

∂r2 and B = L2(�)

2r2 . The overall numerical error per time step is here O(t2).
A common misunderstanding is to assume the global error of the scheme above to be O(t3)

which is the splitting error. This is however only true for time-independent Hamiltonians.
For time-dependent Hamiltonians there is already a t2 error in the time evolution operator
defined by �(tf ) = T (tf , t0)�(t0), since,

T (tf , t0) = e−i(tf −t0)H +
i

2

∂H

∂t
(tf − t0)

2 +O(tf − t0)
3. (15)

The second-order term is normally small for most laser processes. For short pulses towards
attosecond duration, however, it is clear that this term is important and becomes the leading
source of error.

Following Hansen et al [23], the trick is now to expand the wavefunction in orthonormal
polynomials which is partly diagonal in A and B. By expanding in spherical harmonics,

�(ri,�jk, t) =
Lmax∑
l=0

l∑
m=−l

flm(ri, t)Ylm(�jk), (16)

we obtain,

flm(ri, t) =
∑
jk

wjkY
∗
lm(�jk)�(ri, �jk, t), (17)

with abscissas and weights (�jk, wjk) recently published in tabular form [33]. The sum is
truncated at l = Lmax, where Lmax is chosen sufficiently large to assure convergence of the
numerical scheme. The radial space is also truncated at rmax which is set large enough to
cover the spatial extension of the wavefunction at all times during the pulse. With the present
expansion the operator B simply reduces to a phase multiplication of each angular function
by exp

[
itl(l + 1)

/
4r2

i

]
. The operator A is correspondingly calculated by expanding each

radial basis function in its Fourier components which reduce to another set of multiplications
accompanied by two fast Fourier transformations. Following the action of these operators
the wavefunction � is calculated at each grid point and the exponential potential operator
e−itVl/a(ri ,�jk,t) can act by straightforward multiplication.

The present method is ideal for ‘near spherical’ problems which restrict the number of
necessary radial basis functions and keeps Lmax to a minimum. It also has some built-in
numerical advances such as providing an efficient parallel code [34], and it can be applied to
the length gauge as well as the KH frame without extra programming.

The post-processing work needed to produce physical quantities following a numerical
algorithm should also be considered. In the present scheme, this work is minimized since the
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projection onto field-free eigenstates is particularly simple. For ionization, for example, the
hydrogenic free particle wavefunctions can be expanded in the spherical harmonics,

φc(k, r,�) =
∞∑
l=0

l∑
m=−l

il eiσl Rl(k, r)Ylm(�)Y �
lm(�k). (18)

Here k = √
2E is the wavenumber of the wavefunction, �k is the spherical angle of the

outgoing wave and Rl(k, r) is a real radial wavefunction. Furthermore, σl is the Coulomb
phase required to satisfy the boundary condition as r → ∞ and σl = arg �

(
l + 1 + i

k

)
. For

an infinitely large r-space, k is a continuous variable, while here the discrete k-spectrum is
directly obtained from maximum box size of the simulation, rmax. The radial free particle
Coulomb waves, Kl(k, r), are found by iterative solution of

1

2
k2Kk,l(r) =

(
− d2

dr2
+

l(l + 1)

2r2
− 1

r

)
Kk,l(r) (19)

with boundary values Kk,l(0) = Kk,l(rmax) = 0 where Kk,l(r) = rRl(k, r). It is then a matter
of computational power to find the Coulomb waves for all valid values of ki up to a chosen
kmax, and all values of l � Lmax. We must ensure that kmax is sufficiently high so that the
probability of ionization to higher energies than Emax = k2

max

/
2 is negligible.

Having found the radial Coulomb waves the energy distribution of the ionized electron is
given as

dPI (ki)

dk
= 1

ki

∑
l,m

∣∣∣∣
∫ rmax

0
Kki,l(r)flm(r) dr

∣∣∣∣2

. (20)

We then easily calculate the total ionization probability by taking the sum over all discrete
values of E(ki) = k2

i

/
2. Furthermore, the angular ionization distribution is given by

dPI (�)

d�
=

∑
ki

∣∣∣∣∣
∑
l,m

(−i)l e−iσl Ylm(�k)

∫ rmax

0
Kki,l(r)flm(r) dr

∣∣∣∣∣
2

. (21)

Thus, as long as rmax is chosen large enough all measurable quantities can be directly calculated
by simple one-dimensional integrals involving the final wavefunction directly.

We now return to the question of which frame is the most efficient for short laser pulses.
In figure 1, we show the highest populated l-value for calculations in the length gauge and the
KH frame, respectively, for a 5-cycle pulse, cf equation (13), with increasing intensity (upper
figure) and an N cycle pulse with fixed intensity (lower figure). By highest populated l is
meant the l value in equation (16) which is such that the probability for populating any higher
state is always smaller than 10−3 during the pulse. Thus, the highest populated l value gives a
direct indication of the maximum l needed to obtain convergence. By comparison, it is clear
that the KH frame outmatches completely the length gauge in computational power. Both
as a function of intensity and as a function of pulse length with fixed intensity, we observe
that the KH frame stabilizes at a small number Lmax � 10 as a necessary upper limit for the
expansion in equation (16). The length gauge on the other hand requires increasingly higher
value of Lmax with increasing number of optical cycles and/or increasing intensity, and it will
thus rapidly become prohibitive for three-dimensional calculations.

The KH frame combined with a spherical expansion thus becomes very efficient for
non-perturbative laser–atom or laser–molecule simulations. We therefore apply the KH frame
to the calculations in the following section. We have also checked the results by performing
some of the calculations in the length gauge, and frame invariance within 1% was obtained
for all cases.
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Figure 1. Upper: highest populated l as a function of field strength for a 5 cycle pulse with
ω = 1.0. Lower: highest populated l as a function of pulse length with E0 = 2.0, and the pulse
length is given by Tpulse = N2π/ω. Both panels: ‘+’ Kramers–Henneberger frame calculations;
‘∗’ Length-gauge calculations.

3. Results and discussion

We here report results from three-dimensional calculations of the ionization probabilities and
characteristics of a H(2p) atom based on the outlined method of the previous section. The
initial state is aligned along the z axis with magnetic quantum number m = 0, and exposed
to a linearly polarized laser pulse defining an arbitrary angle with the initial quantization axis
of the atom. The motivation behind the calculations is twofold; (i) to contribute to a more
complete understanding of dynamical stabilization of excited atoms in intense laser fields and
(ii) to investigate the geometrical aspects of ionization from aligned quantum states. As such,
the latter point is related to ionization of aligned diatomic molecules as well as excited atomic
states.

The calculations are carried out for 5-cycle pulses in the non-perturbative intensity regime.
Two typical laser frequencies are applied, ω = 1.0 (45 nm) and ω = 0.11 (400 nm) which
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Figure 2. Ionization probability for 2p(m = 0) hydrogen as a function of laser polarization θ and
electric field strength E0 for ω = 1.0.

allow us to study the electronic response in a high frequency pulse of attosecond duration
(760 as) versus the response to more conventional pulsed laser frequency in the femtosecond
range (7 fs). The intensity ranges were set to 0 < E0 < 20 (0 < I < 1.4 × 1019 W cm−2)
and 0 < E0 < 0.1 (0 < I < 3.4 × 1014 W cm−2) for the high and low frequency pulse,
respectively. Other parameters of the calculations are, Lmax = 12, rmax = 300, 1024 radial
grid points and the time step t = 0.01. An absorbing boundary was used to remove
unphysical high-frequency components. These components of the wavefunction carry initially
a very small amplitude such that they do not destroy norm conservation significantly when
damped at first contact with the boundary. The extension of the grid was always kept large
enough to assure that the norm of the wavefunction remains very close to unity at the end
of the pulse.

In figure 2, the ionization probability following a 5-cycle pulse with ω = 1.0 is shown
as function of the electric field intensity and the angle between the H(2p) symmetry axis
and the polarization vector of the electric field, cf equation (13). The ionization probability
is seen to depend critically on the angle θ for field strengths 1 < E0 < 10 with favoured
ionization at small angles. At E0 = 1 for example, the ionization probability is around
ten times larger for θ � 0 compared to θ � 90◦. From a simple classical picture of an
initial oscillating charge it seems reasonable with preferred orientation for θ = 0, even if the
laser frequency is much larger than the natural frequency of the electron, a phenomenon well
known from fast ion–atom collisions [35]. In both cases, ionization is enhanced for minimum
momentum transfer which is initially present in the parallel case. Another interesting aspect of
figure 2 is that dynamic stabilization is most pronounced at small angles. Here the ionization
probability reaches a maximum around E0 = 10 and from there on decreases with increasing
intensity. For larger values of θ , however, the ionization probability always increases with
field intensity.

In figure 3, the ionization probability for a corresponding 5-cycle pulse with ω = 0.11 is
shown as function of field intensity in a comparable intensity region with respect to ionization
probability. For this frequency we observe a much smaller angular ionization dependence,
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Figure 3. Ionization probability for 2p(m = 0) hydrogen as a function of laser polarization θ and
electric field strength E0 for ω = 0.11.

only about 30–40% in favour of small θ -values around E0 � 0.02. For high intensities, the
ionization probability is completely independent of θ and the ionization probability stabilizes
around 70%.

In figure 4, snapshots of the time development of the probability density are compared
at corresponding times for the two pulses, i.e. after 1, 2 and 4 cycles. The left side shows
ω = 0.11 and polarization angle θ = 55◦. We observe that the wavefunction has instantly
responded to the laser polarization direction which results in a distinct radiative pattern. The
right side of figure 4 shows snapshots for ω = 1.0 and polarization angle θ = 90◦. Here we
observe that it does take several cycles for the oscillating field to release the electron.

The results in figures 2 and 3 are now interpreted by taking advantage of symmetry
properties of the real spherical harmonics,

Ỹl0 = Yl0

Ỹlm = 1√
2
(Ylm + (−1)mYl−m) (m > 0)

(22)

Ỹl−m = 1√
2
(Ylm + (−1)m+1Yl−m) (m < 0). (23)

When the electric polarization vector defines the quantization axis the initial wavefunction can
thus be decomposed into two decoupled components,

�(r,�, t = 0) = [cos θỸ10(�) + sin θỸ11(�)]R21(r, t = 0), (24)

where Rnl(r) is the hydrogenic radial wavefunction. The two components evolve
independently, such that the wavefunction at a later time t can be written as

�(r,�, t) = cos θ

∞∑
l=0

fl0(r, t)Ỹl0(�) + sin θ

∞∑
l=1

fl1(r, t)Ỹl1(�). (25)
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Figure 4. Snapshots of the probability density in the x–z plane at three different times during the
laser pulse. Left: ω = 0.11 and polarization angle θ = 55◦. Right: ω = 1.0 and polarization
angle θ = 90◦. Upper: snapshot after 1 cycle. Middle: after 2 cycles. Bottom: after 4 cycles. The
scale at the left (right) panel is ±50(±30) in both directions.

The ionization probability may thus be expressed as

PI (θ, E0) = p0(E0) cos2 θ + p1(E0) sin2 θ (26)

with p0 and p1 being the corresponding ionization probabilities of the states |2p(m = 0)〉up

and |2p(m = 1)〉up , defined with respect to the polarization direction of the field.
Now turning back to figure 2, equation (25) shows that the 1s state is symmetry forbidden

when θ = 90◦ for a linearly polarized field, whereas its importance for the dynamics is
proportional to cos2 θ as the angle θ is decreased. Hence, the stabilization dynamics will
strongly depend on the relative population on the |2p(m = 0)〉 up and |2p(m = 1)〉 up states
initially. For a given frequency, the 2p(m = 1) state stabilizes at a lower intensity than
the 2p(m = 0) state. This is because the criterion for stabilization is fulfilled at lower
intensities as long as the ground state in the field (1s state) is not populated during the period
of the laser pulse. Similar considerations were made and exploited experimentally when
atomic stabilization was first demonstrated in excited circular Rydberg states [36, 37]. These
aspects explain the geometric variation of the ionization probability in figure 2. In fact,
for θ ∼ 90◦ the frequency is already so high compared to the binding energy of the lowest
accessible eigenenergy state in the field that multiphoton ionization is strongly suppressed at all
intensities, whereas for θ ∼ 0◦ multiphoton processes occur for the lower field intensities. For
the highest field strengths the effective binding energy ultimately becomes so low, independent
of the polarization angle, that any dependence on θ vanishes.
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Figure 5. Upper: ionization probability density dP(E)/dk as a function of electric field strength
E0 and energy of the ionized electron E = k2/2 for ω = 1.0. The polarization angle is constant
at θ = 5◦. Lower: same as upper, but θ = 88◦.

Figure 5 shows the ionization probability density dP(E)/dk versus electric field strength
E0 and energy E of the ionized electrons for ω = 1.0, and for θ = 5◦ and θ = 88◦. A regular
pattern of resonances corresponding to absorption of 1ω, 2ω and 3ω from the field is present
at lower intensities for the lower angle, whereas only a weak signature of the one-photon
resonance is visible for orthogonal polarization. The smaller peaks/resonances in the
probability density appearing between the main resonances in the figure cannot be attributed
to multiples of ω, but rather fractions of ω. They are a result of the non-adiabatic turn-
on/-off of the field and are especially prominent for short pulses, and can be expected
to be rather independent of the detailed pulse shape [38]. All essential features from the
above discussion concerning directional dependences on the stabilization are confirmed,
i.e. multiphoton ionization is strongly suppressed as θ → 90◦, whereas it is contributing
significantly for smaller angles for E0 < 10. Another important feature of figure 5 is the
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Figure 6. Ionization probability density dP(E)/dk as a function of electric field strength E0 and
energy of the ionized electron E = k2/2 for ω = 0.11. The polarization angle is constant at
θ = 5◦. Lower: same as upper, but θ = 88◦.

characteristic energies of the released electrons at high field intensities. The signatures of
integral number of photon absorption vanish leaving only low energy electrons.

Referring to figure 3, for the lower frequency, ω = 0.11, the geometric effect on the
ionization is less pronounced, but still the trend is the same as for ω = 1.0. A possible
explanation for the much weaker orientation dependence is that the frequency (and/or
intensity) of the laser is too low to support significant stabilization, independent of the
polarization of the field. Furthermore, we suggest that the remaining dominating process,
multiphoton ionization, only depends weakly on θ . The hypothesis is strengthened by
comparison with figure 6, where dP(E)/dk versus the electric field amplitude E0 and energy
E is shown for ω = 0.11. Here multiphoton ionization processes are the dominating feature
for all angles. The two spectra in figure 6 are similar, showing that the geometric effects are
less important for ATI processes.

We now turn to the question whether the different θ behaviour gives rise to correspondingly
different angular distributions of the ionizing electrons. Returning to equation (25) we can
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(a) θ = 5◦ (b) θ = 22◦

(c) θ = 49◦ (d) θ = 64◦

(e) θ = 76◦ (f) θ = 90◦

Figure 7. Angular ionization distribution, dPI (�)/d�, for ω = 1 and E0 = 9.3 plotted in the x–z

plane. The (blue) dashed line is the laser polarization direction θ . The snapshots of figure 4 result
in the emission spectrum (f) of this figure.

express the differential cross section as

dPI (�)

d�
=

∑
ki

∣∣∣∣∣
∑

l

(−i)l e−iσl
(
aki ,l cos θỸl0(�k) + aki ,l sin θỸl1(�k)

)∣∣∣∣∣
2

(27)

with al,ki
= ∫ rmax

0 Kki,l(r)fl0(r) dr and bl,ki
= ∫ rmax

0 Kki,l(r)fl1(r) dr . In general several
angular momentum states are populated in the final state so further simplification cannot be
easily performed. In figures 7 (ω = 1.0) and 8 (ω = 0.11), the angular electron spectrum
is plotted for a series of θ -values in the field intensity region where the angle dependence is
most significant. In figure 7 we observe some interesting structures in the angular spectrum at
small θ -values. This is caused by strong population and mixing of l = 1, 2, 3 states. At large
θ -values multiphoton ionization is suppressed and only l = 1 remains significantly populated.
From equation (27), we obtain a spectrum dominated by the Ỹ11 term, which is indeed seen in
the lower parts of figure 7.

The electron spectrum for ω = 0.11 is completely different and dominated by the l = 2
component for all angles. At small angles, the azimuthal quantum number m = 0 determines
the spectrum and at large angles m = ±1 appears on an equal footing giving rise to the
four-leaf clover shape. At intermediate angles, we observe the up-building of a ‘slippage
angle’ between the major electron emission direction and the laser polarization vector. This
slippage mechanism is also well known as rotational (or Coriolis) coupling from ion–atom
collisions [39].

When comparing the two frequencies in figures 5, 7 with figures 6, 8, it is clear
that ionization by high frequency pulses results in completely different characteristics than
conventional laser frequencies: l = 0 transitions dominate at high intensities resulting in
angular spectra less sensitive to the laser polarization direction. The released electrons have
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(a) θ = 5◦ (b) θ = 20◦

(c) θ = 55◦ (d) θ = 64◦

(e) θ = 76◦ (f) θ = 90◦

Figure 8. Angular ionization distribution, dPI (�)/d�, for ω = 0.11 and E0 = 0.04 plotted in
the x–z plane. The (blue) dashed line is the laser polarization direction θ . The snapshots of figure
4 result in the emission spectrum (c) of this figure.

an expected energy much lower than the energy corresponding to the central one-photon
frequency.

4. Concluding remarks

The ionization dynamics of an initially aligned H(2p) atom exposed to angle-specified linear
polarized 5-cycle laser pulses with central frequencies in the XUV (ω = 1.0) and UV
(ω = 0.11) regimes has been analysed in detail. The analysis is based on results from a
fully non-perturbative solution of the time-dependent Schrödinger equation in the Kramers–
Henneberger frame on a spherical grid. The results have been interpreted on the basis of
symmetry resolved basis functions.

Strong orientation effects in total ionization probability as well as differential probabilities
in ejection angles and energy have been found in the XUV regime. The ionization probability
at moderate intensities is ten times larger for the parallel polarization vector, θ = 0◦, than
for perpendicular, θ = 90◦. Dynamic stabilization is found to be most pronounced at high
frequencies and for polarization vectors parallel to the initial 2p state. At high intensities,
multiphoton ionization vanishes resulting in the release of slow electrons propagating in a
direction mostly determined by the initial charge cloud direction. For UV light, the effect of
total orientation dependence is much more modest where the well-known l = 1 transition
dominates the angular spectrum.

The geometrical results of this work are relevant for ongoing studies of ionization by
aligned molecules [25] as well as the general understanding of atomic response to strong light
sources of attosecond range duration. With rapid development of new intense laser sources,
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an experiment measuring the kinetic electron spectrum from atoms can be directly compared
with the present results.
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