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Abstract 

A co-infection is defined as an infection with two or more different pathogens, where the 

pathogens can either have a synergistic or antagonistic effect or alternatively not affect each 

other at all. Lepeophtheirus salmonis are the single largest problem found in salmonid farming 

today. It is a marine ectoparasitic copepod (Caligidae) occurring on both wild and farmed 

salmonids in cold temperate waters in the North Atlantic and North Pacific Ocean. They feed 

on mucus, skin and blood of their host leading to mild skin lesions that can disturb the osmotic 

balance. Moritella viscosa is a gram-negative bacterium thought to be the main agent causing 

winter ulcer disease in salmonids and occurs when water temperature is under 10 ºC. Clinical 

signs are necrosis of the skin, which advance to skin lesions on the flank, ranging from raised 

scales to larger lesions with exposed muscle tissue. This study looks at the co-infection of L. 

salmonis and M. viscosa and how these two pathogens affect growth, disease development (lice 

and ulcer number, size and severity) and transcription of immune genes. Study fish were 

sampled at four time points: (A) 5 days prior to infection, (B) 6 days post infection (dpi) L. 

salmonis; 7 dpi L. salmonis and 2 dpi M. viscosa [co-infection] dpi. (C) 26 dpi L. salmonis, 23 

dpi M. viscosa [co-infection]. (D) 40 dpi L. salmonis, 37pi M. viscosa [co-infection]. During 

sampling, weight, length, condition factor (K-factor) was measured; lesions were counted, sized 

and graded; Lice were counted and staged. Transcription of immune genes Interleukin 1b (IL-

1b), Interleukin 4 (IL-4), Interleukin 8 (IL-8), Interleukin 10 (IL-10), complement protein 3 

(C3) and Immunoglobulin M (IgM). 2-ΔΔCt were analyzed from sampling B and C in skin and 

head kidney with Elongation factor α (EFα) as a reference gene. Results showed that a M. 

viscosa infection (both single and co-infected) did affect weight and k-factor compared to 

control and L. salmonis., but no differences between a M. viscosa single and co-infection. M. 

viscosa were to be able to develop or infect faster under a single infection but over time there 

were more ulcers on co-infected fish. Also, a larger area of the fish was covered in ulcers for 

co-infected fish. No difference was observed in grade/severity of lesions. Similarly, there were 

more L. salmonis in a single infection compared to co-infection. The co-infection did not affect 

developmental rate of L. salmonis. There was a higher expression of pro-inflammatory genes 

(IL-1β and IL-8) for co-infected fish at time B. And a lower expression of anti-inflammatory 

genes (IL-4/13A and IL-10). IL-4/13A had a lower expression in almost all skin sites, and co-

infected head kidney. IL-10 B was significantly lower for all co-infected sites at time B. There 

were no clear differences in expression of C3 and IgM for co-infected fish. 



VI 

 

Acknowledgements 

The co-infection experiment was conducted as a collaboration between University of Bergen 

and the Atlantic Veterinary College (AVC), University of Prince Edward Island, in 

Charlottetown, Canada. The challenge of fish was part of an on-going Genome Canada project 

(Integrated Pathogen Management of Co-infections in salmon) and was planned and conducted 

at AVC with an industry partner Cargill Inc.  

I would like to thank everybody who has been involved in the project and helped me throughout 

this thesis. My sincerest thanks to my supervisor Dr. Sussie Dalvin at the Sea Lice Research 

Center at the University of Bergen for all the help and guidance throughout this process.  

Thank you to Dr. Mark Fast at Atlantic Veterinary College for the letting me be a part of the 

infection and sampling as well as giving valuable comments. I want to thank Cargill for the 

opportunity to analyze their fish. 

I would also like to thank Heidi Kongshaug and Sara Purcell for helping me with laboratory 

techniques. Thanks to everyone who were involved in this project and to everyone at sea lice 

research center. Thanks to Søren Grove for providing me with antibodies for 

immunohistochemistry and Harald Kryvi for pictures of histology slides. 

Finally, I must express my gratitude to my parents, who has had to read this thesis (and many 

other papers) countless times despite not knowing anything about the subject.  Also, to my 

boyfriend, friends, dogs and cat for providing me with support and encouragement. This 

accomplishment would not have been possible without them. Thank you. 

 

Bergen, 3. June 2019  

         

 

 



VII 

 

List of abbreviations 

APC  Antigen presenting cell  

AVC   Atlantic Veterinary College 

BSA   Bovine serum albumin  

C3  Complement component 3 

cDNA   Complementary deoxyribonucleic acid  

CFU   Colony forming units 

Ct   Cycle threshold 

DNA  Deoxyribonucleic acid 

Ddpi  Degree days post infection 

Dpi   Days post infection 

EFα  Elongation factor 1α 

FAO  Food and aquaculture organization 

gDNA   Genomic deoxyribonucleic acid 

HES  Hematoxylin, Eosin, Saffron (stain) 

Ig  Immunoglobulin 

IgM  Immunoglobulin M 

IL  Interleukin 

IL-1β   Interleukin 1β 

IL-4  Interleukin 4 

IL-8  Interleukin 8 

IL-10  Interleukin 10 

IPMC  Integrated Pathogen Management of Co-infections in salmon 

K-factor Condition factor 

LPS   Lipopolysaccharide   

NTC   Non-template control 

PAMP  Pathogen associated molecule pattern 

PCR  Polymerase chain reaction 

RAS  Recirculating aquaculture system 

RNA  Ribonucleic acid 

R.T.  Room temperature 

-RT  No reverse transcriptase  

SLRC  Sea lice research center 

TB  Toludine blue (stain) 

TBST   Tris-buffered saline tween 

Th1  Type 1 helper T cell 

Th2  Type 2 helper T cell 

TSA   Tryptic soy agar 

TSB   Tryptone soya broth 

UIB  University of Bergen 

 

 



VIII 

 

Glossary 

Anadromous fish: Fish that live in saltwater and migrate to freshwater rivers to spawn 

(Folmar & Dickhoff, 1980). 

Antagonistic effect: Two or more pathogens that interact and suppress the 

(of pathogens)   effect/virulence of each other (Kotob et al., 2016). 

B cell: Lymphocytes that secrete antibodies, play an important part in the 

adaptive immune system (Magnadòttir, 2006). 

Barophilic: Organisms capable of growth and reproduction at high pressure (Zobell 

& Morita, 1957). 

Co-infection:   Infection of two or more pathogens (Kotob et al., 2016). 

LPS:  A component in the cell wall of gram-negative bacteria (Warr & Simon, 

1983). 

Macrophages:  White blood cells that detect, phagocytes and kill harmful bacteria and 

other organisms (Magnadòttir, 2006). 

PAMP:  Patterns of molecules that are commonly associated with pathogens 

(Magnadòttir, 2006). 

Prevalence:   Percentage of the population infected. 

Psychrophilic:  Organisms capable of growth and reproduction at low temperatures 

(Morita, 1975). 

Synergistic effect: Two or more pathogens that interact and increases 

(of pathogens)  the effect/virulence of each other (Kotob et al., 2016). 

T cell  Lymphocytes with many different functions as there are several types of 

t- cells that function in different ways. Are especially important in 

intracellular infections (Magnadòttir, 2006). 
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1 Introduction 

Aquaculture is a growing industry, and in 2016 more than 80 million tons of food was produced 

from aquaculture worldwide according to Food and Agricultural Organization (FAO). 

Norway’s aquaculture fish production was 1,326 thousand tons, which was 1.7% of the worlds 

production. From 2000 to 2016 aquaculture grew with over 5% (FAO, 2018). With a growing 

world population there will be a need for more food. As fish are one of the most resource 

effective meats and has a lower carbon footprint compared to land-based meat production, it is 

assumed that aquaculture will play an essential role in the future (Winther et al., 2009). For 

aquaculture to grow we must deal with pressing issues limiting growth, fish welfare, and the 

economic aspects. Diseases have been a problem since the beginning of aquaculture, and some 

have been easier to overcome than others. Right now, the single largest problem affecting 

aquaculture in Norway, and many other parts of the world, is the salmon louse, Lepeophtheirus 

salmonis, creating significant economic losses and fish welfare in attempts of controlling it 

(Bruno et al., 2013). Moritella viscosa has also been a persistent pathogen which, despite 

routine vaccinations and antibiotic treatments, is still not entirely under control (Coyne et al., 

2004). 

1.1 Atlantic salmon (Salmo salar) 

The Atlantic salmon is an anadromous fish, they spawn, hatch, and spend the first part of their 

lives in fresh water, and migrate to the ocean for foraging (Folmar & Dickhoff, 1980). The eggs 

are deposited in the gravel of freshwater rivers. After hatching, the fry remains in the river until 

they are fully smoltified. This can take anywhere from one to eight years, depending on river 

characteristics, two to three years being the most common.  After smoltification, the salmon 

migrates to the sea (Metcalfe & Thrope, 1990). The smoltification is a process that alters the 

physiological, behavioral, and morphological characteristics enabling the salmon to live in a 

pelagic and salty environment. A parr is bottom-dwelling, territorial, and has distinctive parr 

marks, which are vertically dark pigmented lines allowing for salmon to blend into the riverine 

background. During smoltification salmon turns silvery, losing the parr marks, and develops a 

more streamlined body (Folmar & Dickhoff, 1980). Smoltification also increases the seawater 

adaptability of the salmon. This is mainly due to increased Na+/K--ATPase activity in the gills, 

increasing hypo-osmoregulatory capacity. There are also observed changes in hormones like 
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thyroid, growth hormone, cortisol, and more (Purnet et al., 1989). Migration occurs in late 

spring, and after a period of one to four years in seawater, the salmon will return to their nursery 

river to spawn (Metcalfe & Thrope 1990; Jonsson et al., 1991). 

 

Cultivation of Atlantic salmon in aquaculture starts with the fertilization of eggs and hatching 

in freshwater. Hatched salmon are usually placed in tanks on land where the water flow contains 

treated freshwater or a recirculating system. After smoltification, the fish are ready to be placed 

in sea cages where they stay until slaughter. There are several challenges at all salmon life 

stages linked to disease and welfare (Hansen, 1998). In that last stage, pathogens like bacteria, 

viruses, and parasites all pose a threat. Vibrio anguillarum and Aeromonas salmonicida are two 

bacteria that have posed as big threats to aquaculture but have been kept under control thanks 

to vaccinations, but for the bacteria M. viscosa vaccinations and antibiotics have not been as 

effective. Common and problematic parasites include Amoebic gill disease (AGD) and L. 

salmonis, which despite treatment and constant surveillance, are still not under control. 

Pancreas disease (salmonid alphavirus, SAV) is a virus that has not been stopped, despite 

several new vaccines against SAV on the market. Cardiomyopathy syndrome (Piscine 

myocarditis virus, PMCV) is another virus where there are no current prophylaxis methods 

except general fish welfare.  There are many more diseases that are problematic to varying 

degrees based on season, temperature, water quality, location, and more. All these diseases can 

affect welfare, slaughter quality, and potential for growth of the industry in the future (Hjeltnes 

et al., 2018). 
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1.2 Co-infections 

In experiments under controlled lab conditions, one single pathogen is often studied at a time 

to understand various mechanisms of the pathogen; however, in nature co-infections are 

common. A single infection, therefore, does not simulate a realistic host response in what is 

expected to see during the lifetime of salmon in aquaculture. A co-infection is defined as an 

infection with two or more different pathogens, where the pathogens can either have a 

synergistic or antagonistic effect or alternatively not affect each other at all (Cox, 2001). A 

pathogen causes harm to the host, and its virulence could be modified depending on other 

pathogens the host is carrying. Synergistic effects can include immunosuppression or physical 

damages to the skin caused by one pathogen, making way for the second pathogen and resulting 

in increased severity of pathogenic impacts on the host (Telfer et al., 2008; Bradley & Jackson, 

2008). Antagonistic effects will give a reduced infection of the second pathogen; this could be 

due to the first pathogen activating the host’s immune system, making it prepared so it can 

easier fight an infection that uses similar entry mechanisms (Andrews et al., 1982). Lastly, two 

pathogens can also not affect each other, possibly due to specific tissue tropism. Results that 

indicate no interactions could also be due to focusing on the wrong aspects of the disease. This 

study looks at a heterologous co-infection with a parasite and bacterium. Parasitic infections 

are known to increase the risk of secondary bacterial diseases, and most co-infection studies on 

fish these two types of pathogens show a synergistic interaction (Kotob et al., 2016). 
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1.3 Salmon lice (Lepeophtheirus salmonis) 

L. salmonis are the single largest problem found in salmonid farming today (Costello, 2009). It 

is a marine ectoparasitic copepod (Caligidae) occurring on both wild and farmed salmonids in 

cold temperate waters in the North Atlantic and North Pacific Ocean  (Bruno et al., 2013). There 

are two subspecies of L. salmonis salmonis and L. salmonis oncorhynchi, which are 

reproductively compatible, but there are some biological and genetic differences (Skern-

Mauritzen et al., 2014). 

 

Fig. 1: Photographs of developmental stages of L. salmonis from copepodid to pre-adult 1 (Eichner et al., 2015) 

 Life cycle 

Lepeophtheirus salmonis life cycle consists of a total of 8 stages all separated by a molt. Two 

stages are free-living, one infective, and five parasitic stages (Johnson & Albright 1991b, 

Hamre et al., 2013). The nauplii (nauplii 1 and 2) are planktonic and become infective after 

reaching the copepodid stage, which is when it starts searching for a host (Johnson & Albright, 

1991a). A copepodid responds to disturbances in the water (pressure waves) and swims towards 

whatever is making these disturbances. It finds a potential host, and before attachment, 

chemosensory mechanisms are used to determine if it is on a salmonid (Bron et al., 1991; 

Komisarczuk et al., 2017).  Attachment is only possible after molting to chalimus 1 when the 

frontal filaments have developed. Initial attachment of chalimus usually occurs on fins, 

especially the dorsal fin (Pike et al., 1993; Tully et al., 1993). The chalimus stages (chalimus 1 

and 2) are attached to the skin through their frontal filament and is fixed to this location. The 

pre-adult stages (Preadult 1 and 2) and adult stage are attached through suction from the 
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cephalothorax and are consequently mobile and can move around on the fish and in-between 

individuals (Johnson & Albright, 1991a). The mobile stages are mostly found on the lower half 

on the body (Bui et al., 2017). 

 

The sex ratio is approximately 1:1 in both laboratory and field (Ritchie et al., 1996). The male 

louse develops quicker than the female louse (Costello, 1993). L. salmonis exhibits sexual 

dimorphism, as the genital complex of females is bigger and has protruding posterolateral lobes 

compared to the males (Eichner et al., 2015). A female can produce and carry from 100-1200 

eggs deposited into two paired egg string and produce up to 11 pairs in a lifetime (Costello, 

1993). 

 Temperature and salinity 

Growth and development of salmon lice are dependent on water temperature, as this controls 

the metabolic rate. Temperature is especially crucial for the planktonic larvae as they are non-

feeding and only have a limited energy reserve (Samsing et al., 2016). The success of infestation 

and growth rate is also positively correlated with temperature (Costello, 2006). At 10 °C, it 

takes 40 days from fertilization to adult for a male and 52 days for a female (Johnson & 

Albright, 1991a). Salinity levels below 29 ppt are harmful to free-living copepodids, and they 

are absent at salinity levels under 27 ppt (Bricknell et al., 2006; Sutherland. et al., 2012) 

 Clinical signs and pathology 

The salmon lice feed on mucus, skin, and blood of their host. This can lead to mild skin lesions 

that can disturb the osmotic balance (Grimnes & Jakobsen, 1996).  Damage to the skin increases 

the risk of secondary bacterial infections (Llewellyn et al., 2017).  High amounts of lice also 

lead to stress and possibly immunomodulation (Fast et al., 2006), which again weakens the 

hosts’ immune response, increasing susceptibility to other diseases (Tully & Nolan, 2002). 
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Moderate inflammations are often detected at the attachment site as well as the increased 

transcription of genes important in tissue repair and extracellular killing. This immune 

response, however, is not sufficient to clear infections, possibly due to immune regulatory 

substances secreted at the feeding area by L. salmonis (Fast et al., 2014; Øvergård at al. 2018). 

 Significance and economic importance 

Reduced biomass due to a loss in appetite and growth is estimated to result in a production loss 

of 3.62-16.55% in salmon culture annually. In Norway, the parasite was responsible for a loss 

of 436 million US dollars in 2011 (Abolofia et al., 2017). Salmon lice are the single largest 

problem in salmonid farming, affecting fish health both in farmed and wild salmon. Treatments 

like chemotherapeutic intervention can have environmental costs, affect welfare as well as 

influence public perception of aquaculture. Despite research efforts and the development of 

new treatment methods, sea lice remain a huge problem (Costello, 2009). 
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1.4 Winter ulcer (Moritella viscosa) 

M. viscosa is the bacteria thought to be the causative agent of winter ulcer disease in salmonids 

(Bruno et al., 2013). It belongs to the Moritellaceae family, which are mainly psychrophilic and 

barophilic species found in marine sediments and the deep-sea (Hjerde et al., 2015). The genus 

Moritella consists of seven psychrophilic species, where only M. viscosa is pathogenic to fish 

(Karlsen et al., 2017a). M. viscosa is a gram-negative, curved rod, and motile bacterium (Bruno 

et al., 2013). 

 Genetic diversity and demography 

There are two clades, a typical and variant clade. These are separated both by phenotype and 

genotype. The typical clade has been isolated from farmed Atlantic salmon in Norway, Faroe 

Islands, and Scotland (Grove et al., 2000). High acute mortality has been observed in Atlantic 

salmon, whereas in rainbow trout (Oncorhynchus mykiss) lower mortality and a more chronic 

ulcerative infection are common, indicating host-specificity (Karlsen et al., 2014). The variant 

clade has been isolated from farmed Atlantic salmon in Canada, farmed rainbow trout in 

Norway and Iceland, and lumpfish (Cyclopterus lumpus) in Iceland (Grove et al., 2000). Fish 

infected with the variant clade show lower levels of mortality (Karlsen et al., 2014). The 

bacterium has also been isolated from other fish such as Atlantic Cod (Gadus morhua), Atlantic 

halibut (Hippoglossus hippoglossus) as well as cleaner wrasse species among others (Grove et 

al., 2008, Karlsen et al., 2014; Colquhoun & Olsen, 2018). 

 Growth and colony morphology 

The growth of the bacterium is temperature and salinity dependent (Lunder et al., 1995). M. 

viscosa can be cultivated on blood agar with 1-4% NaCl at temperatures between 4 to 25 ºC 

(Lunder et al., 2000). For diagnostics M. viscosa it is commonly grown on agar with 2% NaCl, 

however, as it is slow growing this method can be unreliable, giving false negative results 

(Grove et al., 2008). It is therefore recommended to use blood agar with NaCl and a vibriostat 

to inhibit faster-growing vibrio species (Colquhoun & Olsen, 2018). Colonies grown on 2% 

NaCl blood agar for 48h at 15 ºC are easy to distinguish from other bacteria as they have a 

unique viscosity and are thread-forming. The colonies are also round, translucent, grey, 

hemolytic, non-swarming, and non-luminescent (Lunder et al., 2000). Very little is known 

about virulence and how these factors contribute to ulcer development. Extracellular products 
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have been shown to be cytotoxic to fish cells. At lower temperatures, the bacteria show 

increased adhesion and secrete products that break down cytoskeleton leading to cell lysis 

(Tunsjø et al., 2011). 

 Pathology 

Initial sites of infection include the gills and 

skin, suggesting that ulcer formation is a 

direct result from surface colonization 

(Karlsen et al., 2012). Early clinical signs 

are necrosis of the skin, which advances to 

skin lesions on the flank, ranging from 

raised scales to larger lesions with exposed 

muscle tissue (Lunder et al., 1995). The 

lesions are typically round or oval with a 

white demarcation zone towards the unaffected skin. Other signs can include reduced appetite, 

gill pallor (pale gills), and fin rot. The infection can become systemic, infecting the organs 

which can be followed by terminal septicemia, associated with higher mortality rates (Bruno et 

al., 2013). Outbreaks of ulcers are often observed in connection with handling, e.g., treatment 

of salmon lice, which cause stress to the fish. When water temperatures increase over 10-12ºC 

or salinity decreases to under 12-15‰, the infection process is halted, the mortality rate 

decreases, and lesions start to heal, leaving scar tissue (Lunder et al., 1995). 

 Interactions with other pathogens 

Vibrio wodanis and Tenacibaculum spp. are also often co-isolated from ulcers together with M. 

viscosa, but how these are involved in ulcer development is still somewhat unknown (Karlsen 

et al., 2014). V. wodanis belongs to the Vibrionaceae family and is like M. viscosa gram-

negative gammaproteobacteria and cytotoxic to fish cells (Lunder et al., 2000; Hjerde et al., 

2015). V. wodanis has also been the only bacteria isolated from a few winter ulcers in the field, 

but during experimental trials with only V. wodanis has not created ulcers. A. wodanis adhere 

to the fish cells, causing them to vacuolate, round up and detach from the surface as well as 

rearrange actin filaments in vitro (Karlsen et al., 2014). Even though interactions between them 

are somewhat unknown, some studies of co-cultivation have shown that A. wodanis inhibit M. 

Fig. 2: Winter ulcer after M. viscosa infection (marinhelse.no) 
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viscosa growth. This is thought to be due to competition over either nutritional resources or that 

A. wodanis produce bacteriocin-like agents as the growth inhibition is not contact-dependent 

(Hjerde et al., 2015). Tenacibaculum sp. are gram-negative, rod-shaped bacteria. It has been 

proven to be challenging to isolate, leading to underdiagnoses of the pathogen, however, it is 

frequently co-isolated with M. viscosa from winter ulcers. It has also been the only bacterium 

isolated from winter ulcers from field research. During laboratory trials, it has only been shown 

to create ulcers and not induce systemic infections like M. viscosa (Olsen et al., 2011). 

 Prophylaxis and treatment 

In 1993 a vaccine for M. viscosa was introduced to the industry, and now almost all farmed 

Norwegian salmon are vaccinated (Grove et al., 2008; Gismervik et al., 2018). It is a part of a 

multivalent vaccine together with V. anguillarum, V. salmonicida, Aeromonas salmonicida, and 

infectious pancreatic necrosis virus.  The vaccines are composed of inactivated bacteria and an 

oil adjuvant, which is administrated intraperitoneally (Gismervik et al., 2018). Despite these 

vaccinations, winter ulcers are still seen at low but consistent prevalence during colder months, 

especially in Northern Norway and other parts of the world like Iceland, Faroe Islands, Scotland 

and Canada (Bruno et al., 2013; Karlsen et al., 2015).  Over one-third of all antibiotics 

administrated in aquaculture from 1997-2000 were used to control winter ulcer disease. 

However, a study by Coyne (2004) concluded that antibiotics are not effective against winter 

ulcer disease. 

  Significance and economic importance 

As vaccination, antibiotics or management measures have not eliminated winter ulcer disease, 

the infection reduces animal welfare, growth, and osmoregulatory capacity as well as an 

increased risk of secondary infections (Løvoll et al., 2009; Bruno et al., 2013). Even though the 

mortality rate is typically less than 10%, studies have shown a clear correlation with weight and 

health. Infected fish, therefore, have reduced growth and slaughter weight, creating a significant 

economic loss (Løvoll et al., 2009; Coyne et al., 2006). 
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1.5 The immune system  

Studying L. salmonis and M. viscosa together is of importance as they both mainly infect the 

skin, and comparisons of single vs. co-infection may elucidate shared pathways and 

mechanisms by which these pathogens infect and impact their hosts. The skin works as a first 

line of defense, a physical barrier, inhibiting pathogenic organisms from entering the fish, as 

well as an immune organ. The head kidney is one of the major lympho- and hematopoietic 

tissues in fish and a site of isolation for systemic bacterial infection (Esteban, 2012). It has been 

shown that pathogens affecting the skin can increase the risk of secondary bacterial diseases, 

creating a synergistic effect by giving the bacteria an entry port (Kotob et al., 2016). 

 Teleost skin  

The skin is divided into two layers, epidermis and dermis. The epidermis layer contains mucus 

cells which produce and secrete mucus molecules (Kryvi & Poppe, 2016) which create a 

semipermeable barrier, allowing water and nutrients in, but also work as a mechanical barrier 

for pathogens. Many pathogens are immobilized by the mucus and therefore, unable to stick to 

the skin (Esteban, 2012). Mucus is also a part of the humoral function of the innate immune 

system contains; lectins, cytokines, complement proteins, immunoglobulins (Ig) and more. The 

dermis is under the epidermis and consists of mostly connective tissue and blood vessels 

(Magnadòttir, 2004). Maintaining good skin quality is essential in fish farming both in quality 

and welfare (Jensen et al., 2015). 

 

 

 

 

 

Fig. 3: Histological section of Atlantic salmon skin stained with toluidine 

blue (TB). 1- Epidermis, 2- Mucus cell, 3 – Scale, 4 -Dermis, 5 – 

Hypodermis, 6 – Muscle (Histology slide and picture provided by H. 

Kryvi)  



11 

 

 Head kidney 

The head kidney is a unique organ for teleost fish, and it is 

important in hematopoiesis and immunity. The kidney is 

found dorsally up to and along the spine, with the most 

anterior part being the head kidney. It consists of lymphoid 

cells and endocrine cells. The lymphoid cells produce 

cytokines, and the endocrine produces cortisol, catecholamines, and thyroid hormones. It is 

therefore imperative in the immune system, along with the thymus, spleen, liver, and skin 

(Geven & Klaren, 2017). 

 

 

 

 

 

 

 Immune response 

The immune response is crucial for fighting infections and is divided into two main responses, 

the innate and adaptive immune response. The innate immune response is both physical, 

chemical and cellular. It works fast to alert the body to prevent further spread of pathogens; 

however, it is non-specific. Primary cells include natural killer cells (NK-cells) macrophages, 

neutrophils, dendritic cells, and more. The adaptive immune system is unique to vertebrates and 

can generate a response specific to the pathogen it is challenged with but works much slower, 

primary cells are T- and B-cells (Magnadottir, 2004). The complement system is fundamental 

in fighting infections and, depending on the pathway, a part of both the innate and adapted 

Fig. 5 Histological section of Atlantic Salmon head kidney stained with TB. 1-

Tubuli (nephron), 2- Endocrine tissue, 3- Blood vessel, 4 - Melanomacrophages, 5- 

Hematopoietic tissue. (Histology slide and picture provided by H. Kryvi) 

Fig. 4: Drawing of Atlantic salmon, 

arrow indicating location of head kidney 
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immune system, consisting of over 30 proteins (Dunkelberger & Song, 2010). It can lysate 

pathogens, remove immunocomplexes, and bind to immunoglobulins (Magnadottir, 2004).   

Immunoglobulins (Ig) 

Immunoglobulins, often called antibodies, are glycoproteins produced by B-lymphocytes. Its 

structure has two heavy and two light polypeptide chains that create a Y-shape. The outer part, 

antigen binding site, binds to antigens and is important in the adaptive immune response. The 

inner part, the Fc receptor, is important in the innate immune system as it activates the 

complement system and can bind to monocytes, macrophages, granulocytes, and NK-cells. In 

fish there are three known types of Ig isotypes; IgD, IgM, and IgT/IgZ (Mashoof & Criscitello, 

2016). Ig can agglutinate to bacteria or toxins and thereby neutralize and potentially stop further 

spread of a bacterium but do not kill the bacteria itself (Lea, 2000). Ig bind to pathogen 

associated molecular patterns (PAMPs) identifying the pathogen for phagocytosis and lysis.  

Highly polymorphic regions in the antigen binding site of Ig allows for binding to specific 

epitopes on invading pathogen. Once Ig has bound to its specific ligand, B-cells expressing that 

unique binding site are clonally expanded and allows for faster, and stronger antibody responses 

upon rechallenge with the same pathogen (Magnadottir, 2004). 

Cytokines 

Cytokines are signal molecules, often glycoproteins, secreted by activated macrophages or dead 

and dying cells as danger signals, and are central to the immune response. There are different 

groups: chemokines, tumor necrosis factor, interferons, and colony stimulating factors (Zhu et 

al., 2013).  These signals act through binding to specific membrane receptors on target cells in 

mostly an autocrine (on producing cell) or paracrine (on neighboring cell) fashion (Lea, 2000). 

 

Pro-inflammatory mediators like, IL-1β and IL-8, are mainly released by antigen presenting 

cells (APC) and epithelial cells. IL-1β increases the production of substance P and 

prostaglandin E2 (PGE2) in neuronal and glial cells. IL-8 is a chemokine that induces 

chemotaxis for neutrophils and T-cells. IL-10 and IL4/13A are anti-inflammatory cytokines and 

control the pro-inflammatory response. IL-10 represses expression of inflammatory cytokines 

(TNF-α, IL-6, and IL-1) as well as down-regulate pro-inflammatory cytokine receptors and up-

regulate endogenous anti-cytokines (Zhang & An, 2009). IL-4 activates naive CD4+ T cells 



13 

 

which in turn starts to produce and secrete cytokines important in autocrine growth and 

differentiation of naive T cells to type 1 helper cell (Th1) and type 2 helper cell (Th2) cells.  

Th1 produces cytokines like IL-2, interferon-gamma (IFN-γ), and tumor necrosis factor (TNF) 

and is vital for cell-mediated immunity. Th2 cells produce cytokines like IL-4, IL-5, IL-6, and 

IL-13 and help B-cells and class switching of immunoglobulins (Choi & Reiser, 1998). In Table 

1, all immune genes that were analyzed for both skin and head kidney are listed with produces 

cell and function. 

 

Table 1: List of immune genes that were analyzed in this thesis with producer cell and function 

Name Type Producer cells Action References  
IL-1β Cytokine Macrophages, 

Epithelial cells 

Inflammation 

T-cell activation 

Macrophage activation 

(Murphy & 

Weaver, 2017) 
 

IL-

4/13A 

Cytokine 

 

T-cells 

Mast cells 

ILC2 cells 

B-cell activation 

Induce differentiation into Th1 and Th2 

cells 

(Murphy & 

Weaver, 2017) 
 

IL-8 Chemokine Macrophages 

Epithelial cells 

Recruits granulocytes 

Recruits phagocytes 

Induce phagocytosis 

(Murphy & 

Weaver, 2017) 
 

IL-10 Cytokine Macrophages 

Dendritic cells 

T-cells 

B-cells 

Suppress macrophage function (Murphy & 

Weaver, 2017) 
 

C3 Acute-phase protein 

 

 Complement protein- 

Classical complement system 

Alternative complement system 

(Erdei et al, 

1991) 
 

IgM Immunoglobulin  Recruits phagocytes 

Induce phagocytosis 

Inflammation response 

Agglutinate to microorganisms 

(Lea, 2000)  

 

Expression of these immune genes was chosen due to previous research indicating a higher 

expression after infection of these pathogens. Both pathogens show an increased expression of 

IL-1β at attachment/lesion site (Øvergård et al., 2018; Tadiso et al., 2011; Løvoll et al., 2009; 

Ingeselv et al., 2010). Øvergård et al., (2018) found higher transcription of Il-1β in L. salmonis 

attachment site compared to non-attachment. Ingeselv et al., (2010) found higher transcription 

in muscle tissue and Løvoll et al., (2009) in skin. 

L. salmonis also show a higher transcription of IL-4/13A, IL-8, and IgM (Øvergård et al., 2018; 

Tadiso et al., 2011). Lesions after M. viscosa infections have an increased expression of IL-8 

at and IL-10 ulcerated muscle tissue and C3 in skin (Ingerselv et al., 2010; Løvoll et al., 2009). 
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Other genes known to be associated with L. salmonis infection include IL-1 receptor type 1, 

CD4, IL-12β, CD8α and much more in skin attachment site along with an increase in Ig in the 

head kidney (Skugor et al., 2008). There is limited research on immune response from an M. 

viscosa infection, but other immune geneses known to be affected include TLR5, TLR22, 

MMP-2, myostatin-1αβ, collagen-1α CTGF, TGF-β, TLR5 in ulcerated muscle tissue and 

ISG15 in skin (Ingerselv et al., 2010; Løvoll et al., 2009). Expression of many genes has been 

linked to resistance against L. salmonis as a more resistant salmon can avoid 

immunosuppression and fight the infection more efficiently. Especially expression of genes 

involved in Th1 and Th2 response has been linked to this resistance (Fast et al., 2014 Holm et 

al., 2015). 

 Stress 

Homeostasis is when an organism is in a steady state, both physically and chemically. Stress is 

one factor that can affect an individual’s ability to maintain homeostasis (Stott, 1981). The 

stress hormones, corticosteroids, and catecholamines are released from the head kidney and 

into the bloodstream (Barton, 2002). Catecholamines are released immediately as a response to 

stress and decreases quickly within minutes. Cortisol is released after a few minutes, but 

elevated levels can often be observed over extended periods of time, in terms of hours to days 

depending on the acute versus the chronic nature of the stress (Thomas et al., 1991; Sundh et 

al., 2010). Salmonids in aquaculture are known to be stressed due to handling, transport, 

treatments, and disease (Barton and Iwama, 1991). Stress can lead to secondary metabolic, 

osmoregulatory, and cellular changes leading to tertiary impacts such as increased disease 

susceptibility. Increased susceptibility is a result of chronically elevated stress hormones like 

cortisol, which suppress the natural inflammatory response (Barton, 2002, Pickering et al., 

1989; Johnson and Albright, 1992).  In cases of chronic stress (i.e. chronic cortisol elevation), 

immunosuppression can lead to higher mortality as has been shown in studies on brown trout 

(Salmo trutta) infected with bacterial and fungal diseases (Pickering and Pottinger, 1989).  
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1.6 Aim of the project 

The aim of the project is to experimentally co-infect Atlantic salmon (Salmo salar) with L. 

salmonis and M. viscosa and see how these two pathogens affect fish growth, disease 

development as well as expression of immune genes skin and head kidney of Atlantic salmon. 

Disease development includes the outcome of the infection influencing the lice and severity of 

skin lesions. 

 

There have been no published studies on co-infections of L. salmonis and M. viscosa.  As 

mentioned, both these pathogens are a problem in the farming of Atlantic salmon where 

treatment and vaccinations have presented limited results. By studying pathogens together 

through co-infection, it is anticipated we can better understand field conditions salmon are 

exposed to, which will result in better management strategies and treatment decisions. 

 

Hypothesis: A co-infection of L. salmonis and M. viscosa does not affect the growth but does 

affect disease development, mortality, and immune response of Atlantic salmon compared to 

the two pathogens on their own.  

Research questions:  

1) Does the co-infection of L. salmonis and M. viscosa influence the location of M. 

viscosa in the tissue? 

2) Does the co-infection of L. salmonis and M. viscosa influence growth (weight, 

length, k-factor)? 

3) Does the co-infection of L. salmonis and M. viscosa lead to higher mortality? 

4) Does the co-infection of L. salmonis and M. viscosa lead to higher cortisol levels? 

5) Does the co-infection of L. salmonis and M. viscosa influence lesion count, size, and 

severity? 

6) Does the co-infection of L. salmonis and M. viscosa influence the lice count and 

developmental stages? 

7) Does the co-infection of L. salmonis and M. viscosa affect the expression of immune 

genes in the skin and head kidney?  
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2 Material and Methods 

The co-infection experiment was conducted as a collaboration between the University of 

Bergen (UIB) and the Atlantic Veterinary College (AVC), University of Prince Edward Island 

(UPEI), in Charlottetown, Canada. The challenge of fish was part of an on-going Genome 

Canada project (Integrated Pathogen Management of Co-infections in salmon; IPMC) and was 

planned and conducted at AVC with an industry partner, Cargill Inc. I took part in sampling A 

and B, so data and tissue samples taken later were sent to the University of Bergen after 

sampling. 

Histology and tissue samples were processed at UIB at Høyteknologisenteret unless stated 

otherwise. 

2.1 Fish conditions 

Post-smolt Atlantic salmon (Saint John River strain) were placed in 300 L tanks with 

approximately 40 fish in each tank early in November 2018 and were on average 257 ± 47.8 g. 

14h light and 10h dark photoperiod. The tanks were divided into three rooms and biofiltration 

units; 1, 2 and 3. Biofiltration unit 1 had 12 tanks, while unit 2 and 3 had nine tanks.  Water 

was recirculated through a recirculating aquaculture system (RAS) and was 10 ± 1 ºC and 33 ± 

1 ppt saltwater (salt was added to get desired salinity) prior to exposure of M. viscosa which 

was conducted at 8 ± 1 ºC, and that temperature maintained in all RAS systems thereafter. The 

infection started on December 12th and was terminated on January 28th, 48 days later. Fish were 

fed at 1% body weight/day and observed a minimum of twice a day. Mortalities were removed, 

necropsied, and plated on Tryptic Soy Agar (TSA + 2% NaCl).   

2.2 Copepodids 

Ovigerous female L. salmonis were collected from New Brunswick salmon farms in the Bay of 

Fundy Canada. Eggs were hatched at the Huntsman Marine Science Centre on ambient SW (9 

± 2 ºC and 33 ± 3 ppt). When the lice had reached the infectious copepodid stage, they were 

transported to AVC and used in the infection trial as described in 2.4.2. 
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2.3 M. viscosa 

M. viscosa was provided by the Research Productivity Council of New Brunswick. An active 

culture of Stock FFa-371 (Pacific Ocean isolate from British Columbia, variant clade) was 

prepared at 8±1 °C in flasks containing Tryptone Soya Broth (TSB-2, 2% NaCl). 

2.4 Infection trials 

 M. viscosa infection 

Unit 2 was infected on the 12th of December (challenge 1) and unit 1 on the 18th of December 

(challenge 2). The water temperature was decreased from 10 ± 1 ºC to 8 ± 1 ºC the day before 

infection. The fish were transferred to five tanks (1x 500 L, 2x 250 L, and 2x 200 L tanks) 

where the bath infection took place. After a period of 1h, the fish were returned to their original 

tanks. Challenge 1 had a dose of 1.02e+05 cfu/ml and was incubated at 8 °C. Challenge 2 had 

a dose of 1.04e+05 cfu/ml, and the main culture was inoculated on site. The culture was 

incubated overnight on an orbital shaker at 8±3 ºC. The cultures were kept at 7.5± 1ºC two 

hours prior to infection.  

 L. salmonis infection 

Unit 1 and 3 were infected on the 13th of December. The waterflow to the tanks were turned off 

and slightly reduced (just below the outflow) before adding 50 infective copepodids fish-1tank-

1. Eight tanks were infected with L. salmonis, and the last tank remained uninfected as a control 

group. After 1h, the waterflow was turned on again. The water temperature was maintained at 

10 ±1 ºC for five days after infection before reduced to 8 ±1 ºC. To ensure that lice would not 

infect control tanks (in the same recirculation system) a filter (100 µm) sleeve was added over 

the incoming water to avoid contamination. 
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 Sampling  

There were four sampling points throughout the experiment, the first being on day 1 (4 weeks 

after acclimation to experimental groups), and the last on day 48. Weight, length, ulcers and 

lice from sampling B-D, and cortisol (stress) and immune response from sampling B and C 

were analyzed in this thesis.  

 

Fig. 6 Timeline of infection trials for the different RAS units (1, 2 and 3). Blue is M. viscosa, green is L. salmonis 

and red is Co-infection. All timelines start at 7th of December and end on 24th of January. 

 

 



20 

 

Prior to all sampling, the fish were starved for 24 h. On sampling A two fish from each tank 

were sampled. For sampling B and C 10 fish from each tank were sampled, while for D the 

remainder of fish were sampled (Table 2) Fish were euthanized with MS-222 - tricaine 

methosulphate (250 mg/L) in separate tanks. The fish were weighed (g), measured fork length 

(cm), and blood was taken for serum cortisol analysis. Lesions were counted, sized, and graded 

according to table 3. Lice were counted and staged. Fish with 

M. viscosa lesions or lice had skin samples taken at affected 

skin, and the unaffected control site was taken directly beside 

on healthy skin. Only one of each sample site was taken pr. 

fish. Fish without lesions or lice were sampled as seen in fig. 

7.  Other tissue samples included head kidney and gills (from 

first gill arch). All tissue samples for gene expression ware stored on RNAlater (Ambion) as 

described in 2.6; only skin and head kidney were analyzed in this thesis. Tissue samples of 

lesions and lice attachment for histology were put in 10% neutral buffered formalin.  

Table 2: Fish sampled for each group in the different samplings 

 Sampling B Sampling C Sampling D 

M. viscosa 40 20 21 

Co-infection 40 40 13 

L. salmonis 30 30 30 

Control 10 10 10 

 

Table 3: Size classes and the corresponding size in cm 

Size class/Grade Size (cm) Grade description 

1 < 0.5 Discoluration/scale loss 

2                    0.5-2 Ulceration 

3 < 2 Muscle exposure 

 

 

 

 

 

 

 

 
 

Fig. 7: Point of skin sampling for 

reference locations of fish without lice 

(A) or lesions (B)  

Fig. 8: Picture of lesion grading scheme (Made 

by L. Carvalho, used with permission.) 
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The total size was calculated by multiplying the number of ulcers with size score, while the 

average size was calculated using the total size score divided by the number of ulcers. The same 

was done for total and average grade. From weight and length, the condition factor (K-factor) 

was calculated using this formula: 

 

K= Condition factor 

W= Weight (g),  

L=length (mm) 

 

The four different sampling points are listed in table 4 which shows the sampling points with 

days and degree days after infection. 

Table 4: Days and degree days after infection at each sampling point 

 L. salmonis M. viscosa L. salmonis + M. viscosa 

 dpi ddpi dpi ddpi dpi ddpi 

Sampling A 5 days prior to infection 

Sampling B 6 58 2 16 7+2 66 + 16  

Sampling C 26 218  23 184 28+23 234 + 184 

Sampling D 40 346 37 296 42+37 362 + 296  

 

2.5 Histology 

During sampling, skin tissue samples from M. viscosa lesions, lice attachment and unaffected 

areas were preserved in 10% neutral buffered formalin, until dehydration and embedding in 

paraffin which was done at AVC following standard protocols. Two replicates/fish of each 

infection site at sampling C and only at one sampling point B that were used for histopathology 

and immunohistochemistry. 

The paraffin embedded tissues were sectioned in 3 μm from M. viscosa lesion, L. salmonis 

attachment, and unaffected areas. Mounted on Superfrost Plus microscope slides (Thermo 

Scientific) and left at 60 ºC for 24h. Prior to staining and immunohistochemistry, the sections 

were first left at 60 ºC for 30min and then dewaxed with Histo-Clear II (National Diagnostics) 

2x10 min, following rehydration with ethanol 100% 2x5 min and 5 min x 96%, 80%, and 50%. 

Sections were then rinsed in MilliQ H2O for at least 5 min. 

 

K=
10

n
W

L
3
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 HE(S) staining 

Following rehydration, the sections were stained in Hematoxylin for 2.5 min followed by tap 

water for 4 min. The samples were then placed in 1% Erythrosine (pH 6.5) for 1.5 min and 

rinsed in tap water for 1 minute. Sections were then dehydrated again with ethanol, 96 % for 

1min and then 2x2min in 100 %. Lastly, they were placed in Histo-Clear II 2x5 min before 

mounted with Histomount (Life Technologies).  

 Immunohistochemistry 

Polyclonal antibodies which were antiserum raised in rabbit against M. viscosa strain 

NVI88/478 and K230 (Løvoll et al., (2009); Grove et al., (2010)), were kindly provided by Dr. 

S. Grove. Following the previously described rehydration steps, the sections were washed with 

Tris-buffered saline Tween (TBST tablets in MilliQ H2O, EDM) 2x2min. Blocking was done 

with 5% bovine serum albumin (BSA) (Sigma Aldrich) in TBST for 2h at room temperature 

(R.T.). Sections were washed 2x2min with TBST. Primary antibodies rabbit anti-M. viscosa 

were diluted 1:10.000 in 2.5 % BSA in TBST and the sections were then incubated for 1h in a 

humidity chamber. Sections were washed 2x2min TBST before incubated with secondary 

antibody (goat anti-rabbit IgG, Sigma-Aldrich), diluted 1:1000 in 2.5% BSA for 30 min in a 

humidity chamber. Sections were washed rinsed 2x2 min with TBST followed by flushing with 

processing buffer (100mM Tris-NaCl, 50 mM MgCl2, pH 9.5) and incubation for 10 min. 1-

stepNBT/BCIP plus suppressor (Thermo Scientific) was used for 2 min for staining incubated 

protected from light before stopping the reaction with stop buffer (10 mM Tris-HCl pH 7.5, 1 

mM EDTA, 150 mM NaCl) following addition MilliQ H2O. The slides were then 

counterstained with only hematoxylin for 20 sec and mounted as described in 2.5.1. Images 

were captured using Axio Scope A1 light microscope with an Axiocam 105 (Zeiss). Two 

negative controls were run by not adding primary antibodies and not counterstained.  To 

determine the optimal concentration of primary antibody, dilutions of 1:2000, 1:5000, and 

1:10.000 were tested, with 1:10.000 giving the best results. 
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2.6 RNA extraction  

Tissue samples from sampling B were stored in RNAlater (Ambion) at 4ºC for one day and -

20 ºC until isolation (1 month). Samples from sampling C were stored at 4ºC for 3-4 days, 

followed by the removal of RNA later and then storage at -80 ºC before isolation (3 months). 

Most samples were rather large, so a smaller piece (0.5 cm2) was cut out. RNA isolation was 

done with TRI reagent (Sigma-Aldrich) according to the suppliers’ protocol with some 

modifications. The samples were first homogenized by adding 600 μL trizol with 5mm beads, 

and shaken in TissueLyser II (Qiagen) for 3 min at a frequency of 30.0 1/s. An additional 400 

μL trizol was added, and the samples were kept at R.T. for 5 min. Before 200 μL chloroform 

was added and shaken for 15 sec. After 2 min, the samples were centrifuged at 21,100 x g for 

15 min at 4 ºC Herafus fresco centrifuge (Thermo Scientific). About 450 μl of the upper aqueous 

phase RNA was transferred to new tubes with 500μL isopropanol. After 5 min at R.T., the 

solution was centrifuged at 21,100 x g for 10 min at 4 ºC. The supernatant was removed, and 

the pellet washed with 750 μL 75% ethanol (EtOH) and centrifuged at 21,100 x g for 10 min at 

4 ºC twice. EtOH was removed and the pellet dried before adding 100μL nuclease-free water.  

The quality and quantity of RNA of the first 24 skin samples were checked by using 

Nanodrop1000 spectrophotometer (Thermo Scientific). 9 of these samples were not at an ideal 

purity so all samples were further purified. This was done through an extra precipitation which 

was completed by adding 10 μL 3M NaAc pH 5.2 and 250 μL EtOH which was placed at -20 

ºC overnight. The solution was centrifuged at 21,100 x g for 30 min at 4 ºC before being washed 

with 1 ml EtOH and centrifuged at 21,100 x g for 15 min at 4 ºC, dried and resuspended in 25-

50 μL nuclease-free water depending on pellet size. RNA was stored at -80 ºC until DNase and 

cDNA synthesis. 

 

The quality and quantity of RNA in the samples was checked by using NanoDrop1000 

spectrophotometer (Thermo Scientific) and Bioanalyzer. All samples were checked with 

Nanodrop. Agilent RNA 6000 Nano Kit Guide (Agilent Technologies) was used on 24 

representative samples. Six skin and six HK samples from sampling B and six samples from 

control and six skin samples from sampling C (appendix A). The settings of analysis were set 

to mRNA (not RNA) by mistake and therefore did not provide a RIN number. 

 

Tables 5 and 6 show the number of samples analyzed for the transcription of immune genes. 

Samples analyzed were from the same fish with lice and/or lesion and unaffected control site 
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and were chosen randomly among replicate tanks. A few fish only had just the unaffected 

control site. A sample set of at least 8 for each group was planned to be analyzed, but for some 

samples, the RNA concentration after extraction was not sufficient, so these were removed. 

Also, some co-infection L. salmonis samples from sampling B was mislabeled and contained 

fins and not skin and were therefore not analyzed.  

 

Table 5: Number of samples analyzed for each group in the different samplings for transcriptional response in skin 

 Sampling B  Sampling C 

Control 10 10 

M. viscosa lesion 13 8 

M. viscosa unaffected control  12 8 

L. salmonis attachment 11 8 

L. salmonis unaffected control 12 8 

Co-infection: M. viscosa lesion 8 7 

Co-infection: M. viscosa unaffected control 10 8 

Co-infection: L. salmonis attachment 5 7 

Co-infection: L. salmonis unaffected control 5 7 

 

Table 6: Number of samples analyzed for each group in the different samplings for transcriptional response in 

head kidney 

 Sampling B  Sampling C 

Control 9 9 

M. viscosa  12 8 

L. salmonis 10 8 

Co-infection 11 7 
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2.7 DNase and cDNA synthesis 

TURBO DNA-free (Ambion) was used to remove potential genomic DNA (gDNA). It was 

done following the manufacturer’s recommendations adding 4 μg RNA, resulting in a 

concentration of 160 ng/μl. Most samples went directly to cDNA synthesis; however, leftovers 

were stored at -80 ºC and used if needed. cDNA synthesis was carried out using Superscript® 

IV Reverse Transcriptase kit (Invitrogen) following the manufacturer’s recommendations 

divided by two to get a total volume of 10μL. Using 5.5 μL DNase treated RNA (880 ng). The 

10 μL solution was diluted with 30 μL (1:4) nuclease-free water resulting in a total 

concentration of 22 ng/μL. Samples were stored at -20 ºC until further use.  Affinity Script, 

Superscript III and IV were tested and compared to determine which was most suitable to use 

for the samples, with Superscript IV giving the best results for RT-qPCR.  

2.8 Quantitative reverse transcription PCR (RT-

qPCR) 

Quantitative RT-PCR performed on a QuantStudio 3 and 7500 Fast (Applied Biosystems) RT-

qPCR machine. Genes investigated were interleukin-1β (IL-1β), interleukin-4 (IL-4/13A) 

interleukin-8 (IL-8), interleukin-10 (IL-10), complement component 3 (C3), immunoglobulin 

M (IgM). Elongation factor 1α (EF 1α) was used as a reference gene. (Lie et al., 2005) Primer 

sequences are listed in table 7. Assays were run using SYBR Green (Sigma–Aldrich). Duplicate 

wells were run of each gene for each sample with a difference in Ct-values <0.45 (See table 8 

and 9 for ingredients and program). The expression of immune genes was analyzed using the 

2−ΔΔCt method (Livak & Schmittgen, 2001). Baseline was set to 0.2, and samples were run with 

a -RT and negative transcription control (NTC). The verification of primers was performed 

through a two-fold dilution series (six dilutions) with three parallels for all genes to confirm the 

efficiency of close to 100% (91.9-101,2%). A primer for immunoglobulin T (IgT) was also 

tested, but efficiency and parallels were bad and therefore not used. 
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Table 7: Sequences of primers (Forward=F, Reverse=R) for Atlantic salmon used for RT-qPCR analysis for skin 

and head kidney samples for sampling B and C. 

Gene Abbrevation Primer Sequence Ref  

Elongation factor 1α ELFα F CACCACCGGCCATCTGATCTACAA Øvergård et al, 2018)  

  R TCAGCAGCCTCCTTCTCGAACTTC   

Interleukin 1β IL-1β F GCTGGAGAGTGCTGTGGAAGA Øvergård et al, 2018)  

  R TGCTTCCCTCCTGCTCGTAG   

Interleukin 4/13A IL-4/13A F CGTACCGGCAGCATAAAAATCACCATTCC Øvergård et al, 2018)  

  R CCTTGCATTTTGTGGTGGTCCCA   

Interleukin 8 IL-8 F 
GCATCAGAATGTCAGCCAGCC 

Øvergård et al, 2018)  

  R ACGCCTCTCAGACTCATCCC   

Interleukin 10 IL-10 F ATGAGGCTAATGACGAGCTGGAGA  SLRC (L. Sandlund)  

  R GGTGTAGAATGCCTTCGTCCAACA   

Complement protein 3 C3 F 
ATTCTTCCCCTCCACTCCCTCG 

SLRC (L. Sandlund)  

  R CGATTTGGTCGTCAAGCCAGG   

Immunoglobulin M IgM F TGAGGAGAACTGTGGGCTACACT SLRC A. Øvergård)  

  R TGTTAATGACCACTGAATGTGCAT   

 

Table 8: Ingredients and volume for RT-qPCR 

Ingredients Volume 

PowerUpSYBR Green PCR mastermix 5 μl 

Forward primer (10 μM) 0.5 μl 

Reverse primer (10 μM) 0.5 μl 

H2O 2 μl 

cDNA 2 μl (44 μg) 

Total volume 10 μl 

 

Table 9: Program for RT-qPCR 

Phase Temperature Time 

Pre-PCR read  50ºC 2 min 

Holding stage 95 ºC 2 min 

Cycling stage x40 95 ºC 15 sec 

60 ºC 1 min 

Melting curve stage 95 ºC 

60 ºC 

95 ºC 

15 sec 

1min 

30 sec 
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2.9 Statistical Analysis 

Two-tailed T-test was performed on all data with a significant threshold of 0.05 for p-values. 

For immune genes when comparing different fish, the t-test was unpaired while comparing 

lesion/attachment site and unaffected control site in the same fish it was paired. Microsoft Excel 

was used to do statistical analysis and make graphs. All results for gene expression in the skin 

were compared to each other using a t-test, however only the factors which were noteworthy 

are shown in the figures. The rest are listed in appendix B. Figures with immune response that 

had no significant differences are found in appendix C. 

 

Bar charts were used when the differences between individuals weren’t too large, and the 

average and standard deviation was representative (used in size, ulcers and lice). Box and 

whiskers were used when there were substantial differences between individuals. A box and 

whiskers plot were therefore more suitable to show the considerable variation as well as average 

and median (used in cortisol and immune response)     

2.10  Other methods done at AVC 

As the project was done at AVC, I did not participate in all parts that are mentioned in this 

thesis. All tanks were controlled daily for mortalities and were removed.  

Bacteria were cultured from mortalities, and all colonies were confirmed to be M. viscosa as 

well as some were sequenced with specific primers to support the claim that M. viscosa was the 

cause of the ulcers. Blood samples were centrifuged, and the serum of some fish was sent in for 

analysis of serum cortisol. The number of fish serum cortisol analyzed is listed in table 10, the 

fish were selected randomly among the replicate tanks.  

Table 10: Number of fish samples analyzed for each group in the different samplings for serum cortisol 

 Sampling B  Sampling C 

Control 5 5 

M. viscosa  10 10 

L. salmonis 10 10 

Co-infection 10 10 
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3 Results 

An experimental infection of Atlantic salmon with the two pathogens M. viscosa and L. 

salmonis was performed to investigate the effects of single infections compared to co-

infections. The experiment contained four experimental groups: One uninfected control, one 

group infected with M. viscosa, one group infected with L. salmonis and one co-infected group 

first infected with L. salmonis followed by M. viscosa five days later. At the beginning of the 

experiment fish were randomly distributed among the different tanks, with approx. 40 fish per 

tank.  All tanks were sampled prior to infection, and post-infection there was one tank for 

control, three tanks with L. salmonis and four tanks with co-infection. M. viscosa was sampled 

from 4 tanks in RAS unit 2 for time B, and from 2 tanks in RAS unit 3 for time C and D. 
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3.1 Histopathology and immunohistochemistry 

Histological analysis was performed on skin samples from lesions (Fish 10, tank 8 and fish 8, 

tank 14) and lice attachment (Fish 1, tank 10) and unaffected control sites in the same fish. The 

slides were stained with HE(S) to assess histopathology in the lesions, attachment sites, and the 

nonaffected skin. Immunohistochemistry was performed to see it was possible to determine the 

presence and location of M. viscosa in the lesions. 

Histology of unaffected areas of the fish looked healthy and was not affected by the M. viscosa 

infection with intact epidermis and no signs of inflammation or hemorrhaging (Fig. 9). 

 

Fig. 9: Histology of unaffected skin from time C of fish infected with M. viscosa. 1 - Epidermis, 2- Scale, 3-

Dermis, 4-Connective tissue, 5-Muscle tissue 
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Histopathological characteristics found for lesions included numerous erythrocytes indicating 

hemorrhaging.  Epidermis and dermis were varied from necrotic to completely removed 

depending on location in the ulcer. There was also heavy inflammation in epidermis and muscle 

cells (Fig. 10). 

 

Fig. 10: HE(S) stained histology from ulcers from sampling C. 1- Epidermis, 2- Inflammation, 3- Muscle tissue.  

A (Fish 8, tank 14)- The entire epidermis and dermis is gone, leaving exposed inflamed muscle tissue. B – (Fish 

10, tank 8)- epidermis is necrotic with blood in dermis. C – (Fish 8, tank 14)- Massive hemorrhaging and 

inflammation. 

The attachment sites of L. salmonis showed loss mucus cells and epidermis. A moderate 

inflammation could also be observed in the top layer of dermis (Fig. 11). 

 

Fig. 11: HE(S) stained histology of skin after L. salmonis infection at sampling C (Fish 1, tank 10). 1- Epidermis, 

2- Mucus cells, 3- Dermis, 4- Scale. Picture A - Normal intact skin directly adjacent to picture B. Picture B - 

Attachment site of a lice with little epidermis left and a moderate inflammation. 
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After immunohistochemically staining M. viscosa and H(ES) staining, there were a few darker 

spots in the slides about the same size as macrophages in dermis and muscle tissue. However, 

these spots were few and far between. (Fig. 12) These spots could not be observed in tissue 

from time B or control tissue only incubated with the secondary antibody (Fig. 13). 

 

Fig. 12: Hematoxylin and immunohistochemically stained for M. viscosa skin after M. viscosa infection at 

sampling C (Fish 8, tank 14). The arrow shows a darker spot that has been stained. 

 

Fig. 13: A- H Hematoxylin and immunohistochemically stained for M. viscosa skin after M. viscosa infection at 

sampling B (Fish 3, tank 1). B – Control for immunohistochemistry, not incubated with primary antibody. 
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3.2 Size: Weight, Length and K-factor 

 Weight 

At time B, the weight of the co-infected infected fish was significantly lower than the control 

fish, whereas infection with L. salmonis had no significant impact compared to control but 

significantly higher than the co-infection group. At time C no control fish were analyzed, weight 

was significantly higher for L. salmonis infected fish compared to M. viscosa single infection 

and co-infection. Time D, weight was again significantly higher for control compared to M. 

viscosa infection and co-infection. The L. salmonis fish weight was also significantly higher 

than M. viscosa and co-infection fish.  There was an overall increase in the average weight of 

the fish during the experiment from time B to D in all groups.  Control fish gained an average 

67 g whereas M. viscosa infected fish gained 26 g, L. salmonis infected fish gained 88 g for L. 

salmonis, and co-infected fish gained 45 g (Fig. 14). 

 

Fig. 14: Average weight ± SD of fish at sampling points B, C and D. Control (n: B=10, C=10, D=10), M. viscosa 

(n: B=40, C=20, D=21), L. salmonis  (n: B=30, C=30, D=30),  and co-infection (n: B=40, C=40, D=13),. Δ indicate 

significant difference compared to control, brackets with * indicate significant difference between two treatment 

groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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 Length 

At time B, M. viscosa group was significantly higher for compared to co-infection group.  Time 

C length L. salmonis group was significantly higher than both M. viscosa and co-infection 

groups. At time D L. salmonis group was significantly higher than M. viscosa. From sampling 

B to sampling D there was an average growth of 1.3cm for control group, -0.01cm for M. 

viscosa group, 1.2cm for L. salmonis group, and 1.7cm for co-infection group (Fig. 15). 

 

Fig. 15: Average fork length ± SD of fish at sampling points B, C and D. Control, M. viscosa, L. salmonis and co-

infection (n= as indicated in fig 10). Δ indicate significant difference compared to control, brackets with * indicate 

significant difference between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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 Condition factor (K-factor) 

At time B, the k-factor for the control group was significantly higher than the co-infection 

group. The L. salmonis group was significantly higher than the M. viscosa group. Time C the 

L. salmonis group was significantly higher than the co-infection group. Time D Control was 

significantly higher than M. viscosa and co-infection groups. L. salmonis group was 

significantly higher than M. viscosa and co-infection groups (Fig. 16). 

 

 

Fig. 16: Average k-factor ± SD of fish at sampling points B, C and D. Control, M. viscosa, L. salmonis and co-

infection (n= as indicated in fig 10). Δ indicate significant difference compared to control, brackets with * indicate 

significant difference between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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3.3  Survival 

Survival of infected fish was followed from the start of the experiment for over 40 days from 

the L. salmonis infections. The graph was made based on percentage survival on estimated 

remaining fish after sampling. Each tank had 40 fish after sampling A, and ten fish were 

removed from both B, and C.  Fish were infected with M. viscosa five days after L. salmonis. 

The L. salmonis group had the highest survival with 97% followed by control group survival of 

85%. M. viscosa group had a survival of 58% while the co-infection group had the lowest 

survival of only 44% (Fig. 17). 

 

 

Fig. 17: Survival for all groups, M. viscosa (n=38), L. salmonis (n=140), co-infection (60) and control (n=60) 

during the experiment from L. salmonis infections were completed. M. viscosa infections are indicated as a blue 

dot.  
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3.4 Serum cortisol - Stress  

There were no statistically significant differences in serum cortisol in time B (Fig. 18). 

L. salmonis group had a statistically higher serum cortisol than control in time C (Fig. 19). 

 

Fig. 18: Average serum cortisol ± SD of fish at sampling point B. Control (n=5), M. viscosa (n=10), L. salmonis 

(n=10) and co-infection(n=10). Box and whisker chart: box=first to third quartile, x=average, line=median, 

bars=minimum and maximum values, dots=outliers. Δ indicate significant difference compared to control, 

brackets with * indicate significant difference between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, 

***/ ΔΔΔ=0.001. 

 

Fig. 19: Average serum cortisol ± SD of fish at sampling point C. Control (n=5), M. viscosa (n=10), L. salmonis 

(n=10) and co-infection(n=10). Box and whisker chart: box=first to third quartile, x=average, line=median, 

bars=minimum and maximum values, dots=outliers Δ indicate significant difference compared to control, brackets 

with * indicate significant difference between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ 

ΔΔΔ=0.001. 
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3.5 M. viscosa ulcers 

Bacteria were re-cultured and (some) sequenced from ulcers on fish (from mortalities) to 

confirm the presence of M. viscosa in ulcers. This analysis was done by personnel at AVC 

Ulcers had a prevalence of 70%, 95% and 85% in the single infected group at time B, C, and D 

while co-infected fish had 62.5%, 87.5% and 92.3%. The average number ulcers detected at 

time C was significantly higher in fish infected with only M. viscosa compared to fish that were 

co-infected. However, this was not observed at time D (Fig. 20). 

 
Fig. 20: Number of lesions ± SD at sampling points B, C and D for M. viscosa and co-infection. (n= as indicated 

in fig 10). Δ indicate significant difference compared to control, brackets with * indicate significant difference 

between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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The average sizes of ulcers were not significantly different from each other in any samplings, 

however, there was a trend for the co-infection group of larger ulcers at time D (fig. 21). The 

total size of ulcers for time D was significantly higher for co-infection group than M. viscosa 

group (fig. 22).  

 

 

Fig. 21: Number of lesions ± SD at sampling points B, C and D for M. viscosa, and co-infection (n= as indicated 

in fig 10). Δ indicate significant difference compared to control, brackets with * indicate significant difference 

between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 

 

Fig. 22: Total size of ulcers ± SD at sampling points B, C and D for M. viscosa, and co-infection (n= as indicated 

in fig 10).  Δ indicate significant difference compared to control, brackets with * indicate significant difference 

between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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The average grade of ulcers was not significantly different from each other (Fig.23). 

Total ulcer grade was significantly higher for M. viscosa group than the co-infection group at 

time C (Fig. 24). 

 

Fig. 23: Average ulcer grade ± SD at sampling points B, C and D for M. viscosa, and co-infection (n= as indicated 

in fig 10). Δ indicate significant difference compared to control, brackets with * indicate significant difference 

between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 

 

Fig. 24: Total ulcer grade ± SD at sampling points B, C and D for M. viscosa, and co-infection (n= as indicated in 

fig 10). Δ indicate significant difference compared to control, brackets with * indicate significant difference 

between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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At time C, there was a significantly higher grade 1 lesions and significantly higher grade 2 

lesions at time B in co-infection compared to single infection. (Fig.25). 
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Fig. 25: Average amount of ulcers of each grade ± SD at sampling points B, C and D for M. viscosa, and co-infection 

(n= as indicated in fig 10). Δ indicate significant difference compared to control, brackets with * indicate significant 

difference between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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3.6 L. salmonis 

L. salmonis had a prevalence of 96.6% for single infected fish and 97.5% for co-infected fish 

at sampling B. All other samplings had a prevalence of 100%. Atlantic salmon were infected 

with 50 copepodids/fish resulting in the largest average count for the co-infected fish being 5.6 

(time C) and 8.03 for L. salmonis group (time D); the infection success was 11.2% and 16.1% 

respectively. There was a trend (not significant) of more lice found on fish infected with just L. 

salmonis at time C, and there was a significant difference in D of more lice in a single infection 

(Fig. 26). There was a significantly higher amount of chalimus and pre-adult female in L. 

salmonis group for time C and pre-adult female and adult male for time D (Fig. 27). 

 

 

Fig. 26 Lice count ± SD at sampling points B, C and D for L. salmonis and co-infection. (n= as indicated in fig 

10). Δ indicate significant difference compared to control, brackets with * indicate significant difference between 

two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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Fig. 27. Growth stage and gender of L. salmonis ± SD at sampling points C and D for L. salmonis and co-infection. 

(n= as indicated in fig 10). Δ indicate significant difference compared to control, brackets with * indicate 

significant difference between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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3.7  Tank effects 

As there where several tanks for the different groups the tanks were compared to determine if 

there were any tank effects. Any statistically significant differences between replicate tanks are 

shown in table 11, 12 and 13 for size, ulcers and lice. Two tanks for time D co-infection 

contained only 1 fish and was therefore not possible to perform a t-test while the remaining two 

(11 and 13) contained three and eight fish. All other samplings had ten or more fish from each 

tank. Tank effects for immune response was not checked, as there were only 1-4 samples from 

replicate tanks. 

Table 11: P-values of statistically significant differences in replicate tanks at sampling B 

Group Tank ID Avg Size of ulcers Total lice count Total/avg ulcer grade  

M. viscosa 4-5 - - 0,039 

L. salmonis 

1-8 - 0,010 - 

4 -8 - 0,023 - 

10-11 - 0,046 - 

Co-infection 10-13 0,014 - - 

 

Table 12: P-values of statistically significant differences in replicate tanks at sampling C 

Group Tanks Avg size of ulcers Preadult ♀ Total lice 

M. viscosa 8-9 0,021  - 

L. salmonis 1-4 - - 0,050 

 10-11 - 0,015 - 

 11-12 - 0,004 - 

Co-infection 11-13 - - 0,032 

 12-13 - - 0,014 

 

Table 13: P-values of statistically significant differences in replicate tanks at sampling D 

Group Tanks Length Ulcer gr2 Preadult lice Preadult ♀  Adult ♂  Lice 

count 

M. viscosa 8-9 - 0,027 - 0,0076 0,0005 - 

L. 

salmonis 

1-4 - - - - - 0,039 

1-8 - - 0,025 - - 0,009 

4-8 - - - 0,0175 0,0189 - 

Co-

infection 

11-13 0,035 - - - - - 
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3.8  Expression of immune genes 

To study the differences between the immune response in Atlantic salmon during M. viscosa 

infection, L. salmonis infection and co-infection, transcription of six immune genes were 

evaluated in the skin and head kidney. Tissue samples were analyzed from sampling B, and 

sampling C. Immune genes were chosen according to previous research. The analysis included 

IL-1β, IL-4/13A, IL-8, IL-10, C3, and IgM. Transcript levels were calculated in relation to 

control fish at the same timepoint. Infected skin sites (lice attachment/M. viscosa ulcer) are 

compared to control (uninfected fish) and unaffected skin of infected fish. Unaffected skin was 

taken directly beside the lice attachment or ulcer. A t-test was performed to test for significant 

differences between all groups, but the figures only show significant differences of sites that 

were appropriate to compare. All p-values are listed in appendix B, with significant differences 

in bold. e. Figures of gene expression in head kidneys that had no significant differences are 

shown in appendix C.  

  Pro-inflammatory genes 

 IL-1β expression in skin 

Time B Skin from co-infected fish away from site of infection (lice attachment/M. viscosa 

lesion) had a significantly higher expression of IL-1β than control (uninfected) fish. Skin from 

co-infected fish at the site of the lice infection also had a significantly higher expression of IL-

1β (fig. 28). The t-test was also run by removing the outlier for co-infected M. viscosa lesion, 

which resulted in a significantly higher expression compared to control similar to the pattern 

observed in all other samples from co-infected fish (result not shown). 

 

Time C Co-infected fish had a significantly higher expression of IL-1β at M. viscosa lesion and 

both M. viscosa unaffected control site. The expression was also significantly higher in M. 

viscosa lesion compared to unaffected control site in single infected fish (fig 29). All samples 

affected and non-affected by L. salmonis, had no significant changes compared to controls.  
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Fig. 28: Expression of IL-1β in skin samples from sampling B. Relative RNA (2-ΔΔct) of IL-1β in fish skin samples 

from control (n=10), M. viscosa infection (lesion n=13, control n=12), L. salmonis infection (attachment n=11, 

control n=12) and co-infection (lesion n=8, M. viscosa control n=10, attachment n=5 L. salmonis control n=5). In 

all infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker 

chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers. Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001.  

 

Fig. 29: Expression of IL-1β in skin samples from sampling C. Relative RNA (2-ΔΔct) of IL-1β in fish skin samples 

from control (n=10), M. viscosa infection (lesion n=8, control n=8), L. salmonis infection (attachment n=8, control 

n=8) and co-infection (lesion n=7, M. viscosa control n=8, attachment n=7 L. salmonis control n=7). In all infected 

groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker chart: 

box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers. Δ indicate 

significant difference compared to control, brackets with * indicate significant difference between two treatment 

groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001 
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IL-1β expression in head kidney 

Time B IL-1β was significantly higher expressed in head kidneys from co-infected fish 

compared to the control group (Fig. 30), Time C whereas IL-1β was significantly lower 

expressed in co-infected fish compared to the control group and L. salmonis group (Fig. 31). 

 

Fig. 30: Expression of IL-1β in head kidney samples from sampling B. Relative RNA (2-ΔΔct) of IL-1β in head 

kidney samples from control (n=9) M. viscosa infection (n=12), L. salmonis infection(n=10) and co-

infection(n=11). In all infected groups, skin was sampled in site of infection and in adjacent unaffected control 

sites. Box and whisker chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum 

values, dots=outliers. Δ indicate significant difference compared to control, brackets with * indicate significant 

difference between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 

 

Fig. 31: Expression of IL-1β in head kidney samples from sampling C. Relative RNA (2-ΔΔct) of IL-1β in head 

kidney samples from control (n=9) M. viscosa infection (n=8), L. salmonis infection(n=8) and co-infection(n=7). 

In all infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and 

whisker chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, 

dots=outliers. Δ indicate significant difference compared to control, brackets with * indicate significant difference 

between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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IL-8 expression in skin 

Time B All skin sites from fish infected with L. salmonis had a significantly higher expression 

of IL-1β than control (uninfected) fish. Skin from co-infected M. viscosa unaffected control site 

also had a significantly higher expression of IL- β (Fig. 32). The t-test was also run by removing 

the outlier for co-infected M. viscosa lesion, which resulted in a significantly higher expression 

compared to control similar to the pattern observed in all other samples from co-infected fish 

(result not shown). 

Time C Co-infected fish had a significantly higher expression of IL-8 at co-infected M. viscosa 

lesion and single infected M. viscosa unaffected control site. Expression of IL-8 was also 

significantly higher in co-infected fish M. viscosa lesion than co-infected M. viscosa unaffected 

control (Fig. 33). 

 

Fig. 32: Expression of IL-8 in skin samples from sampling B. Relative RNA (2-ΔΔct) of IL-8 in fish skin samples 

from control (n=10), M. viscosa infection (lesion n=13, control n=12), L. salmonis infection (attachment n=11, 

control n=12) and co-infection (lesion n=8, M. viscosa control n=10, attachment n=5 L. salmonis control n=5). In 

all infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker 

chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers.  Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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Fig. 33: Expression of IL-8 in skin samples from sampling C. Relative RNA (2-ΔΔct) of IL-8 in fish skin samples 

from control (n=10), M. viscosa infection (lesion n=8, control n=8), L. salmonis infection (attachment n=8, control 

n=8) and co-infection (lesion n=7, M. viscosa control n=8, attachment n=7 L. salmonis control n=7). In all infected 

groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker chart: 

box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers.  Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001 

IL-8 expression in head kidney 

There were no significant differences in expression if IL-8 at time B or C (Fig. 46 and 47, 

appendix C). 
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 Anti-inflammatory genes 

IL-4/13A expression in skin 

Time B Skin from co-infected fish at both M. viscosa sites had a significantly lower expression 

of IL-4/13A than control (uninfected) fish. Skin from single infected fish at M. viscosa lesion 

also had a significantly lower expression of IL-4/13A (Fig. 35). 

 

Time C All sites except for single infected L. salmonis unaffected control site had a significantly 

lower expression of IL-4/13A than control (uninfected) fish (Fig. 36).  

 

 

 

Fig. 34: Expression of IL-4/13A in skin samples from sampling B. Relative RNA (2-ΔΔct) of IL-4/13A in fish skin 

samples from control (n=10), M. viscosa infection (lesion n=13, control n=12), L. salmonis infection (attachment 

n=11, control n=12) and co-infection (lesion n=8, M. viscosa control n=10, attachment n=5 L. salmonis control 

n=5). In all infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and 

whisker chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, 

dots=outliers.  Δ indicate significant difference compared to control, brackets with * indicate significant difference 

between two treatment groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 



51 

 

 

Fig. 35: Expression of IL-4/13A in skin samples from sampling C. Relative RNA (2-ΔΔct) of IL-4/13A in fish 

skin samples from control (n=10), M. viscosa infection (lesion n=8, control n=8), L. salmonis infection (attachment 

n=8, control n=8) and co-infection (lesion n=7, M. viscosa control n=8, attachment n=7 L. salmonis control n=7). 

In all infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and 

whisker chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, 

dots=outliers.  Δ indicate significant difference compared to control, brackets with * indicate significant difference 

between two treatment groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001 

IL-4/13A expression in head kidney 

Time B IL-4/13A was significantly higher expressed in co-infected fish than only infected with 

M. viscosa (Fig. 36).  

Time C IL-4/13A was significantly lower expressed in co-infected fish than both single 

infections and control (Fig. 37). 



52 

 

 

Fig. 36: Expression of IL-4/13A in head kidney samples from sampling B. Relative RNA (2-ΔΔct) of IL-4/13A in 

head kidney samples from control (n=9) M. viscosa infection (n=12), L. salmonis infection(n=10) and co-

infection(n=11). In all infected groups, skin was sampled in site of infection and in adjacent unaffected control 

sites. Box and whisker chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum 

values, dots=outliers. Δ indicate significant difference compared to control, brackets with * indicate significant 

difference between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 

 

Fig. 37: Expression of IL4/13A in head kidney samples from sampling C. Relative RNA (2-ΔΔct) of IL4/13A in 

head kidney samples from control (n=9) M. viscosa infection (n=8), L. salmonis infection(n=8) and co-

infection(n=7). In all infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. 

Box and whisker chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, 

dots=outliers. Δ indicate significant difference compared to control, brackets with * indicate significant difference 

between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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IL-10 expression in skin 

Time B Skin from co-infected fish all skin had a significantly lower expression of IL-10 than 

control (uninfected) fish as well as their single infected counterpart (Fig. 38). 

Time C Skin from single infected fish away from site of L. salmonis infection had a significantly 

higher expression of IL-10 than control (uninfected) fish. Skin from M. viscosa unaffected 

control site was significantly higher expression of IL-10 in single infection compared to co-

infection. Skin from L. salmonis unaffected control site was significantly higher expression of 

IL-10 in co-infection compared to single infection (Fig. 39). 

 

Fig. 38: Expression of IL-10 in skin samples from sampling B. Relative RNA (2-ΔΔct) of IL-10 in fish skin samples 

from control (n=10), M. viscosa infection (lesion n=13, control n=12), L. salmonis infection (attachment n=11, 

control n=12) and co-infection (lesion n=8, M. viscosa control n=10, attachment n=5 L. salmonis control n=5). In 

all infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker 

chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers.  Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001.  
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Fig. 39: Expression of IL-10 in skin samples from sampling C. Relative RNA (2-ΔΔct) of Il-10 in fish skin samples 

from control (n=10), M. viscosa infection (lesion n=8, control n=8), L. salmonis infection (attachment n=8, control 

n=8) and co-infection (lesion n=7, M. viscosa control n=8, attachment n=7 L. salmonis control n=7). In all infected 

groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker chart: 

box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers.  Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001 

IL-10 expression in head kidney 

There were no significant differences in expression if IL-10 at time B and C (Fig. 48 and 49, 

appendix C). 
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 Acute-phase protein: C3 

C3 expression in skin  

Time B Skin from single infected M. viscosa lesion and both co-infected M. viscosa sites had a 

significantly higher expression of C3 than control (uninfected) fish. Skin from single infected 

M. viscosa lesion had also a significantly higher expression of C3 than single infected L. 

salmonis attachment site (Fig. 40). 

Time C Skin from both M. viscosa lesion sites and single infected M. viscosa unaffected control 

site had a significantly higher expression C3 than control (uninfected) fish. Skin from single 

infected L. salmonis unaffected control also had a significantly higher expression C3 than 

control (uninfected) fish. C3 in skin from single infected M. viscosa lesion was significantly 

higher expressed than single infected L. salmonis attachment (Fig. 41). 

 

Fig. 40: Expression of C3 in skin samples from sampling B. Relative RNA (2-ΔΔct) of C3 in fish skin samples from 

control (n=10), M. viscosa infection (lesion n=13, control n=12), L. salmonis infection (attachment n=11, control 

n=12) and co-infection (lesion n=8, M. viscosa control n=10, attachment n=5 L. salmonis control n=5). In all 

infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker 

chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers.  Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 



56 

 

 

Fig. 41: Expression of C3 in skin samples from sampling C. Relative RNA (2-ΔΔct) of C3 in fish skin samples from control 

(n=10), M. viscosa infection (lesion n=8, control n=8), L. salmonis infection (attachment n=8, control n=8) and co-

infection (lesion n=7, M. viscosa control n=8, attachment n=7 L. salmonis control n=7). In all infected groups, skin was 

sampled in site of infection and in adjacent unaffected control sites. Box and whisker chart: box=first to third quartile, 

x=average, line=median, bars=minimum and maximum values, dots=outliers.  Δ indicate significant difference 

compared to control, brackets with * indicate significant difference between two treatment groups. P values P values 

*/Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001 

C3 expression in head kidney 

Time B There was a significantly higher expression of C3 in co-infected compared group to M. 

viscosa group at time B (Fig. 42). There were no significant differences in expression if C3 at 

time C (Fig. 50, appendix C). .

 

Fig. 42: Expression of C3 in head kidney samples from sampling B. Relative RNA (2-ΔΔct) of C3 in head kidney samples 

from control (n=9) M. viscosa infection (n=12), L. salmonis infection(n=10) and co-infection(n=11). In all infected 

groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker chart: box=first 

to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers. Δ indicate significant 

difference compared to control, brackets with * indicate significant difference between two treatment groups. P values 

*/Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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 Immunoglobulin: IgM 

IgM expression in skin 

Time B Skin from single infected M. viscosa unaffected control site and co-infected L. salmonis 

attachment sites had a significantly higher expression of IL-1β than control (uninfected) fish  

 

Time C Skin from single infected M. viscosa lesion site and L. salmonis attachment sites had a 

significantly higher expression of IL-1β than control (uninfected) fish (Fig. 43). 

 

 

Fig. 43: Expression of IgM in skin samples from sampling B. Relative RNA (2-ΔΔct) of IgM in fish skin samples 

from control (n=10), M. viscosa infection (lesion n=13, control n=12), L. salmonis infection (attachment n=11, 

control n=12) and co-infection (lesion n=8, M. viscosa control n=10, attachment n=5 L. salmonis control n=5). In 

all infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker 

chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers.  Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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Fig. 44: Expression of IgM in skin samples from sampling C. Relative RNA (2-ΔΔct) of IgM in fish skin samples 

from control (n=10), M. viscosa infection (lesion n=8, control n=8), L. salmonis infection (attachment n=8, control 

n=8) and co-infection (lesion n=7, M. viscosa control n=8, attachment n=7 L. salmonis control n=7). In all infected 

groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker chart: 

box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers.  Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001 

IgM expression in head kidney 

No significant differences of IgM at time B (Fig. 51, appendix C).  Time C Expression of IgM 

in co-infection group was significantly lower than M. viscosa group at time C (Fig. 45). 

 

Fig. 45: Expression of IgM in head kidney samples from sampling C. Relative RNA (2-ΔΔct) of IgM in head kidney 

samples from control (n=9) M. viscosa infection (n=8), L. salmonis infection(n=8) and co-infection(n=7). In all 

infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker 

chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers. Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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4 Discussion 

This study gives an understanding of how the pathogens M. viscosa, and L. salmonis affect the 

Atlantic salmon both separately and as a co-infection. In this study, several factors including 

weight, length, frequency, the severity of ulcers, number of lice, and expression of immune 

genes were analyzed. Despite large differences between individuals in most of these factors, 

especially in the expression of immune genes, some significant differences between the groups 

were detected.  

4.1 Methodological limitations 

In this section the limitations of the general experimental setup and infection is discussed as 

these apply to all parts. Other limitations are mentioned in the appropriate section.  

 Experimental setup 

The experiment was a part of a large experiment with different feeds, and a total of 29 tanks 

with approx. 40 fish/tank, equaling to over 1100 fish. The experiment was scheduled to start in 

September, but due to slow growth and delays regarding feed, it did not start until December. 

A sudden drop in water temperature further delayed delivery of copepods, and due to weather 

conditions, the M. viscosa had to be delivered the day before and stored overnight at AVC for 

the second bath challenge. The infection plans therefore had to be rearranged to carry out the 

infections and get sampling A and B done before Christmas.  

The number of fish tanks for each group was different with one control tank, four L. salmonis 

tanks, four co-infection tanks.  M. viscosa at sampling B had four tanks (from first infection 

challenge) in RAS unit 1, however these tanks were used in the M. viscosa + L. salmonis 

infection, so two different tanks (from the second challenge) in RAS unit 2 were used for 

sampling at timepoint C and D. Because of individual differences between tanks, this makes a 

direct comparison of fish infected with M. viscosa between time B to time C problematic.  

Due to a large number of fish, sampling stretched over several days after infection for different 

groups. This made it harder to compare as one group has been infected longer than the other. 

e.g., in sampling C, fish infected with L. salmonis (26 dpi) was compared to co-infected fish 

(lice 28dpi +23dpi M. viscosa). This may have affected the immune response where 
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transcriptional changes can occur fast. On the other hand, fish size, lice numbers and ulcer 

development are a result of slower processes and were unlikely to have been affected by this 

sampling regime. 

 Infection 

As mentioned, the culture for the second challenge had to be stored overnight at AVC, even 

though it was set to 8± 1 ºC the temperature had risen to 11± 1 ºC the following morning. 

However, the higher temperature should not affect the bath challenge given that the water 

temperature during infection and after was satisfactory.  

The fish were divided into tanks which again were connected to three separate RAS units. All 

RAS units, but not all tanks, were infected with L. salmonis, while units 1 and 2 had M. viscosa. 

The control group was in RAS unit 3. The use of RAS implies an added risk of pathogens being 

spread between tanks. Therefore, filters were added to the waterflow to stop lice from entering 

the control tanks or tanks only containing M. viscosa. In unit 1 and 2, all tanks were infected 

with M. viscosa as it is difficult to be certain the water is not contaminated. As no control fish 

or single infected fish showed signs of the other pathogen, it was effective in stopping unwanted 

spread of pathogens. 

4.2 Histology 

Sørum et al. (2010) described frequent histopathological observations of lesions form a M. 

viscosa infection as subepidermal edema, inflammation in the dermis, subcutis, and red muscle, 

hemorrhage and necrosis of white muscle fibers. Through histology of our samples, some of 

these characteristics like hemorrhaging, inflammation in dermis and muscle tissue and complete 

loss of epidermis and some dermis were observed.  

Bacteria were re-cultured and (some) sequenced from ulcers on fish (from mortalities) to 

confirm the presence of M. viscosa in ulcers. To further confirm the identity of M. viscosa and 

location, immunohistochemistry using antibodies raised against M. viscosa was performed on 

skin samples. The antibodies used were raised against different strains of M. viscosa, which 

may limit the efficacy of the antibodies. One of the antibodies had unacceptable levels of non-

specific binding(K230), but the other antibody looked as if to bind more specifically 

(NVI88/478). By using immunohistochemistry, there were some spots stained at about the same 
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size as macrophages around at time C. These spots were not found in a lesiond from time B and 

the negative control. This could indicate that M. viscosa that has been phagocytosed and was 

stained inside these macrophages. However, these spots were few and far between, so it is not 

possible to conclude whether the staining was successful. As the antibody was not specific for 

the strain it is most likely the reason for these limited results. Another reason could have been 

that the lesions samples were not from the M. viscosa infection, but this is not likely due to 

successful re-culturing of ulcers. 

L. salmonis study from Jónsdóttir et al., (1992) found common histopathology to be edema, 

hyperplasia, inflammation, lesions, scale loss, and hemorrhaging from pre-adult and adult lice. 

As the histopathology of L. salmonis sites showed loss of epidermis and moderate 

inflammation. 

There were only two replicates per fish of skin from each infection site and only at one time 

point (C) that were used for histopathology due to limited time. Three replicates were used for 

immunohistochemistry, one from time B and two from time C. Ideally more replicates should 

have been made to look at the effects on more fish and see if the same staining was present in 

more ulcers.   

Histopathological characteristics were found like hemorrhaging, inflammation in the dermis 

and muscle tissue in lesions and showed loss of epidermis and a moderate inflammation for L. 

salmonis attachment site. Immunohistochemistry could have been used to see the location of 

the bacteria in tissue and see if the co-infection leads to a deeper infection, but the results were 

inconclusive. 

4.3 Size: Weight, Length and K-factor 

Factors such as weight, and length as well as K-factor were used to see the effects of M. viscosa 

and L. salmonis on salmon growth. It is important to know how these are affected, especially 

to understand how these infections potentially can affect slaughter weight, or how long it takes 

to reach an optimal weight when farming. Sampling A was done only with two fish per tank in 

two units. This was not adequate to calculate average weight and length for the different groups. 

There are several significant differences between weight and length with different treatments 

for time B. These differences at time B has not been regarded as significant differences due to 

disease, as most likely not enough time had passed for the pathogens to affect the fish. These 
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differences are more likely tank effects that should have been detected in sampling A. This to 

some extent limits how time C and D can be interpreted. As well as large differences between 

individuals, there were also observed a few significant differences between tanks. This is not 

ideal, but because the sample size is large, the average across replicate tanks should represent 

the actual outcome of the infections. 

 

At time C, the L. salmonis infected fish were significantly heavier than both M. viscosa and co-

infection groups. This was also what was observed during the last sampling (D), along with the 

control group being significantly heavier than M. viscosa and co-infection groups. This 

indicates that M. viscosa significantly affects weight; however, the co-infection together with 

L. salmonis did not change the impact of M. viscosa. This is further supported by the slower 

growth of M. viscosa and co-infection groups compared to control and L. salmonis groups. The 

L. salmonis group was significantly longer than the M. viscosa group and co-infection at the 

end, which was similar results as for weight. Looking at the average growth from time B 

compared to time D we observed that the growth had halted for the M. viscosa group while the 

co-infection and control group were similar and L. salmonis a bit higher. 

 

K-factor is interesting to look at, as this tells us more about the weight to length ratio. Factors 

that influence a fish’s k-factor include species, maturation, fat reserve, muscular development, 

and more. A higher k-factor is expected in larger fish, but it should at least be around 1.  Results 

for k-factor was the same for as seen in weight, with M. viscosa influencing K-factor but the 

co-infection did not have an impact beyond the effects of M. viscosa.  

 

There is limited research done on growth during L. salmonis infection, but Wells et al., (2006) 

found 13 lice per fish at 19-70 g to be a cutoff point for many physiological measures, including 

weight, in wild brown trout (salmo trutta).  Coyne (2006) found moribund and dead fish with 

signs of a M. viscosa infection were 50% lighter than healthy fish in a field research. Thus, 

these findings further support that M. viscosa affects growth but cannot thoroughly compare 

effect as the M. viscosa infection depends on dose, strain, temperature, water quality, and more. 

Coyne (2006) was done in Norway and can therefore be assumed that it is the typical clade 

creating the disease, which has a higher virulence, and not the variant clade used in this study 

(Grove et al., 2000). 
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The infection of M. viscosa result in reduced growth, but L. salmonis did not. The co-infection 

of M. viscosa and L. salmonis did not influence growth from what was observed under the M. 

viscosa infection alone. 

4.4 Survival 

The infection dose for M. viscosa had been tested prior to this experiment to determine optimal 

concentration. Co-infected fish had a mortality of almost 60%. This affected number of fish 

sampled for time D, resulting in less fish than for time B and C. A LD50 is often considered to 

be necessary to determine differences in between the groups, so slightly more fish in the 

experiment could be beneficial to have a larger sampling at the end. The dose for L. salmonis 

was chosen to be a low to medium infection, with the expectation of no mortality.  

As there was a limited number of replicate tanks and fish were removed at sampling B and C, 

statistical analysis was not performed. There look as if L. salmonis did not induce mortality as 

L. salmonis survival was higher than the control there is some variation between tanks and that 

L. salmonis at this infection dose and up to 49 days after infection does not increase mortality. 

Noland et al. (1999) found no mortality of at infection levels of 3.6 and 10 lice per fish for fish 

a 200-250 g, which was very similar to this study. Ross et al. (2000) experienced 100% 

mortality after infection of 178±67 lice per fish of 55.5 g large fish. This supports that the 

infection levels used in this study did indeed not induce mortality.  

M. viscosa and co-infection groups were quite lower than the control group; this indicated that 

the M. viscosa infection does affect survival. There was a small difference between the M. 

viscosa and co-infection groups, but no statistical tests were done so it is tough to say for certain 

if there were a significant difference, so further research with adequate replicate tanks would 

have to be done to draw any conclusions.  

Karlsen et al. (2014) observed survival of 50% at 7 dpi and Løvoll et al. (2009) had a survival 

of 72 % after 7 days after infection (temp 8.9 to day 4 °C followed by 13.4 °C). Both had a 

mortality that occurred earlier than observed in this thesis, with most mortality observed 15 

days after M. viscosa infection. These two studies used the typical clade, which is known to be 

more virulent than the variant clade used here (Grove et al., 2000). Mortality after M. viscosa 

infection depends on dose, strain, temperature, water quality, and more and can therefore be 
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difficult to compare with other studies in observed survival. But it was clear that M. viscosa did 

lead to a higher mortality. 

A heterologous co-infection study on Rainbow trout with Argulus coregoni (freshwater fish 

louse) and Flavobacterium columnare (bacteria) found a significantly higher mortality under 

the co-infection (Bandilla et al., 2006). The same was found for a co-infection of Caligus 

rogercresseyi and Piscirickettsia salmoni in Atlantic salmon (Lohorente et al., 2014). These 

results were similar to our results. 

L. salmonis does not impact mortality at these infection levels. The infection of M. viscosa and 

the co-infection of L. salmonis and M. viscosa has a higher mortality. Further research has to 

be done to determine the significance of the co-infection.  

4.5 Serum cortisol – stress 

Serum cortisol can be an indicator of how stressed a fish is, which in turn can greatly affect 

susceptibility to disease and immune response. The only significant difference found in serum 

cortisol was for L. salmonis group compared to control at time C, at which the average lice 

count was 7.3 lice perfish. There were trends of higher cortisol in most groups compared to 

control, but there were quite large differences between individuals. The sampling process is 

known to be stressful for fish, but as the fish were euthanized within less than 4 min from the 

removal of tanks it should not affect the results (M. Fast personal communication). 

Research with cortisol levels and L. salmonis agrees with our findings, Finstad et al. (2000) 

found elevated plasma cortisol in higher L. salmonis infestation levels after 25dpi (at a slightly 

higher intensity, 36 ± 17), and when the lice had molted into pre-adults. Ross et al. (2000) and 

found elevated plasma cortisol at 3dpi and 10 dpi and Fast et al., (2006) at 25,6, 33 and 40 dpi, 

however this was at a very high infection (178 ± 67 and 142.8 ± 12.8). Little research has been 

done on M. viscosa and cortisol levels, but a study on Aeromonas salmonicida, showed elevated 

water cortisol concentrations 5 to 7 dpi. A. salmonicida is a gram-negative bacterium and known 

to be a very aggressive disease (Ellis et al., 2007). It can be difficult to compare these two 

bacteria as the diseases are quite different, and based on pathology alone, it could be probable 

that A. salmonicida would cause more stress on the host compared to M. viscosa. 
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4.6 M. viscosa ulcers 

M. viscosa infections are characterized by formations of ulcers in the skin of the fish. They vary 

in amount, size, and depth, all of which can impact have adverse effects on fish welfare.  M. 

viscosa lesions were graded (1-3) according to severity/depth and area by converting a size into 

a score; it was easier and quicker than having to measure the exact size. The downside to this 

is the large differences of an ulcer within a score, limiting our understanding of the actual size 

of the ulcers, so ideally it should have been measured in actual size however not feasible 

considering the sample size. But by using size scores, it did give us an indication of ulcer 

development, which is the most important in regards of fish health.  Grading of ulcers was 

necessary, and a score of one to three was an effective way of defining the severity of the ulcer. 

No studies have been done on the actual development of ulcers (number, size, and severity), 

making it hard to compare to current literature. 

Ulcer development is detrimental to fish welfare, where many and deep ulcers will put a large 

amount of strain on the fish and can affect osmotic regulation. Also, by breaking the skin 

barrier, new pathogens can more easily infect the fish. The average number of ulcers were 

significantly higher during time C for M. viscosa than co-infection, however during time D 

there was an opposite trend but not significant. Ulcers found on M. viscosa infected fish were 

more at time C than D while to the opposite is observed for co-infected fish. This can indicate 

that ulcers can develop/infect faster for a single infection, but over time, co-infected fish are 

not able to fight further spread of the bacteria. 

 

The size of the ulcers showed how much of the skin surface area was covered in ulcers. The 

skin is important both as a mechanical barrier against pathogens and osmoregulation. An intact 

epidermis is therefore crucial for a fish to stay healthy. So, with larger ulcers the fish will be 

more exposed.  

 

Average sizes of ulcers were not significantly different from each other, but there was a trend 

for co-infection having larger ulcers in the last sampling. When looking at the total size of ulcers 

at the last sampling, it was almost double the size in co-infection compared to M. viscosa (4.90 

and 9.08) and statistically significant. The total size of ulcers gives a better understanding of 

how much of the surface area that is covered in lesions compared to average size. This is 

particularly important for factors like osmotic stress. L. salmonis attachment might create an 
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entry point for M. viscosa, enabling them to cover a larger area. Lice saliva is also thought to 

be an immunosuppressant, which also could be connected to more ulcers for co-infected fish 

(Fast et al., 2006, Øvregård et al., 2018). The study on C. rogercresseyi and P. salmonis found 

the parasite to reduce resistance to the bacterium, which was what was seen here aswell 

(Lhorente et al., 2014). 

 

There was a significant difference with a higher total ulcer grade for M. viscosa at time B. As 

in ulcer size there is little difference from time C to time D for M. viscosa, however for co-

infection the total ulcer grade has more than doubled (from 3.5 to 7.8). So, for time C single 

infected fish both had a larger number of ulcers as well as a total ulcer grade. This can most 

likely be linked to number of ulcers, as the total grade also will go up and the data for average 

ulcer grade is for both groups were similar to each other. Thus, ulcers were more unlikely to be 

more severe in single infected group at time C. This is further supported by the ulcer grades. 

The only noteworthy significant difference is grade 1 ulcers for time C which again can be 

explained by the higher number of ulcers.  

 

It looks as if M. viscosa were able to develop or infect faster under a single infection, but over 

time there are more ulcers for co-infected fish. At the last sampling, there was a much larger 

area of the fish covered in ulcers for co-infected fish. No difference observed in grade/severity 

of lesions. 
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4.7 L. salmonis 

 

L. salmonis infection was done by stopping water flow for 1h to give the coepepodids a 

possibility to attach before being flushed out of the tank. The prevalence was close to 100% 

throughout the experiment. Lice counting is challenging, especially for smaller stages like 

chalimus I and II. Time B had about 3.8, and 8 lice per fish for time D. As there were only lice 

added at the start of the experiment, and there are no ovigerous females there can’t be more lice 

at the end than the early in the experiment. This is likely due to the difficulty of finding the 

smaller stages on the fish or lice fallen off through scale loss. 

 

There was a clear difference where fish infected with lice harbored more lice than fish co-

infected with M. viscosa at time D. A similar but not significant trend was observed at time C. 

As mentioned lice eat mucus and skin, which is removed when M. viscosa creates ulcers.  For 

time D co-infected fish had an average of total ulcer size score of 9.1. This might indicate that 

there is some competition of resources of food, which M. viscosa looked as if to be slightly 

outcompeting L. salmonis. Another explanation could be that L. salmonis (might) 

immunomodulate, reducing the immune response at the attachment site, (Fast et al., 2014; 

Øvergård et al., 2018) which in turn decreases the natural immune response which could 

normally fight of or slow down ulcer development. 

   

There was some significant difference between stage and genders between the two groups. As 

there was a higher average on single infected fish, these differences were due to differences in 

lice counts between the two groups. For time C, most salmon lice had molted into pre-adults, 

except for a few in single infection. At time D, most males are adults and females still pre-

adults for both groups. This indicates that the co-infection does not affect the developmental 

rate of L. salmonis, and this agrees with studies on developmental rates (Johnson & Albright, 

1991a). Gender distribution was approximately 1:1, which was expected. 

 

There were found more L. salmonis in a single infection compared to co-infection at the last 

sampling, possibly due to competition between the two pathogens. The co-infection did not 

affect the development of L. salmonis. 
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4.8 Expression of immune genes 

Immune gene expression provides an insightful profile of the overall health and response of the 

host fish to individual and in this case, co-infecting pathogens.  Furthermore, in the current 

study, by analyzing host gene expression in single and co-infections we can determine the 

individual and interactive impacts of the pathogens themselves. In the current examination, we 

analyzed both early (acute; time B) and late (long-term; time C) times post infection. 

Transcriptional responses are more sensitive, responsive, and easily measured compared to 

phenotypic changes like growth, lesion development, and survival which take much longer 

and/or only occur in extreme infections. The immune response towards L. salmonis is known 

to be more local, so the response is often more distinct at attachment sites in skin compared to 

immune response in head kidney (A-C. Øvergård personal communication, on-going studies at 

SLRC). As mentioned L. salmonis is also thought to produce saliva/glandular secretions with 

immunomodulating properties (Fast et al., 2014; Øvergård et al., 2018). Studies in Atlantic 

salmon with higher resistance to lice have shown a higher immune response compared to low 

resistant lines (Holm et al., 2015).  M. viscosa infects the skin but can become systemic over 

time so it could be expected to see a difference in immune response in the head kidney for fish 

infected with M. viscosa (Bruno et al., 2013). To my knowledge, there has been no studies done 

on the immune response in head kidney against M. viscosa making the current investigation 

novel but difficult to contextualize with the lack of other literature. 

Skin tissue samples taken for RNA extraction were large. Large samples increase potential 

RNA degradation due to RNAlater not penetrating the whole sample in time. All tissue samples 

for time C were also sent per mail to Norway on ice, but when they arrived, the samples had 

thawed.  Control skin samples were isolated RNA, as they were isolated in Canada, and from 

the other samples, excess RNAlater had been removed, which could have resulted in RNA 

degradation.  RNA extraction, DNase treatment, cDNA, and RT-qPCR all also increases the 

risk of degradation of RNA. 24 of the samples were analyzed in a bioanalyzer, 12 from sampling 

B, (six skin and six head kidney) and 12 from sampling C (six skin isolated in Canada and six 

skin) which is >10% of the sample size. Some samples of the larger samples were slightly 

degraded, but to a small degree which is unlikely to have greatly affected the results of RT-

qPCR. Another problem with the larger samples was that they were much larger than the actual 

attachment site of the louse, which could affect results in gene expression as it is very local (A-

C. Øvergård personal communication).  Putative tank effects could not be analyzed in samples 
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taken for transitional analysis as only one to five samples were taken from replicate tanks. 

Analyzing the same amount of fish from each replicate tank would have improved the study.   

Sampling B was done two days post infection with M. viscosa. Small scale loss, that did not 

look like mechanical damage, was assumed to be early M. viscosa lesion. As it was so early in 

the infection, there might have been other reasons for this scale loss. This could potentially 

affect the expression of immune genes. This early in the infection, there was a prevalence of 

70% (single) and 62.5% (co-infected) for M. viscosa ulcers. Therefore, this early in the 

infection, not all fish had both signs of a co-infection, so some samples are uncertain whether 

the fish at that stage was infected with both pathogens.  

As expected, there were many large differences in expression between individuals. Larger 

differences with this sample size may affect potential significant differences. Ideally a larger 

sample set could have been analyzed in this thesis.   

One fish from the co-infection group, time C was removed as the results from all skin sites and 

head kidney were drastically higher than the other fish in the same group (for example the 

average IL-1β for attachment was under 1 while this sample was over 200). Even though there 

had not been any notes on abnormalities on this individual, as this was such a substantial 

deviation in two tissues and several immune genes it was assumed to not be representative for 

the group.  
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 Pro-inflammatory genes 

IL-1β expression 

IL-1β is important in inflammation, T-cell, and macrophage activation (Murphy & Weaver, 

2017). At time B, co-infected fish had a significantly higher expression of IL-1β at M. viscosa 

unaffected control and both L. salmonis sites. Since these two unaffected control sites had a 

higher expression, this could indicate a systemic skin response (epithelial mucosal response) 

(Salinas, 2015). IL-1β was also higher for L. salmonis attachment for co-infection than single 

infection, which could suggest that the co-infection leads to a higher expression IL-1β in 

attachment site. M. viscosa lesion single infection had the highest average of IL-1β expression, 

due to the considerable variation this result is however, not statistically significant. A t-test was 

also run by removing the outlier for co-infected M. viscosa lesion, which resulted in a 

significantly higher expression compared to control, but as there was no suitable reason to 

remove the outlier, these results have not been discussed further. 

At time C co-infected fish had a significantly higher expression of IL-1β at M. viscosa lesion 

and M. viscosa unaffected control site. The expression was also significantly higher in M. 

viscosa lesion compared to unaffected control site in single infected fish. These results indicate 

that the immune response increases with disease progression and that the immune response 

towards the M. viscosa infection was not as local as the L. salmonis infection, which could be 

due to spread of infection that is not yet visible (no ulcers). As in time B, M. viscosa has the 

highest average and looked as if there was a trend of a higher expression. Results like these 

would be expected as the bacterial colonization of the skin is not at local as the attachment site 

as the louse.  

Salmon lice copepodites are attached to the host by hooking its second antenna into the skin 

while mobile L. salmonis (pre-adult and adult) are attached through suction of their 

cephalothorax. Damage from attachment is greater from the copepodid than a mobile louse, but 

the mobile lice cause more damage due to feeding (Jones et al., 1990; Kabata. 1981). The higher 

expression at time B (for co-infected L. salmonis attachment site) could therefore be due to the 

attachment stimulating a different immune response or that the pre-adult and adult stages have 

a greater capacity of immunomodulation. (Fast et al., 2014) 
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Øvergård et al. (2018) found increased expression if IL-1β at 24, 36, 48, and 72 ddpi in L. 

salmonis attachment sites. Time B was at 58ddpi so according to this it could be assumed that 

at least single infected L. salmonis attachment sites should have been significantly higher than 

the control for time B.  The difference could be due to a slightly higher level of infection in the 

latter study. The study by Løvoll et al., (2009) showed higher expression in M. viscosa ulcer 

skin 7 dpi.  In this study, expression was assessed at 2 dpi (B) and 23 dpi (C) making it difficult 

to compare. But it can indicate that the co-infection did, in fact, result in a higher expression of 

IL-1β at time B. Ingerselv et al. (2010) showed higher expression at 7 and 14 dpi in muscle, as 

it is a different tissue it could be difficult to compare but might give an indicator of what could 

be expected in skin. And these results seem to line up as Time C showed significantly higher 

expression in all M. viscosa sites except M. viscosa lesion single infection.  

Results for the head kidney from time B showed that co-infected fish had significantly higher 

expression of IL-1β than control while for time C it was significantly lower, indicating that the 

co-infection can affect expression in head kidney both up and down depending on timing and 

progression of disease. Fast et al. (2006) found a higher expression after L. salmonis infection 

in the head kidney at 9 and 40 dpi, but no differences in-between. According to these results, 

the L. salmonis group would be expected to have a higher expression at time B (6dpi), but this 

was not the case, again possibly because the infection level in the current study was <50% of 

Fast et al. (2006). Chettri et al. (2011) found higher expression in the head kidney after exposing 

rainbow trout to PAMPs at 1, 4, and 12 h after infection. As our first time is 2 dpi it might 

indicate that a higher expression of IL-1β could be expected after a bacterial infection, but it is 

tough to compare as a lot happens this early in the infection Fast et al. (2007) looked at 

lipopolysaccharides (LPS, a type of PAMP) and stress, finding a higher expression in at 7 dpi 

and lower 14 and 21 dpi. LPS is a component in the cell wall of gram-negative bacteria and is 

known to stimulate the proliferation of lymphocytes and macrophage activity (Warr & Simon, 

1983; Dalmo & Seljelind, 1995). These results are similar to what was found here, indicating 

that even though the co-infected fish were not significantly more stressed by L. salmonis but in 

a combination of the bacterial infection lead to the same results 
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IL-8 expression 

IL-8 is a chemokine produced by macrophages and epithelial cells and plays a role in 

inflammation attracting neutrophil granulocytes (Murphy & Weaver, 2017). All co-infected 

sites except for M. viscosa lesion had a significantly higher expression of IL- 8 compared to 

control in time B. All L. salmonis sites also had higher expression than control. This, like IL-

1β, indicates a systemic skin response, but as there were no significant differences for IL-8 in 

the head kidney at either of the samplings indicating no internal systemic response. There was 

a significantly higher expression in co-infected L. salmonis attachment compared to single 

infection, which indicates that the co-infection also induces higher expression of IL-8 compared 

to L. salmonis alone. 

At time C, IL-8 was significantly higher expressed in the co-infected M. viscosa lesion and 

single infected control compared to control. Expression in co-infection M. viscosa lesion was 

also significantly higher compared to M. viscosa unaffected control. This shows that the 

immune response against M. viscosa increased as the ulcers had developed while the L. 

salmonis infection response had stopped. This could again be linked to what was mentioned 

about IL-1β about attachment methods of the louse or potential immunomodulation. 

 Øvergård et al. (2018) found higher IL-8 24, 48 and 72 ddpi which corresponds to findings in 

time B. Ingerselv et al. (2010) found higher expression at 7 and 14 dpi in muscle tissue, which 

is also what was found in skin for co-infected M. viscosa lesion during time C (23dpi). 

The results for pro-inflammatory genes showed a higher systemic IL-1β response early in the 

infection for co-infected fish (B) and reduced at time C, IL-8 was not affected. L. salmonis 

attachment sites had a higher expression of IL-1β at time B while M. viscosa lesions were higher 

at time C. The immune response after L. salmonis infection was also more local than M. viscosa 

infection, with M. viscosa leading to a heightened systemic response of epithelial mucosal 

immune response. 
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  Anti-inflammatory genes 

IL-4/13A expression 

IL-4 and IL-13 are anti-inflammatory cytokines and known to be important in Th cell response 

and important in parasite immune response in mammals (Mosmann and Coffman. 1989, Zhu. 

2015). IL-4/13A, found in teleosts, is closely related to these genes and is commonly expressed 

in the skin under parasitic infections (Chettri et al., 2014, Wang et al., 2016). At time B, both 

M. viscosa lesion sites and co-infection M. viscosa unaffected control site had a lower 

expression of IL-4/13A than the control. Looking at the graph, it gave the impression of a trend 

where all single infection sites were slightly higher expressed than the co-infected counterpart; 

however, none of these were significant. All sites were downregulated except for L. salmonis 

unaffected control site (single infection) at time C. With the decrease at time C, it could indicate 

that IL-4 /13A expression was suppressed under both pathogens, and this response was seen 

faster during the co-infection for time B. As all M. viscosa sites are affected, there also seems 

like there was a systemic skin response after the M. viscosa infection, both single and co-

infected. As the anti-inflammatory cytokines can have the opposite effect as inflammatory 

genes they could also be suppressed for the inflammation to work as efficiently as possible. 

This is supported by the increase in pro-inflammatory, and accordance with the decrease in anti-

inflammatory responses. 

Comparing the trends of IL-4/13A to the pro-inflammatory cytokines and IL-10 it is slightly 

different. Expression of IL-1β, IL-8 and IL-10 showed a higher initial response (time B) of co-

infected and L. salmonis with a more persistent response in M. viscosa. But for IL-4/13A the 

most distinctive effects were seen at time C, indicating a delayed repressive response which 

could have been from the as they pathogens have developed or suppression from the immune 

system to induce more pro-inflammatory responses. There was a significantly lower expression 

in the co-infected group compared to all other groups in the head kidney at time C, indicating 

that the suppression was systemic. In the study by Øvergård et al. (2018), there was a higher 

expression of IL-4/13A 48, 36, and 72 ddpi, which is not observed in any cases in this study. A 

reason for this could have been the differences in lice intensity or differences in resistance, 

among others. Holm et al. (2016) found a lower expression (not significant) in the skin near 

lice attachment site at 21 dpi in Atlantic salmon that were less resistant to lice. Holm at al saw 

a trend for higher expressions of IL-4/13A for their highly resistant salmon. 
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 IL-10 expression 

IL-10 is a cytokine produced by macrophages as well as dendritic-, T- and B-cells and is a 

suppressant of macrophages. As it is an anti-inflammatory, it can be important in controlling 

the inflammatory response thus reducing damage from inflammation (Murphy & Weaver, 

2017). At time B, all co-infected sites were significantly less than the control, indicating again 

as with IL-4/13A that the pro-inflammatory cytokines were the focus of the immune response 

to fight the infections. However, there was also a possibility that the co-infection downregulated 

IL10 expression. All single infections were significantly higher than their co-infection 

counterpart, which again indicates that it was the two infections together that caused these 

responses. In general, the results of time B was the opposite of what is observed in the pro-

inflammatory genes were most co-infected sites were upregulated. 

At time C, there was a different trend where only single infection M. viscosa had a higher (not 

significant) expression and all other sites had a lower expression. The response of co-infected 

with decreased expression was acute and transient, mostly occurring at time B. This further 

supports that it was there was no need for anti-inflammatory cytokines as it was trying to fight 

the infection. 

 

Skugor et al. (2008) found higher expression in lice attachment sites 33 dpi in IL-10, which 

contradicts this theory, but as this may have been caused by different timepoints and a higher 

level of infection. Braden et al. (2015) did not find upregulation of IL-10 in fish after L. 

salmonis infection levels but did see it in Coho salmon (Oncorhynchus kisutch), indicating that 

expression IL-10 can be important its resistance against L. salmonis. Ingerselv et al. (2010) 

found a higher expression of IL-10 at7, and 14 dpi in M. viscosa ulcerated muscle tissue, which 

appears to be similar to the trend observed here as well; however, it was not significant.  

No significant differences for IL-10 in head kidney was found at either of the samplings. This 

suggests that the IL-10 response was limited to the systemic skin immune response.  

Overall results of anti-inflammatory cytokines showed a lower expression of IL-4/13A in M. 

viscosa lesions at time B, and in most sites at time C. IL-10 had a lower expression in all co-

infected sites at time B and a lower expression in L. salmonis attachment single infection at 

time C. IL-4/13A in co-infected fish head kidney at time C was lower expressed than single 

infected fish. No differences IL-10 head kidney.  
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 Acute-phase protein: C3 

C3 plays a role in activating the complement system and activates both B- and T-cells (Erdei et 

al., 1991). M. viscosa lesion single infection and both M. viscosa unaffected controls were 

significantly higher than the control. M. viscosa lesion also has significantly higher expression 

of C3 than L. salmonis attachment in time B. Similar results in time C, with higher expression 

in both M. viscosa lesions and single infection M. viscosa unaffected control site. These results 

indicate that C3 expression was mostly associated with M. viscosa and not with L. salmonis. 

The complement system is often considered to be vial in the antibacterial response with its cell 

lysing properties, and thus often observed in response to bacterial infections and not parasites 

(Amara et al., 2010). Higher expression M. viscosa un-affected control sites could indicate that 

the response was higher close to an ulcer, as seen with IL-1β and IL-8. It was therefore expected 

to see a higher response in the M. viscosa infection compared to L. salmonis. Løvoll et al. (2009) 

did not find a higher expression in ulcers until 7 dpi even though we found at 2dpi, which might 

have been due to the strain used which could have induced different immune responses.  

In the head kidney from time B, the co-infection group was significantly higher than M. viscosa, 

which indicates a quicker or stronger systemic response when co-infected. There were no 

differences in the expression of C3 at time C, and therefore no systemic response. 

In both time B and C, sites associated with M. viscosa, both lesions, and control sites, were 

upregulated indicating a less local C3 response for M. viscosa ulcers. 
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 Immunoglobulin: IgM 

 

IgM is an immunoglobulin and is important in activating the classic pathway of the complement 

system as well as having agglutinating properties and is therefore important in the early immune 

response (Lea, 2000). M. viscosa unaffected control and L. salmonis attachment had 

significantly higher expression of IgM than the control for time B. The trend for all sites appears 

to be a higher expression of IgM. At Time C, single infection M. viscosa lesion and L. salmonis 

attachment was significantly lower with a general trend for all sites appeared to be a lower 

expression of IgM. Tadiso et al. (2011) found higher expression of IgM 5 and 15 dpi louse 

attachment site, but none at 1 and 10dpi, indicating a variable response of IgM throughout an 

infection. 

Co-infection has a significantly higher expression of IgM than M. viscosa infection at time c. 

 Expression of IgM in head kidney at time C is significantly lower in co-infection compared to 

M. viscosa infected fish. Skugor et al. (2008) found expression of immunoglobulins in the head 

kidney at 22dpi after L. salmonis infection to be lower, which complement our results.  

The general trends for IgM appear to be a slight upregulation at time B and a slight 

downregulation at time C, but no clear significant trends. 
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5 Conclusions 

1. The co-infection did not affect weight, length or K-factor, however the M. viscosa 

infection (both single and co-infected) did affect weight and K-factor compared to 

control and L. salmonis. Length was also smaller; however, the differences were 

variable throughout the experiment.  

2. L. salmonis did not impact mortality at this low infection level. The infection of M. 

viscosa and the co-infection of L. salmonis and M. viscosa had higher mortality. Further 

research must be done to determine significance of the co-infection. 

3.  The co-infected fish did not have higher levels of serum cortisol than control fish, but 

a single infection of L. salmonis after reaching pre-adult did.  

4. M. viscosa ulcers were able to develop or infect faster under a single infection but over 

time there were more ulcers for co-infected fish. At the last sampling there was a much 

larger area of the fish covered in ulcers for co-infected fish. No difference observed in 

grade/severity of lesions.  

5. There were more L. salmonis in a single infection compared to co-infection. The co-

infection did not affect development of L. salmonis. 

6. There was a higher expression of pro-inflammatory genes (IL-1β and IL-8) for co-

infected fish within time B (7 dpi L. salmonis and 2 dpi M. viscosa [ co-infection] dpi). 

L. salmonis attachment sites were higher at this time as well, while expression of these 

genes increased with increasing disease severity and mortality in M. viscosa lesions and 

unaffected skin at time C (26 dpi L. salmonis, 23 dpi M. viscosa [co-infection]).  

There was a lower expression of anti-inflammatory genes (IL-4/13A and IL-10). IL-

4/13A for M. viscosa lesion at time B and almost all skin sites, both co-infected and 

single infected, and head kidney for time C. IL-10 at time B was significantly lower for 

all co-infected sites at time B. 

C3 was found to be associated on and around M. viscosa ulcers at both sampling points. 

IgM had trends indicating a slightly higher expression at sampling B and slight lower 

expression at sampling C. 
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6 Further research 

In further research within this type of co-infection could be interesting to look at: 

• Effect of co-infection on mucus quality/quantity and potentially connect this to lower 

lice counts at co-infected fish compared to single infected, especially interesting since 

there is a higher systemic skin response from M. viscosa and co-infections. 

• Look at location of lesions and lice and see if it affected by a co-infection  

• Higher infection of L. salmonis where it is expected to see mortality to see if this affects 

mortality of co-infected fish 

• Compare the two different clades of M. viscosa in a co-infection 

• Look at gutted weight to further support that these weight differences are in muscle and 

not organs.  

• Longer trial with more samplings throughout, could show even further how much M. 

viscosa affects growth. 

• Further investigate immunohistochemistry and through successful staining look at 

location of M. viscosa in the tissue. 

Other types of co-infections would also be interesting to investigate. Studies on co-infections 

are important to further our knowledge in how diseases develop in a fish farm. There are few 

co-infections done with L. salmonis, and as this parasite is found all year round it is typically 

found in fish with many other diseases. As it also is such a significant problem most types of 

co-infections with L. salmonis could be very beneficial in further understanding a L. salmonis 

infection outside of the lab and therefore also help in increasing fish welfare.  
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Appendix A – Bioanalyzer results 

Agilent RNA 6000 Nano Kit Guide (Agilent Technologies) was used on 24 representative RNA 

samples. Six skin and six HK samples from sampling B and six samples from control and six 

skin samples from sampling C.  

 

Samples: 

35,37,39, 42,43,45   - Skin, sampling B, L. salmonis infected 

101- 106    - Head kidney, sampling B, Control 

1-5 - Skin, sampling C, control (Control RNA samples sent from 

Canada) 

201-207 - Skin, sampling C, M. viscosa infected  
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Appendix B – Significant values of 

immune response in skin samples 

All p-values of immune response in skin samples from sampling B and C, with significant 

differences in bold.  
Table 14: P-values of IL-1β in skin samples from sampling B   

 

Control M. 

viscosa 

lesion 

M. viscosa 

control 

L. salmonis 

attachement 

L. salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: L. 

salmonis 

attachment 

M. viscosa lesion 0,114        

M. viscosa control 0,067 0,107       

L. salmonis 

attachement 0,243 0,101 0,116      

L. salmonis control 0,254 0,090 0,221 0,536     

Co-infection: M. 

viscosa lesion 0,045 0,400 0,156 0,043 0,049    

Co-infection: M. 

viscosa control 0,001 0,306 0,933 0,003 0,099 0,375   

Co-infection: L. 

salmonis 

attachment 0,215 0,855 0,212 0,198 0,184 0,545 0,437  

Co-infection: L. 

salmonis control 0,011 0,136 0,743 0,031 0,194 0,127 0,574 0,248 

 

Table 15:  P-values of C3 in skin samples from sampling B  

 

Control M. 

viscosa 

lesion 

M. viscosa 

control 

L. salmonis 

attachement 

L. salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: L. 

salmonis 

attachment 

M. viscosa lesion 0,005        

M. viscosa control 0,048 0,032       

L. salmonis 

attachement 0,089 0,010 0,275      

L. salmonis control 0,147 0,044 0,983 0,392     

Co-infection: M. 

viscosa lesion 0,826 0,044 0,161 0,177 0,290    

Co-infection: M. 

viscosa control 0,369 0,061 0,307 0,602 0,436 0,224   

Co-infection: L. 

salmonis 

attachment 0,019 0,140 0,539 0,093 0,625 0,089 0,168  

Co-infection: L. 

salmonis control 0,029 0,103 0,464 0,222 0,220 0,334 0,402 0,239 
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Table 16: P-values of IL-8 in skin samples from sampling B   

 

Control M. 

viscosa 

lesion 

M. 

viscosa 

control 

L. salmonis 

attachement 

L. 

salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: 

L. salmonis 

attachment 

M. viscosa 

lesion 0,091        

M. viscosa 

control 0,118 0,085       

L. salmonis 

attachement 0,000 0,081 0,227      

L. salmonis 

control 0,028 0,068 0,204 0,921     

Co-infection: M. 

viscosa lesion 0,014 0,268 0,965 0,046 0,046    

Co-infection: M. 

viscosa control 0,003 0,242 0,418 0,938 0,983 0,236   

Co-infection: L. 
salmonis 

attachment 0,207 0,557 0,230 0,199 0,178 0,447 0,399  

Co-infection: L. 

salmonis control 0,029 0,103 0,464 0,222 0,220 0,334 0,402 0,239 

Table 17: P-values of IgM in skin samples from sampling B   

 

Control M. 

viscosa 

lesion 

M. 

viscosa 

control 

L. salmonis 

attachement 

L. 

salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: 

L. salmonis 

attachment 

M. viscosa 

lesion 0,087        

M. viscosa 

control 0,033 0,639       

L. salmonis 

attachement 0,056 0,932 0,560      

L. salmonis 

control 0,068 0,806 0,847 0,730     

Co-infection: M. 

viscosa lesion 0,034 0,663 0,434 0,660 0,542    

Co-infection: M. 

viscosa control 0,306 0,414 0,268 0,372 0,346 0,501   

Co-infection: L. 

salmonis 

attachment 0,080 0,755 0,924 0,682 0,937 0,534 0,359  

Co-infection: L. 

salmonis control 0,136 0,552 0,790 0,504 0,705 0,507 0,389 0,767 

 



vi 

 

Table 18: P-values of  IL-10 in skin samples from sampling B   

 

Control M. 

viscosa 

lesion 

M. 

viscosa 

control 

L. salmonis 

attachement 

L. 

salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: 

L. salmonis 

attachment 

M. viscosa 

lesion 0,928        

M. viscosa 

control 0,203 0,167       

L. salmonis 

attachement 0,128 0,114 0,012      

L. salmonis 

control 0,052 0,041 0,004 0,603     

Co-infection: M. 

viscosa lesion 0,007 0,004 0,003 0,006 0,004    

Co-infection: M. 

viscosa control 0,007 0,004 0,003 0,006 0,004 0,973   

Co-infection: L. 

salmonis 

attachment 0,001 0,000 0,000 0,001 0,000 0,037 0,202  

Co-infection: L. 

salmonis control 0,000 0,000 0,000 0,000 0,000 0,007 0,113 0,422 

Table 19: P-values of  IL-4 in skin samples from sampling B   

 

Control M. 
viscosa 

lesion 

M. 
viscosa 

control 

L. salmonis 

attachement 

L. 
salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: 

L. salmonis 

attachment 

M. viscosa 

lesion 0,022        

M. viscosa 

control 0,585 0,135       

L. salmonis 

attachement 0,084 0,007 0,322      

L. salmonis 

control 0,071 0,003 0,367 0,835     

Co-infection: M. 

viscosa lesion 0,960 0,252 0,710 0,241 0,225    

Co-infection: M. 

viscosa control 0,852 0,293 0,657 0,212 0,192 0,674   

Co-infection: L. 

salmonis 

attachment 0,002 0,068 0,086 0,008 0,003 0,117 0,125  

Co-infection: L. 

salmonis control 0,002 0,110 0,069 0,004 0,002 0,107 0,118 0,775 
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Table 20: P-values of IL-1β in skin samples from sampling C 

 

Control M. 

viscosa 

lesion 

M. 

viscosa 

control 

L. salmonis 

attachement 

L. 

salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: 

L. salmonis 

attachment 

M. viscosa 

lesion 0,082        

M. viscosa 

control 0,030 0,084       

L. salmonis 

attachement 0,199 0,149 0,292      

L. salmonis 

control 0,212 0,129 0,065 0,227     

Co-infection: M. 

viscosa lesion 0,028 0,654 0,051 0,080 0,057    

Co-infection: M. 

viscosa control 0,037 0,130 0,063 0,459 0,932 0,029   

Co-infection: L. 

salmonis 

attachment 0,080 0,208 0,227 0,886 0,400 0,121 0,380  

Co-infection: L. 

salmonis control 0,135 0,203 0,181 0,767 0,553 0,115 0,544 0,420 

Table 21: P-values of C3 in skin samples from sampling C 

 

Control 

M. viscosa 

lesion 

M. viscosa 

control 

L. salmonis 

attachement 

L. salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: 

L. salmonis 

attachment 

M. viscosa 

lesion 0,014        

M. viscosa 

control 0,021 0,321       

L. salmonis 

attachement 0,243 0,024 0,016      

L. salmonis 

control 0,028 0,022 0,014 0,252     

Co-

infection: M. 

viscosa 

lesion 0,005 0,397 0,339 0,008 0,006    

Co-

infection: M. 

viscosa 

control 0,136 0,045 0,034 0,069 0,031 0,016   

Co-

infection: L. 

salmonis 

attachment 0,932 0,060 0,038 0,342 0,080 0,029 0,272  

Co-

infection: L. 

salmonis 

control 0,420 0,053 0,033 0,848 0,403 0,022 0,138 0,253 
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Table 22: P-values of IL-8 in skin samples from sampling C 

 

Control M. 

viscosa 

lesion 

M. 

viscosa 

control 

L. salmonis 

attachement 

L. 

salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: 

L. salmonis 

attachment 

M. viscosa 

lesion 0,094        

M. viscosa 

control 0,041 0,108       

L. salmonis 

attachement 0,358 0,142 0,049      

L. salmonis 

control 0,267 0,135 0,031 0,148     

Co-infection: M. 

viscosa lesion 0,051 0,820 0,067 0,086 0,082    

Co-infection: M. 

viscosa control 0,113 0,146 0,060 0,675 0,104 0,044   

Co-infection: L. 

salmonis 

attachment 0,238 0,206 0,072 0,903 0,165 0,139 0,562  

Co-infection: L. 

salmonis control 0,122 0,208 0,079 0,888 0,097 0,141 0,768 0,373 

Table 23: P-values of IgM in skin samples from sampling C 

 

Control M. 

viscosa 

lesion 

M. 

viscosa 

control 

L. salmonis 

attachement 

L. 

salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: 

L. salmonis 

attachment 

M. viscosa 

lesion 0,039        

M. viscosa 

control 0,052 0,375       

L. salmonis 

attachement 0,019 0,504 0,142      

L. salmonis 

control 0,062 0,760 0,485 0,189     

Co-infection: M. 

viscosa lesion 0,091 0,478 0,344 0,109 0,771    

Co-infection: M. 

viscosa control 0,117 0,368 0,259 0,128 0,589 0,376   

Co-infection: L. 

salmonis 

attachment 0,689 0,237 0,129 0,200 0,266 0,321 0,322  

Co-infection: L. 

salmonis control 0,127 0,543 0,363 0,201 0,790 0,983 0,801 0,183 

 



ix 

 

Table 24: P-values of IL-10 in skin samples from sampling C 

 

Control M. 

viscosa 

lesion 

M. 

viscosa 

control 

L. salmonis 

attachement 

L. 

salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: 

L. salmonis 

attachment 

M. viscosa 

lesion 0,067        

M. viscosa 

control 0,069 0,436       

L. salmonis 

attachement 0,318 0,622 0,270      

L. salmonis 

control 0,009 0,084 0,045 0,164     

Co-infection: M. 

viscosa lesion 0,263 0,261 0,121 0,638 0,210    

Co-infection: M. 

viscosa control 0,115 0,092 0,048 0,348 0,003 0,126   

Co-infection: L. 

salmonis 

attachment 0,079 0,143 0,075 0,413 0,022 0,310 0,256  

Co-infection: L. 

salmonis control 0,255 0,149 0,077 0,426 0,001 0,339 0,538 0,052 

Table 25: P-values of IL-4 in skin samples from sampling C 

 

Control M. 

viscosa 

lesion 

M. 

viscosa 

control 

L. salmonis 

attachement 

L. 

salmonis 

control 

Co-infection: 

M. viscosa 

lesion 

Co-infection: 

M. viscosa 

control 

Co-infection: 

L. salmonis 

attachment 

M. viscosa 

lesion 0,003        

M. viscosa 

control 0,005 0,407       

L. salmonis 

attachement 0,039 0,111 0,095      

L. salmonis 

control 0,090 0,119 0,087 0,378     

Co-infection: M. 

viscosa lesion 0,005 0,949 0,424 0,121 0,138    

Co-infection: M. 

viscosa control 0,002 0,819 0,329 0,072 0,089 0,372   

Co-infection: L. 

salmonis 

attachment 0,008 0,960 0,428 0,153 0,171 0,993 0,773  

Co-infection: L. 

salmonis control 0,059 0,081 0,084 0,991 0,775 0,075 0,044 0,051 
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Table 26: P-values of  IL-1β in head kidney samples from sampling B 

 Control M. viscosa L. salmonis 

M. viscosa 0,196 -  

L. salmonis 0,220 0,607 - 

Co-infection 0,001 0,795 0,210 

 

Table 27: P-values of C3 in head kidney samples from sampling B 

 Control M. viscosa L. salmonis 

M. viscosa 0,239 -  

L. salmonis 0,355 0,179 - 

Co-infection 0,102 0,026 0,719 

 

Table 28: P-values of IL-8 in head kidney samples from sampling B 

 Control M. viscosa L. salmonis 

M. viscosa 0,379 -  

L. salmonis 0,219 0,581 - 

Co-infection 0,055 0,564 0,862 

 

Table 29: P-values of IgM in head kidney samples from sampling B 

 Control M. viscosa L. salmonis 

M. viscosa 0,590 -  

L. salmonis 0,427 0,193 - 

Co-infection 0,990 0,526 0,307 

 

Table 30: P-values of IL-10 in head kidney samples from sampling B 

 Control M. viscosa L. salmonis 

M. viscosa 0,999 -  

L. salmonis 0,387 0,321 - 

Co-infection 0,546 0,538 0,248 
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Table 31: P-values of IL-4 in head kidney samples from sampling B 

 Control M. viscosa L. salmonis 

M. viscosa 0,204 -  

L. salmonis 0,798 0,254 - 

Co-infection 0,152 0,019 0,455 

 

Table 32: P-values of IL-1β in head kidney samples from sampling C 

 Control M. viscosa L. salmonis 

M. viscosa 0,225 -  

L. salmonis 0,683 0,270 - 

Co-infection 0,037 0,218 0,008 

 

Table 33: P-values of C3 in head kidney samples from sampling C 

 Control M. viscosa L. salmonis 

M. viscosa 0,199 -  

L. salmonis 0,275 0,297 - 

Co-infection 0,796 0,273 0,459 

 

Table 34: P-values of IL-8 in head kidney samples from sampling C 

 Control M. viscosa L. salmonis 

M. viscosa 0,351 -  

L. salmonis 0,842 0,355 - 

Co-infection 0,155 0,264 0,260 

 

Table 35: P-values of IgM in head kidney samples from sampling C 

 Control M. viscosa L. salmonis 

M. viscosa 0,558 -  

L. salmonis 0,718 0,868 - 

Co-infection 0,070 0,018 0,059 
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Table 36: P-values of IL-10 in head kidney samples from sampling C 

 Control M. viscosa L. salmonis 

M. viscosa 0,723 -  

L. salmonis 0,102 0,224 - 

Co-infection 0,430 0,431 0,527 

 

Table 37: P-values of IL-4 in head kidney samples from sampling C 

 Control M. viscosa L. salmonis 

M. viscosa 0,485 -  

L. salmonis 0,745 0,701 - 

Co-infection 0,000 0,000 0,000 
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Appendix C – Immune response figures 

with no significant differences  

Figures with immune response that had no significant differences. 

 

Fig. 46: Expression of IL-8 in head kidney samples from sampling B. Relative RNA (2-ΔΔct) of IL-8 in head kidney 

samples from control (n=9) M. viscosa infection (n=12), L. salmonis infection(n=10) and co-infection(n=11). In 

all infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker 

chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers. Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 

 

Fig. 47: Expression of IL-8 in head kidney samples from sampling C. Relative RNA (2-ΔΔct) of IL-8 in head kidney 

samples from control (n=9) M. viscosa infection (n=8), L. salmonis infection(n=8) and co-infection(n=7). In all 

infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker 

chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers. Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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Fig. 48: Expression of IL-10 in head kidney samples from sampling B. Relative RNA (2-ΔΔct) of IL-10 in head 

kidney samples from control (n=9) M. viscosa infection (n=12), L. salmonis infection(n=10) and co-

infection(n=11). In all infected groups, skin was sampled in site of infection and in adjacent unaffected control 

sites. Box and whisker chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum 

values, dots=outliers. Δ indicate significant difference compared to control, brackets with * indicate significant 

difference between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 

 

 

Fig. 49: Expression of IL-10 in head kidney samples from sampling C. Relative RNA (2-ΔΔct) of IL-10 in head 

kidney samples from control (n=9) M. viscosa infection (n=12), L. salmonis infection(n=10) and co-

infection(n=11). In all infected groups, skin was sampled in site of infection and in adjacent unaffected control 

sites. Box and whisker chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum 

values, dots=outliers. Δ indicate significant difference compared to control, brackets with * indicate significant 

difference between two treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 
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Fig. 50: Expression of C3 in head kidney samples from sampling C. Relative RNA (2-ΔΔct) of C3  in head kidney 

samples from control (n=9) M. viscosa infection (n=8), L. salmonis infection(n=8) and co-infection(n=7). In all 

infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker 

chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers. Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 

 

 

Fig. 51: Expression of IgM in head kidney samples from sampling B. Relative RNA (2-ΔΔct) of IgM in head kidney 

samples from control (n=9) M. viscosa infection (n=12), L. salmonis infection(n=10) and co-infection(n=11). In 

all infected groups, skin was sampled in site of infection and in adjacent unaffected control sites. Box and whisker 

chart: box=first to third quartile, x=average, line=median, bars=minimum and maximum values, dots=outliers. Δ 

indicate significant difference compared to control, brackets with * indicate significant difference between two 

treatment groups. P values */Δ =0.05, **/ ΔΔ=0.01, ***/ ΔΔΔ=0.001. 

 


