
 
 
 
 
 
 
 

 
 

Paper E3 



CYCLICAL BEHAVIOUR IN ELECTRICITY MARKETS: AN EXPERIMENTAL STUDY1 
 

Santiago Arango2 
System Dynamics Group 

University of Bergen, Norway 
 
 

“ALMOST ALL of the phenomena of economic life, like many other processes, social, 
meteorological, and others, occur in sequences of rising and falling movements, like 
waves. Just as waves following each other on the sea do not repeat each other perfectly, 
so economic cycles never repeat earlier ones exactly in duration or in amplitude. 
Nevertheless, in both cases, it is almost always possible to detect, even in the multitude 
of individual peculiarities of the phenomena, marks of certain approximate uniformities 
and regularities.”  

(Slutsky 1937, p. 105) 
 

ABSTRACT 
 
This paper describes a laboratory experiment to study cyclical behaviour of electricity prices in 
deregulated electricity markets. We observe investment decisions in markets with five-producers, 
linear demand, and constant marginal costs. The experiment has a four year investment lag and the 
electricity generating capacity has a life time of 16 years. Oscillatory behaviour results in investment 
activity and prices. The cyclical tendency is stronger than in previous experimental studies with only 
one and two period investment lags. Average prices are closer to competitive equilibrium than in 
previous experiments. The results are consistent with bounded rationality theory; a simple heuristic 
produces fluctuations similar to those observed when applied in a simulation model. Hence, the results 
corroborate assumptions made in previous simulation studies. 
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1 INTRODUCTION 
 
Several authors have expressed a concern that cycles of over- and under-capacity may emerge in 
recently deregulated electricity markets (Ford, 1999 and 2000; IEA 1999, 2002, 2003; Bunn & Larsen 
1992 and 1999; Larsen & Lomi, 1999). Such cycles are believed to represent a major threat to energy 
supply (IEA, 2002). This is so because electricity production cannot exceed capacity, demand is 
inflexible in the short run and there is barely any storage capacity. Regardless of these concerns, 
equilibrium is normally assumed in economic studies with little or no mention of market dynamics 
(Rothwell & Gómez, 2003; Kirschen & Strbac, 2004; Stoft, 2002). In fact, if the economist can show 
that there is a negative feeback loop, there would be a equilibrium and cyclical tendencies will be 
prevented by cyclical tendencies (Stoft, 2002). However, Stoft (2002) argues that an engineering view 
goes beyond traditional economic theories and considers whether an electricity market system will 
sustain cycles and analyse whether these cycles are over- or under-damped. Some of these engineering 
views are Ford (1999, 2000, and 2001) and Bunn & Larsen (1992 and 1999), they explore the 
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occurrence of cycles in using of simulation models. In this paper, we employ an alternative method; a 
laboratory market experiment. Both cyclicality and efficiency are considered. 
 
So far, the evolution of deregulated electricity markets does not present conclusive evidence of 
capacity cycles3; more data is needed to evaluate such behaviour (IEA, 1999 and 2003; Bunn & 
Larsen, 1992 and 1999). The concerns are based on the above simulation models (e.g. Ford, 1999; 
Bunn & Larsen, 1992; Arango, 2006c) and on analogies, such as real estate markets (IEA, 2002), and 
meat markets (Meadows, 1970). 
 
Investor behaviour is one of the main concerns for regulators of electricity markets (IEA, 2002 and 
2003). In regulated markets, one agency is responsible for the planning of total capacity expansions. 
Furthermore, the regulating agency may not have to carry the cost of overcapacity itself; and, it may 
act with caution to prevent shortages. In deregulated markets, individual suppliers make separate 
investment decisions. The individual suppliers are not responsible for market stability or reliability. If 
they were, they would have to forecast both electricity demand and the total supply of competitors in 
order to make a decision; a more complex task than that of the regulator. Efforts to coordinate 
investments adequately to stabilize the market would be contrary to competition legislation. Hence, 
market stability will depend on individual investment behaviour. Rational investment behaviour could 
lead to economical and minimal fluctuations, while myopic investors could concentrate investments 
during periods of relatively high electricity prices, causing pronounced cycles (Ford, 1999 and 2000; 
Bunn & Larsen, 1992; Gary & Larsen, 2000). Under these circumstances, experimental economics 
provide a methodological framework to test the rationality of subjects making isolated investment 
decisions in a deregulated electricity market. 
 
Most experimental markets do not include dynamic structures and are reset each period (e.g. Plott, 
1982; Smith, 1982). Simple dynamics have been introduced by lagged supply models (Carlson, 1967; 
Sonnemans et al 2004; Holt & Villamil, 1986; and Sutan & Willinger, 2004) and by repeated play 
Cournot models (Rassenti et al 2000; Huck et al 2002). While the predicted cycles of the Cobweb 
theory do not materialize in these experiments, some random fluctuations are sustained4. 
 
Arango (2006b) extends the simplest Cobweb market5, step by step, by including a four period lifetime 
of production capacity and a two period investment lag. Certain cyclical tendencies are observed in the 
treatment with the two period investment lag. Arango (2006b) presents a continuation of the previous 
experiment replacing the linear demand by a constant elasticity demand. With these changes, the 
treatment with a two period investment lag produces stronger cyclical tendencies with asymmetries 
not observed in earlier experiments. The present experiment can also be seen as a continuation of 
Arango (2006b). The main difference is that the investment lag is now 4 periods (where each period is 
one year against 5 years in the previous experiments) and the lifetime of production is 16 years.  
 
We formulate the null hypothesis based on the rational expectations hypothesis (Muth, 1961) and the 
standard assumption in neoclassical economics about optimal decision making. The null hypothesis is 
convergence to a stable Nash equilibrium; minor and seemingly random variations around the 
equilibrium value will be consistent with this hypothesis. Systematic cyclical tendencies are not 
consistent with this hypothesis. Fully rational agents could predict cycles and benefit from 
countercyclical investment decisions. 
 

                                                      

3 After more than a decade, there are not significant cycles in UK and Norway (IEA, 2003). Colombia barely 
shows a first boom of investments after the high prices presented in 1997-1998 (Arango et al 2006), the same 
situation occurred in California with late investments (IEA, 2003). 
4 Previous applications of laboratory experiments in electricity markets have focused primarily on price 
institutions for market design (e.g. Rassenti et al., 2002; Schaeffer & Sonnemans, 2000; Vogstad & Arango, 
2005b). 
5 5 players, constant marginal costs, and linear demand. 
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The alternative hypothesis is based on the bounded rationality theory (Simon, 1979), which assumes 
that complex dynamic problems are approached with heuristics (Tversky & Kahneman, 1987). There 
is much experimental support for bounded rationality theory in dynamic settings (Paich & Sterman, 
1993; Diehl & Sterman, 1995; Kampmann, 1992; Smith et al 1988; Sterman, 1989; Moxnes, 2004). 
While heuristics could lead to near-to-optimal results for simple problems, the results are likely to 
deteriorate with complexity (Paich and Sterman, 1993; Diehl and Sterman, 1995; Kampmann 1992; 
Sterman 1989, Herrnstein and Prelect, 1991, Moxnes, 2004, Arango, 2006a and 2006b). 
 
Regarding market efficiency, it is difficult to predict the outcome of bounded rationality (Conlisk, 
1996; and Foss, 2003). While simplified heuristics may lead to biases relative to preferable individual 
outcomes, the bias may draw the market outcome in the directions of both monopoly and perfect 
competition. Thus, we consider the experiment exploratory in this regard. 
 
Regarding cyclicality, we formulate a more precise hypothesis. We propose a heuristic that expresses 
the intended rationality of investors. Since the choice of heuristic is case dependent (Tversky & 
Kahneman, 1987; Conlisk, 1996), we select a heuristic based on the understanding of electricity 
market investment dynamics reported in the literature. The heuristic assumes that subjects form 
expectations about prices and profitability and use these expectations in a given investment strategy. 
The investment strategy assumes that profits drive the investment, which is key to the long term 
market equilibrium Stoft (2002, p. 114). Previous experimental support for the heuristic is presented in 
a number of one player experiments (Sterman, 1987a; Sterman, 1989; Bakken, 1993; Diehl & 
Sterman, 1995, Barlas & Günhan, 2004). The strategy tends to ignore the supply line of capacity under 
construction and to underestimate the investment lag (Sterman, 1989; Diehl & Sterman, 1995; Barlas 
& Günhan, 2004). Simulations with adaptive or myopic investors have shown cyclical behaviour 
(Ford, 1999; Bunn & Larsen, 1992). 
 
Section 2 describes the experimental design. The design includes testable hypotheses based on rational 
expectations and bounded rationality. Section 3 presents the experimental results. Cyclical behaviour 
emerges, consistent with the bounded rationality hypothesis. Finally, we discuss and conclude. 
 
2 EXPERIMENTAL DESIGN AND HYPOTHESES 
 
We present the underlying model, procedures, hypotheses, heuristics and methods to test cyclicality. 
 
2.1 Experimental economic model 
 
We use a computerized experiment of a symmetrical five player market with linear demand. The 
marginal cost is constant and it includes both capital and operational costs. It takes four years before 
new production capacity is in place and capacity lasts for 16 years. Investment decisions are made 
each year. These are the main differences from the design in Arango (2006b), where the investment 
lag is one or two periods, capacity lasts four periods, and each period is five years long. The present 
experiment is more complicated than the previous one because now it takes four periods before an 
investment affects the production capacity. As in the previous experiment, full capacity utilization is 
assumed at all times. Thus, production equals the sum of the capacities of all vintages. Additionally, 
Arango (2006b) includes a profit calculator (to help the players to identify the Cournot-Nash 
equilibrium). The calculator is not part of this experiment. 
 
This economic model is identical to Huck’s standard conditions6 for Cournot markets, except for the 
extra lags and the capacity vintages. Each subject decides freely on investments with the exceptions 

                                                      

6 Standard conditions (Huck, 2004, p.106): a. interaction takes place in fixed groups; b. interaction is repeated 
over a fixed number of periods; c. products are perfect substitutes; d. costs are symmetric; e. there is not 
communication between subjects; f. subjects have complete information about their own payoff functions; g. 
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that its capacity must not exceed 36% of the total initial capacity (reflecting the maximum allowed 
market share) and that its investments must not be negative. The program gives an error message 
whenever subjects enter investments that are too high or negative. The market price is determined by a 
linear inverse demand function with a nonnegativity restriction. Information about the realized price 
and own profits is given each period. The market price in period t is 
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where xi,j is the investment decision made in years j=t-19 to j=t-4. The profit function in experimental 
dollars (E$) for subject i in period t is, 
 
πi,t = (Pt − c) qi,t               (3) 
 
where the marginal cost c equals 1 E$/Unit. Subjects receive information about production and 
vintages of capacity (aggregates over four vintages) for themselves and for the total market (see 
Appendix 2). We use a time horizon of 70 years which should be large enough to allow learning and 
eventual convergence towards some equilibrium. 
 
2.2 Experimental Procedure 
 
The experiment follows the standard framework used in experimental economics. All subjects were 
recruited from the same population of last year students in the program “Energy and Environment” at 
the Norwegian University of Science and Technology (NTNU), Trondheim, Norway in the autumn of 
2004. There were a total of 6 markets. No subject had previous experience in any related experiment. 
Subjects were told they could earn between NOK 40 and NOK 120 (US$5 – US$20 at that time) in 
about one hour. They knew that rewards were contingent on performance, which was measured in 
cumulative profits. 
 
Upon arrival, subjects were seated behind computers. Groups were formed in a random way, such that 
subjects could not identify rivals in the market. Instructions (see Appendix 1) were distributed and 
read aloud by the experimenter. The subjects were allowed to ask questions and test out the computer 
interface. All parameters of the experiment were common knowledge to all subjects, including the 
symmetry across firms. The initial condition was a total industry production of 55 units and individual 
productions of 11 units. Thus, the price started at 0.5 E$/unit. These initial values were identical across 
groups. 
 
Each simulated year, the subjects were also asked to forecast the price at the time when new 
investments would be in place. Extra reward was given for good forecasting, measured by the 
accumulated forecasting error. The extra revenues could vary from 0 for forecast errors above a given 
standard, to NOK 30 (around US$5) for perfect forecasts. Optimal performance regarding investments 
and forecasts would lead to a payoff slightly above the typical hourly wage for students. 
 

                                                                                                                                                                      

Subjects receive feedback about aggregated supply, the resulting price, and band their own individual profits.; h. 
the experimental instructions use an economic framework. 
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The experiment was run in a computer network using the simulation software Powersim Constructor 
2.51. The software ran automatically and kept record of all variables including the subjects’ decisions. 
Still subjects were asked to write down their decisions on a sheet of paper to keep a memory of past 
decisions and to provide a backup of the experiment. The software interface is presented in Appendix 
2 and the experiment is available upon request. 
 
2.3 Testable Hypotheses 
 
We first formulate null hypotheses based on the standard economic model with rational expectations. 
Thereafter, we present alternative hypotheses based on bounded rationality. In each case, we consider 
equilibrium and cyclicality. 
 
2.3.1 Rational Expectations Hypothesis: Cournot Nash equilibrium 
 
The economic model has a unique Cournot Nash equilibrium (CN). 
 
Hypothesis 1: Average prices are equal to Cournot Nash equilibrium predictions. 
 
Table 1 shows the numbers characterizing the CN equilibrium, which is derived in Appendix 3. 
Previous experiments have shown some biases (Huck, 2004; Huck, et al 2004, Arango. 2006b). To 
judge our results in this regard, Table 1 also presents the equilibrium values for perfect competition 
and joint maximization (Appendix 3). 
 
Table 1. Equilibriums of the experimental markets 

 Individual Investment 
[Units] 

Market Production 
[Units] 

Price 
[$/Unit] 

Joint maximization 0.31 25.0 3.50 
CN equilibrium 0.52 41.7 1.83 
Competition 0.63 50.0 1.00 
 
 
Neoclassical economic theory suggests no cyclical behaviour but stability. Any predictable cyclical 
tendency would lead to countercyclical investments and stabilisation. Accordingly, economic theory 
normally attributes cyclical behaviour to external shocks, particularly in commodity markets (e.g. 
Cuddington & Urzua, 1989; Cuddington, 1992; Cashin et al 2002; Reinhart & Wickham, 1994; and 
Cashin & Patillo, 2000). We consider random shocks generated within a market to be consistent with 
standard economic theory. Such random variations may occur for a number of reasons, such as 
discontinuous investments, learning, strategic moves, etc. Previously, experiments with Cournot 
markets have found that outputs and prices are not exactly equal to the CN equilibrium but close, 
typically closer than one standard deviation of the observed price fluctuations (Huck, 2004). 
 
Hypothesis 2. Market prices do not show cyclical tendencies, while random variations may occur. 
 
2.3.2 Bounded Rationality: Heuristics and cycles 
 
The alternative hypotheses are based on bounded rationality theory. Individual investment decision 
can be seen as consisting of two steps. First, the subjects form expectations about future prices, and 
next they deliberate on the size of their investment. For instance, Nerlove (1958) assumes adaptive 
expectations and uses the inverted marginal cost curve to find the appropriate future supply (and 
implicit investment). Here we rely on the same assumption about adaptive expectations; however, we 
formulate an explicit investment function because we assume constant costs (implying zero or infinite 
capacity with Nerlove’s procedure) and that investments accumulate in long lived capacity. 
 
The investment function is inspired by the investment function formulated in Senge (1978) and the 
investment dynamics for electricity markets described in Stoft (2002). It is also consistent with the 
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anchoring and adjustment heuristic, Tversky & Kahneman (1987). The formulation of the investment 
function is similar for both individual and aggregated investments, the difference is that the investment 
function for individuals includes individual capacity while aggregated investment function does not. It 
is also expected that there is some randomness because the decision making process deviates from the 
investment function. The function assumes that people use a feedback strategy to adjust their capacity 
towards a desired capacity indicated by the expected return on capital. The investment function is, 
 
xt = MAX ( 0, Ct/τ + αC (C*

t  - Ct)+ αSC (k/τ C*
t - SCt ))            (4) 

 
where the max function precludes negative investments, capacity Ct divided by the life time τ denotes 
a normal level of investments to replace depreciated capacity, αC  determines how fast capacity is 
adjusted towards the desired capacity C*t. Finally, αSC determines how quickly the supply line is 
adjusted toward the desired supply line k/τ C*t, where k equals the investment delay of four years. The 
desired capital  
 

C*
t = MAX ( 0, a + 
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is a linear function of expected price P*t. When P*t equals the equilibrium price Pe, desired capacity 
C*t equals equilibrium production qe. The parameter a denotes the intercept with the y-axes and 
influences the slope as well. We choose the simple linear model for desired capacity, even though 
many profit functions could lead to the same equilibrium, as argued by Stoft (2002). The parameter a 
is restricted to a < qe to avoid negative slopes. Note that C*t depends on P*t relative to Pe and not to 
the marginal cost c. Hence, the formulation could be used to test different assumptions about 
equilibrium. Finally, the expected price is given by 
 
(P*t+1 - P*t ) = β (Pt - P*t)               (6) 
 
which represents adaptive expectations, formulated initially by Nerlove (1958) and used in related 
economic experiments (e.g. Carlson, 1967; Sterman, 1987b and 1989; Frankel & Froot, 1987). The 
difference in this experiment is that we define P* to be four years ahead. Note that this formulation 
considers the available information for subjects at time t to forecast the price, i. e. the current price Pt 
and the price forecasted for the current period P*

t. The parameter β is called the coefficient of 
expectations. Following, we provide a simulation analysis of the proposed heuristic.  
 
Initial conditions are the same as in the experiment. The coefficient of expectations is set to the 
average of the values estimated by Sterman (1989) and Carlson (1967), i.e., β=0.53. Given that we 
have limited knowledge of parameter values a priori, we hypothesise two sets of parameters and 
perform some sensitivity tests. Set 1 has αSC=0.10 and αC=0.26; and set 2 has αSC=0.5 and αC=0.5. 
Set 1 refers to values estimated by Sterman (1989) in an analogous heuristic for an inventory 
management problem, and set 2 has a more aggressive policy where half the adjustments take place 
within one year. Parameter a=38 is chosen through simulations with parameter set 1 as fallow: We 
introduce noise in the heuristic (the noise has the same average standard error for regression of the 
heuristic for all experimental markets) and then simulate for different values of a. Finally we select 
a=38 because the average standard deviation of experimental prices is similar to the standard 
deviation of simulated prices. The last condition is also true for parameter set 2. Thus, parameter a 
takes the same value for both parameters sets. Note that this value is considered for the aggregated 
market. Figure 1 shows simulated behaviour for both parameter sets. We observe that the heuristic 
leads to oscillatory behaviour in both cases. Set 1 produces one dominant cycle with increasing 
amplitudes over time. Set 2 shows a dominant cycle with a slightly shorter period than observation 
with set 1 and there also seems to be a minor cycles with about half the period length of the dominant 
cycle. 
 



 Paper E3-7

Period

Pr
ic

e 
($

/U
ni

t)

0 10 20 30 40 50 60 70
0

1

2

3

4

1 2

1
2

1

2

1
2 1

2

1

2

1

2

1

2

 
Figure 1. Simulated prices of the experimental market with the proposed heuristic. Numbers denote parameter 
sets 1 and 2 
 
Sensitivity analysis of the hypothesised parameters for both sets shows a tendency towards price 
stabilization when a and αC are reduced. Low values of αSC lead to stronger instability, which 
indicates that ignoring capacity on order leads to greater oscillations. Behaviour is not very sensitive to 
reasonable changes in the parameter β. 
 
The simulations in Figure 1 are deterministic. To study the effects of internally generated disturbances, 
we introduce an additive normally distributed noise ut (iid) to investments, ut ~ N(0,S²). S is set as the 
average standard error for regression of the heuristic for all experimental market. Figure 2 shows how 
randomness changes the previous deterministic behaviour. We observe that the main driving forces 
generating cycles are conserved, and that the noise does not affect the mode behaviour. 
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(a)         (b) 

Figure 2. Simulated prices of the experimental market without (line 1) and with noise (line 2). (a) represents set 1 
and (b) set 2. 
 
To summarize, we present the next formal hypothesis: 
 
Hypothesis 3: Price behaviour will be cyclical. 
 
2.4 Methods to test cyclicality 
 
To test for cyclicality, we use spectral analysis, we calculate autocorrelations and we estimate 
investment functions. These methods are discussed below. 
 
2.4.1 Methods to test behaviour 
 
Regular cycles are characterized by their frequency or periodicity, amplitudes and attenuation. 
However, these measures are not easy to obtain for irregular cycles and visual inspections may be 
misleading. Estimates of variance measure the dispersion of any data around their average, and 
attenuation is indicated by showing variance for different time intervals. Nevertheless, variance does 
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not say anything about frequencies or autocorrelation. To capture these aspects and to test for random 
and cyclical behaviour we turn to spectral analysis and autocorrelation. 
 
Spectral analysis: The frequency decomposition of variance is called the autospectrum or the 
autospectral density function. Peaks in the autospectrum indicate that variance is concentrated at 
certain frequencies7. This allows detection of both cyclical tendencies and period lengths. For instance, 
white noise has a uniform autospectrum; a sine wave has an autospectrum totally concentrated at a 
single frequency (the period). When both processes are combined, the resulting autospectrum is the 
sum of the individual spectra. 
 
Correlation analysis - autocorrelogram: Based on covariance, the autocorrelogram indicates cyclical 
behaviour and indicates both amplitude and periodicity. The autocorrelogram measures the correlation 
of the variable with itself, at different time lags. The autocorrelogram is most directly interpreted as a 
measure of how well future values can be predicted based on past observations. While random 
processes have autocorrelation functions rapidly diminishing to zero, cyclicality is observed when 
there are values significantly different from zero at different lags.  
 
Ideally the above tests require infinite time series. To clarify what the implications are of limited data, 
we test a pure sine wave with a period of exactly 20 years and a series with iid random numbers 
~U(0,1). Figure 3 shows the corresponding autospectra and autocorrelograms. When calculating the 
autospectrum we use only the last 64 data points, for the autocorrelograms we use the same number of 
data points as in the experiment, 70. The result is a spectrum for the sine function that is concentrated 
in the frequency 1/20years=0.05 per year; however, it is not a perfect peak but somewhat distributed 
peak because of the limited amount of information. The autospectrum for the white noise does not 
show noteworthy peaks. While the autocorrelogram for the white noise does not have any significant 
values, it shows the first four values positive and significant different than cero. Also note that the 
autocorrelogram for the sine function does not present the perfect value (-1) for the tenth lag, also 
because of the limited length of the time-series. 

                                                      

7 Spectral analysis decomposes the time series in orthogonal components. Each component is associated with a 
particular frequency. The autospectrum shows the contribution of each frequency band to the total variance 
(details in Bendat & Piersol, 1980; Box et al 1994). 
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Figure 3. Time series for a pure sine wave (a) and for a series of random numbers ~U(0,1) (b). The autospectra 
are based on the last 64 data points and the autocorrelograms are shown with critical values at the 5 percent 
level. 
 
Figure 4 shows the autospectra and autocorrelograms for the simulated market behaviours with 
parameter sets 1 and 2. Both cases include the previously described noise. Parameter set 1 shows a 
concentration around one frequency (20 year period). Parameter set 2 shows concentrations around the 
same frequencies. In addition it has more energy around the double frequency (10 year period). The 
higher frequency fluctuation leads to fewer significant correlations in the autocorrelogram for 
parameter set 2. The autocorrelograms also indicate sine-like fluctuations. 
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Figure 4. Simulated prices of the experimental market with noise for parameters set 1 (a) and set 2 (b). Both 
series have the autospectrum (performed with the last 64 data) and autocorrelogram (horizontal lines are the 95% 
confidence bounds). 
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2.4.2 Methods to test structure 
 
We use regressions to test the proposed aggregate investment function. We regress on data produced 
by the simulation model. As long as this simulation model assumes one aggregate player, it is not 
possible to test the individual investment function for the aggregate market. Note that as long as the 
max-functions in equations 4 and 5 are not binding, the decision rule is linear. Hence, small price 
variations keep investments in the linear range of the investment function. However, the investment 
function most likely turns nonlinear for variations smaller than 0<P<6. The following simple linear 
form is an approximation of equations 4 and 5 
 
xt = m3P*t + m2Pt + m1SCt  +  b + εt            (7) 
 
where mi (i=1,2,3) and b are parameters to be estimated, and εt is iid random variable with zero mean 
and finite variance. We perform regressions for simulations with and without noise (see Table 2). For 
the case without noise, the r2 values very close to but not quite equal to 1.0. Parameters come very 
close to theoretical values, with a certain deviation for m3. As expected, the quality of the regression 
decreases after the introduction of noise with average values of r2 around 0.6. The noise tends to lead 
to larger deviations from theoretical values, as expected. In particular m3 for set 1 is sensitive. The 
parameter values in Table 3 will serve as references for comparison with the experimental results. 
 
Table 2. Parameter estimates based on simulated data with parameter sets 1 and 2. The p-value of each 
coefficient is presented in parenthesis. 

Simulation conditions m3 (P*) m2(P) m1 (SL) b r² 
Set 1 – not noise 0,58 (0,00) 1,97 (0,00) -0,10 (0,00) -1,02 (0,00) 1,00 
Set 1 – noise* 1,65 1,14 -0,16 -0,78 0,61 
Theoretical values set 1 0,51 1,98 -0,10 -1,02  
Set 2 – not noise 1,26 (0,00) 4,37 (0,00) -0,50 (0,00) -2,50 (0,00) 1,00 
Set 2 – noise* 1,30  3,68 -0,45 -1,63 0,57 
Theoretical values set 2 1,12 4,38 -0,50 -2,50  
* Noise: we assume normally distributed noise with same average standard error for regression of the heuristic for all 
experimental markets  ~ N(0, 1.3 ²). Values are averages of 10 simulations. 
 
The linearity is the weakness of the regression model, i.e., the regression model fails whenever the 
non-negativity constraint of the investment function takes effect. of price This is revealed by varying 
parameter a. We consider a=35 ( and a=37) for the case without noise and perform simulations with 
this condition with parameter set 1. Regressing on simulated behaviour we find m3=-3.55 (and m3=-
1.35). These values deviate from the theoretical values (0.97 and 0.66 respectively); even the sign is 
incorrect. Thus, the greater the fluctuation in price and hence in investment, the greater biases we 
should expect in the estimated parameter because of the activations of the nonlinearities. 
 
 
3 RESULTS 
 
A summary of price statistics8 is presented in Table 3. In all markets, we observe that average prices 
X  are closer to the competitive price (1.00 $/unit) than to the CN equilibrium price (1.83 $/unit). The 
standard deviation, S , varies between 0.36 $/unit and 0.75 $/unit. Comparing prices from the first 35 
periods with the rest, the average price increases in five of the six markets. To some extent this is 
expected due to the starting point with overcapacity. The average of standard deviations is slightly 
reduced from 0.44 to 0.41. The table shows high one-lag autocorrelation, on average 0.89, which 
constitutes the first indication of cycles. 
 

                                                      

8 The analysis could be performed with a focus on prices or quantities. We have chosen prices since they are 
most easily observed and discussed in real markets. 
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Table 3. Summary statistics for the realized price. 

  
All periods First 35 periods Last 35 periods 

 X ($) S ($) α  X ($) S ($) X ($) S ($) 
Group 1 1.04 0.43 0.95 1.09 0.41 0.99 0.44 
Group 2 1.05 0.37 0.86 1.01 0.30 1.09 0.44 
Group 3 1.19 0.43 0.84 0.94 0.32 1.45 0.36 
Group 4 1.29 0.36 0.93 1.11 0.39 1.46 0.20 
Group 5 1.07 0.75 0.90 0.80 0.76 1.35 0.65 
Group 6 1.15 0.44 0.87 1.01 0.45 1.30 0.38 
Average 1.12 0.47 0.89 0.99 0.44 1.27 0.41 

                            * X : mean price; S : standard deviation;  α : one lag autocorrelation. 
 
Table 4 presents the limits for the 95% confidence interval for the average prices over time for all 
groups. The confidence intervals include the competitive equilibrium price for three of the markets. 
All markets have average prices significantly lower than 1.4 $/unit. These low average prices suggest 
that the markets are quite efficient. Table 4 also shows what the welfare loss would have been if prices 
had stayed constant at the observed average prices. Calculated losses are all close to zero (free 
competition) and far lower than the loss of $242 for CN equilibrium. 
 
However, the fluctuations cause a welfare loss. Table 4 shows that losses for the actual and fluctuating 
price series are typically below one third of the loss for the CN equilibrium, with the exception of 
market 5.  
. 

Table 4. 95 % confidence interval limits for average prices X  and welfare lost of the experimental results. 
 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 

Lower bound [$/Unit] 0.905 0.937 1.062 1.175 0.842 1.019 
Average [$/Unit]] 1.036 1.052 1.193 1.285 1.074 1.153 
Upper bound [$/Unit] 1.167 1.167 1.325 1.395 1.306 1.287 
Welfare lost (observed prices) [$] 62.88 50.15 75.43 74.40 196.97 73.74 
Welfare lost (Constant average prices) [$] 0.01 0.01 0.18 0.42 0.03 0.12 

 
We now look in more detail at the price development over time. Prices for the six markets are 
presented in Figure 5. Prices vary from zero to values close to the joint maximization level (3.5 
$/unit). There are only few cases where price hits zero; therefore, prices are mostly in the linear range 
of the demand function. All the experiments begin with over-capacity and a price of 0.5 $/unit. 
Thereafter, a simple visual inspection suggests tendencies towards regular cycles.  
 
The figure also shows autospectra9 and autocorrelograms for all markets. The autospectra suggest 
cyclical tendencies rather than a flat distribution typical of random series. The autospectra tend to be 
concentrated at two frequencies: around 0.05 (period of 20 years) in 3 cases, and around 0.1 (period of 
10 years) in 4 cases. This double-frequency behaviour is consistent with the simulations with 
parameter set 2 previously presented. The autocorrelograms show significant positive values for the 
first three or more lags for all cases, which is consistent with cyclical behaviour. Moreover, there is 
one market with significant negative values for the last four lags, which provide stronger indication of 
oscillations. 
 

                                                      

9 When calculating the autospectra we use the last 64 out of 70 data points, since the Fourier transform works 
better with length series to the power of two (Bendat & Piersol, 1980). By removing the first data points we also 
reduce much of the effect of the initial disequilibrium for the case of perfect foresight and rapid convergence.  



 Paper E3-12

0 20 40 60
0

1

2

3
Price ($/Unit)

0 20 40 60
0

1

2

3

0 20 40 60
0

1

2

3

0 20 40 60
0

1

2

3

0 20 40 60
0

1

2

3

time (periods)

0 20 40 60
0

1

2

3

time (periods)

0 0.05 0.1 0.15 0.2 0.25
0

100

200

300
Autospectrum

0 0.05 0.1 0.15 0.2 0.25
0

100

200

300

0 0.05 0.1 0.15 0.2 0.25
0

100

200

300

0 0.05 0.1 0.15 0.2 0.25
0

50

100

0 0.05 0.1 0.15 0.2 0.25
0

100

200

300

0 0.05 0.1 0.15 0.2 0.25
0

100

200

300

cycles/yr

0 2 4 6 8 10
-1

0

1
Autocorrelogram

0 2 4 6 8 10
-1

0

1

0 2 4 6 8 10
-1

0

1

0 2 4 6 8 10
-1

0

1

0 2 4 6 8 10
-1

0

1

Lag

0 2 4 6 8 10
-1

0

1

Lag
 

Figure 5. Realized prices in the six experimental markets, autospectrum and autocorrelograms. Autospectrums 
are based on the last 64 data points of the series, and autocorrelograms present the 95% confidence bounds 
(horizontal lines). 
 
Figure 6 shows the average autospectrum and autocorrelogram with 2.5 and 97.5 percentiles for the 
six markets. The autospectrum shows significant peaks at frequencies of 0.05 per year (20 years) and 
0.09 (11 years). The average autocorrelogram shows a typical shape of periodic time series with 
noise10; in particular, the four first lags are significantly greater than zero. Thus, visual inspections of 
the price series, the autospectra and the autocorrelograms, are all consistent with cyclical behaviour of 
price. 
 

                                                      

10 See Bendat & Piersol (1980, p. 60) idealized autocorrelation functions. 
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Figure 6. Average autospectrum and autocorrelogram across groups and the confidence interval with the 2.5 and 
97.5 percentiles.  
 
 
4 DISCUSSION 
 
4.1 Testing the hypotheses 
 
Following, we perform the formal tests of the hypotheses presented in section 2. 
 
Hypothesis 1: Average prices are equal to Cournot Nash equilibrium predictions. 
 
Table 4 shows that hypothesis 1 is rejected for all groups; the CN equilibrium does not fall within the 
confidence interval for average prices. Instead, average prices are close to competitive prices, only 
three out to the six groups have an average price significantly greater than the competitive price. All 
prices retain a bias towards competition. The bias towards competition is consistent with previous 
results of Cournot markets under standard conditions (see summary in Huck, 2004; and Huck et al 
2004), where average prices tend to be between competition and CN equilibrium predictions. 
However, these experiments have neither the four period investment lag nor capacity vintages. 
 
Now, we turn to the hypothesised cyclicality. We test hypothesis 2 and 3 simultaneously. 
 
Hypothesis 2. Market prices do not show cyclical tendencies, while random variations may occur. 
Hypothesis 3: Price behaviour will be cyclical. 
 
In the results section, we observed enough evidence to reject hypothesis 2 and to favour hypothesis 3.  
 
Previously we have argued that fluctuations could result from the use of a simple heuristic. The 
proposed heuristic (eq.6 and 7) was built on the assumption that subjects first form adaptive 
expectations about future prices, and next they deliberate on the size of their investment. First we test 
the adaptive expectations and then the investment function. 
 
Test of the adaptive expectation hypothesis 
The adaptive expectations hypothesis presented in eq. (6), is a linear equation restricted to pass trough 
the origin of the 2D space (Pt-1 - P*

t-1 , P*
t  - P*

t-1). We have relaxed this constraint by postulating a 
linear function of the form 
 
 (P*t+1 - P*t ) = α + β (Pt - P*t) ) - εt              (8) 
 
where εt is an iid random variable with zero mean and finite variance. The term α can be interpreted as 
a bias parameter; and the subject that uses adaptive expectations could retain either an optimistic or a 
pessimistic bias. Note that in this experiment we define P* to be four years ahead. The results of 
estimating α and β are presented in Table 5, for individuals and aggregated markets. We define the 
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expected price for aggregated markets to be the average of the expected prices reported by the 
individuals. 
 
Table 5. Parameter estimation for the adaptive expectations hypothesis for individuals and aggregated markets 
corresponding to eq.(8). 
Mkt/Player α (p-value) β (p-value) r²  Mkt/Player α (p-value) β (p-value) r² 

1/1 0.01 (0.65) 0.03 (0.79) 0.00  4/1 0.05 (0.21) 0.16 (0.18) 0.03 
1/2 0.06 (0.20) 0.16 (0.12) 0.04  4/2 0.03 (0.47) 0.19 (0.07) 0.05 
1/3 -0.06 (0.56) 0.19 (0.01) 0.10  4/3 0.00 (0.98) 0.10 (0.32) 0.02 
1/4 0.02 (0.51) 0.23 (0.01) 0.10  4/4 0.01 (0.50) 0.02 (0.75) 0.00 
1/5 0.03 (0.33) 0.24 (0.09) 0.05  4/5 0.01 (0.64) -0.09 (0.43) 0.01 
2/1 0.03 (0.21) 0.22 (0.04) 0.07  5/1 0.00 (0.90) 0.27 (0.00) 0.14 
2/2 0.06 (0.04) 0.27 (0.00) 0.15  5/2 0.01 (0.70) 0.00 (0.98) 0.00 
2/3 -0.01 (0.54) 0.06 (0.07) 0.05  5/3 0.05 (0.54) 0.22 (0.02) 0.08 
2/4 0.02 (0.51) 0.34 (0.04) 0.07  5/4 0.01 (0.92) 0.14 (0.08) 0.05 
2/5 0.03 (0.25) 0.47 (0.00) 0.21  5/5 0.03 (0.58) 0.02 (0.79) 0.00 
3/1 0.03 (0.41) 0.17 (0.05) 0.06  6/1 -0.15 (0.07) 0.37 (0.00) 0.12 
3/2 -0.01 (0.86) -0.04 (0.65) 0.00  6/2 0.02 (0.37) 0.09 (0.13) 0.04 
3/3 -0.01 (0.70) 0.13 (0.09) 0.05  6/3 0.15 (0.06) 0.53 (0.00) 0.23 
3/4 0.00 (0.98) 0.06 (0.56) 0.01  6/4 0.01 (0.57) -0.03 (0.49) 0.01 
3/5 0.00 (0.89) 0.11 (0.11) 0.04  6/5 0.03 (0.60) 0.08 (0.52) 0.01 

     Average 0.015 0.157  
         

Markets α (p-value) β (p-value) r²      
Mkt 1 0.02 (0.37) 0.32 (0.00) 0.19      
Mkt 2 0.00 (0.72) 0.32 (0.00) 0.40      
Mkt 3 0.01 (0.77) 0.08 (0.16) 0.03      
Mkt 4 0.00 (0.99) 0.46 (0.00) 0.27      
Mkt 5 0.01 (0.82) 0.14 (0.01) 0.11      
Mkt 6 0.00 (0.91) 0.54 (0.00) 0.40      

Average 0.067 0.31       
 
The coefficient of expectations β is postulated to be in a range from zero to one. All β estimates from 
aggregate markets fall in this range, and only one is not significant. At the individual level, only three 
coefficients fall outside the postulated range, none of them significant. The average values of β are 
0.015 for individuals and 0.067 for the average markets. It implies and average smoothing time T, T= -
1/ln(1-β), of 6 years for individuals and 3 years for average markets. The coefficient α is not 
significant at individual and aggregate level. Note that values of r2 are very low compared with other 
estimations of adaptative expectation (e.g. Arango 2006a). A comparison of the two experiments 
implies that the lower r2 values must be due to the shorter decision periods and therefore to the longer 
time horizon (in terms of the number of time steps) of the forecasts (four periods ahead). The average 
r2 is higher for aggregate markets than for individuals. This makes sense if each player, making a 
unique investment decision, erroneously assumes that everybody else thinks similarly. Thus the 
average forecast of players would come to reflect more information about the market and be more 
correct. Less randomness would then make it easier to get support for the adaptive expectation 
hypothesis in the aggregate case than in the individual case, given that adaptive expectations have 
some merit. On the other hand, the rather low r2 values signal a need for further investigations of 
expectation formation in this case. 
 
Test of the heuristic 
We explore the aggregated investment behaviour by performing regressions of the heuristic in eq. (7), 
where the expected price P* is taken as the average of individual price expectations each year. 
Regressions are presented in Table 6. The table provides estimates of m1, m2, m3 and b from 
regressions on the observed results as well as theoretical values for two different parameter sets from 
Table 2. We observe that five out of the six markets present significant values for m3, while only two 
for m2 and only one for m1. Thus, P* is clearly the most interesting explanatory variable. The average 
value of m3 is closer to the theoretical value for parameters set 2 than parameter set 1. 
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Table 6. Parameter estimates for aggregated markets using eq.(7). 
 m3 (P*) m2(P) m1 (SC) b r² 
Market 1 0.86* 1.25** 0.07  0.07 0.53 
Market 2 -1.37  1.38  0.11  1.97** 0.08 
Market 3 2.33** -0.11  0.05  -0.09 0.16 
Market 4 2.86*** -1.29*** 0.04  0.51 0.48 
Market 5 2.07* 0.03  0.05  0.27 0.15 
Market 6 1.78** 0.18  0.09* -0.35 0.28 
Average 1.42 0.24 0.07 0.40  
Theoretical#  Set 1 
Theoretical# Set 2 

0,51 
1.12 

1,98 
4.38 

-0,10 
-0.50 

-1,02 
-2.5  

* significance at 10%; ** significance at 5%; *** significance at 1%  (2 tailed t-tests). 
# Theoretical parameters from Table 2. 

 
We also explore the individual investment behaviour. The proposed investment function for 
individuals is  
 
xi

t = m4 P* it, + m3 Pt + m2 SCi
t, + m1 Ci

t + b + εt               (9) 
 
where mj (j=1, … ,4) and b are parameters to be estimated, and εt is iid random variable with zero 
mean and finite variance. The index i represents individuals and the variables conserve the previous 
names. Table 7 shows the regressions of eq.(9) for all individuals across markets. We observe 16, 15, 
13, and 10 significant values out of maximum 30 for m4, m3, m2, and m1 respectively (significance at 
10%). This is considerable given large variations of investment decisions. We also observe that r2 is 
on average 0.33, which is actually larger than average r2 for aggregate markets (r2=0.28). This is not 
necessarily surprising since individual investments are likely to reflect individual price expectations. 
Still, further research could contribute to a better understanding of individual behaviour. 
 
Table 7. Parameter estimation for the proposed heuristic for individuals (standard errors). 
 m4 (P*) m3 (P) m2 (SL) m1 (C) b R² 
Market 1 
P 1 0.242 (0.117) ** 0.037 (0.157)  0.01 (0.069)  -0.03 (0.021)  0.27 (0.191)  0.29 
P 2 0.23 (0.05) *** -0.013 (0.063)  0.095 (0.032) *** -0.025 (0.011) ** 0.211 (0.121) * 0.74 
P 3 0.101 (0.064)  0.685 (0.244) *** -0.032 (0.059)  -0.074 (0.051)  0.457 (0.657)  0.36 
P 4 0.221 (0.121) * -0.177 (0.142)  0.103 (0.055) * -0.02 (0.023)  0.475 (0.299)  0.15 
P 5 -0.276 (0.269)  0.577 (0.33) * 0.198 (0.04) *** -0.029 (0.018)  0.624 (0.378)  0.55 
Market 2 
P 1 0.26 (0.898)  -0.379 (0.747)  -0.009 (0.09)  0.047 (0.041)  0.251 (1)  0.06 
P 2 -0.007 (0.151)  -0.012 (0.152)  0.237 (0.059) *** 0 (0.023)  0.163 (0.31)  0.26 
P 3 -0.072 (0.129)  -0.094 (0.106)  0.294 (0.034) *** -0.008 (0.008)  0.248 (0.131) * 0.63 
P 4 0.247 (0.237)  1.187 (0.287) *** 0.01 (0.046)  -0.022 (0.016)  -0.832 (0.232) *** 0.59 
P 5 -0.043 (0.113)  0.175 (0.107)  0.074 (0.055)  -0.013 (0.024)  0.497 (0.246) ** 0.18 
Market 3 
P 1 0.832 (0.301) *** -0.071 (0.306)  -0.072 (0.07)  -0.044 (0.046)  -0.392 (0.552)  0.15 
P 2 0.805 (0.231) *** 0.348 (0.182) * -0.069 (0.07)  0.096 (0.048) * -1.654 (0.655) ** 0.23 
P 3 0.152 (0.11)  0.042 (0.086)  -0.285 (0.09) *** 0.007 (0.016)  0.23 (0.191)  0.16 
P 4 0.058 (0.123)  0.052 (0.089)  0.143 (0.052) *** -0.014 (0.018)  0.561 (0.266) ** 0.11 
P 5 2.573 (0.414) *** -0.749 (0.259) *** -0.032 (0.056)  -0.089 (0.04) ** 0.627 (0.826)  0.39 
Market 4 
P 1 -0.006 (0.092)  0.252 (0.133) * 0.134 (0.044) *** -0.022 (0.019)  -0.04 (0.217)  0.51 
P 2 0.052 (0.02) *** -0.068 (0.036) * 0.047 (0.039)  -0.039 (0.008) *** 0.6 (0.107) *** 0.57 
P 3 0.261 (0.153) * -0.042 (0.134)  0.048 (0.048)  -0.085 (0.026) *** 0.913 (0.312) *** 0.33 
P 4 0.249 (0.099) ** -0.165 (0.084) * 0.189 (0.046) *** -0.034 (0.022)  0.637 (0.275) ** 0.26 
P 5 1.493 (0.353) *** -1.073 (0.304) *** 0.063 (0.051)  -0.04 (0.025)  0.856 (0.502) * 0.41 
Market 5 
P 1 -0.126 (0.396)  0.557 (0.316) * 0.041 (0.051)  -0.012 (0.038)  0.088 (0.621)  0.18 
P 2 0.268 (0.443)  -0.091 (0.249)  -0.043 (0.07)  -0.042 (0.086)  1.013 (1.281)  0.02 
P 3 0.665 (0.16) *** -0.164 (0.155)  -0.052 (0.062)  -0.015 (0.03)  0.476 (0.529)  0.23 
P 4 1.728 (0.281) *** -0.569 (0.2) *** -0.108 (0.057) * -0.105 (0.049) ** 0.458 (0.688)  0.43 
P 5 0.006 (0.051)  0.207 (0.051) *** 0.023 (0.046)  -0.022 (0.014)  0.221 (0.116) * 0.49 
Market 6 
P 1 0.33 (0.094) *** 0.345 (0.202) * -0.183 (0.07) ** -0.057 (0.031) * 0.349 (0.358)  0.38 
P 2 -0.173 (0.144)  0.391 (0.123) *** 0.087 (0.061)  0.064 (0.036) * -0.447 (0.454)  0.23 
P 3 0.206 (0.091) ** -0.075 (0.228)  0.158 (0.059) *** -0.069 (0.026) *** 0.766 (0.524)  0.36 
P 4 1.997 (0.416) *** -0.615 (0.221) *** 0.076 (0.056)  -0.046 (0.025) * -0.682 (0.433)  0.37 
P 5 0.498 (0.213) ** -0.198 (0.229)  0.168 (0.049) *** -0.087 (0.053)  1.012 (0.828)  0.46 

 * significance at 10%; ** significance at 5%; *** significance at 1% (2 tailed t-tests). 
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4.2 Behavioural implications of the estimated heuristic 
 
Now, we compare previous simulations with a new one where we use the linear regression model with 
averages of the estimated parameters for aggregates. Figure 8 shows quite similar cycles, except that 
the new simulation has a longer period and it has a tendency towards exploding oscillations. A clearer 
picture about this is presented in Figure 7, where all individual markets except one presents cycles 
with small variations among them. Hence this test can not be used to discard hypothesis 3. However, 
the accuracy of the test is reduced by the rather poor results of the regressions. 
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Figure 7. Simulation of investment rule with parameters’ set 1 (line 1), set 2 (line 2), and average estimates from 
experimental results (line 3). 
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Figure 8. Simulations with estimates from the individual market (line number represents the number of the 
market). 
 
Random investments? 
Rather than taking the regression model at face value, one could also go to the other extreme and 
assume that decisions are entirely random. We do this and perform a simulation where investments are 
given by a normally distributed variable (iid). The expected value is set equal to the average 
investment over all markets in the experiment, and the variance is the average variance over all 
markets. Figure 9 presents some typical developments. By visual inspection we observe price patterns 
that differ from those of previous simulations and from the experimental results. Simulations with 
random investments show price variations closer to pink noise rather than periodic oscillations, while 
in Arango (2006b) the difference was not so clear. From this test we conclude that the players’ 
heuristics play a vital role for the observed cyclical tendencies. 
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Figure 9. Stochastic simulations with normally distributed investments ~N(2.858, 1.557²).  
 
4.3 Importance of the frequency of decisions 
 
This experiment is an extension of the complex treatment (T3) of Arango (2006b). In Arango’s 
experiment decisions were made each fifth year. This was a compromise not to depart too much from 
the simple Cobweb design and still have a reasonably correct representation of the long lifetimes of 
production capacity in electricity markets. The current experiment is more realistic because investment 
decisions to adjust capital are likely to be more frequent than each fifth year, perhaps yearly as 
assumed here. The lifetime of capacity is nearly the same in both experiments, four periods of five 
years (20 years altogether) in Arango and 16 years in this experiment. 
 
Arango found that autocorrelated instabilities occur when the time lag between investment decisions 
and capacity expansion is increased from one to two periods. However, while Arango was not able to 
reject the importance of player heuristics, he did not produce strong evidence in favour of this 
hypothesis either. The present experiment shows more well defined cycles and heuristics seem to play 
a vital role. Since the frequency of decisions is the major design difference between the two 
experiments it seems safe to conclude that the frequency matters. 11 What are the likely reasons for this 
effect? More frequent decisions imply that much more information has to be kept track of. This point 
is weakened by the fact that the player interface had information about current capacity and capacity 
on order organised as in Arango in age classes (4 year long compared to 5 years in Arango). A minor 
difference in this regard is that Arango showed this information in graphical form and not just in a 
table. No such organising of data was available for prices, forecasts and market shares. Hence in this 
regard the present experiment was more complicated. This increase in complexity may have called for 
the use of simplifying heuristics for year to year decisions, rather than for heuristics to transform the 
decision problem to mimic that in Arango, which could be seen as an easier task. With a year to year 
investment heuristic, feedback from decisions already taken is slower in the present experiment than in 
Arango. The result is not surprising if one sees the present experiment as a further extension of what 
was started in Arango, where one extra investment lag lead to stronger fluctuations. Neither is the 
result surprising in light of the literature which has identified misperceptions of delays (Sterman, 
1989; Brehmer, 1993). 
 
4.4 External validity 
 
The demand in the experiment does not present dynamic adjustment or demand growth, both factors 
being more realistic than the current assumptions. Both factors have implications for market stability. 
Demand growth may create an effect of amplifications of cycles as shown by Ford (1999) through 
simulations. Constant price elasticity and demand dynamics contribute to asymmetries in price 
distributions as shown by experiments in Arango (2006a). Thus, investigations of these aspects of 
demand would complement this experiment. 
                                                      

11 There is one alternative explanation, Arango provided the players with a profit calculator, we did not do that. 
However, it seems unlikely that the profit calculator should have an effect on anything but the average price over 
time. As reported earlier, the average price was on average higher in Arango’s T3: 1.42 $/Unit. The profit 
calculator does not help players decide when to invest. 
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Capacity utilization is assumed constant and equal to one. This assumption allows isolating the 
investment decision from the strategic bidding behaviour. If subjects were allowed to make changes in 
capacity utilization, they may get more stable price behaviour. Relaxing this assumption should be 
considered together with changes in the demand formulation in future studies. 
 
 
5 CONCLUSIONS 
 
This paper presents an experimental study of construction cycles as a potentially serious problem for 
deregulated electricity markets. Simulation models have suggested the potential occurrence of cycles 
(Ford, 1999; Bunn & Larsen, 1999). However, the evolution of deregulated electricity markets does 
not present conclusive evidence of capacity cycles; more data is needed to evaluate such behaviour 
(IEA, 1999 and 2003; Bunn & Larsen, 1992 and 1999). Market stability depends on individual 
investment behaviour. Rational investment behaviour could lead to economical and minimal 
fluctuations, while myopic investors could concentrate investments during periods of relatively high 
electricity prices, causing pronounced cycles (Ford, 1999 and 2000; Bunn & Larsen, 1992; Gary & 
Larsen, 2000). We isolate investment decision to study directly the rationality of investors in a 
laboratory experiment.  
 
Our results support the hypothesis of cyclical tendencies in electricity markets, as suggested by 
behavioural simulation models (Ford, 1999 and 2000; Bunn & Larsen, 1992 and 1999) and economic 
analysis (IEA, 1999, 2002 and 2003; Stoft, 2002). We find indications of cyclical behaviour by: visual 
inspection, spectral analysis, autocorrelograms and simulation tests. All observations are consistent 
with cyclicality. 
 
Investors face a difficult dynamic decision problem that includes long time delays and accumulations, 
where bounded rationality is more likely to explain the behaviour than perfect rationality. We 
investigated a hypothesis that people use a simple investment heuristic consistent with bounded 
rationality theory. A statistical test of the heuristic suggests that investments are positively related to 
reported price expectations, which in turn may be explained as adaptive expectations with average 
smoothing times of around 3 years. The other explanatory variables come out mostly insignificant. 
Interesting to note though is that simulations with the estimated heuristic shows cyclical behaviour of 
the type observed in the experiment, while simulations with purely random investments show quite 
different price behaviour. Hence, it seems clear that the observed price cycles are related to player 
decisions. For most markets and individuals we cannot reject a hypothesis saying that expectations are 
adaptive and unbiased. However, low r2 values indicate that the expectation formation is more 
complicated than assumed here. Hence, the search for better models to explain expectation formation, 
as well as investments, are interesting topics for further research. 
 
We observe that subjects have the tendency to initiate new projects when they perceive high prices, 
while they tend to ignore capacity under construction and the involved delivery delay. Once new 
capacity is in place, the market has surplus capacity and therefore prices fall. There are no external 
disturbances in the experiment, hence this often quoted cause of fluctuations can be ruled out in this 
experiment. The players generate sufficient disturbances themselves to keep the cycles alive over time. 
Hence, our findings should serve as a motivation for further search for and analysis of stabilising 
policies in newly deregulated electricity markets. 
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Appendix 1. Instructions for the experiment 

 
INSTRUCTIONS 

 
WARNING: DO NOT TOUCH THE COMPUTER UNTIL YOU ARE TOLD TO!!! 

 
INTRODUCTION 
Thanks for show up and we hope you enjoy this part of the course.  This is an experiment in the economics of 
decision making, the case is a deregulated electricity market.  Various foundations have provided funds for the 
conduct of this experiment.  The instructions are simple, and if you follow them carefully and make good 
decisions you might earn a considerable amount of money.  The money will be paid to you in cash after the 
experiment.  In this experiment you are going to play the role of an electricity producer who sells electricity in a 
market.  Each period you will make investment decisions that influence your future production capacity.  Your 
target is to maximize the profits over all periods of the experiment.  The larger your total profits, the larger 
the payoff. 
 
MARKET STRUCTURE 
You are one among five electricity producers in a market.  You do not know who the other players in your 
market are and how they perform individually.  Your profits are estimated as: 
 
Profits = your production * (Price – Cost) 
 
Your production can not be negative and must always be below 20 Units in total, which is an upper limit 
ensuring a minimum of competition.  The cost is 1 $/Unit (think of it as a leasing cost).  The electricity price is 
set to equilibrate the total supply and the demand.  The total supply is the sum of the production of the five 
players.  It is assumed that the short and long run elasticities are the same.  Demand is price sensitive and is 
given by the following function: 
 
Price = A – B*Q, where Q is the total supply, A = 6, B = 0.1  (see Figure 1) 
 
To summarize, the larger the total electricity production is, the lower the price.  Respectively, the lower the 
total electricity production is, the higher the price.  There is no economic growth, which means that demand only 
changes due to price changes.  
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Figure 2. Demand curve 

 
THE PRODUCTION 
Your production will always be equal to your production capacity, you cannot reduce capacity utilisation.  Each 
year you make investment decision in new capacity (you can decide 0 Units).  Important characteristics of the 
electricity generators are: 
Construction delay = 4 years 
Life time of capacity = 16 years 
This means that if you decide to invest in an additional capacity of 0.8 Units in year 6, this capacity will be 
under construction for 4 years and will add 0.8 Units to your capacity in year 10.  This additional capacity will 
last until year 26. 
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INITIAL CONDITION 
When the experiment starts, the previous managers of the firm have invested a constant amount of 11 Units / 
Life time = 0.69 Units/year for a long time.  Consequently, you start with a total production capacity of 11 
Units.  Thus, if you want to keep the same production, you will have to invest in 0.69 Units every year.  All 
firms are identical, they have the same costs and the same initial capacity.  The system start in equilibrium with 
an initial total capacity of 11 Units * 5 firms = 55 Units. For a total supply of 55 Units, the price is 0.5 $/Unit.  
This means that initially you are all operating with prices lower than your costs. 
 
PAYOFF 
You will receive payoffs according to your performance. Your performance is measured by your cumulative 
profits. The higher the cumulative profits, the higher the payoff. The payoff will be in the range from 0 to 150 
NOK. 
 
In each year, you are also asked to forecast the price in four years. You will earn an extra payment depending 
on the precision of your forecasting. If you make a perfect forecast in each and every period you get an 
additional 25 NOK. 
 
RUNNING THE EXPERIMENT: 
 
BE CAREFUL NOT TO PRESS “Accept Decisions” UNLESS YOU REALLY MEAN IT. After having 
pressed “Accept Decisions” your decision cannot be changed 
 
Look at the market and firm information available and make investment decisions and state your price 
expectations 
Write your decisions in the given sheet of paper (this is our receipt for the payment to you, and your decisions 
have to be filled in), and press “Accept Decisions” 
Wait until all the participants in your market have made their decisions 
The window “Accept Decisions” appears again, the game has advanced to the next year. The information is 
updated and it is time to make decisions again. 
The simulation will run for an undefined number of years. When the experiment leader stops the game , you 
must write down your payoff in the given sheet of paper and ask for your payment. Payments will be made 
privately, one by one. 
 
NOTE 
According to the purpose of the experiment it is required not to share any kind of information (verbal, 
written, gestures, etc.). Please, respect these rules because they are important for the scientific value of the 
experiment. Breaking the rules implies that the involved group is nullified and the group participants will 
receive no payment. 
 
Thank you for joining this experiment and do your best!!! 
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Appendix 2. User interface and Code for the experiment (The software and the rest of the 
material is available upon request to the author). 
 
User Interface 
 

Capacity initiation (Units) 1.50

Rest's production (Units) 41.94

Unitary cost ($/Unit) 1.00

General Information Decisions

Expected price in 4 yr ($/Unit) 1.30

Performance

Cumulative profits ($) 29.84

Firm's production (Units) 18.00

Year 21

Total production (Units) 18.00

Price ($/Unit) 0.01

Profit margin ($/Unit) -0.99

Under Construction 4.50

Between 1 and 4 yr old 12.00

Between 5 and 8 yr old 6.00

Between 9 and 12 yr old 0.00

Between 13 and 16 yr old 0.00

Age groups for capacity (Units)

Firm Total

15.48

20.68

1.71

26.85

10.69

59.94

Total production (Units) 59.94

Operational profits ($) -17.89

Average expectations error ($/Units) 12.44

 
 
Code (from Powersim Constructur 2.51). 
 
dim Acum_Difference = (Players) 
init Acum_Difference = 0 
flow Acum_Difference = +dt*Difference 
dim C_Online_1 = (Players) 
init C_Online_1 = Initial_Capacity_per_yr 
flow C_Online_1 = -dt*Rate_21 
 +dt*Rate_19 
dim C_Online_10 = (Players) 
init C_Online_10 = Initial_Capacity_per_yr 
flow C_Online_10 = -dt*Rate_31 
 +dt*Rate_30 
dim C_Online_11 = (Players) 
init C_Online_11 = Initial_Capacity_per_yr 
flow C_Online_11 = +dt*Rate_31 
 -dt*Rate_28 
dim C_Online_12 = (Players) 
init C_Online_12 = Initial_Capacity_per_yr 
flow C_Online_12 = -dt*Rate_29 
 +dt*Rate_28 
dim C_Online_13 = (Players) 
init C_Online_13 = Initial_Capacity_per_yr 
flow C_Online_13 = -dt*Rate_34 
 +dt*Rate_29 
dim C_Online_14 = (Players) 
init C_Online_14 = Initial_Capacity_per_yr 
flow C_Online_14 = -dt*Rate_35 
 +dt*Rate_34 
dim C_Online_15 = (Players) 
init C_Online_15 = Initial_Capacity_per_yr 
flow C_Online_15 = +dt*Rate_35 
 -dt*Rate_32 
dim C_Online_16 = (Players) 
init C_Online_16 = Initial_Capacity_per_yr 
flow C_Online_16 = -dt*Rate_33 
 +dt*Rate_32 
dim C_Online_2 = (Players) 



 Paper E3-25

init C_Online_2 = Initial_Capacity_per_yr 
flow C_Online_2 = +dt*Rate_21 
 -dt*Rate_20 
dim C_Online_3 = (Players) 
init C_Online_3 = Initial_Capacity_per_yr 
flow C_Online_3 = -dt*Rate_22 
 +dt*Rate_20 
dim C_Online_4 = (Players) 
init C_Online_4 = Initial_Capacity_per_yr 
flow C_Online_4 = -dt*Rate_23 
 +dt*Rate_22 
dim C_Online_5 = (Players) 
init C_Online_5 = Initial_Capacity_per_yr 
flow C_Online_5 = -dt*Rate_26 
 +dt*Rate_23 
dim C_Online_6 = (Players) 
init C_Online_6 = Initial_Capacity_per_yr 
flow C_Online_6 = -dt*Rate_27 
 +dt*Rate_26 
dim C_Online_7 = (Players) 
init C_Online_7 = Initial_Capacity_per_yr 
flow C_Online_7 = +dt*Rate_27 
 -dt*Rate_24 
dim C_Online_8 = (Players) 
init C_Online_8 = Initial_Capacity_per_yr 
flow C_Online_8 = -dt*Rate_25 
 +dt*Rate_24 
dim C_Online_9 = (Players) 
init C_Online_9 = Initial_Capacity_per_yr 
flow C_Online_9 = -dt*Rate_30 
 +dt*Rate_25 
dim C_under_contr_2 = (Players) 
init C_under_contr_2 = Initial_Capacity_per_yr 
flow C_under_contr_2 = +dt*Investment 
 -dt*Rate_17 
dim C_under_contr_3 = (Players) 
init C_under_contr_3 = Initial_Capacity_per_yr 
flow C_under_contr_3 = -dt*Rate_18 
 +dt*Rate_17 
dim C_under_contr_4 = (Players) 
init C_under_contr_4 = Initial_Capacity_per_yr 
flow C_under_contr_4 = -dt*Rate_19 
 +dt*Rate_18 
dim Cumulative_profits = (Players) 
init Cumulative_profits = 0 
flow Cumulative_profits = +dt*Net_profit 
dim Difference = (Players) 
aux Difference = ABS(EP_minus_CP) 
dim Investment = (p=Players) 
aux Investment = 
SELECTDECISION(INDEX(p),Investment_Decisions,Simulated,Simulated,Simulated)+IF(TIME=0,Initial_Capacity_per_yr,0) 
doc Investment =  AND INDEX(p)=p 
dim Net_profit = (Players) 
aux Net_profit = Revenues-Operational_Cost 
dim Rate_17 = (i=Players) 
aux Rate_17 = DELAYPPL(Investment(i),1,Investment(i)) 
dim Rate_18 = (i=Players) 
aux Rate_18 = DELAYPPL(Rate_17(i),1,Rate_17(i)) 
dim Rate_19 = (i=Players) 
aux Rate_19 = DELAYPPL(Rate_18(i),1,Rate_18(i)) 
dim Rate_20 = (i=Players) 
aux Rate_20 = DELAYPPL(Rate_21(i),1,Rate_21(i)) 
dim Rate_21 = (i=Players) 
aux Rate_21 = DELAYPPL(Rate_19(i),1,Rate_19(i)) 
dim Rate_22 = (i=Players) 
aux Rate_22 = DELAYPPL(Rate_20(i),1,Rate_20(i)) 
dim Rate_23 = (i=Players) 
aux Rate_23 = DELAYPPL(Rate_22(i),1,Rate_22(i)) 
dim Rate_24 = (i=Players) 
aux Rate_24 = DELAYPPL(Rate_27(i),1,Rate_27(i)) 
dim Rate_25 = (i=Players) 
aux Rate_25 = DELAYPPL(Rate_24(i),1,Rate_24(i)) 
dim Rate_26 = (i=Players) 
aux Rate_26 = DELAYPPL(Rate_23(i),1,Rate_23(i)) 
dim Rate_27 = (i=Players) 
aux Rate_27 = DELAYPPL(Rate_26(i),1,Rate_26(i)) 
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dim Rate_28 = (i=Players) 
aux Rate_28 = DELAYPPL(Rate_31(i),1,Rate_31(i)) 
dim Rate_29 = (i=Players) 
aux Rate_29 = DELAYPPL(Rate_28(i),1,Rate_28(i)) 
dim Rate_30 = (i=Players) 
aux Rate_30 = DELAYPPL(Rate_25(i),1,Rate_25(i)) 
dim Rate_31 = (i=Players) 
aux Rate_31 = DELAYPPL(Rate_30(i),1,Rate_30(i)) 
dim Rate_32 = (i=Players) 
aux Rate_32 = DELAYPPL(Rate_35(i),1,Rate_35(i)) 
dim Rate_33 = (i=Players) 
aux Rate_33 = DELAYPPL(Rate_32(i),1,Rate_32(i)) 
dim Rate_34 = (i=Players) 
aux Rate_34 = DELAYPPL(Rate_29(i),1,Rate_29(i)) 
dim Rate_35 = (i=Players) 
aux Rate_35 = DELAYPPL(Rate_34(i),1,Rate_34(i)) 
dim Age_between_1_and__4_yr = (Players) 
aux Age_between_1_and__4_yr = C_Online_1+C_Online_2+C_Online_3+C_Online_4 
dim Age_between_5_and_8_yr = (Players) 
aux Age_between_5_and_8_yr = C_Online_5+C_Online_6+C_Online_7+C_Online_8 
dim Age_between_9_and_12_yr = (Players) 
aux Age_between_9_and_12_yr = C_Online_10+C_Online_11+C_Online_12+C_Online_9 
dim Age_more_than_13_yr = (Players) 
aux Age_more_than_13_yr = C_Online_13+C_Online_14+C_Online_15+C_Online_16 
dim Auxiliary_149 = (Players) 
aux Auxiliary_149 = 
Investment+C_under_contr_2+C_under_contr_3+C_under_contr_4+C_Online_1+C_Online_2+C_Online_3+C_Online_4+C_Online_5+C_
Online_6+C_Online_7+C_Online_8+C_Online_9+C_Online_10+C_Online_11+C_Online_12 
dim Average_error = (Players) 
aux Average_error = Acum_Difference DIVZ0 TIME 
dim Capacity = (Players) 
aux Capacity = Age_between_1_and__4_yr+Age_between_5_and_8_yr+Age_between_9_and_12_yr+Age_more_than_13_yr 
dim Capacity_Rest = (Players) 
aux Capacity_Rest = ARRSUM(Capacity)-Capacity(1) 
dim Capacity_Under_Construction = (Players) 
aux Capacity_Under_Construction = C_under_contr_2+C_under_contr_3+C_under_contr_4 
aux Consumption = ARRSUM(Capacity) 
dim EP_minus_CP = (i=Players) 
aux EP_minus_CP = DELAYPPL(Expected_Price(i), 4,Price)-Price 
dim Expected_Price = (p=Players) 
aux Expected_Price = SELECTDECISION(INDEX(p), 
Decided_Expected_price,Simulated_Expected_price,Simulated_Expected_price,Simulated_Expected_price)+IF(TIME=0,Price,0) 
aux Margin = Price-Variable_O_and_M_costs 
dim Operational_Cost = (Players) 
aux Operational_Cost = Capacity*Variable_O_and_M_costs 
aux Precio_retardado = DELAYPPL(Price, 4,Price) 
aux Price = MAX(A-B*Consumption,0) 
dim Revenues = (Players) 
aux Revenues = Capacity*Price 
dim Simulated = (Players) 
aux Simulated = IF(TIME=0,0,Investment_Decisions(1))*0 + IF(TIME=0,0,Initial_Capacity_per_yr) 
aux T_13_and_16_yr = ARRSUM(Age_more_than_13_yr) 
aux T_C_Under = ARRSUM(Capacity_Under_Construction) 
aux Tot_1_and_4_yr = ARRSUM(Age_between_1_and__4_yr) 
aux Tot_5_and_8_yr = ARRSUM(Age_between_5_and_8_yr) 
aux Tot_9_and_12_yr = ARRSUM(Age_between_9_and_12_yr) 
aux total_invesment = ARRSUM(Investment) 
aux Total_profits = ARRSUM(Cumulative_profits) 
dim Warning_Botton = (Players) 
aux Warning_Botton = IF(Investment_Decisions<0,1,0) 
dim Warning_Top = (i=Players) 
aux Warning_Top = IF(Auxiliary_149(i)>Upper_limit_additional_production,1,0) 
doc Warning_Top = IF(Auxiliary_100(i,2)>Upper_limit_additional_production,1,0)*0 
const A = 6 
const B = 1/10 
dim Decided_Expected_price = (Players) 
const Decided_Expected_price = 0 
const Initial_Capacity_per_yr = (55/16)/5 
dim Investment_Decisions = (Players) 
const Investment_Decisions = 0 
dim Simulated_Expected_price = (Players) 
const Simulated_Expected_price = 0 
const Upper_limit_additional_production = 20 
const Variable_O_and_M_costs = 1 
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Appendix 3. Estimative of the equilibrium points in the market 
 
Following is the notation for the market equilibrium points. Some variables are time dependent, which will be 
notified if needed. 
 
P: market price 
C: marginal cost 
c: total cost 
S: total supply 
qi: production of the player i 
A, B: parameters of the demand curve. 
π: profits 
 
Competitive equilibrium 
The competitive equilibrium price is the price that equates the quantity demanded and the quantity supplied, with 
neither surplus nor shortage. The competitive equilibrium is reached when the marginal cost equals the price. 
The competitive price equilibrium is: 
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The total supply is the sum of individual production ( ∑ == 5,...,2,1, iqS it ), and there is symmetry across 
players in the market. Therefore, the total production of competitive equilibrium is distributed symmetrically 
among players (S = 5qi), given by: 
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Cournot Nash Equilibrium 
According to the Cournot Nash model, an oligopolistic market is in equilibrium if each firm produces the same 
expected production of the other, under conditions of profits maximization. The profit function for each firm is: 
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Every player assumes that the rest of players will produce the same as her/him. The quantity is the result of profit 
maximization assuming that the other’s production qi for j ≠ i, is constant, and in the equilibrium the quantity is 
time independent. The following expression provides the first-order condition for the production qi (Martin, 
2002):  
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Given that c(qi) = C qi, S = 5qi, the first order conditions becomes: 
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Joint maximization 
The joint maximization equilibrium is estimated by assuming that each firm (subject) seeks to maximize the total 
industry profits and divided the joint profits equally. Since all firms are symmetric, it is equivalent to the 
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monopoly equilibrium. Thus, the industry maximizes its total profits with respect to the overall production and 
divides the profits among firms. The profit function for the total industry is given by: 
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The first-order condition for the production S is:  
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Appendix 4. Derivation of the linear part of the decision rule with the set 1 and 2 of parameters 
for simulations. 
 
 
We re-state the decision rule with the following equations: 
 
xt = MAX ( 0, Ct/τ + αC (C*

t  - Ct)+ αSC (k/τ C*
t - SCt )) 

Ct = 60 – 10 Pt 

C*
t = MAX ( 0, a + 
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P*
t= β Pt-1 + (1-β ) P*

t-1 
 
To shorten the presentation, we neglect the variable t in the bold variables. We also take the linear part 
of the function and the new decision rule is 
 
x = C/τ + αC (C*  - C)+ αSC (k/τ C* - SC) 
C* = a + Y P* 
C = 60 – 10 P 
 
Grouping and simplifying: 
x = C/τ + αC C*  - αC C+ αSC k/τ C* - αSC SC 
x = 60/τ – 10 P /τ + αC (a + Y P*)- αC (60 – 10 P )+ αSC k/τ (a + Y P*) - αSC SC 
x = 60/τ – 10 P /τ + αC a + αC Y P* - αC 60 + αC 10 P + a αSC k/τ + Y αSC k/τ  P* - αSC SC 
x =    P* [Y αC + Y αSC k/τ ] + P [αC 10– 10/τ] + [- αSC]SC + [60/τ + a αC  - 60αC  + a αSC k/τ ] 
 
The parameters values are: 
a= 38 
qe = 41.33 
pe = 1.87 
αC = 0.26 (set 1) 0.5 (set 2) 
αSC = 0.10 (set 1) 0.5 (set 2) 
k = 4 
τ = 16 
 
We get the following expression 
x =   P* [Y αC + Y αSC k/τ ] + P [αC 10– 10/τ] + SC [- αSC] + [60/τ + a αC  - 60αC  + a αSC k/τ ] 
which is analogous to the expression needed: 
xt = m3P*t + m2Pt + m1SCt  +  b 
 
Finally, the coefficient values are 
Coeficient Expression Set of parameters 1 Set of parameters 2 
m3  Y αC + Y αSC k/τ 0.51 1.12 
m2 αC 10– 10/τ 1.98 4.38 
m1 - αSC -0.10 -0.50 
b 60/τ + a αC  - 60αC  + a αSC k/τ -1.02 -2.50 
 




